JP4764967B2 - Heating element energization control method in window system combining dimming glass and heating element - Google Patents

Heating element energization control method in window system combining dimming glass and heating element Download PDF

Info

Publication number
JP4764967B2
JP4764967B2 JP2005034457A JP2005034457A JP4764967B2 JP 4764967 B2 JP4764967 B2 JP 4764967B2 JP 2005034457 A JP2005034457 A JP 2005034457A JP 2005034457 A JP2005034457 A JP 2005034457A JP 4764967 B2 JP4764967 B2 JP 4764967B2
Authority
JP
Japan
Prior art keywords
heating element
white turbidity
target value
solar radiation
light control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034457A
Other languages
Japanese (ja)
Other versions
JP2006220926A (en
Inventor
和芳 張本
正文 齋藤
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Tokyo University of Science
Original Assignee
Taisei Corp
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Tokyo University of Science filed Critical Taisei Corp
Priority to JP2005034457A priority Critical patent/JP4764967B2/en
Publication of JP2006220926A publication Critical patent/JP2006220926A/en
Application granted granted Critical
Publication of JP4764967B2 publication Critical patent/JP4764967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法に関するものである。   The present invention relates to an energization control method for a heating element in a window system in which a light control glass and a heating element are combined.

一般的に、窓面に入射する日射が室内に透過すると、室内居住者への眩しさ、劣悪な温熱環境、建物に対する冷房負荷の増大などの悪影響をもたらす。このような点の解決を図る既存技術として、例えばハイドロゲル等の、相転移温度以上で透明状態から白濁状態に相転移する調光体を合わせガラスに挟み込んで封入した構成の調光ガラスがある。   In general, when solar radiation incident on a window surface is transmitted into a room, it causes adverse effects such as glare for indoor residents, a poor thermal environment, and an increase in cooling load on a building. As an existing technique for solving such a problem, there is a light control glass having a configuration in which a light control body that phase transitions from a transparent state to a cloudy state at a temperature higher than a phase transition temperature is sandwiched and enclosed between laminated glasses. .

このような調光ガラスを窓に使用した場合、ハイドロゲル等の調光体の温度は、環境条件(日射や室内外の温度、気流、放射など)によって決定されるが、日射吸収熱によって調光体が昇温し、日射量に応じて自律的に白濁する性質があるため、室内居住者への眩しさの防止、温熱環境の快適化、建物における冷房負荷の低減といった効果がある。   When such a light control glass is used for a window, the temperature of the light control body such as hydrogel is determined by environmental conditions (sunlight, indoor / outdoor temperature, airflow, radiation, etc.), but it is controlled by the heat absorbed by solar radiation. Since the temperature of the light body rises and becomes cloudy autonomously according to the amount of solar radiation, there are effects such as prevention of glare for indoor residents, comfort of the thermal environment, and reduction of the cooling load in the building.

このような調光ガラスに関する文献としては、例えば以下に示すようなものがある。例えば特許文献1には、線状ホモ多糖類誘導体からなるライオトロピック型のコレステリック液晶及び20%以上の上記線状ホモ多糖類誘導体の高濃度水溶液を調光体として、透明体と共に積層した構成の呈色積層体、即ち自律型調光ガラスと、これを使用した窓が提案されている。この呈色積層体では、上記コレステリック液晶が、積層体の光ー熱変換機能により太陽の直射光線の光エネルギーが熱になり、光照射面が加熱されることにより呈色変化すると共に、更に温度を上昇させると白濁不透明状態になり直射光線を遮光するというものである。またこの特許文献1には、熱素子を設けて自律型の調光ガラスの呈色積層体を加温する制御方法が提案されている。   Examples of such a light control glass document include the following. For example, in Patent Document 1, a lyotropic cholesteric liquid crystal composed of a linear homopolysaccharide derivative and a high-concentration aqueous solution of 20% or more of the above-mentioned linear homopolysaccharide derivative are used as a dimmer and laminated with a transparent body. A color laminate, that is, an autonomous light control glass and a window using the same have been proposed. In this colored layered product, the cholesteric liquid crystal changes its color when the light energy of the sun's direct light is heated by the light-to-heat conversion function of the layered product, and the light irradiation surface is heated. When the is raised, it becomes a cloudy opaque state and shields direct rays. Further, this Patent Document 1 proposes a control method in which a heating element is provided to heat a colored laminate of autonomous light control glass.

また特許文献2には、温度変化により透明状態から白濁状態に可逆変化する水溶性化合物を溶解又は膨潤した水性組成物を調光体として、透明体と共に積層した構成の調光ガラス、即ち自律型の調光ガラスに対向基板を設けて、その間隙に流動媒体の気体を発熱体により加熱し、強制対流させて調光ガラスの温度を調整することにより、その光日射透過率を制御する調光ガラスを使用した窓が提案されている。
特開平6−158956号公報 特開2000−155345号公報
Patent Document 2 discloses a light control glass having a structure in which an aqueous composition in which a water-soluble compound that reversibly changes from a transparent state to a cloudy state due to a temperature change is dissolved or swollen as a light control body, that is, laminated with a transparent body, that is, autonomous The light control glass is provided with a counter substrate, the fluid medium gas is heated by a heating element in the gap, and the temperature of the light control glass is adjusted by forced convection to control the solar radiation transmittance. Windows using glass have been proposed.
Japanese Patent Application Laid-Open No. 6-158956 JP 2000-155345 A

上述したような自律型の調光ガラスを使用した窓においては、居住者の快適性(温熱環境、視環境)及び建物のエネルギー使用量が最適となるように、調光ガラスの透明/白濁状態が自動的に最適に変化して日射透過率が制御されることが理想的であるが、ガラスの温度は日射以外の条件(室内外の温度、気流など)に左右される。そのため、居住者・建物側において要求する調光ガラスの透明/白濁状態のタイミングと、実際の調光ガラスの透明/白濁状態のタイミングとは必ずしも一致しない。例えば、冬期においては、居住者が眩しさを感じているにもかかわらず、外気が低温なためにハイドロゲル等の調光体の温度が白濁状態に相転移する温度に達せず、従って白濁状態にならないために日射が室内に入射してしまう場合がある。   In windows using autonomous dimming glass as described above, the dimming glass is transparent / cloudy so that the occupant's comfort (thermal environment, visual environment) and building energy use are optimized. Ideally, the solar radiation transmittance is controlled automatically and optimally, but the glass temperature depends on conditions other than solar radiation (indoor and outdoor temperatures, airflow, etc.). Therefore, the timing of the transparent / white turbid state of the light control glass required on the resident / building side does not necessarily match the timing of the transparent / white turbid state of the actual light control glass. For example, in winter, although the resident feels dazzling, the temperature of the light control body such as hydrogel does not reach the temperature at which the phase changes to the cloudy state because the outside air is cold, and thus the cloudy state. Therefore, solar radiation may enter the room.

これに対して、自律型の調光ガラスと発熱体を組み合わせた窓システムでは、例えば冬期において外気が低温なために、日射の吸収のみではハイドロゲル等の調光体の温度が白濁転移する温度までに達しない場合に、発熱体に通電して調光体の昇温を補助し、任意に白濁のタイミングを制御することにより、居住者・建物側において要求する調光ガラスの透明/白濁状態のタイミングと、実際の調光ガラスの透明/白濁状態のタイミングとの合致率を高めることを図っている。この際、発熱体の制御は、自動制御装置又は居住者の任意の操作により行うことができる。   On the other hand, in a window system that combines an autonomous light control glass and a heating element, for example, the temperature of the light control body such as hydrogel becomes white turbidity only by absorbing solar radiation because the outside air is low in winter. If the temperature does not reach the limit, the heating element is energized to assist the temperature rise of the dimmer, and by controlling the timing of the white turbidity, the clear / white turbid state of the dimming glass required by the resident / building side And the coincidence ratio between the timing of the light control glass and the timing of the transparent / cloudy state of the actual light control glass is increased. At this time, the heating element can be controlled by any operation of an automatic control device or a resident.

この際、従来は、調光体が白濁状態に相転移する温度を目標値として制御して発熱体に連続通電する制御方法を採用しているため、制御する通電量が細かく、精度も必要であると共に、温度を目標値とする制御は、外乱に影響を受けやすく、良好な制御を行うのが困難であり、また調光ガラスの白濁状態を維持するための所要電力量が大きく、これらを解決する技術が求められている。   At this time, conventionally, since a control method is adopted in which the temperature at which the light control body transitions to the cloudy state is controlled as a target value and the heating element is continuously energized, the amount of energization to be controlled is fine and accuracy is also required. At the same time, the control with the temperature as the target value is easily affected by disturbance, and it is difficult to perform good control, and the amount of electric power required to maintain the cloudy state of the light control glass is large. There is a need for technology to solve this problem.

本発明は、以上の点に鑑みて創案されたもので、調光ガラスの白濁状態を維持するための所要電力量を軽減することのできる発熱体の発熱体の通電制御方法を提案するものである。   The present invention was devised in view of the above points, and proposes an energization control method for a heating element of a heating element that can reduce the amount of power required to maintain the white turbid state of the light control glass. is there.

上述した課題を解決するために、本発明では、相転移温度以上で透明状態から白濁状態に相転移する調光体を有する調光ガラスと、調光体を昇温するための発熱体を有する窓システムにおいて、
前記調光ガラスの白濁の度合いを検出する白濁センサーを備え、
前記調光体が相転移温度、又はその近傍の温度のときの、白濁の度合いの低い状態に対応する第1の白濁の目標値と、前記調光体が相転移温度よりも高いときの、白濁の度合いの高い状態に対応する第2の白濁の目標値とを設定し、
前記白濁センサーにより検出された白濁の度合いが、前記第1の白濁の目標値よりも低い場合には、前記第2の白濁の目標値となるまで前記発熱体への通電を行い、かつ、前記第2の白濁の目標値に至って通電停止した後において、前記白濁センサーにより検出された白濁の度合いが、前記第1の白濁の目標値よりも高い場合には、前記第1の白濁の目標値となるまで前記発熱体への通電を停止する制御を行うことを特徴とする調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法を提案するものである。
To solve the above problems, the present invention, a light control glass having a light adjuster for phase transition to a cloudy state from a transparent state at the phase transition temperature or higher, the heating element for heating the said light adjuster Having a window system,
A white turbidity sensor for detecting the degree of white turbidity of the light control glass;
When the dimmer is at or near the phase transition temperature, a first white turbidity target value corresponding to a low degree of white turbidity, and when the dimmer is higher than the phase transition temperature, Set a second target value for white turbidity corresponding to a high degree of white turbidity,
When the degree of white turbidity detected by the white turbidity sensor is lower than the first white turbidity target value, energization of the heating element until the second white turbidity target value is achieved, and When the degree of white turbidity detected by the white turbidity sensor is higher than the first white turbidity target value after the second white turbidity target value is reached and the energization is stopped, the first white turbidity target value is set. The present invention proposes an energization control method for a heating element in a window system in which a light control glass and a heating element are combined, and control is performed to stop energization of the heating element until

また本発明では、上記の構成において、前記白濁センサーはカラー判別センサーであることを特徴とする調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法を提案する。 The present invention also proposes a heating element energization control method in a window system combining a light control glass and a heating element, characterized in that, in the above configuration, the cloudiness sensor is a color discrimination sensor .

また本発明では、相転移温度以上で透明状態から白濁状態に相転移する調光体を有する調光ガラスと、該調光体を昇温するための発熱体を有する窓システムにおいて、
日射光のエネルギーを測定可能な日射センサーを調光ガラスの外気側と室内側の夫々に備え、
前記調光体が相転移温度、又はその近傍の温度のときの、白濁の度合いの低い状態に対応する第1の日射透過率の目標値と、前記調光体が相転移温度よりも高いときの、白濁の度合いの高い状態に対応する第2の日射透過率の目標値とを設定し、
前記外気側日射センサーと前記室内側日射センサーにより測定された日射光のエネルギーの差から日射透過率を算出し、
算出された前記日射透過率が、前記第1の日射透過率の目標値よりも高い場合には、前記日射透過率が前記第2の日射透過率の目標値となるまで前記発熱体への通電を行い、かつ、第2の日射透過率に至って通電停止した後において、前記算出された日射透過率が前記第1の日射透過率の目標値よりも低い場合には、前記第1の日射透過率の目標値となるまで前記発熱体への通電を停止する制御を行うことを特徴とする調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法を提案するものである。
Further, in the present invention, in a light control glass having a light control body that undergoes a phase transition from a transparent state to a cloudy state at a phase transition temperature or higher, and a window system having a heating element for raising the temperature of the light control body,
A solar radiation sensor that can measure the energy of solar radiation is provided on both the outside and indoor sides of the light control glass .
When the dimmer is at the phase transition temperature or a temperature in the vicinity thereof, the target value of the first solar radiation transmittance corresponding to a low degree of white turbidity, and when the dimmer is higher than the phase transition temperature And a target value of the second solar radiation transmittance corresponding to a state of high white turbidity,
Calculate solar radiation transmittance from the difference in the energy of solar radiation measured by the outside air side solar radiation sensor and the indoor side solar radiation sensor,
When the calculated solar radiation transmittance is higher than the target value of the first solar light transmittance, energization of the heating element until the solar light transmittance reaches the target value of the second solar light transmittance. And when the calculated solar radiation transmittance is lower than the target value of the first solar transmittance after the second solar radiation transmittance is reached and the energization is stopped, the first solar radiation transmission is performed. The present invention proposes an energization control method for a heating element in a window system in which a light control glass and a heating element are combined, wherein control for stopping energization to the heating element is performed until a target value of the rate is reached .

調光体、例えばハイドロゲルは図7に示すように、その温度が、透明状態から白濁状態への変化を開始する温度、即ち白濁状態の下限温度である相転移温度(白濁下限温度)以上であれば、白濁状態にあるが、温度がより高い方が白濁の度合いが大きく、日射吸収率が高いという特性を持つ。例えば図7において白濁下限温度(30℃)における白濁状態と白濁下限温度よりも5℃高い温度(35℃)における白濁状態とを比べると、白濁下限温度よりも5℃高い温度における状態の方が白濁の度合いが大きく、日射吸収率は約1.8倍以上大きい。   As shown in FIG. 7, the temperature of the light control body, for example, hydrogel, is higher than the temperature at which the change from the transparent state to the white turbid state starts, that is, the phase transition temperature (white turbidity lower limit temperature) which is the lower limit temperature of the white turbid state. If it exists, it is in a cloudy state, but the higher the temperature, the greater the degree of cloudiness and the higher the solar radiation absorption rate. For example, in FIG. 7, when comparing the cloudy state at the lower limit of white turbidity (30 ° C.) with the cloudy state at a temperature (35 ° C.) higher by 5 ° C. than the lower limit of white turbidity, the state at a temperature 5 ° C. higher than the lower limit of white turbidity is better. The degree of cloudiness is large, and the solar radiation absorption rate is about 1.8 times greater.

本発明では、発熱体への通電を、調光体が白濁への相転移温度よりも高い温度となるように行うので、調光体は、相転移温度におけるよりも、より日射吸収率の高い状態となる。従って、この状態において通電を停止した場合には、調光体は、日射吸収率がより高い状態であるため、吸収する日射の熱量も、より大きいため、通電停止後における調光体の温度下降の度合いを低減することができる。   In the present invention, since the heating element is energized so that the dimmer is at a temperature higher than the phase transition temperature to cloudiness, the dimmer has a higher solar absorptivity than at the phase transition temperature. It becomes a state. Therefore, when energization is stopped in this state, the dimmer is in a state where the solar radiation absorption rate is higher, and the amount of solar radiation to be absorbed is larger, so the temperature of the dimmer after the energization is stopped is decreased. Can be reduced.

上述した通電停止により調光体の温度が次第に低下し、相転移温度まで低下して、白濁状態から透明状態へと相転移する時点において、再度白濁状態とする必要がある場合には、再度上述したような通電を行い、こうして断続的に通電を行うことにより、白濁状態を維持することができる。   When the temperature of the light control body is gradually decreased by stopping the energization as described above, and when the phase transition temperature is decreased to the phase transition from the cloudy state to the transparent state, it is necessary to set the cloudy state again. The white turbidity state can be maintained by conducting such energization and intermittently energizing in this way.

本発明では、上述したように、通電時において調光体の日射吸収率を、より高い状態にして、吸収する日射の熱量を大きくし、調光体の温度下降の度合いを低減して断続的な通電を行うため、白濁状態を維持するための所要電力量を、連続通電よりも低減することができる。   In the present invention, as described above, the solar radiation absorption rate of the dimmer is increased when energized, the amount of solar radiation to be absorbed is increased, and the degree of temperature decrease of the dimmer is reduced to intermittently. Therefore, the amount of electric power required to maintain a cloudy state can be reduced as compared with continuous energization.

そして本発明では、上述した通電の制御は、例えば調光ガラスの白濁の度合いを判別する白濁センサーを適所に設置し、それにより検出した白濁の度合いの低い状態に対応する第1の目標値と、白濁の度合いの高い状態に対応する第2の目標値を設定して、第1の目標値において通電を開始し、第2の目標値において通電を停止する方法で行うことができる。   In the present invention, the above-described energization control includes, for example, a white turbidity sensor that determines the degree of white turbidity of the light control glass in an appropriate place, and the first target value corresponding to the low degree of white turbidity detected thereby. The second target value corresponding to a high degree of white turbidity is set, and energization is started at the first target value, and the energization is stopped at the second target value.

また本発明では、上述した通電の制御は、また日射センサーを調光ガラスの外気側と室内側の夫々に設置して、それらの検出値の差により調光ガラスにおける日射透過率を算出し、日射透過率の高い状態に対応する第1の目標値と、日射透過率の低い状態に対応する第2の目標値を設定して、第1の目標値において通電を開始し、第2の目標値において通電を停止する制御を行うことができる。   Further, in the present invention, the above-described energization control is also performed by installing a solar radiation sensor on each of the outside air side and the indoor side of the light control glass, and calculating the solar transmittance in the light control glass from the difference between the detected values. A first target value corresponding to a state of high solar transmittance and a second target value corresponding to a state of low solar transmittance are set, energization is started at the first target value, and a second target value is set. The value can be controlled to stop energization.

次に本発明の調光ガラスと発熱体を組み合わせた窓システムにおける通電制御方法を適用した実施例を添付図面を参照して説明する。   Next, an embodiment to which an energization control method in a window system combining a light control glass and a heating element of the present invention is applied will be described with reference to the accompanying drawings.

まず図1は本発明に係る通電制御方法を適用する構成の第1の実施例を示す概念的説明図である。
符号1は相転移温度以上で透明状態から白濁状態に相転移する調光体を有する調光ガラスと、調光体を昇温するための発熱体を有する窓システムを示すものである。符号2は建物の外壁を示すもので、図中左側が外気側、右側が居室側を示している。
FIG. 1 is a conceptual explanatory view showing a first embodiment of a configuration to which an energization control method according to the present invention is applied.
Reference numeral 1 denotes a window system having a light control glass having a light control body that undergoes a phase transition from a transparent state to a cloudy state at a phase transition temperature or higher, and a heating element for heating the light control body. Reference numeral 2 denotes an outer wall of the building, and the left side in the figure indicates the outside air side, and the right side indicates the room side.

この実施例では、調光体3は従来から用いられているハイドロゲルとし、これを対向した2枚の透明ガラス4,5の間の間隙に充填して調光ガラス6を構成している。そして透明ガラス5の内面側には発熱体7を設けている。発熱体7は、例えば上記特許文献2に示されているように、ITO膜、タングステン細線、ベルチェ素子等、調光ガラス6としての透光性を劣化させないものであれば適宜の発熱体を適用することができ、またその設置位置も調光体3を昇温可能であれば適宜である。   In this embodiment, the light control body 3 is a conventionally used hydrogel, and the light control glass 6 is configured by filling a gap between the two transparent glasses 4 and 5 facing each other. A heating element 7 is provided on the inner surface side of the transparent glass 5. As the heating element 7, for example, as shown in the above-mentioned Patent Document 2, an appropriate heating element is applied as long as it does not deteriorate the translucency of the light control glass 6 such as an ITO film, a tungsten fine wire, and a Bertier element. In addition, the installation position is appropriate as long as the temperature of the light control body 3 can be increased.

符号8は発熱体7の通電を制御する制御装置であり、この実施例では調光ガラス6の白濁の度合いを判別する白濁センサー9を用いて発熱体7の通電を制御する構成としている。即ち、制御装置8は、白濁センサー9により検出した調光ガラス6、即ち調光体3の白濁の度合いの低い状態に対応する第1の目標値と、白濁の度合いの高い状態に対応する第2の目標値を設定して、第1の目標値において通電を開始し、第2の目標値において通電を停止する制御を行う構成としている。   Reference numeral 8 denotes a control device that controls the energization of the heating element 7. In this embodiment, the energization of the heating element 7 is controlled using a cloudiness sensor 9 that determines the degree of cloudiness of the light control glass 6. That is, the control device 8 detects the light control glass 6 detected by the white turbidity sensor 9, that is, the first target value corresponding to the low turbidity state of the light control body 3, and the first target value corresponding to the high turbidity state. A target value of 2 is set, and energization is started at the first target value, and control is performed to stop energization at the second target value.

以上の構成において、制御装置8を作動状態とすると、白濁センサー9により検出した調光ガラス6、即ち調光体3の白濁の度合いが低く、第1の目標値以下の場合には発熱体7の通電を開始する。   In the above configuration, when the control device 8 is in the activated state, the degree of white turbidity of the light control glass 6 detected by the white turbidity sensor 9, that is, the light control body 3 is low, and when it is equal to or less than the first target value, the heating element 7. Start energizing.

発熱体7の通電により調光体3の温度が次第に上昇して相転移温度を越えて昇温され、調光体3は相転移温度におけるよりも白濁の度合いが高くなり、より日射吸収率の高い状態となる。こうして白濁センサー9により検出した調光体3の白濁の度合いが高い第2の目標値に至った場合には、制御装置8は発熱体7への通電を停止する。   The temperature of the light adjuster 3 is gradually increased by energization of the heating element 7 and is raised to exceed the phase transition temperature. The light adjuster 3 has a higher degree of white turbidity than that at the phase transition temperature, and has a higher solar absorption rate. Become high. In this way, when the second target value at which the degree of white turbidity of the dimmer 3 detected by the white turbidity sensor 9 has reached the second target value, the control device 8 stops energizing the heating element 7.

発熱体7への通電を停止した状態において、調光体3は、相転移温度におけるよりも、より日射吸収率の高い状態となっており、従って吸収する日射の熱量も、より大きいため、調光体の温度が相転移温度の状態から通電を停止する場合と比較して調光体3の温度下降の度合いを低減することができる。   In the state where the power supply to the heating element 7 is stopped, the dimmer 3 has a higher solar absorption rate than that at the phase transition temperature. Compared with the case where the energization is stopped when the temperature of the light body is at the phase transition temperature, the degree of temperature decrease of the light control body 3 can be reduced.

発熱体7への通電停止により、調光体3の温度は次第に低下し、相転移温度、又はその近傍の温度に対応する白濁センサー9により検出した調光体3の白濁の度合いが第1の目標値に至った場合には、制御装置8は再び発熱体7への通電を開始して、以降、上述した第1の目標値と第2の目標値の間で発熱体7への通電を断続的に行うことにより、調光体3の白濁状態を維持することができる。   When the energization of the heating element 7 is stopped, the temperature of the light adjusting body 3 gradually decreases, and the degree of white turbidity of the light adjusting body 3 detected by the white turbidity sensor 9 corresponding to the phase transition temperature or the temperature in the vicinity thereof is the first. When the target value is reached, the control device 8 starts energizing the heating element 7 again, and thereafter energizes the heating element 7 between the first target value and the second target value described above. By performing intermittently, the white turbid state of the light control body 3 can be maintained.

こうして本発明では、通電時において調光体の日射吸収率を、より高い状態にして、吸収する日射の熱量を大きくし、調光体の温度下降の度合いを低減して断続的な通電を行うため、白濁状態を維持するための所要電力量を、連続通電よりも低減することができる。   Thus, according to the present invention, the solar radiation absorption rate of the dimmer is increased when energized, the amount of solar radiation absorbed is increased, the degree of temperature decrease of the dimmer is reduced, and intermittent energization is performed. Therefore, the required power amount for maintaining the cloudiness state can be reduced as compared with continuous energization.

図2〜図4は本発明に係る制御方法の動作を、発熱体への通電を連続的に行う従来技術と比較した説明図であり、これらの図においては、本発明に係る制御方法に係る動作の流れは実線で示し、従来技術に係る動作の流れは破線で示している。そして図2は時間の経過における調光体3(ハイドロゲル)の温度の推移を示すもの、図3は時間の経過における調光体3(ハイドロゲル)の日射吸収熱量の推移を示すもの、また図4は時間の経過における発熱体への通電量の推移を示すものである。   2 to 4 are explanatory diagrams comparing the operation of the control method according to the present invention with the prior art for continuously energizing the heating element. In these drawings, the control method according to the present invention is related. The flow of operation is indicated by a solid line, and the flow of operation according to the prior art is indicated by a broken line. FIG. 2 shows the transition of the temperature of the dimmer 3 (hydrogel) over time, FIG. 3 shows the transition of the amount of solar radiation absorbed by the dimmer 3 (hydrogel) over time, FIG. 4 shows the transition of the energization amount to the heating element over time.

本発明では、上述したように、通電時においては調光体3の日射吸収率を、より高い状態にして、吸収する日射の熱量を大きくし、調光体3の温度下降の度合いを低減して断続的な通電を行うため、例えば図5に示すように白濁状態を維持するための所要電力量を、連続通電よりも低減することができる。   In the present invention, as described above, the solar radiation absorption rate of the light control body 3 is set to a higher state during energization, the amount of solar radiation absorbed is increased, and the degree of temperature drop of the light control body 3 is reduced. Therefore, for example, as shown in FIG. 5, the amount of electric power required to maintain a cloudy state can be reduced as compared with continuous energization.

以上に説明した白濁センサー9は、例えばカラー判別センサー等の色を判別するセンサーを使用し、このセンサーを、その受光部が室内側から調光ガラス6の面に向けて設置し、このセンサーによってハイドロゲル等の調光体3の色成分と明度を判定して白濁の度合いを検出することができる。   The cloudiness sensor 9 described above uses, for example, a sensor for determining the color, such as a color determination sensor, and this sensor is installed with its light receiving portion facing the surface of the light control glass 6 from the indoor side. The degree of white turbidity can be detected by determining the color component and brightness of the light control member 3 such as hydrogel.

このような白濁センサー9を用いた場合には、温度センサーを用い、調光体3の、ある位置の温度を直接的に測定したり、またこの直接的な測温に代えて、調光ガラス6の表面温度を測定して、これらの測定して温度を制御に用いた場合に生じる不都合、即ち、調光体3の温度や調光ガラス6の表面温度は、室内外の風速の時刻変動や、製品のバラツキによる、窓の拡がり方向の温度分布等の影響を受けるため、測定した温度と白濁の状態との不一致を起こす場合があり、誤動作や制御性の悪化を起こす場合があるという不都合の発生を防止することができる。   When such a cloudiness sensor 9 is used, a temperature sensor is used to directly measure the temperature at a certain position of the light control body 3, or, instead of this direct temperature measurement, a light control glass Inconveniences that occur when the surface temperature of the light source 6 is measured and the temperature is used for the control, that is, the temperature of the light control body 3 and the surface temperature of the light control glass 6 are time fluctuations of the wind speed inside and outside the room. In addition, the measured temperature and white turbidity may be inconsistent due to the effect of temperature distribution in the window spreading direction due to product variations, which may cause malfunctions and poor controllability. Can be prevented.

次に図6は本発明に係る通電制御方法を適用する構成の第2の実施例を示す概念的説明図である。この第2の実施例は、調光体3の白濁の度合いを、上記第1の実施例における白濁センサー9に代えて、調光ガラス6の外気側と室内側の夫々に日射センサー10,11を設置し、それらの検出値の差により調光ガラス6における日射透過率を算出し、この日射透過率により白濁の度合いを検出するものである。   Next, FIG. 6 is a conceptual explanatory view showing a second embodiment of a configuration to which the energization control method according to the present invention is applied. In the second embodiment, the degree of white turbidity of the light control body 3 is replaced with the white turbidity sensor 9 in the first embodiment, and the solar radiation sensors 10 and 11 are respectively provided on the outside air side and the indoor side of the light control glass 6. The solar radiation transmittance in the light control glass 6 is calculated from the difference between the detected values, and the degree of white turbidity is detected from this solar radiation transmittance.

即ち、調光体3の日射透過率が高い場合は白濁の度合いが低い状態、日射透過率が低い状態は白濁の度合いが高い状態であるので、制御装置8は、日射透過率の高い状態に対応する第1の目標値と、日射透過率の低い状態に対応する第2の目標値を設定して、第1の目標値において通電を開始し、第2の目標値において通電を停止する制御を行うものである。   That is, when the solar radiation transmittance of the dimmer 3 is high, the degree of white turbidity is low, and when the solar radiation transmittance is low, the degree of white turbidity is high, so the control device 8 is in a state of high solar radiation transmittance. Control that sets a corresponding first target value and a second target value corresponding to a low solar radiation transmittance state, starts energization at the first target value, and stops energization at the second target value Is to do.

このように、この第2の実施例は調光体3の白濁の度合いの検出方法が異なるのみで、その他の構成及び動作は第1の実施例と同様であるので、図6において、第1の実施例の各構成要素に対応する構成要素には図1と同様な符号を付して、重複する説明及び自明な説明は省略する。   As described above, the second embodiment is different only in the method of detecting the degree of white turbidity of the light adjuster 3, and the other configurations and operations are the same as those of the first embodiment. Constituent elements corresponding to the respective constituent elements of the embodiment are denoted by the same reference numerals as those in FIG. 1, and redundant description and obvious description are omitted.

尚、この実施例において、日射センサーとしては、照度計や日射計等、日射光のエネルギーを測定可能な適宜のセンサーを使用することができる。   In this embodiment, as the solar radiation sensor, an appropriate sensor capable of measuring the energy of solar radiation, such as an illuminometer or a solar radiation meter, can be used.

本発明は以上の通りであるので、調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法として、次に示すような利点があり、産業上の利用可能性が大である。
1.本発明では、通電時において調光体の日射吸収率を、より高い状態にして、吸収する日射の熱量を大きくし、調光体の温度下降の度合いを低減して断続的な通電を行うため、白濁状態を維持するための所要電力量を、連続通電よりも低減することができる。
2.本発明では、調光体の温度が相転移温度となるように発熱体に連続通電を行う従来の技術と比較して、通電量が細かく精度の高い制御は不要であり、また上述したように室内外の風速の時刻変動や、製品のバラツキによる窓面における温度分布などの影響を受けるため誤動作や制御性の悪化を起こす場合がある温度センサーを用いた制御が不要であるため、好適な制御を容易に実現することができる。
3.本発明では、調光体を相転移温度よりも高い温度にするべく発熱体に通電するため、調光体は、短時間に温度上昇して白濁するので、居住者・建物側の白濁変化の要求に対して、素早く応答できる。
Since the present invention is as described above, the energization control method of the heating element in the window system in which the light control glass and the heating element are combined has the following advantages, and the industrial applicability is great.
1. In the present invention, the solar radiation absorption rate of the light control body is set to a higher state during energization, the amount of solar radiation absorbed is increased, the degree of temperature decrease of the light control body is reduced, and intermittent power supply is performed. The amount of electric power required to maintain the cloudy state can be reduced as compared with continuous energization.
2. In the present invention, compared with the conventional technology in which the heating element is continuously energized so that the temperature of the light control body becomes the phase transition temperature, the energization amount is fine and precise control is unnecessary, and as described above. Suitable control because there is no need for control using a temperature sensor that may cause malfunction or deterioration of controllability due to the influence of time fluctuations in wind speed inside and outside, temperature distribution on the window surface due to product variations, etc. Can be easily realized.
3. In the present invention, since the heating element is energized to bring the dimmer to a temperature higher than the phase transition temperature, the dimmer becomes white turbid due to a temperature rise in a short time. Respond quickly to requests.

本発明に係る通電制御方法を適用する構成の第1の実施例を示す概念的説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual explanatory diagram illustrating a first embodiment of a configuration to which an energization control method according to the present invention is applied. 本発明に係る制御方法の動作を、発熱体への通電を連続的に行う従来技術と比較した説明図であり、時間の経過における調光体(ハイドロゲル)の温度の推移を示すものである。It is explanatory drawing which compared operation | movement of the control method which concerns on this invention with the prior art which supplies with electricity to a heat generating body continuously, and shows transition of the temperature of the light control body (hydrogel) in progress of time. . 本発明に係る制御方法の動作を、発熱体への通電を連続的に行う従来技術と比較した説明図であり、時間の経過における調光体(ハイドロゲル)の日射吸収熱量の推移を示すものである。It is explanatory drawing which compared operation | movement of the control method which concerns on this invention with the prior art which supplies electricity to a heat generating body continuously, and shows transition of the solar radiation absorption calorie | heat amount of a light control body (hydrogel) in progress of time. It is. 本発明に係る制御方法の動作を、発熱体への通電を連続的に行う従来技術と比較した説明図であり、時間の経過における発熱体への通電量の推移を示すものである。It is explanatory drawing which compared operation | movement of the control method which concerns on this invention with the prior art which supplies electricity to a heat generating body continuously, and shows transition of the electricity supply amount to a heat generating body in progress of time. 本発明における白濁状態を維持するための所要電力量を、発熱体への通電を連続的に行う従来技術と比較した説明図である。It is explanatory drawing compared with the prior art which energizes to a heat generating body continuously about the required electric energy for maintaining the cloudiness state in this invention. 本発明に係る通電制御方法を適用する構成の第2の実施例を示す概念的説明図である。It is a conceptual explanatory drawing which shows the 2nd Example of the structure to which the electricity supply control method concerning this invention is applied. 調光体であるハイドロゲルの、温度に対する日射吸収率の変化を示す説明図である。It is explanatory drawing which shows the change of the solar radiation absorptivity with respect to temperature of the hydrogel which is a light control body.

符号の説明Explanation of symbols

1 窓システム
2 建物の外壁
3 調光体
4 透明ガラス
5 透明ガラス
6 調光ガラス
7 発熱体
8 制御装置
9 白濁センサー
10 日射センサー
11 日射センサー
DESCRIPTION OF SYMBOLS 1 Window system 2 Building outer wall 3 Light control body 4 Transparent glass 5 Transparent glass 6 Light control glass 7 Heating body 8 Control apparatus 9 Cloudiness sensor 10 Solar radiation sensor 11 Solar radiation sensor

Claims (3)

相転移温度以上で透明状態から白濁状態に相転移する調光体を有する調光ガラスと、調光体を昇温するための発熱体を有する窓システムにおいて、
前記調光ガラスの白濁の度合いを検出する白濁センサーを備え、
前記調光体が相転移温度、又はその近傍の温度のときの、白濁の度合いの低い状態に対応する第1の白濁の目標値と、前記調光体が相転移温度よりも高いときの、白濁の度合いの高い状態に対応する第2の白濁の目標値とを設定し、
前記白濁センサーにより検出された白濁の度合いが、前記第1の白濁の目標値よりも低い場合には、前記第2の白濁の目標値となるまで前記発熱体への通電を行い、かつ、前記第2の白濁の目標値に至って通電停止した後において、前記白濁センサーにより検出された白濁の度合いが、前記第1の白濁の目標値よりも高い場合には、前記第1の白濁の目標値となるまで前記発熱体への通電を停止する制御を行うことを特徴とする調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法。
A light control glass having a phase transition temperature or higher in a transparent state to opaque state transition to light adjuster, the window system having a heating element for heating the said light adjuster,
A white turbidity sensor for detecting the degree of white turbidity of the light control glass;
When the dimmer is at or near the phase transition temperature, a first white turbidity target value corresponding to a low degree of white turbidity, and when the dimmer is higher than the phase transition temperature, Set a second target value for white turbidity corresponding to a high degree of white turbidity,
When the degree of white turbidity detected by the white turbidity sensor is lower than the first white turbidity target value, energization of the heating element until the second white turbidity target value is achieved, and When the degree of white turbidity detected by the white turbidity sensor is higher than the first white turbidity target value after the second white turbidity target value is reached and the energization is stopped, the first white turbidity target value is set. The heating element energization control method in the window system combining the light control glass and the heating element is characterized in that the energization to the heating element is stopped until
前記白濁センサーはカラー判別センサーであることを特徴とする請求項1に記載の調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法。 2. The method of controlling energization of a heating element in a window system combining a light control glass and a heating element according to claim 1, wherein the white turbidity sensor is a color discrimination sensor . 相転移温度以上で透明状態から白濁状態に相転移する調光体を有する調光ガラスと、該調光体を昇温するための発熱体を有する窓システムにおいて、
日射光のエネルギーを測定可能な日射センサーを調光ガラスの外気側と室内側の夫々に備え、
前記調光体が相転移温度、又はその近傍の温度のときの、白濁の度合いの低い状態に対応する第1の日射透過率の目標値と、前記調光体が相転移温度よりも高いときの、白濁の度合いの高い状態に対応する第2の日射透過率の目標値とを設定し、
前記外気側日射センサーと前記室内側日射センサーにより測定された日射光のエネルギーの差から日射透過率を算出し、
算出された前記日射透過率が、前記第1の日射透過率の目標値よりも高い場合には、前記日射透過率が前記第2の日射透過率の目標値となるまで前記発熱体への通電を行い、かつ、第2の日射透過率に至って通電停止した後において、前記算出された日射透過率が前記第1の日射透過率の目標値よりも低い場合には、前記第1の日射透過率の目標値となるまで前記発熱体への通電を停止する制御を行うことを特徴とする調光ガラスと発熱体を組み合わせた窓システムにおける発熱体の通電制御方法。
In a light control glass having a light control body that undergoes a phase transition from a transparent state to a cloudy state at a phase transition temperature or higher, and a window system having a heating element for heating the light control body,
A solar radiation sensor that can measure the energy of solar radiation is provided on both the outside and indoor sides of the light control glass .
When the dimmer is at the phase transition temperature or a temperature in the vicinity thereof, the target value of the first solar radiation transmittance corresponding to a low degree of white turbidity, and when the dimmer is higher than the phase transition temperature And a target value of the second solar radiation transmittance corresponding to a state of high white turbidity,
Calculate solar radiation transmittance from the difference in the energy of solar radiation measured by the outside air side solar radiation sensor and the indoor side solar radiation sensor,
When the calculated solar radiation transmittance is higher than the target value of the first solar light transmittance, energization of the heating element until the solar light transmittance reaches the target value of the second solar light transmittance. And when the calculated solar radiation transmittance is lower than the target value of the first solar transmittance after the second solar radiation transmittance is reached and the energization is stopped, the first solar radiation transmission is performed. The heating element energization control method in the window system that combines the light control glass and the heating element, wherein the energization to the heating element is stopped until the target value of the rate is reached .
JP2005034457A 2005-02-10 2005-02-10 Heating element energization control method in window system combining dimming glass and heating element Expired - Fee Related JP4764967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034457A JP4764967B2 (en) 2005-02-10 2005-02-10 Heating element energization control method in window system combining dimming glass and heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034457A JP4764967B2 (en) 2005-02-10 2005-02-10 Heating element energization control method in window system combining dimming glass and heating element

Publications (2)

Publication Number Publication Date
JP2006220926A JP2006220926A (en) 2006-08-24
JP4764967B2 true JP4764967B2 (en) 2011-09-07

Family

ID=36983292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034457A Expired - Fee Related JP4764967B2 (en) 2005-02-10 2005-02-10 Heating element energization control method in window system combining dimming glass and heating element

Country Status (1)

Country Link
JP (1) JP4764967B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2701447T3 (en) * 2012-11-20 2019-02-22 Sumitomo Chemical Co Light modulator element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249879A (en) * 1990-12-28 1992-09-04 Nec Home Electron Ltd Electronic carpet
JPH0566426A (en) * 1991-09-09 1993-03-19 Sekisui Chem Co Ltd Light control element
JPH05147983A (en) * 1991-11-25 1993-06-15 Nippondenso Co Ltd Light transmittance variable glass
JPH06137047A (en) * 1992-06-05 1994-05-17 Afuiniteii Kk Sealed laminate and window using same
JP2000155345A (en) * 1998-11-24 2000-06-06 Affinity Kk Window using light controlling glass

Also Published As

Publication number Publication date
JP2006220926A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
RU2505948C2 (en) Mist-free heat-generating glass system, and its control method
CN107850798B (en) Glazing with heat flux sensor and method of making same
Lee et al. An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives
JP2011522277A (en) Absorption-type window shutter with temperature response switching
KR20190052140A (en) Infrared cloud detector system and method
Zhang et al. Modeling and thermal performance evaluation of a switchable triple glazing exhaust air window
JP3188376U (en) Smart electronic curtain
JP2010533252A (en) Reflective optical shutter with temperature response switching
CN110273634B (en) Shutter and blade angle control method applied to shutter
US9200452B2 (en) Controller for skylight energy management system
JP4764967B2 (en) Heating element energization control method in window system combining dimming glass and heating element
US20080007086A1 (en) Vehicle shading system and method using an electrically controlled transmission control material
JP2002148573A (en) Light controllable glass with solar battery
CN102650188A (en) Heat insulating type sun-shading energy saving device
WO2002066763A1 (en) Insolation shield system, insolation shield and method
Kang et al. Optimized blind control method to minimize heating, cooling and lighting energy
Sun et al. A predictive control strategy for electrochromic glazing to balance the visual and thermal environmental requirements: Approach and energy-saving potential assessment
GB2450474A (en) Glazing structure comprising liquid between two layers
Inoue et al. Thermotropic glass with active dimming control for solar shading and daylighting
Rudolph et al. Technologies for smart windows
JP2007101723A (en) Control method of electrochromic element, dimmer, and glass for vehicle
CN111717760B (en) Sightseeing elevator system
KR101551723B1 (en) Control System of Input Quantity of Heat for Heating Glass Window and Method thereof
JP4469936B2 (en) Solar radiation adjustment body
JP2000155345A (en) Window using light controlling glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees