JP4765730B2 - Thermal transfer image receiving sheet - Google Patents

Thermal transfer image receiving sheet Download PDF

Info

Publication number
JP4765730B2
JP4765730B2 JP2006101015A JP2006101015A JP4765730B2 JP 4765730 B2 JP4765730 B2 JP 4765730B2 JP 2006101015 A JP2006101015 A JP 2006101015A JP 2006101015 A JP2006101015 A JP 2006101015A JP 4765730 B2 JP4765730 B2 JP 4765730B2
Authority
JP
Japan
Prior art keywords
layer
thermal transfer
conductive layer
sheet
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006101015A
Other languages
Japanese (ja)
Other versions
JP2007268995A (en
Inventor
猛憲 小俣
将充 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006101015A priority Critical patent/JP4765730B2/en
Publication of JP2007268995A publication Critical patent/JP2007268995A/en
Application granted granted Critical
Publication of JP4765730B2 publication Critical patent/JP4765730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

本発明は、安定性の高い優れた帯電防止性能を備えた感熱転写記録用受像シートに関し、特に昇華転写記録に使用される熱転写受像シートに関するものである。   The present invention relates to a thermal transfer recording image receiving sheet having high stability and excellent antistatic performance, and more particularly to a thermal transfer image receiving sheet used for sublimation transfer recording.

従来、種々の熱転写記録方法が知られているが、それらの中でも、近年、昇華性の染料を含有する熱転写層をポリエステルフィルム等の支持体上に形成した熱転写シートを、サーマルヘッドやレーザー等の加熱媒体によって加熱することにより、熱転写受像シート上に画像を形成する昇華転写記録方式が注目され、種々の分野において、情報記録手段として利用されている。このような昇華転写記録方式によれば、極めて短時間でフルカラー画像を形成することができ、中間色の再現性や階調性に優れた、フルカラー写真画像にも匹敵する高品質な画像を得ることができる。   Conventionally, various thermal transfer recording methods are known. Among them, in recent years, a thermal transfer sheet in which a thermal transfer layer containing a sublimable dye is formed on a support such as a polyester film is used as a thermal head or a laser. A sublimation transfer recording system in which an image is formed on a thermal transfer image receiving sheet by heating with a heating medium has attracted attention, and is used as an information recording means in various fields. According to such a sublimation transfer recording method, a full-color image can be formed in an extremely short time, and a high-quality image comparable to a full-color photographic image that is excellent in reproducibility and gradation of intermediate colors can be obtained. Can do.

受像シートの受像面には、熱転写シートから移行してくる昇華性の染料を受容し、形成された画像を保持するために、熱可塑性樹脂、例えば、飽和ポリエステル樹脂、塩化ビニル・酢酸ビニル共重合体、ポリカーボネート系樹脂等からなる受容層と、必要に応じて、基材シートと受容層との間に中間層が設けられている。中間層の機能として、例えば、PETのような剛性の高い基材シートを用いるときにクッション性を付与する層や、帯電防止性を付与する層を設ける場合がある。裏面には、カール防止やスリップ性向上のために、アクリル樹脂等のバインダーに、アクリル樹脂やフッ素系樹脂、ポリアミド系樹脂等からなる有機フィラーや、シリカ等の無機フィラーを添加した組成物をコーティングしてなる裏面層が必要に応じて設けられている。   On the image receiving surface of the image receiving sheet, a sublimable dye transferred from the thermal transfer sheet is received, and a thermoplastic resin such as a saturated polyester resin, vinyl chloride / vinyl acetate copolymer is used to hold the formed image. An intermediate layer is provided between the base material sheet and the receptor layer, if necessary, and a receptor layer made of coalescence, polycarbonate resin or the like. As a function of the intermediate layer, for example, a layer imparting cushioning properties or a layer imparting antistatic properties may be provided when a highly rigid base sheet such as PET is used. The back side is coated with a composition in which an organic filler made of acrylic resin, fluorine resin, polyamide resin, etc., or inorganic filler such as silica is added to an acrylic resin binder to prevent curling and improve slipping properties. The back surface layer formed is provided as needed.

いわゆる、スタンダードタイプの熱転写受像シートといわれる場合は、その受像シートを透過光ではなく反射光で鑑賞したりして、使用するものであり、この場合でも、基材シートに不透明な、例えば、白色のPET、発泡PET、その他プラスチックシート、天然紙、合成紙、またはこれらを貼り合わせたもの等が使用される。また、基材シートの一方の面に受容層を設け、基材シートの他方の面に粘着剤などを用いた接着剤層と剥離紙を順に設けた、いわゆる、シールタイプの熱転写受像シートも様々な用途で使用されている。このシールタイプは、熱転写により受容層に画像形成し、剥離紙を剥がして任意の物に貼付して使用されるものである。
従来、熱転写受像シートの表面に界面活性剤等により帯電防止層を形成することが知られているが、この場合には熱転写受像シートにベタつきが発生したり、熱転写受像シートをロール巻きしたり或いは積み重ねたときに帯電防止剤が表面から裏面に移行(いわゆる裏移り)したり、熱転写受像シートを熱転写プリンターに設置したときに装置内の搬送ロール等に帯電防止剤が転移するという問題がある。更に、これらの問題に付随して、帯電防止効果が経時的に低下するという問題がある。また、別の方法として、導電性カーボンブラックや酸化スズの様な金属酸化物等の導電剤とバインダーを用いて導電層を形成する方法もあるが、これらの導電剤は導電性を得る為には、かなり添加量を多くする必要があり、またもともと黒色等の色の付いているものが多いため、基本的に受像シートに用いると、受像シートの白色度が低下するため、使用不可能であった。
The so-called standard type thermal transfer image receiving sheet is used by viewing the image receiving sheet with reflected light instead of transmitted light. Even in this case, the base sheet is opaque, for example, white PET, foamed PET, other plastic sheets, natural paper, synthetic paper, or a laminate of these is used. There are also various so-called seal-type thermal transfer image-receiving sheets in which a receiving layer is provided on one side of the base sheet, and an adhesive layer using a pressure sensitive adhesive or the like and a release paper are provided in order on the other side of the base sheet. It is used for various purposes. This seal type is used in which an image is formed on a receiving layer by thermal transfer, the release paper is peeled off and affixed to an arbitrary object.
Conventionally, it is known to form an antistatic layer on the surface of a thermal transfer image receiving sheet with a surfactant or the like, but in this case, the thermal transfer image receiving sheet is sticky, the thermal transfer image receiving sheet is rolled or When stacked, the antistatic agent is transferred from the front surface to the back surface (so-called reverse), or the antistatic agent is transferred to a transport roll or the like in the apparatus when the thermal transfer image receiving sheet is installed in the thermal transfer printer. Further, these problems are accompanied by a problem that the antistatic effect decreases with time. As another method, there is a method of forming a conductive layer using a conductive agent such as conductive carbon black or a metal oxide such as tin oxide and a binder, but these conductive agents are used to obtain conductivity. Since it is necessary to increase the amount of addition considerably, and many of them are originally colored with black or the like, when used for an image receiving sheet, the whiteness of the image receiving sheet is lowered, so it cannot be used. there were.

上記の如き問題を解決する方法として、第4級アンモニウム塩基を有するアクリル樹脂によって帯電防止層を形成する方法も提案されている。特許文献1ではこれらの材料を用い受容層と基材の間に帯電防止層を設ける方法が提案されているが、これらの材料は耐水性に劣るため、この様に用いた場合でも、高湿下(特に高温)の環境では塗膜強度が極端に低下し、プリント搬送時のロールとの摩擦により塗膜が破壊される等の問題がある。また、これらの材料は基本的に基材や他の樹脂との接着性が悪く、材料がかなり限定される。さらに環境によって帯電防止性能が変化するという問題がある。
また特許文献2では導電材で表面処理した酸化チタンを用いる方法が提案されているが、導電材の粒径が長径で1μm以上あり受像紙表面の光沢度を低下させること、及び表面処理に用いる導電材が酸化スズの様な比較的濃い色調を持つ材料であることから、本来白色の酸化チタンを用いていても導電処理後は灰青色の色調となり、これを用いた受像紙の白色度を若干低下させる問題がある。
特許文献3には、基材シートの少なくとも一方の面に染料受容層を設けてなる熱転写受像シートにおいて、基材シートと受容層の間の少なくとも一層に導電性を有する層が形成されており、該導電層に導電性合成層状珪酸塩が含有されている熱転写受像シート、及び、基材シートの受容層の設けてある側と反対側の少なくとも一層に導電性を有する層が形成されており、該導電層に導電性合成層状珪酸塩が含有されている熱転写受像シートが開示されているが、高湿の環境下における導電層と基材シートの接着性、或いは、高温高湿の環境下における画像保存性の点で不十分な場合があった。
As a method for solving the above problems, a method of forming an antistatic layer with an acrylic resin having a quaternary ammonium base has been proposed. Patent Document 1 proposes a method of using these materials and providing an antistatic layer between the receiving layer and the base material, but these materials are inferior in water resistance. In the lower (particularly high temperature) environment, the strength of the coating film is extremely lowered, and there is a problem that the coating film is destroyed by friction with the roll during printing conveyance. In addition, these materials basically have poor adhesion to substrates and other resins, and the materials are considerably limited. Furthermore, there is a problem that the antistatic performance varies depending on the environment.
Further, Patent Document 2 proposes a method using titanium oxide surface-treated with a conductive material, but the conductive material has a major particle diameter of 1 μm or more and is used for reducing the glossiness of the image receiving paper surface and for surface treatment. Since the conductive material is a material with a relatively dark color tone such as tin oxide, even if it originally uses white titanium oxide, it becomes a grayish blue color tone after the conductive treatment, and the whiteness of the image receiving paper using this is reduced. There is a problem of lowering slightly.
In Patent Document 3, in a thermal transfer image receiving sheet in which a dye receiving layer is provided on at least one surface of a base sheet, a conductive layer is formed on at least one layer between the base sheet and the receiving layer. A thermal transfer image-receiving sheet containing a conductive synthetic layered silicate in the conductive layer, and a conductive layer is formed on at least one side of the base sheet opposite to the side where the receiving layer is provided; Although a thermal transfer image-receiving sheet containing a conductive synthetic layered silicate in the conductive layer is disclosed, the adhesion between the conductive layer and the substrate sheet in a high humidity environment, or in a high temperature and high humidity environment In some cases, the image storage stability was insufficient.

特開平4−33894号公報JP-A-4-33894 特開平11‐78255号公報Japanese Patent Laid-Open No. 11-78255 特開2004−299108号公報JP 2004-299108 A

本発明は上記のような問題を解決し、帯電防止剤の裏移りがなく、熱転写プリンターの搬送ロール等に帯電防止剤が転移することもなく、熱転写受像シートの白色度、光沢度、印画感度が低下することもなく、さらに高湿の環境下における導電層と基材シートの接着性や、高温高湿の環境下における画像保存性にも優れる、安定性の高い優れた帯電防止性能を備えた熱転写受像シートを提供することを目的とする。   The present invention solves the problems as described above, there is no reverse of the antistatic agent, and there is no transfer of the antistatic agent to the conveyance roll of the thermal transfer printer, and the whiteness, glossiness, and print sensitivity of the thermal transfer image-receiving sheet. Equipped with excellent antistatic performance with high stability, excellent adhesion between conductive layer and substrate sheet in high humidity environment, and image storage stability in high temperature and high humidity environment. Another object is to provide a thermal transfer image receiving sheet.

本発明に係る熱転写受像シートは、基材シートの少なくとも一方の面に染料受容層を設けてなり、該基材シートと該受容層の間の少なくとも一層に導電層が形成され、該導電層が、平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性のポリエステル樹脂またはポリウレタン樹脂とを含有することを特徴とする。
本発明の熱転写受像シートは、前記の導電層の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1011Ω/□であり、受容層を形成した際の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1013Ω/□であることが、帯電防止性能の点から好ましい。
The thermal transfer image-receiving sheet according to the present invention comprises a dye-receiving layer provided on at least one surface of a base sheet, and a conductive layer is formed on at least one layer between the base sheet and the receiving layer. And an electrically conductive synthetic layered silicate having an average primary particle size of 30 nm or less and a water-dispersed or water-soluble polyester resin or polyurethane resin having a glass transition temperature of 0 to 45 ° C.
In the thermal transfer image receiving sheet of the present invention, the surface resistivity of the conductive layer was 1.0 × 10 4 to 1.0 × 10 11 Ω / □ in an environment of 23 ° C. and 60%, and a receiving layer was formed. In this case, the surface resistivity is preferably 1.0 × 10 5 to 1.0 × 10 13 Ω / □ in an environment of 23 ° C. and 60% from the viewpoint of antistatic performance.

また、本発明に係る別の態様の熱転写受像シートは、基材シートの少なくとも一方の面に染料受容層を設けてなり、該基材シートの該受容層の設けてある側と反対側の少なくとも一層に導電層が形成され、該導電層が、平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性のポリエステル樹脂またはポリウレタン樹脂とを含有することを特徴とする。
本発明の熱転写受像シートは、前記の導電層の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1011Ω/□であることが、帯電防止性能の点から好ましい。
The thermal transfer image-receiving sheet according to another aspect of the present invention is provided with a dye-receiving layer on at least one surface of the base sheet, and at least on the side opposite to the side on which the receiving layer is provided. A conductive layer is formed in one layer, and the conductive layer is composed of a conductive synthetic layered silicate having an average primary particle size of 30 nm or less, and a water-dispersed or water-soluble polyester resin having a glass transition temperature of 0 to 45 ° C. It contains a polyurethane resin .
The thermal transfer image-receiving sheet of the present invention has an antistatic property that the surface resistivity of the conductive layer is 1.0 × 10 4 to 1.0 × 10 11 Ω / □ in an environment of 23 ° C. and 60%. From the point of view, it is preferable.

上記熱転写受像シートの導電層が、濡れ性改善剤をさらに含有することが好ましい。水性材料を基材に塗布する際に、水性材料の高い表面張力のために塗布抜けが発生し、外観が悪くなったり、また基材への密着性も悪くなる。濡れ性改善剤を添加することにより、この現象を防ぐことができる。   It is preferable that the conductive layer of the thermal transfer image receiving sheet further contains a wettability improving agent. When the aqueous material is applied to the base material, the omission of coating occurs due to the high surface tension of the aqueous material, resulting in poor appearance and poor adhesion to the base material. This phenomenon can be prevented by adding a wettability improving agent.

本発明に係る熱転写受像シートの導電層は、帯電防止剤として平均一次粒子径を特定した微細な導電性合成層状珪酸塩、及び、バインダーとして水分散型または水溶性樹脂を含有する。
当該導電層は、微細な導電性合成層状珪酸塩を水分散型または水溶性中に均一に分散させたことにより、帯電防止性能に優れ且つ帯電防止性能が安定しており、帯電防止剤の裏移りがなく、熱転写プリンターの搬送ロール等に帯電防止剤が転移することもなく、白色度、光沢度、及び印画感度も良好であり、基材シートや他の層との密着性に優れ、環境変化による塗膜強度等の物性変化も少ない。
特に、バインダーとして用いる水分散型または水溶性樹脂のガラス転移温度を特定範囲に限定したことにより、当該導電層は、高湿の環境下における基材シートやプライマー層に対する接着性や、高温高湿の環境下における画像保存性に非常に優れている。
従って、本発明によれば、帯電防止剤の裏移りがなく、熱転写プリンターの搬送ロール等に帯電防止剤が転移することもなく、熱転写受像シートの白色度、光沢度、印画感度が低下することもなく、さらに高湿の環境下における導電層と基材シートの接着性や、高温高湿の環境下における画像保存性にも優れ、安定性の高い優れた帯電防止性能を備えた熱転写受像シートが得られる。
本発明の熱転写受像シートは、このように画像形成時に優れた帯電防止性を有するため、ジャム(紙詰まり)、ダブルフィード等の搬送不良を防止することができ、また、ほこり等を寄せつけることによる印画抜け等のトラブルを防止することができる。更に、本発明の熱転写受像シートは印画物の保存安定性にも優れている。
また、高湿の環境下における導電層と基材シートの接着性に優れていることから、梅雨時のような高湿環境下で印字を行なう際に、プリンター内で受像シートが破損する事態を防止することができる。さらに、高温高湿の環境下における画像保存性にも優れていることから、プリンターから出力された印字物を劣悪な環境下で保存する場合に、画像のにじみ等の画質劣化を防止することができる。
The conductive layer of the thermal transfer image-receiving sheet according to the present invention contains a fine conductive synthetic layered silicate having an average primary particle size specified as an antistatic agent, and a water-dispersed or water-soluble resin as a binder.
The conductive layer has excellent antistatic performance and stable antistatic performance by dispersing fine conductive synthetic layered silicate uniformly in water-dispersed type or water-soluble. There is no transfer, the antistatic agent does not transfer to the transfer roll of the thermal transfer printer, etc., the whiteness, glossiness, and printing sensitivity are also good, and the adhesion to the base sheet and other layers is excellent, and the environment Little change in physical properties such as coating strength due to change.
In particular, by limiting the glass transition temperature of a water-dispersible or water-soluble resin used as a binder to a specific range, the conductive layer can be used for adhesion to a substrate sheet or primer layer in a high-humidity environment, high temperature and high humidity. It is very excellent in image preservation under the environment of
Therefore, according to the present invention, there is no back-off of the antistatic agent, the antistatic agent is not transferred to the conveyance roll of the thermal transfer printer, and the whiteness, glossiness, and print sensitivity of the thermal transfer image-receiving sheet are reduced. In addition, the thermal transfer image-receiving sheet has excellent anti-static performance with excellent adhesiveness between the conductive layer and the base sheet in a humid environment and excellent image storage stability in a high-humidity environment. Is obtained.
Since the thermal transfer image-receiving sheet of the present invention has excellent antistatic properties at the time of image formation as described above, it can prevent conveyance failures such as jam (paper jam) and double feed, and attracts dust and the like. Can prevent troubles such as missing prints. Furthermore, the thermal transfer image-receiving sheet of the present invention is excellent in the storage stability of the printed matter.
In addition, because of the excellent adhesion between the conductive layer and the substrate sheet in a high humidity environment, when printing in a high humidity environment such as in the rainy season, the image receiving sheet may be damaged in the printer. Can be prevented. In addition, it has excellent image storage stability under high-temperature and high-humidity environments, so it can prevent image quality deterioration such as image bleeding when storing printed matter output from a printer in a poor environment. it can.

本発明に係る熱転写受像シートは、基材シートの少なくとも一方の面に染料受容層を設けてなり、基材シートと受容層の間の少なくとも一層に導電性を有する層が形成されており、該導電層に平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性樹脂とを少なくとも含有することを特徴とする。   The thermal transfer image-receiving sheet according to the present invention is provided with a dye-receiving layer on at least one surface of a base sheet, and a conductive layer is formed on at least one layer between the base sheet and the receiving layer. The conductive layer contains at least a conductive synthetic layered silicate having an average primary particle size of 30 nm or less and a water-dispersed or water-soluble resin having a glass transition temperature of 0 to 45 ° C.

また、本発明に係る別の態様の熱転写受像シートは、基材シートの少なくとも一方の面に染料受容層を設けてなり、基材シートの受容層の設けてある側と反対側の少なくとも一層に導電性を有する層が形成されており、該導電層に平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性樹脂が少なくとも含有されていることを特徴とする。
以下に本発明の熱転写受像シートを構成する層について順に説明する。
(基材シート)
基材シートは、受容層を保持するという役割を有するとともに、画像形成時に加えられる熱に耐え、取り扱い上支障のない機械的特性を有することが、望ましい。このような基材シートの材料は特に限定されず、例えば、ポリエステル、ポリアリレート、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、セルロース誘導体、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリプロピレン、ポリスチレン、アクリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルフォン、ポリエーテルサルフォン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル、ポリビニルフルオライド、テトラフルオロエチレン・エチレン、テトラフルオロエチレン・ヘキサフルオロプロピレン、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド等の各種プラスチックフィルムまたはシートが使用でき、特に限定されない。
The thermal transfer image-receiving sheet according to another aspect of the present invention comprises a dye-receiving layer on at least one surface of the base sheet, and is provided on at least one layer on the side opposite to the side on which the receiving layer is provided. A conductive layer is formed, and a conductive synthetic layered silicate having an average primary particle size of 30 nm or less and a water-dispersed or water-soluble resin having a glass transition temperature of 0 to 45 ° C. are formed on the conductive layer. It is contained at least.
Hereinafter, the layers constituting the thermal transfer image receiving sheet of the present invention will be described in order.
(Substrate sheet)
It is desirable that the base sheet has a role of holding the receiving layer and has mechanical characteristics that can withstand heat applied during image formation and that does not hinder handling. The material of such a base sheet is not particularly limited. For example, polyester, polyarylate, polycarbonate, polyurethane, polyimide, polyetherimide, cellulose derivative, polyethylene, ethylene / vinyl acetate copolymer, polypropylene, polystyrene, acrylic, Polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone, polysulfone, polyether sulfone, tetrafluoroethylene / perfluoroalkyl vinyl ether, polyvinyl fluoride, tetrafluoroethylene / ethylene, tetrafluoroethylene・ Various plastic films such as hexafluoropropylene, polychlorotrifluoroethylene, polyvinylidene fluoride, etc. Over door it can be used is not particularly limited.

上記のプラスチックフィルムまたはシートやこれらの合成樹脂に白色顔料や充填剤を加えて成膜した白色フィルム、あるいは基材シート内部にミクロボイドを有するシート、他にコンデンサーペーパー、グラシン紙、硫酸紙、合成紙(ポリオレフィン系、ポリスチレン系)、上質紙、アート紙、コート紙、キャストコート紙、合成樹脂又はエマルジョン含浸紙、合成ゴムラテックス含浸紙、合成樹脂内添紙、セルロース繊維紙等を用いることができる。また、上記の基材シートの任意の組み合わせによる積層体も使用できる。代表的な例として、セルロース繊維紙と合成紙、セルロース繊維紙とプラスチックフィルムとの積層体があげられる。   White film formed by adding a white pigment or filler to these plastic films or sheets, or sheets having microvoids inside the base sheet, as well as condenser paper, glassine paper, sulfuric acid paper, synthetic paper (Polyolefin-based, polystyrene-based), high-quality paper, art paper, coated paper, cast-coated paper, synthetic resin or emulsion-impregnated paper, synthetic rubber latex-impregnated paper, synthetic resin-added paper, cellulose fiber paper, and the like can be used. Moreover, the laminated body by arbitrary combinations of said base material sheet can also be used. Typical examples include a laminate of cellulose fiber paper and synthetic paper, and cellulose fiber paper and a plastic film.

また、上記の基材シートの表面及び又は裏面に易接着処理した基材シートも使用できる。本発明では、特に限定されないが、帯電性の高いプラスチックベースの基材シートを用いた場合に、特に効果が確認される。これらの基材シートの厚みは、通常3〜300μm程度であり、本発明においては、機械的適性等を考慮し、75〜175μmの基材シートを用いるのが好ましい。また、基材シートとその上に設ける層との密着性が乏しい場合には、その表面に易接着処理やコロナ放電処理を施すのが好ましい。   Moreover, the base material sheet which carried out the easy adhesion process on the surface and / or the back surface of said base material sheet can also be used. In the present invention, although not particularly limited, the effect is particularly confirmed when a plastic-based base sheet having high chargeability is used. The thickness of these substrate sheets is usually about 3 to 300 μm. In the present invention, it is preferable to use a substrate sheet of 75 to 175 μm in consideration of mechanical suitability and the like. Moreover, when the adhesiveness of a base material sheet and the layer provided on it is scarce, it is preferable to perform the easily bonding process and a corona discharge process on the surface.

(導電層)
本発明において導電層は、主に帯電防止性能を付与することを目的として設けられる層である。本発明の導電層は、平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性樹脂を含有する。
当該導電層は、微細な導電性合成層状珪酸塩を水分散型または水溶性樹脂中に均一に分散させたことにより、帯電防止性能に優れ且つ帯電防止性能が安定しており、帯電防止剤の裏移りがなく、熱転写プリンターの搬送ロール等に帯電防止剤が転移することもなく、白色度、光沢度、及び印画感度も良好であり、基材シートや他の層との密着性に優れ、環境変化による塗膜強度等の物性変化も少ない。
本発明に用いる導電性合成層状珪酸塩は、ナトリウム、マグネシウム、リチウムの塩と珪酸ソーダを適正条件下で反応させた合成物であり、その一次粒子は円盤状の単結晶構造を有し、導電性に優れ、例えばウィルバー・エリス社製ラポナイトS,JSの商品名で入手して本発明に用いることができる。
導電性合成層状珪酸塩は、円盤状の粒子形状を有する。本発明において、そのような円盤状の粒子形状を有する導電性合成層状珪酸塩の平均一次粒子径とは、一次粒子の長径から求められる個数平均一次粒子径である。その測定方法は特に限定されないが、例えば、走査型電子顕微鏡(商品名「JSM−6700」、日本電子データム(株)製)により写真を撮り、LUZEX III(ニレコ社製)により、5nm以上の100個以上の一次粒子の長径を測定し、当該粒径の平均値を求めることができる。
このような導電性合成層状珪酸塩を用いることにより、基材シートや他の層との密着性に優れ、白色度及び光沢度の高い導電層を得ることができ、環境変化による塗膜強度等の物性変化がない、帯電防止性能に優れた熱転写シートを得ることができる。
導電性合成層状珪酸塩と同様の構造を持つベントナイトやヘクトライトのような天然鉱物由来の材料の場合、導電性が無く、平均一次粒子径が300〜550nmと大きすぎるため、得られる受像シートの光沢度も低下する。
本発明に係る導電層には、ガラス転移温度が0〜45℃である水分散型または水溶性樹脂を含有させる。
ここで、水分散型樹脂とは、水中に分散させることが可能な樹脂を意味する。樹脂を水に分散させた状態において、分散均一性は高いほうが好ましく、また、樹脂の固体微粒子が水中に分散したサスペンション(懸濁液)よりも、樹脂自体が油状となるか樹脂が油相に溶けた状態で水中に分散したエマルション(乳濁液)の状態が好ましい。水分散型または水溶性樹脂の中でも特に水分散型樹脂は、塗膜乾燥により形成された皮膜の耐水性が高く、保存性が高い特徴がある。
平均一次粒子径30nm以下の導電性合成層状珪酸塩は、水分散型または水溶性樹脂の水系溶液中に微細且つ均一に分散させることができる。そのような導電性合成層状珪酸塩、水分散型または水溶性樹脂及び水を混合して得られる塗工液を用いて形成した導電層は、水分散型または水溶性樹脂を主体とするバインダー中に導電性合成層状珪酸塩が均一に分散された状態となる。導電性合成層状珪酸塩は、イオン導電性の材料なので、当該塩が導電層中に均一に分散されることにより導電層の導電性が向上し、その結果、熱転写受像シートの帯電防止性能が向上する。これに対し、有機溶媒中に分散又は溶解させた熱可塑性樹脂中に導電性合成層状珪酸塩を添加して得られる導電層塗工液は、当該塩の分散性が悪いため、当該塗工液を用いて形成した導電層は十分なイオン導電性を有さないため好ましくない。
さらに、水分散型または水溶性樹脂を主体とするバインダー中に導電性合成層状珪酸塩が均一に分散されてなる導電層は、下地である基材シートやプライマー層、或いは、上層である受容層との密着性も高い。
また、本発明に用いる水分散型または水溶性樹脂のガラス転移温度は0〜45℃、好ましくは0〜43℃、さらに好ましくは0〜40℃であることが好ましい。上記範囲のガラス転移温度を有する水分散型または水溶性樹脂を用いた導電層は、高湿の環境下において下地である基材シート又はプライマー層に対する密着性及び上層である受容層に対する密着性に優れ、また、高温高湿の環境下において画像の保存安定性の点で優れている。
水分散型または水溶性樹脂のガラス転移温度が45℃を超える場合には、梅雨時を想定した高湿環境下(例えば40℃、90%RHの高温高湿環境)での導電層と基材シート、導電層と受容層の密着性が悪くなって層間剥離が発生しやすくなるので、印字を行なう際にプリンター内で受像シートが破損するおそれがある。
また、水分散型または水溶性樹脂のガラス転移温度が0℃未満の場合は、基材シートへの濡れ性が向上して密着性が向上する半面、劣悪な保存環境を想定した高温高湿環境下(例えば40℃、90%RH)での熱転写により形成した画像の保存性(印画物保存性)が悪くなるので、にじみ等の画質劣化を起こすおそれがある。
水分散型または水溶性樹脂のガラス転移温度は、例えば、(株)リガク製、DSC-8230D等を用いて示差走査熱量測定(DSC)を行い、得られる結果からガラス転移温度を求めることができる。なお、水分散型または水溶性樹脂が始めから水溶液や分散液の状態で存在する場合には、該水溶液または分散液を真空乾燥オーブンにて50℃、0.1MPa、24時間乾燥して溶媒を除去することにより、当該エマルジョンからDSC測定可能な試料を予備調製する。
本発明に係る水分散型または水溶性樹脂としては、例えば、水分散型ポリエステル樹脂や水分散型ウレタン樹脂等の水分散型樹脂、水溶性ポリエステル樹脂等の水溶性樹脂が挙げられ、東洋紡績(株)製、水分散型ポリエステル樹脂のエマルジョンであるバイロナールMD−1480等の市販品を用いることも可能である。
水分散型樹脂のなかでも、水分散型ポリエステル樹脂が好ましい。水分散ポリエステル樹脂は基材シートへの濡れ性が他の樹脂よりも良く、基材への密着性が高い傾向がある。
本発明に係る導電層は、基材シートや他の層との密着牲や色調調整用の顔料の分散性を考慮して、水分散型または水溶性樹脂に加えて、その他のバインダーを含有しても良い。その他のバインダーとしては、例えば、ポリオレフィン系樹脂、ウレタン系樹脂、ポリアクリル系樹脂、ポリビニルアルコール、エポキシ系樹脂、ブチラール系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂等が挙げられる。
(Conductive layer)
In the present invention, the conductive layer is a layer provided mainly for the purpose of imparting antistatic performance. The conductive layer of the present invention contains a conductive synthetic layered silicate having an average primary particle size of 30 nm or less and a water-dispersed or water-soluble resin having a glass transition temperature of 0 to 45 ° C.
The conductive layer has excellent antistatic performance and stable antistatic performance by dispersing fine conductive synthetic layered silicate uniformly in a water-dispersed or water-soluble resin. There is no set-off, the antistatic agent does not transfer to the transfer roll of the thermal transfer printer, etc., the whiteness, glossiness, and printing sensitivity are also good, and it has excellent adhesion to the base sheet and other layers, Little change in physical properties such as coating strength due to environmental changes.
The conductive synthetic layered silicate used in the present invention is a synthetic product obtained by reacting sodium, magnesium and lithium salts with sodium silicate under appropriate conditions, and its primary particles have a disk-like single crystal structure and are electrically conductive. For example, it can be obtained under the trade name of Laponite S, JS manufactured by Wilber Ellis and used in the present invention.
The conductive synthetic layered silicate has a disk-like particle shape. In the present invention, the average primary particle diameter of the conductive synthetic layered silicate having such a disk-like particle shape is the number average primary particle diameter determined from the major axis of the primary particles. The measuring method is not particularly limited. For example, a photograph is taken with a scanning electron microscope (trade name “JSM-6700”, manufactured by JEOL Datum Co., Ltd.), and 100 nm of 5 nm or more is measured with LUZEX III (manufactured by Nireco). The major axis of one or more primary particles can be measured, and the average value of the particle sizes can be obtained.
By using such a conductive synthetic layered silicate, it is possible to obtain a conductive layer with excellent adhesion to the base sheet and other layers, high whiteness and gloss, coating strength due to environmental changes, etc. Thus, it is possible to obtain a thermal transfer sheet having no antistatic property and excellent antistatic performance.
In the case of a material derived from a natural mineral such as bentonite or hectorite having the same structure as the conductive synthetic layered silicate, there is no conductivity and the average primary particle size is too large, 300 to 550 nm. Glossiness also decreases.
The conductive layer according to the present invention contains a water-dispersed or water-soluble resin having a glass transition temperature of 0 to 45 ° C.
Here, the water-dispersed resin means a resin that can be dispersed in water. In the state in which the resin is dispersed in water, it is preferable that the dispersion uniformity is high. In addition, the resin itself becomes oily or the resin is in an oil phase rather than a suspension in which the solid fine particles of the resin are dispersed in water. A state of an emulsion (emulsion) dispersed in water in a dissolved state is preferable. Among water-dispersed or water-soluble resins, water-dispersed resins are particularly characterized in that the film formed by drying the coating film has high water resistance and high storage stability.
The conductive synthetic layered silicate having an average primary particle diameter of 30 nm or less can be finely and uniformly dispersed in an aqueous solution of an aqueous dispersion type or water-soluble resin. The conductive layer formed using such a conductive synthetic layered silicate, a water-dispersed type or a water-soluble resin and a coating solution obtained by mixing water is a binder mainly composed of a water-dispersed or water-soluble resin. In this state, the conductive synthetic layered silicate is uniformly dispersed. Conductive synthetic layered silicate is an ion-conductive material, so the salt is uniformly dispersed in the conductive layer, improving the conductivity of the conductive layer, and as a result, improving the antistatic performance of the thermal transfer image-receiving sheet To do. On the other hand, since the conductive layer coating liquid obtained by adding conductive synthetic layered silicate in a thermoplastic resin dispersed or dissolved in an organic solvent has poor dispersibility of the salt, the coating liquid A conductive layer formed by using is not preferable because it does not have sufficient ionic conductivity.
Furthermore, the conductive layer in which the conductive synthetic layered silicate is uniformly dispersed in a binder mainly composed of a water-dispersible or water-soluble resin is a base sheet or primer layer as a base, or a receiving layer as an upper layer. Adhesion with is also high.
The glass transition temperature of the water-dispersed or water-soluble resin used in the present invention is 0 to 45 ° C, preferably 0 to 43 ° C, more preferably 0 to 40 ° C. A conductive layer using a water-dispersed or water-soluble resin having a glass transition temperature in the above range is capable of adhering to a base material sheet or primer layer as a base and adhering to an upper receiving layer in a high humidity environment. It is excellent in terms of image storage stability in a high-temperature and high-humidity environment.
When the glass transition temperature of the water-dispersed or water-soluble resin exceeds 45 ° C, the conductive layer and the base material in a high-humidity environment (for example, 40 ° C and 90% RH high-temperature and high-humidity environment) assuming the rainy season Since the adhesion between the sheet, the conductive layer and the receiving layer is poor and delamination is likely to occur, the image receiving sheet may be damaged in the printer during printing.
In addition, when the glass transition temperature of the water-dispersed or water-soluble resin is less than 0 ° C., the wettability to the base sheet is improved and the adhesion is improved, while the high temperature and high humidity environment assuming a poor storage environment. Since the storability (printed matter storability) of an image formed by thermal transfer under (for example, 40 ° C. and 90% RH) is deteriorated, there is a risk of image quality deterioration such as blurring.
The glass transition temperature of the water-dispersed or water-soluble resin can be determined by performing differential scanning calorimetry (DSC) using, for example, DSC-8230D manufactured by Rigaku Corporation, and determining the glass transition temperature from the obtained results. . If the water-dispersed or water-soluble resin is present in the form of an aqueous solution or dispersion from the beginning, the aqueous solution or dispersion is dried in a vacuum drying oven at 50 ° C., 0.1 MPa for 24 hours to remove the solvent. A sample capable of DSC measurement is pre-prepared from the emulsion by removal.
Examples of the water-dispersible or water-soluble resin according to the present invention include water-dispersible resins such as water-dispersible polyester resins and water-dispersible urethane resins, and water-soluble resins such as water-soluble polyester resins. It is also possible to use commercially available products such as Vylonal MD-1480, which is an emulsion of a water-dispersed polyester resin.
Of the water-dispersed resins, water-dispersed polyester resins are preferred. The water-dispersed polyester resin has better wettability to the substrate sheet than other resins and tends to have high adhesion to the substrate.
The conductive layer according to the present invention contains other binders in addition to the water-dispersed type or water-soluble resin in consideration of adhesion to the base sheet and other layers and dispersibility of the pigment for color tone adjustment. May be. Examples of other binders include polyolefin resins, urethane resins, polyacrylic resins, polyvinyl alcohol, epoxy resins, butyral resins, polyamide resins, polyether resins, polystyrene resins, and the like.

導電性を左右する要因として、導電性合成層状珪酸塩の添加量が挙げられる。少量の添加量で充分な導電性が得られるが、分散性、安定性、コーティング適性から、導電性合成層状珪酸塩の添加量としては、樹脂バインダーに対し1wt%〜500wt%程度まで添加することが可能であるが、少なすぎる場合には安定した導電性が得られず、また多すぎる場合にはインキ粘度が増大し、塗工適性が低下したり、基材シートを含む隣接する他の層との接着性が低下する問題が発生する場合がある。   As a factor that influences conductivity, the amount of conductive synthetic layered silicate added can be cited. Sufficient conductivity can be obtained with a small addition amount, but from the viewpoint of dispersibility, stability and coating suitability, the addition amount of the conductive synthetic layered silicate should be about 1 wt% to 500 wt% with respect to the resin binder. However, if the amount is too small, stable conductivity cannot be obtained. If the amount is too large, the ink viscosity increases, the coating suitability decreases, and other adjacent layers including the base sheet are included. There may be a problem in that the adhesiveness is lowered.

よって、添加量としては樹脂バインダーに対し20wt%〜200wt%が好ましく、さらには50wt%〜200wt%が最も好ましい。導電層の塗布量についても、やはり導電性を左右する要因の一つであり、乾燥状態で0.1g/m〜10g/mの範囲で塗布することが可能であるが、この場合も添加量と同じ問題が発生するため、好ましくは0.3g/m〜5g/m、さらには0.5g/m〜3g/mが最も好ましい。
本発明の熱転写受像シートは、導電層の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1011Ω/□であることが好ましい。導電層の上に受容層が形成される場合には、導電層の表面抵抗率は、受容層を形成する前の状態で測定する。
本発明の導電層の表面抵抗率を測定する方法は、JIS−K6911:1995に準拠した測定方法であればよく、例えば、デジタル超高抵抗/微少電流計TR8652(アドバンテスト(株)製)及び超高抵抗測定用試料箱TR42(アドバンテスト(株)製)を用いて測定することができる。
また、導電層塗工液に基材シートに対する導電層塗工液の濡れ性を高くする濡れ性改善剤を含有させると、得られる導電層の基材への濡れ性が向上し、塗布抜けが減少し、さらに基材への密着性が向上する。濡れ性改善剤としては、カチオン系、アニオン系、ノニオン系、両性、シリコーン系等の界面活性剤を用いることができ、非泡立ち性、リコート性、濡れ性の点から、上記例示のうち、ノニオン系を用いることが好ましい。ここで非泡立ち性とは泡立ちしにくさを表し、泡が発生しにくいと皮膜の外観悪化等の不具合が発生しにくくなる。またリコート性とは、濡れ性改善剤を含有した層の上にさらに層を形成するときの層の形成しやすさを表しています。
上記ノニオン性濡れ性改善剤の中でもアセチレングリコール系の濡れ性改善剤が上記効果を発現しやすく、例えば日信化学工業(株)製のサーフィノール104、ダイノール604等を用いることができる。
界面活性剤を用いる場合、添加量は樹脂バインダーに対し、0.01〜3wt%、更に0.03〜1wt%が好ましい。
また導電層には、白色度、隠蔽性、調色等の目的に応じて種々の顔料、染料、蛍光増白剤、その他添加剤を導電性を損ねない程度加えることが可能である。
導電層の形成方法は次の通りである。
まず、上記導電性合成層状珪酸塩、水分散型または水溶性樹脂、水、及び必要に応じて界面活性剤、その他添加剤を、例えばディゾルバー型攪拌機やビーズミル等の攪拌機を用いて、十分に混練することにより導電層塗工液を得る。
この導電層塗工液は、水を主体とする水系溶剤中に、水溶性樹脂が溶解するか、又は、水分散型樹脂の液滴や、有機溶剤溶液や、樹脂そのものの固体粒子からなる微粒子が均一に分散し、さらに、導電性合成層状珪酸塩の粒子が均一に分散した水系分散液である。
次に、当該導電層塗工液を、上記基材シートの上に塗工することにより、導電層を得る。例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースロールコーティング法等の形成手段により、塗布し、乾燥して、導電層を形成することができる。
後述する受容層、裏面層、易接着層、中間層の塗工も、上記導電層の塗工と同様の方法で行われる。
Therefore, the addition amount is preferably 20 wt% to 200 wt%, more preferably 50 wt% to 200 wt%, relative to the resin binder. For even the coating amount of the conductive layer is one of the factors also influence the conductivity, it is possible to apply a range of 0.1g / m 2 ~10g / m 2 in the dry state, again since the same problems as the added amount is generated, preferably 0.3g / m 2 ~5g / m 2 , more and most preferably 0.5g / m 2 ~3g / m 2 .
In the thermal transfer image receiving sheet of the present invention, the surface resistivity of the conductive layer is preferably 1.0 × 10 4 to 1.0 × 10 11 Ω / □ in an environment of 23 ° C. and 60%. When the receiving layer is formed on the conductive layer, the surface resistivity of the conductive layer is measured before the receiving layer is formed.
The method for measuring the surface resistivity of the conductive layer of the present invention may be any measuring method based on JIS-K6911: 1995. For example, a digital ultrahigh resistance / microammeter TR8652 (manufactured by Advantest Corporation) and ultra It can be measured using a high resistance measurement sample box TR42 (manufactured by Advantest Corporation).
In addition, when the conductive layer coating liquid contains a wettability improving agent that increases the wettability of the conductive layer coating liquid to the base sheet, the wettability of the resulting conductive layer to the base material is improved, and coating omission is prevented. It reduces, and the adhesiveness to a base material improves further. As the wettability improver, cationic, anionic, nonionic, amphoteric, silicone, and other surfactants can be used, and from the viewpoint of non-foaming property, recoatability, and wettability, among the above examples, nonion It is preferable to use a system. Here, the non-foaming property represents difficulty in foaming, and when bubbles are not easily generated, problems such as deterioration of the appearance of the film are hardly generated. Recoatability represents the ease with which a layer is formed when another layer is formed on a layer containing a wettability improver.
Among the nonionic wettability improvers, acetylene glycol-based wettability improvers tend to exhibit the above effects, and for example, Surfynol 104, Dynol 604 manufactured by Nissin Chemical Industry Co., Ltd. can be used.
When using a surfactant, the addition amount is preferably 0.01 to 3 wt%, more preferably 0.03 to 1 wt%, with respect to the resin binder.
In addition, various pigments, dyes, fluorescent brighteners, and other additives can be added to the conductive layer to such an extent that the conductivity is not impaired, depending on purposes such as whiteness, hiding, and toning.
The method for forming the conductive layer is as follows.
First, the conductive synthetic layered silicate, water-dispersed or water-soluble resin, water, and optionally surfactants and other additives are sufficiently kneaded using a stirrer such as a dissolver type stirrer or bead mill. By doing this, a conductive layer coating solution is obtained.
This conductive layer coating solution is a fine particle composed of water-soluble resin dissolved in an aqueous solvent mainly composed of water, or water-dispersed resin droplets, organic solvent solution, or solid particles of the resin itself. Is an aqueous dispersion in which the particles of the conductive synthetic layered silicate are uniformly dispersed.
Next, the said conductive layer coating liquid is applied on the said base material sheet, and a conductive layer is obtained. For example, the conductive layer can be formed by applying and drying by a forming means such as a gravure printing method, a screen printing method, or a reverse roll coating method using a gravure plate.
Coating of the receiving layer, back layer, easy adhesion layer, and intermediate layer, which will be described later, is performed in the same manner as the coating of the conductive layer.

(受容層)
本発明の受容層は、基材シートの少なくとも一方の面に一種類以上の熱可塑性樹脂を含有している受容層で、熱転写シートから移行してくる昇華性染料を受容し、形成された熱転写画像を維持するためのものである。受容層に使用される熱可塑性樹脂としては、例えば、ポリ塩化ビニル,ポリ塩化ビニリデンなどのハロゲン化ポリマー,ポリ酢酸ビニル,エチレン酢酸ビニル共重合体,塩化ビニル・酢酸ビニル共重合体,ポリアクリルエステル,ポリスチレン,ポリスチレンアクリルなどのビニル系樹脂、ポリビニルホルマール,ポリビニルブチラール,ポリビニルアセタールなどのアセタール系樹脂、飽和,不飽和の各種ポリエステル系樹脂、ポリカーボネート系樹脂、セルロースアセテートなどのセルロース系樹脂、ポリオレフィン系樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂などのポリアミド系樹脂、などがあげられる。これらの樹脂は、単独で使用したり、相溶する範囲内で任意にブレンドしたりして、用いることができる。
(Receptive layer)
The receptor layer of the present invention is a receptor layer containing at least one kind of thermoplastic resin on at least one surface of the base sheet, and receives the sublimation dye transferred from the thermal transfer sheet, and is formed by thermal transfer. It is for maintaining images. Examples of the thermoplastic resin used in the receiving layer include halogenated polymers such as polyvinyl chloride and polyvinylidene chloride, polyvinyl acetate, ethylene vinyl acetate copolymer, vinyl chloride / vinyl acetate copolymer, and polyacrylic ester. , Vinyl resins such as polystyrene and polystyrene acrylic, acetal resins such as polyvinyl formal, polyvinyl butyral, and polyvinyl acetal, various polyester resins saturated and unsaturated, polycarbonate resins, cellulose resins such as cellulose acetate, polyolefin resins And polyamide resins such as urea resin, melamine resin, and benzoguanamine resin. These resins can be used singly or arbitrarily blended within a compatible range.

また、上記の熱可塑性樹脂の中でも、活性水素を有する熱可塑性樹脂が好ましい。活性水素は、各熱可塑性樹脂の安定性を考慮し、熱可塑性樹脂の末端に存在することが好ましい。また、ビニル系樹脂を使用する場合には、ビニルアルコールの含有量は、30重量%以下が好ましい。受容層にはその他にも、必要に応じて各種の添加剤を加えることができる。   Among the above thermoplastic resins, a thermoplastic resin having active hydrogen is preferable. Active hydrogen is preferably present at the end of the thermoplastic resin in consideration of the stability of each thermoplastic resin. Further, when a vinyl resin is used, the content of vinyl alcohol is preferably 30% by weight or less. In addition, various additives can be added to the receiving layer as necessary.

また上記のような受容層樹脂は、画像形成の熱転写時に染料を保持する染料層のバインダー樹脂と融着を起こす場合もあるので、良好な離型性を得る為に、リン酸エステル、界面活性剤、フッ素系化合物、フッ素系樹脂、シリコーン化合物、シリコーンオイル、シリコーン樹脂等の各種離型剤を受容層中に内添することが好ましく、特に変成シリコーンオイルを添加し、硬化させたものが好ましい。
離型剤は1種若しくは2種以上のものが使用される。また、離型剤の添加量は染料受容層形成用樹脂100質量部に対し、0.5〜30質量部が好ましい。この添加量の範囲を満たさない場合は、昇華型熱転写シートと熱転写受像シートの染料受容層との融着若しくは印画感度の低下等の問題が生じる場合がある。このような離型剤を染料受容層に添加することによって、転写後の染料受容層の表面に離型剤がブリードアウトして離型層が形成される。また、これらの離型剤は染料受容層形成用樹脂中に添加せず、染料受容層上に別途塗工してもよい。
In addition, the receiving layer resin as described above may cause fusion with the binder resin of the dye layer that retains the dye during thermal transfer of image formation. Therefore, in order to obtain good releasability, phosphate ester, surfactant It is preferable to internally add various releasing agents such as an agent, a fluorine compound, a fluorine resin, a silicone compound, a silicone oil, and a silicone resin into the receiving layer, and in particular, a modified silicone oil is preferably added and cured. .
One or more release agents are used. Moreover, the addition amount of the release agent is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the dye receiving layer forming resin. When the range of the addition amount is not satisfied, problems such as fusion between the sublimation type thermal transfer sheet and the dye-receiving layer of the thermal transfer image receiving sheet or a decrease in printing sensitivity may occur. By adding such a release agent to the dye receiving layer, the release agent bleeds out on the surface of the dye receiving layer after the transfer to form a release layer. These releasing agents may be separately applied on the dye receiving layer without being added to the dye receiving layer forming resin.

受容層の白色度を向上させ転写画像の鮮明度を更に高める目的で、酸化チタン、酸化亜鉛、カオリン、クレー、炭酸カルシウム、微粉末シリカ等の顔料や充填剤を添加することができる。そのほかにも受容層には、可塑剤、紫外線吸収剤、光安定剤、酸化防止剤、蛍光増白剤、帯電防止剤など公知の添加剤を必要に応じて加えることができる。   Pigments and fillers such as titanium oxide, zinc oxide, kaolin, clay, calcium carbonate, fine powder silica and the like can be added for the purpose of improving the whiteness of the receiving layer and further enhancing the sharpness of the transferred image. In addition to the above, a known additive such as a plasticizer, an ultraviolet absorber, a light stabilizer, an antioxidant, a fluorescent brightening agent, and an antistatic agent can be added to the receiving layer as necessary.

受容層を形成する方法は、次の通りである。
まず、上記樹脂及び必要に応じて任意の添加剤等を、溶剤、希釈剤等と共に、例えば、ディゾルバー型攪拌機やビーズミル等の攪拌機を用いて、十分に混練して、受容層塗工液を製造する。次に、当該受容層塗工液を、上記導電層又は基材シートの上に、導電層と同様の方法で塗工することにより、受容層を形成することができる。
The method for forming the receiving layer is as follows.
First, the above-mentioned resin and, if necessary, optional additives, etc., together with a solvent, a diluent, etc., are sufficiently kneaded using a stirrer such as a dissolver type stirrer or a bead mill to produce a receiving layer coating solution To do. Next, the receiving layer can be formed by applying the receiving layer coating solution on the conductive layer or the base sheet in the same manner as the conductive layer.

また、基材シートの一方の面に受容層を設け、基材シートの他方の面に粘着剤などを用いた接着剤層と剥離紙を順に設けた、シールタイプの熱転写受像シートについても、本発明を適用することができる。その接着剤層の形成手段も上記受容層の形成手段と同様の方法で行われる。また、帯電防止性を向上させるために、下記に示す帯電防止剤を受容層塗工液に、練り込むこともできる。
帯電防止剤;脂肪酸エステル、硫酸エステル、リン酸エステル、アミド類、4級アンモニウム塩、ベタイン類、アミノ酸類、アクリル系樹脂、エチレンオキサイド付加物など。帯電防止剤の添加量は、樹脂に対し、0.1〜2.0重量%が好ましい。
This also applies to a seal-type thermal transfer image receiving sheet in which a receiving layer is provided on one side of a base sheet and an adhesive layer using a pressure sensitive adhesive or the like and a release paper are provided in order on the other side of the base sheet. The invention can be applied. The means for forming the adhesive layer is also performed in the same manner as the means for forming the receiving layer. Moreover, in order to improve antistatic property, the antistatic agent shown below can also be kneaded in a receiving layer coating liquid.
Antistatic agents; fatty acid esters, sulfate esters, phosphate esters, amides, quaternary ammonium salts, betaines, amino acids, acrylic resins, ethylene oxide adducts, and the like. The addition amount of the antistatic agent is preferably 0.1 to 2.0% by weight with respect to the resin.

本発明の熱転写受像シートでは、受容層の塗工量は、乾燥時重量で0.5g/m〜4.0g/mであることが好ましい。塗工量が乾燥時重量で0.5g/m未満では、例えば、基材シート上に直接受容層を設けた場合には、基材シートの剛性等の要因でサーマルヘッドとの密着が不十分なためハイライト部の画像がざらついてしまうという問題がある。この問題は、クッション性を付与する中間層を設けることで回避することができるが、受容層の傷つきに対して弱くなる。また、高エネルギーを印加したときの表面の荒れかたは、受容層の塗工量が増加すると相対的に悪くなる傾向があり、塗工量が、乾燥時重量で4.0g/mを越えると、例えば、OHP投影時の高濃度部でわずかに黒ずんでみえるようになる。以下本発明の塗工量(ないし塗布量)は、特に断りのない限り、乾燥時重量で、固形分換算の数値である。
本発明に係る熱転写受像シートのうち、基材シートと受容層の間の少なくとも一層に導電性を有する層が形成される態様のものは、受容層の表面抵抗率が23℃/60%Rhの環境下で、1.0×10〜1.0×1013Ω/□であることが、熱転写受像シートの帯電防止の点から、好ましい。
受容層の表面抵抗率は、上記導電層と同様の方法で測定することができる。
The thermal transfer image-receiving sheet of the present invention, the coating amount of the receiving layer is preferably in dry weight is 0.5g / m 2 ~4.0g / m 2 . When the coating amount is less than 0.5 g / m 2 in terms of dry weight, for example, when a receiving layer is provided directly on the base sheet, adhesion to the thermal head is not possible due to factors such as the rigidity of the base sheet. There is a problem that the image of the highlight portion is rough because it is sufficient. This problem can be avoided by providing an intermediate layer that imparts cushioning properties, but is less susceptible to damage to the receiving layer. Further, the roughness of the surface when high energy is applied tends to be relatively worse when the coating amount of the receiving layer is increased, and when the coating amount exceeds 4.0 g / m 2 in terms of dry weight. For example, the image appears slightly dark in the high density portion during OHP projection. Hereinafter, unless otherwise specified, the coating amount (or coating amount) of the present invention is a dry weight and a numerical value in terms of solid content.
Among the thermal transfer image-receiving sheets according to the present invention, the one in which a conductive layer is formed in at least one layer between the base sheet and the receiving layer has a surface resistivity of the receiving layer of 23 ° C./60% Rh. In the environment, it is preferably 1.0 × 10 5 to 1.0 × 10 13 Ω / □ from the viewpoint of preventing charging of the thermal transfer image-receiving sheet.
The surface resistivity of the receiving layer can be measured by the same method as that for the conductive layer.

(裏面層)
基材シートの受容層を設けた面と反対の面に、熱転写受像シートの搬送性の向上や、カール防止などのために、裏面層を設けることができる。このような機能をもつ裏面層として、アクリル系樹脂、セルロース系樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ハロゲン化ポリマー等の樹脂中に、添加剤として、アクリル系フィラー、ポリアミド系フィラー、フッ素系フィラー、ポリエチレンワックスなどの有機系フィラー、及び二酸化珪素や金属酸化物などの無機フィラーを加えたものが使用できる。
(Back layer)
A back layer can be provided on the surface of the base sheet opposite to the surface on which the receiving layer is provided in order to improve the transportability of the thermal transfer image receiving sheet and prevent curling. As a back layer with such functions, added to resins such as acrylic resin, cellulose resin, polycarbonate resin, polyvinyl acetal resin, polyvinyl alcohol resin, polyamide resin, polystyrene resin, polyester resin, halogenated polymer As the agent, an acrylic filler, a polyamide filler, a fluorine filler, an organic filler such as polyethylene wax, and an inorganic filler such as silicon dioxide or metal oxide can be used.

この裏面層として、上述の樹脂を硬化剤により硬化したものを使用することがさらに好ましい。硬化剤としては、一般的に公知のものが使用できるが、中でもイソシアネート化合物が好ましい。裏面層樹脂はイソシアネート化合物などと反応しウレタン結合を形成して硬化・立体化することにより、耐熱保存性、耐溶剤性が向上し、さらには、基材シートとの密着も良くなる。硬化剤の添加量は、樹脂1反応基当量に対して、1乃至2が好ましい。1未満であると、架橋が不十分であり、また、耐熱性、耐溶剤性が悪くなる。また、2より大きいと、成膜後に残留した硬化剤により、経時変化が起こったり、裏面層用塗工液の寿命が短いという不具合が生じる。   As the back layer, it is more preferable to use a resin obtained by curing the above resin with a curing agent. As the curing agent, generally known ones can be used, and among them, an isocyanate compound is preferable. The back layer resin reacts with an isocyanate compound or the like to form a urethane bond and is cured / three-dimensionalized, whereby the heat resistant storage stability and the solvent resistance are improved, and the adhesion to the substrate sheet is improved. As for the addition amount of a hardening | curing agent, 1 thru | or 2 is preferable with respect to the resin 1 reactive group equivalent. If it is less than 1, crosslinking is insufficient, and heat resistance and solvent resistance deteriorate. On the other hand, when the ratio is larger than 2, problems such as a change with the lapse of time or a short life of the coating solution for the back surface layer occur due to the curing agent remaining after the film formation.

さらに、上記裏面層中には、添加剤として、有機フィラーまたは無機フィラーを添加しても良い。これらのフィラーの働きで、プリンター内での熱転写受像シートの搬送性が向上し、また、ブロッキングを防ぐなど熱転写受像シートの保存性も向上する。有機フィラーとして、アクリル系フィラー、ポリアミド系フィラー、フッ素系フィラー、ポリエチレンワックスなどがあげられる。この中では、特にポリアミド系フィラーが好ましい。また、無機フィラーとして、二酸化珪素や金属酸化物などがあげられる。ポリアミド系フィラーとしては、分子量が10万乃至90万で、球状であり、平均粒径が0.01乃至30μmが好ましく、特に分子量が10万乃至50万で、平均粒径が0.01乃至10μmがより好ましい。また、ポリアミド系フィラーの種類では、ナイロン6やナイロン66と比較して、ナイロン12フィラーが耐水性に優れ、吸水による特性変化がないためより好ましい。   Furthermore, you may add an organic filler or an inorganic filler as an additive in the said back surface layer. The function of these fillers improves the transportability of the thermal transfer image receiving sheet in the printer, and also improves the storage stability of the thermal transfer image receiving sheet, such as preventing blocking. Examples of the organic filler include acrylic filler, polyamide filler, fluorine filler, and polyethylene wax. Of these, polyamide filler is particularly preferred. Examples of the inorganic filler include silicon dioxide and metal oxide. The polyamide filler has a molecular weight of 100,000 to 900,000, is spherical, and preferably has an average particle size of 0.01 to 30 μm, particularly a molecular weight of 100,000 to 500,000 and an average particle size of 0.01 to 10 μm. Is more preferable. As for the type of polyamide-based filler, nylon 12 filler is more preferable than nylon 6 or nylon 66 because it is excellent in water resistance and has no characteristic change due to water absorption.

ポリアミド系フィラーは、高融点で熱的にも安定であり、耐油性、耐薬品性なども良く、染料によって染着されにくい。また、分子量が10万乃至90万であると磨耗することもほとんどなく、自己潤滑性があり、摩擦係数も低く、擦れる相手を傷つけにくい。また、好ましい平均粒径は、0.1乃至30μmである。粒径が小さすぎると、フィラーが裏面層中に隠れてしまい、十分な滑り性の機能が発現され難くなる傾向がみられ、また、粒径が大きすぎると、裏面層からの突出が大きくなり、結果的に摩擦係数を高めたり、フィラーの欠落を生じる傾向があるので、好ましくない。裏面層の樹脂に対するフィラーの配合比率は、0.01重量%乃至200重量%の範囲が好ましい。反射画像用熱転写受像シートの場合は、1重量%乃至100重量%がより好ましい。フィラーの配合比率が0.01重量%未満の場合には、滑り性が不十分であり、プリンターの給紙時などで紙詰まりなどの支障をきたす傾向が生じる。また、200重量%を越える場合には、滑りすぎて印字画像に色ずれなどが生じやすくなるため、好ましくない。
なお、本発明においては、熱転写シートの最も裏面側に導電層又は裏面層のいずれを設けてもよい。
The polyamide filler has a high melting point and is thermally stable, has good oil resistance and chemical resistance, and is difficult to be dyed with a dye. Further, when the molecular weight is 100,000 to 900,000, it hardly wears, has a self-lubricating property, has a low coefficient of friction, and hardly rubs a rubbing partner. A preferred average particle size is 0.1 to 30 μm. If the particle size is too small, the filler is hidden in the back surface layer, and there is a tendency that a sufficient function of slipperiness is not expressed, and if the particle size is too large, the protrusion from the back surface layer becomes large. As a result, the coefficient of friction tends to be increased or fillers are lost, which is not preferable. The blending ratio of the filler to the resin of the back layer is preferably in the range of 0.01% by weight to 200% by weight. In the case of a thermal transfer image receiving sheet for reflection image, it is more preferably 1% by weight to 100% by weight. When the blending ratio of the filler is less than 0.01% by weight, the slipperiness is insufficient, and there is a tendency to cause troubles such as paper jam when the printer is fed. On the other hand, if it exceeds 200% by weight, it is not preferable because it is too slippery and color misalignment or the like tends to occur in the printed image.
In the present invention, either the conductive layer or the back layer may be provided on the most back side of the thermal transfer sheet.

(易接着層)
基材シートとその上に設ける層との接着性を高めるため、基材シートの表面及び/又は裏面に、アクリル酸エステル樹脂やポリウレタン樹脂やポリエステル樹脂などの接着性樹脂からなる易接着層を塗布して設けてもよい。また、基材シートの表面及び/又は裏面に、コロナ放電処理をすることにより、接着性を高めることもできる。
(Easily adhesive layer)
In order to increase the adhesion between the base sheet and the layer provided on it, an easy-adhesion layer made of an adhesive resin such as an acrylate resin, polyurethane resin or polyester resin is applied to the front and / or back of the base sheet. May be provided. Moreover, adhesiveness can also be improved by performing a corona discharge process to the surface and / or back surface of a base material sheet.

以下、実施例を挙げて、本発明を更に具体的に説明する。これらの記載により本発明を制限するものではない。尚、実施例中、部は特に特定しない限り重量部を表す。
(製造例1)
表1に示す配合割合に従って、バインダー樹脂、帯電防止剤、必要に応じて濡れ性改善剤、及び、水を混合し、ビーズミル(レッドデビル社製の商品名ペイントコンディショナー)で攪拌して、導電層塗工液1〜13をそれぞれ調製した。
表1においてポリエステル樹脂エマルジョンまたはポリウレタン樹脂エマルジョンと表記されているものは、樹脂エマルジョンの状態の市販品であり、エマルジョン中の樹脂量を表1に記載した。
Hereinafter, the present invention will be described more specifically with reference to examples. These descriptions do not limit the present invention. In the examples, parts represent parts by weight unless otherwise specified.
(Production Example 1)
In accordance with the blending ratio shown in Table 1, binder resin, antistatic agent, wettability improver and water as necessary are mixed, stirred with a bead mill (trade name Paint Conditioner manufactured by Red Devil), and conductive layer Coating solutions 1 to 13 were prepared.
In Table 1, what is described as a polyester resin emulsion or a polyurethane resin emulsion is a commercial product in the state of a resin emulsion, and the amount of resin in the emulsion is shown in Table 1.

Figure 0004765730
Figure 0004765730

(製造例2)
表2に示す配合割合に従って、各材料を混合し、受容層塗工液1を調製した。
(Production Example 2)
According to the blending ratio shown in Table 2, each material was mixed to prepare a receiving layer coating solution 1.

Figure 0004765730
Figure 0004765730

(製造例3)
表3に示す配合割合に従って、各材料を混合し、裏面層塗工液1を調製した。
(Production Example 3)
According to the blending ratio shown in Table 3, each material was mixed to prepare a back surface layer coating solution 1.

Figure 0004765730
Figure 0004765730

以下に、実施例及び比較例を示し、本発明を詳述する。
(実施例1)
基材シートとして、厚さ100μmの白PETフィルム(東レ株式会社製ルミラー)を用い、その一方の面に上記組成の導電層塗工液1をミヤバーにより乾燥時1.5g/mになる様に塗布及び乾燥させて導電層を形成した。
次に、上記組成の受容層塗工液1を前記導電層表面に乾燥時4.0g/mになる様に塗布乾燥させて受容層を形成した。
次に、基材シートの受容層の設けてある側と反対側に上記裏面層塗工液1を乾燥時1.5g/mになる様に塗布乾燥させて裏面層を形成し、本発明の実施例1の熱転写受像シートを得た。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
Example 1
A white PET film (Lumirror manufactured by Toray Industries, Inc.) having a thickness of 100 μm is used as a base sheet, and the conductive layer coating liquid 1 having the above composition is applied to one surface thereof at 1.5 g / m 2 when dried with a Miya bar. The conductive layer was formed by coating and drying.
Next, the receiving layer coating liquid 1 having the above composition was applied and dried on the surface of the conductive layer so as to be 4.0 g / m 2 when dried to form a receiving layer.
Next, the back layer coating liquid 1 is applied and dried on the side opposite to the side on which the receiving layer is provided of the base material sheet so as to be 1.5 g / m 2 when dried, thereby forming the back layer. The thermal transfer image-receiving sheet of Example 1 was obtained.

(実施例2)
実施例1における導電層塗工液1に代えて上記組成の導電層塗工液2を使用して導電層を形成し、他は実施例1と同様にして、本発明の実施例2の熱転写受像シートを得た。
(実施例3)
実施例1における導電層塗工液1に代えて上記組成の導電層塗工液3を使用して導電層を形成し、他は実施例1と同様にして、本発明の実施例3の熱転写受像シートを得た。
(実施例4)
実施例1における導電層塗工液1に代えて上記組成の導電層塗工液4を使用して導電層を形成し、他は実施例1と同様にして、本発明の実施例4の熱転写受像シートを得た。
(Example 2)
A conductive layer is formed using the conductive layer coating solution 2 having the above composition in place of the conductive layer coating solution 1 in Example 1, and the others are the same as in Example 1, and the thermal transfer of Example 2 of the present invention is performed. An image receiving sheet was obtained.
(Example 3)
A conductive layer was formed using the conductive layer coating solution 3 having the above composition in place of the conductive layer coating solution 1 in Example 1, and the thermal transfer of Example 3 of the present invention was otherwise performed in the same manner as in Example 1. An image receiving sheet was obtained.
Example 4
A conductive layer is formed using the conductive layer coating solution 4 having the above composition in place of the conductive layer coating solution 1 in Example 1, and the others are the same as in Example 1, and the thermal transfer of Example 4 of the present invention is performed. An image receiving sheet was obtained.

(実施例5)
実施例1における導電層塗工液1に代えて上記組成の導電層塗工液5を使用して導電層を形成し、他は実施例1と同様にして、本発明の実施例5の熱転写受像シートを得た。
(実施例6)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液6を使用して導電層を形成し、他は実施例1と同様にして、本発明の実施例6の熱転写受像シートを得た。
(Example 5)
A conductive layer is formed using the conductive layer coating solution 5 having the above composition instead of the conductive layer coating solution 1 in Example 1, and the other processes are the same as in Example 1, and the thermal transfer of Example 5 of the present invention is performed. An image receiving sheet was obtained.
(Example 6)
A conductive layer was formed using a conductive layer coating solution 6 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the thermal transfer of Example 6 of the present invention was otherwise performed in the same manner as Example 1. An image receiving sheet was obtained.

(実施例7)
基材シートとして、厚さ100μmの白PETフィルム(東レ株式会社製ルミラー)を用い、その一方の面に実施例1で使用した導電層塗工液1をミヤバーにより乾燥時1.5g/mになるように塗布及び乾燥させて導電層を形成した。次に、実施例1で使用した裏面層塗工液1を前記導電層表面に乾燥時1.5g/mになる様に塗布乾燥させて裏面層を形成した。また、基材シートの他方の面に実施例1で使用した受容層塗工液1を乾燥時4.0g/mになる様に塗布乾燥させて受容層を形成して、本発明の実施例7の熱転写受像シートを得た。
(Example 7)
A white PET film (Lumirror manufactured by Toray Industries, Inc.) having a thickness of 100 μm was used as a base sheet, and the conductive layer coating solution 1 used in Example 1 was dried on a first surface with a Miya bar at a rate of 1.5 g / m 2. The conductive layer was formed by coating and drying. Next, the back surface layer coating solution 1 used in Example 1 was applied and dried on the surface of the conductive layer so that the surface layer was 1.5 g / m 2 at the time of drying to form a back surface layer. Further, the receiving layer coating liquid 1 used in Example 1 was applied and dried on the other surface of the base sheet so as to be 4.0 g / m 2 when dried, thereby forming a receiving layer. The thermal transfer image receiving sheet of Example 7 was obtained.

(比較例1)
実施例1における導電層塗工液1に代えて上記組成の導電層塗工液7を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例1の熱転写受像シートを得た。
(比較例2)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液8を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例2の熱転写受像シートを得た。
(比較例3)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液9を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例3の熱転写受像シートを得た。
(Comparative Example 1)
A conductive layer was formed using the conductive layer coating solution 7 having the above composition instead of the conductive layer coating solution 1 in Example 1, and the others were the same as in Example 1, and the thermal transfer of Comparative Example 1 of the present invention was performed. An image receiving sheet was obtained.
(Comparative Example 2)
A conductive layer was formed using a conductive layer coating solution 8 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the rest was the same as in Example 1 except that the thermal transfer of Comparative Example 2 of the present invention was performed. An image receiving sheet was obtained.
(Comparative Example 3)
A conductive layer was formed using a conductive layer coating solution 9 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the others were the same as in Example 1, and the thermal transfer of Comparative Example 3 of the present invention was performed. An image receiving sheet was obtained.

(比較例4)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液10を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例4の熱転写受像シートを得た。
(比較例5)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液11を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例5の熱転写受像シートを得た。
(比較例6)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液12を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例6の熱転写受像シートを得た。
(Comparative Example 4)
A conductive layer was formed using a conductive layer coating solution 10 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the others were the same as in Example 1, and the thermal transfer of Comparative Example 4 of the present invention was performed. An image receiving sheet was obtained.
(Comparative Example 5)
A conductive layer was formed using a conductive layer coating solution 11 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the rest was the same as in Example 1 except that the thermal transfer of Comparative Example 5 of the present invention was performed. An image receiving sheet was obtained.
(Comparative Example 6)
A conductive layer was formed using a conductive layer coating solution 12 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the rest was the same as in Example 1, except that the thermal transfer of Comparative Example 6 of the present invention was performed. An image receiving sheet was obtained.

(比較例7)
実施例1における導電層塗工液1に代えて下記組成の導電層塗工液13を使用して導電層を形成し、他は実施例1と同様にして、本発明の比較例7の熱転写受像シートを得た。
(Comparative Example 7)
A conductive layer was formed using a conductive layer coating solution 13 having the following composition in place of the conductive layer coating solution 1 in Example 1, and the rest was performed in the same manner as in Example 1 except that thermal transfer of Comparative Example 7 of the present invention was performed. An image receiving sheet was obtained.

[評価方法]
先ず、製造例で得られた導電層塗工液で用いた導電剤の粒子径、当該導電層塗工液で用いたバインダー樹脂のガラス転移温度、及び、導電層塗工液の分散性を評価した。
次に、上記の本発明の実施例及び比較例で作成した熱転写受像シートの表面抵抗率、白色度、光沢度、及び、導電層と基材との接着性を評価した。なお表面抵抗率は、印字後の受像シート(印字物)についても測定した。
また、上記の本発明の実施例及び比較例の熱転写受像シートと、市販の昇華用熱転写シートに、三菱電機製CP−2000プリンターを用いて階調画像および文字を印画し、搬送性を調べた。
さらに、得られた印字物の画像保存性を評価した。
[Evaluation methods]
First, the particle diameter of the conductive agent used in the conductive layer coating solution obtained in the production example, the glass transition temperature of the binder resin used in the conductive layer coating solution, and the dispersibility of the conductive layer coating solution are evaluated. did.
Next, the surface resistivity, the whiteness, the glossiness, and the adhesion between the conductive layer and the substrate were evaluated for the thermal transfer image-receiving sheets prepared in the examples and comparative examples of the present invention. The surface resistivity was also measured for the image receiving sheet (printed material) after printing.
In addition, gradation images and characters were printed on the thermal transfer image-receiving sheets of the above-described Examples and Comparative Examples of the present invention and commercially available thermal transfer sheets using a CP-2000 printer manufactured by Mitsubishi Electric, and the transportability was examined. .
Furthermore, the image storability of the obtained printed matter was evaluated.

[評価方法]
本発明で用いる評価方法は、下記の通りである。
(粒子径)
導電性合成層状珪酸塩等、導電性粉末の粒径は、走査型電子顕微鏡(商品名「JSM−6700」、日本電子データム(株)製)により、導電性粉末の写真を撮り、LUZEX III(ニレコ社製)により、5nm以上の100個以上の一次粒子の粒径を、粒子の形状に応じて測定し、平均値を求めた。
合成層状珪酸塩とスメクタイトは、円盤状の一次粒子であるため、円盤の長径(nm)及び厚み(nm)について、100個以上の粒子をそれぞれ測定し、個数平均一次粒子径を求めた。
また、導電性針状結晶は、繊維状の形状を有するため、繊維径(nm)及び繊維長(nm)について、100個以上の粒径をそれぞれ測定し、個数平均一次粒子径を求めた。
[Evaluation methods]
The evaluation method used in the present invention is as follows.
(Particle size)
The particle size of the conductive powder such as conductive synthetic layered silicate was measured with a scanning electron microscope (trade name “JSM-6700”, manufactured by JEOL Datum Co., Ltd.). The particle size of 100 or more primary particles of 5 nm or more was measured according to the shape of the particles, and the average value was obtained.
Since synthetic layered silicate and smectite are discoidal primary particles, 100 or more particles were measured for the major axis (nm) and thickness (nm) of the disc to determine the number average primary particle size.
In addition, since the conductive acicular crystals have a fibrous shape, 100 or more particle sizes were measured for the fiber diameter (nm) and the fiber length (nm), and the number average primary particle diameter was determined.

(導電層塗工液の分散性)
上記各製造例で調製した導電層塗工液をスクリュー管に入れ、10分静置した後に導電層塗工液の状態を目視評価した。判定基準は以下の通りである。
○:均一に分散されている。
×:ゲルが発生しており、分散が均一でない。
(Dispersibility of conductive layer coating solution)
The conductive layer coating solution prepared in each of the above production examples was placed in a screw tube and allowed to stand for 10 minutes, and then the state of the conductive layer coating solution was visually evaluated. Judgment criteria are as follows.
○: Uniformly dispersed.
X: Gel is generated and dispersion is not uniform.

(ガラス転移温度の測定方法)
バインダー樹脂について示差走査熱量測定(DSC)を行い、得られる結果からガラス転移温度を求めた。
導電層塗工液で用いたバインダー樹脂が固形の製品である場合には、そのまま測定に用いた。一方、バインダー樹脂が、始めからエマルジョンの製品である場合には、エマルジョンを真空乾燥オーブンにて50℃、0.1MPa、24時間乾燥して溶媒を除去することにより、当該エマルジョンからDSC測定可能な試料を予備調製した。
DSCの測定は、(株)リガク製、DSC8230Dを使用し、標準試料容器(φ5mm×2.5mmH、約50μL)に試料を入れ、走査速度(昇温速度)=5℃/min、温度範囲−100〜150℃で加熱測定を行った。
(Measurement method of glass transition temperature)
Differential scanning calorimetry (DSC) was performed on the binder resin, and the glass transition temperature was determined from the results obtained.
When the binder resin used in the conductive layer coating solution was a solid product, it was used for measurement as it was. On the other hand, when the binder resin is an emulsion product from the beginning, DSC measurement can be performed from the emulsion by drying the emulsion in a vacuum drying oven at 50 ° C. and 0.1 MPa for 24 hours to remove the solvent. Samples were pre-prepared.
DSC measurement uses a DSC8230D manufactured by Rigaku Corporation, puts the sample in a standard sample container (φ5 mm × 2.5 mmH, about 50 μL), scanning speed (temperature increase rate) = 5 ° C./min, temperature range− Heat measurement was performed at 100 to 150 ° C.

(表面抵抗率)
表面抵抗率の測定は、デジタル超高抵抗/微少電流計TR8652(アドバンテスト(株)製)を用い、これに超高抵抗測定用試料箱TR42を接続して行った。
上記実施例において、受容層形成前に受像シートの表裏それぞれの表面抵抗を、温度23℃で相対湿度60%、及び温度0℃で湿度は規定しない(成り行き)の各環境下で測定した。従って、受像シートの表または裏に存在する導電層の表面抵抗が、この段階で測定された。受容層形成前に受像シートの表裏それぞれの表面抵抗を、温度23℃で相対湿度60%、及び温度0℃で湿度は規定しない(成り行き)の各環境下で測定した。従って、印字前の受容層の表面抵抗が、この段階で測定された。
さらに、上記のプリンターで画像形成後の熱転写受像シートの表裏それぞれの表面抵抗を、温度23℃で相対湿度60%、及び温度0℃で湿度は規定しない(成り行き)の各環境下で測定した。従って、印字後の受容層の表面抵抗が、この段階で測定された。
(Surface resistivity)
The surface resistivity was measured by using a digital ultrahigh resistance / microammeter TR8652 (manufactured by Advantest Co., Ltd.) and connecting an ultrahigh resistance measurement sample box TR42 thereto.
In the above examples, the surface resistances of the front and back sides of the image receiving sheet were measured under the respective environments where the temperature was 23 ° C. and the relative humidity was 60%, and the temperature was 0 ° C. and the humidity was not specified (result) before forming the receiving layer. Therefore, the surface resistance of the conductive layer existing on the front or back of the image receiving sheet was measured at this stage. Before the formation of the receiving layer, the surface resistances of the front and back sides of the image receiving sheet were measured in each environment where the temperature was 23 ° C. and the relative humidity was 60%, and the temperature was 0 ° C. and the humidity was not specified (result). Therefore, the surface resistance of the receiving layer before printing was measured at this stage.
Furthermore, the surface resistances of the front and back surfaces of the thermal transfer image-receiving sheet after image formation with the above-mentioned printer were measured in each environment where the relative humidity was 60% at a temperature of 23 ° C. and the humidity was not specified (result) at a temperature of 0 ° C. Therefore, the surface resistance of the receiving layer after printing was measured at this stage.

(白色度)
上記の各熱転写受像シートの受容層が設けられた表面の反射特性を、日本電色工業製SPECTRO COLOR METER Model PF−10にて、測定した。判断基準は以下の通りである。
○:白色度80%以上
×:白色度80%未満
(Whiteness)
The reflection characteristics of the surface provided with the receiving layer of each thermal transfer image receiving sheet were measured with SPECTRO COLOR METER Model PF-10 manufactured by Nippon Denshoku Industries Co., Ltd. Judgment criteria are as follows.
○: Whiteness of 80% or more ×: Whiteness of less than 80%

(光沢度)
上記の各熱転写受像シートの受容層が設けられた表面の鏡面光沢度を日本電色工業製GLOSS METER VG2000にてJIS−Z8741:1997に基く方法で測定し、光線反射角度は45°で調べた。判断基準は以下の通りである。
○:光沢度75%以上
×:光沢度75%未満
(Glossiness)
The specular gloss of the surface provided with the receiving layer of each thermal transfer image receiving sheet was measured by a method based on JIS-Z8741: 1997 by GLOSS METER VG2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the light reflection angle was 45 °. . Judgment criteria are as follows.
○: Glossiness 75% or more ×: Glossiness less than 75%

(基材との接着性)
上記の各熱転写受像シートの導電層が設けられた側の接着性を粘着テープによる剥離試験にて調べた。粘着テープには市販のメンディングテープを用いた。
また、上記の熱転写受像シートを温度40℃、湿度90%のオーブンに30分保存し、同条件下で上記と同様に剥離試験を行った。判断基準は以下の通りである。
○:基材シートから剥離しない
×:基材シートから剥離する
(Adhesiveness with substrate)
The adhesiveness on the side provided with the conductive layer of each thermal transfer image receiving sheet was examined by a peel test using an adhesive tape. A commercially available mending tape was used as the adhesive tape.
The thermal transfer image-receiving sheet was stored in an oven at a temperature of 40 ° C. and a humidity of 90% for 30 minutes, and a peel test was performed in the same manner as described above under the same conditions. Judgment criteria are as follows.
○: not peeled from the base sheet ×: peeled from the base sheet

(搬送性)
上記のプリンターに各熱転写受像シートを10枚ずつ連続して、搬送して、評価した。判断基準は以下の通りである。
○:異常なし。
×:プリンター中でジャムが発生した。
(Transportability)
Ten thermal transfer image-receiving sheets were continuously conveyed to the printer and evaluated. Judgment criteria are as follows.
○: No abnormality.
X: A jam occurred in the printer.

(画像保存性)
得られた印画物を、温度60℃、湿度85%のオーブンに1週間保存した後、画像のにじみを目視評価した。判断基準は以下の通りである。
○:にじみなし
×:にじみあり
(Image preservation)
The obtained printed matter was stored in an oven at a temperature of 60 ° C. and a humidity of 85% for 1 week, and then the bleeding of the image was visually evaluated. Judgment criteria are as follows.
○: No blurring ×: Smudge

(評価結果)
評価結果を下記の表4及び表5に示す。
(Evaluation results)
The evaluation results are shown in Table 4 and Table 5 below.

Figure 0004765730
表4において、上段の数値が、熱転写受像シートの受容層面(表面)の表面抵抗率で、下段の数値が熱転写受像シートの裏面の表面抵抗率である。
Figure 0004765730
In Table 4, the upper numerical value is the surface resistivity of the receiving layer surface (front surface) of the thermal transfer image receiving sheet, and the lower numerical value is the surface resistivity of the back surface of the thermal transfer image receiving sheet.

Figure 0004765730
Figure 0004765730

上記の結果で、実施例1〜7で得られた本発明の熱転写受像シートは、受像シートの受容層、裏面層の表面抵抗率が、温度、湿度の環境変化及び画像形成前後に対し安定しており、その他全ての評価項目の基準を満たした。
一方、水分散型または水溶性樹脂のガラス転移温度が本発明の範囲よりも高い、比較例1乃至3で得られた熱転写受像シートは、40℃、90%RH環境下における基材との接着性が悪かった。
また、水分散型または水溶性樹脂のガラス転移温度が本発明の範囲よりも低い、比較例4で得られた熱転写受像シートは、印画物の保存性が悪かった。
また、導電性合成層状珪酸塩として、粒径が本発明の範囲よりも大きいスメクタイトを用いた、比較例5で得られた熱転写受像シートは、表面抵抗率が高く、帯電防止性能に劣るため、プリンターで搬送中にジャムが発生し、紙詰まりし、画像形成が正常にできなかった。更に、光沢度も不十分だった。
また、導電性合成層状珪酸塩の代わりに導電性針状結晶を用いた、比較例6で得られた熱転写受像シートは、導電性針状結晶の粒径が大きいため、光沢度が不十分だった。
また、バインダー樹脂として、水分散型または水溶性樹脂の代わりに溶剤溶解性ポリウレタン樹脂を用いた比較例7で得られた熱転写受像シートは、導電性塗工液にゲルが発生しており、分散が均一でなかったため、表面抵抗率が高く、帯電防止性能が不十分な結果となった。更に光沢度も不十分だった。
Based on the above results, the thermal transfer image receiving sheets of the present invention obtained in Examples 1 to 7 have stable surface resistivity of the receiving layer and the back layer of the image receiving sheet with respect to environmental changes in temperature and humidity and before and after image formation. And met the criteria of all other evaluation items.
On the other hand, the thermal transfer image-receiving sheets obtained in Comparative Examples 1 to 3 in which the glass transition temperature of the water-dispersed or water-soluble resin is higher than the range of the present invention are adhered to the substrate in a 40 ° C. and 90% RH environment. The nature was bad.
Further, the thermal transfer image-receiving sheet obtained in Comparative Example 4 in which the glass transition temperature of the water-dispersed or water-soluble resin is lower than the range of the present invention has a poor storability of the printed matter.
Moreover, as the conductive synthetic layered silicate, the thermal transfer image-receiving sheet obtained in Comparative Example 5 using smectite having a particle size larger than the range of the present invention has a high surface resistivity and is poor in antistatic performance. A jam occurred during conveyance by the printer, paper jam occurred, and image formation could not be performed normally. Furthermore, the glossiness was insufficient.
In addition, the thermal transfer image-receiving sheet obtained in Comparative Example 6 using conductive acicular crystals instead of the conductive synthetic layered silicate has insufficient gloss because the conductive acicular crystals have a large particle size. It was.
The thermal transfer image-receiving sheet obtained in Comparative Example 7 using a water-dispersible or solvent-soluble polyurethane resin instead of a water-soluble resin as a binder resin has a gel generated in the conductive coating liquid, Was not uniform, resulting in high surface resistivity and insufficient antistatic performance. Furthermore, the glossiness was insufficient.

Claims (5)

基材シートの少なくとも一方の面に染料受容層を設けてなる熱転写受像シートにおいて、該基材シートと該受容層の間の少なくとも一層に導電層が形成され、該導電層が、平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性のポリエステル樹脂またはポリウレタン樹脂とを含有することを特徴とする熱転写受像シート。 In a thermal transfer image-receiving sheet provided with a dye-receiving layer on at least one surface of a substrate sheet, a conductive layer is formed on at least one layer between the substrate sheet and the receiving layer, and the conductive layer has an average primary particle diameter A thermal transfer image-receiving sheet comprising an electrically conductive synthetic layered silicate having a glass transition temperature of 0 to 45 ° C. and a water-dispersed or water-soluble polyester resin or polyurethane resin . 基材シートの少なくとも一方の面に染料受容層を設けてなる熱転写受像シートにおいて、該基材シートの該受容層の設けてある側と反対側の少なくとも一層に導電層が形成され、該導電層が、平均一次粒子径が30nm以下である導電性合成層状珪酸塩と、ガラス転移温度が0〜45℃である水分散型または水溶性のポリエステル樹脂またはポリウレタン樹脂とを含有することを特徴とする熱転写受像シート。 In a thermal transfer image-receiving sheet having a dye-receiving layer provided on at least one surface of a substrate sheet, a conductive layer is formed on at least one side of the substrate sheet opposite to the side where the receiving layer is provided. However, it contains a conductive synthetic layered silicate having an average primary particle size of 30 nm or less and a water-dispersed or water-soluble polyester resin or polyurethane resin having a glass transition temperature of 0 to 45 ° C. Thermal transfer image receiving sheet. 前記受容層を形成する前の導電層の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1011Ω/□であり、前記受容層を形成した後の当該受容層の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1013Ω/□であることを特徴とする請求項1に記載する熱転写受像シート。 After forming the receiving layer, the surface resistivity of the conductive layer before forming the receiving layer is 1.0 × 10 4 to 1.0 × 10 11 Ω / □ in an environment of 23 ° C. and 60%. 2. The thermal transfer image-receiving sheet according to claim 1, wherein the receiving layer has a surface resistivity of 1.0 × 10 5 to 1.0 × 10 13 Ω / □ in an environment of 23 ° C. and 60%. . 前記導電層の表面抵抗率が23℃、60%の環境下で1.0×10〜1.0×1011Ω/□であることを特徴とする請求項2に記載する熱転写受像シート。 3. The thermal transfer image receiving sheet according to claim 2, wherein the surface resistivity of the conductive layer is 1.0 × 10 4 to 1.0 × 10 11 Ω / □ in an environment of 23 ° C. and 60%. 前記導電層が、濡れ性改善剤をさらに含有することを特徴とする請求項1乃至4のいずれかに記載する熱転写受像シート。   The thermal transfer image receiving sheet according to any one of claims 1 to 4, wherein the conductive layer further contains a wettability improving agent.
JP2006101015A 2006-03-31 2006-03-31 Thermal transfer image receiving sheet Active JP4765730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101015A JP4765730B2 (en) 2006-03-31 2006-03-31 Thermal transfer image receiving sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101015A JP4765730B2 (en) 2006-03-31 2006-03-31 Thermal transfer image receiving sheet

Publications (2)

Publication Number Publication Date
JP2007268995A JP2007268995A (en) 2007-10-18
JP4765730B2 true JP4765730B2 (en) 2011-09-07

Family

ID=38672256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101015A Active JP4765730B2 (en) 2006-03-31 2006-03-31 Thermal transfer image receiving sheet

Country Status (1)

Country Link
JP (1) JP4765730B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277896B2 (en) * 2014-07-18 2018-02-14 大日本印刷株式会社 Thermal transfer image receiving sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585067A (en) * 1991-09-30 1993-04-06 Kanzaki Paper Mfg Co Ltd Image receiving paper for thermal transfer recording
JPH10129135A (en) * 1996-10-28 1998-05-19 Fuji Photo Film Co Ltd Thermal receiving sheet
JP2004299108A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Thermal transfer image-receiving sheet
JP4121924B2 (en) * 2003-09-25 2008-07-23 大日本印刷株式会社 Thermal transfer image receiving sheet

Also Published As

Publication number Publication date
JP2007268995A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
EP3328660B1 (en) Multilayered structure with water impermeable substrate
US5747148A (en) Ink jet printing sheet
US5662997A (en) Ink jet recording film comprising cation-modified polyvinyl alcohol and recording method using the same
JPH0781214A (en) Recording sheet
US5753360A (en) Medium for phase change ink printing
JP2001180126A (en) Thermal transfer ribbon
JP5556318B2 (en) Method for producing thermal transfer receiving sheet
JP3814083B2 (en) Inkjet recording sheet
JP4765730B2 (en) Thermal transfer image receiving sheet
JPH1178255A (en) Thermal transfer image receiving sheet
JP2905001B2 (en) Recording sheet for thermal transfer
JP2006088396A (en) Thermal transfer accepting sheet
JP2004299108A (en) Thermal transfer image-receiving sheet
JP4978410B2 (en) Thermal transfer image receiving sheet
JPH08118823A (en) Thermal transfer image-receiving sheet
JPH09123623A (en) Photographic paper for thermal transfer
JP3507180B2 (en) Thermal transfer image receiving sheet
JP3651062B2 (en) Thermal transfer receiving sheet
JP4121924B2 (en) Thermal transfer image receiving sheet
US20240010021A1 (en) Flexographically-Printable, Full-Color-Inkjet-Receptive Topcoat Formula and Article
JP3638044B2 (en) Recording sheet
JP2001199172A (en) Dye thermal transfer accepting sheet
JP2006281637A (en) Thermal transfer image receiving sheet
JP2000335120A (en) Dye heat-transfer receptive sheet
JP2001213057A (en) Dye thermal transfer receiving sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4765730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3