JP4764095B2 - Purification method of gasification gas - Google Patents

Purification method of gasification gas Download PDF

Info

Publication number
JP4764095B2
JP4764095B2 JP2005228533A JP2005228533A JP4764095B2 JP 4764095 B2 JP4764095 B2 JP 4764095B2 JP 2005228533 A JP2005228533 A JP 2005228533A JP 2005228533 A JP2005228533 A JP 2005228533A JP 4764095 B2 JP4764095 B2 JP 4764095B2
Authority
JP
Japan
Prior art keywords
gas
water
furnace
tar
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005228533A
Other languages
Japanese (ja)
Other versions
JP2007045852A (en
Inventor
淳志 小林
智郎 吉武
正治 中村
崇文 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2005228533A priority Critical patent/JP4764095B2/en
Publication of JP2007045852A publication Critical patent/JP2007045852A/en
Application granted granted Critical
Publication of JP4764095B2 publication Critical patent/JP4764095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、廃タイヤ、廃プラスチック等の可燃性廃棄物を熱分解して得られた熱分解ガスを精製して燃料ガスとする方法関する。 The present invention relates to tires, a method of combustible wastes such as waste plastics was purified pyrolysis gas obtained by thermal decomposition as fuel gas.

廃棄物の処理方法としては、焼却処分あるいは埋め立て処分が一般的であるが、近年、廃棄物の持つエネルギーを有効利用するために、廃棄物を熱分解して可燃性ガス、タール・軽油、飛散チャーを含有する熱分解ガスを得て、この熱分解ガスを精製して燃料ガスとして利用する方法が実施されている。   In general, incineration or landfill disposal methods are generally used for waste treatment. However, in order to effectively use the energy of waste in recent years, the waste is thermally decomposed to combustible gas, tar / light oil, and scattering. A method of obtaining a pyrolysis gas containing char, purifying the pyrolysis gas and using it as a fuel gas has been implemented.

例えば、特許文献1には、シュレッダーダスト等の銅含有有機性廃棄物を乾留処理(熱分解)して得られた乾留ガス(熱分解ガス)とコークス炉ガスを混合し、この混合ガスを精製し、燃料ガスとして利用する方法が開示されている。しかし、この方法を廃プラスチック等の揮発分リッチな廃棄物の処理に適用した場合、ガス中タールがガス冷却時に析出・固化し、ワックス化してコークス炉ガス精製設備等の配管中に付着・閉塞することで長期運転の阻害要因となっていた。   For example, in Patent Document 1, a carbonization gas (pyrolysis gas) obtained by dry distillation (pyrolysis) of copper-containing organic waste such as shredder dust is mixed with a coke oven gas, and the mixed gas is purified. And the method of utilizing as fuel gas is disclosed. However, when this method is applied to the treatment of wastes rich in volatile matter such as waste plastics, tar in the gas precipitates and solidifies during gas cooling and becomes wax to adhere and block in pipes of coke oven gas refining equipment etc. This was an obstacle to long-term driving.

そのため、ガスを水等で洗浄しタールを除去することが一般的に行われているが、特許文献1に記載のように、製鉄所の安水で洗浄し、その排水を製鉄所の安水処理設備(活性汚泥法)で処理する場合、排水中に含まれる重金属分、有害な有機化合物等の影響で活性汚泥の活性が阻害される場合があった。   For this reason, it is common practice to wash the gas with water or the like to remove tar, but as described in Patent Document 1, the gas is washed with the waterworks of the steelworks, and the drainage is discharged to the waterworks of the steelworks. In the case of treatment with a treatment facility (activated sludge method), the activity of activated sludge may be hindered by the influence of heavy metals contained in waste water, harmful organic compounds, and the like.

これに対して、有機性廃棄物をガス化後、酸素及び水蒸気と反応させて、改質反応により、ガス中タールや軽油を低減させる方法もある。この場合、改質温度を1000℃程度以上にすると、ガス中に含まれるタール、軽油のほとんどは分解されるが、ガス中に微量ながら残ることがある。そして、改質されたガスにはタールが分解して精製したカーボン(チャー)が含有され、また、廃棄物に含まれる塩素分は塩化水素ガスとしてガス中に揮発する。この塩素分は、ガス利用先において腐食を発生させる原因となる。   On the other hand, there is a method in which organic waste is gasified and then reacted with oxygen and water vapor to reduce tar and light oil in the gas by a reforming reaction. In this case, when the reforming temperature is about 1000 ° C. or more, most of tar and light oil contained in the gas are decomposed, but may remain in the gas in a small amount. The reformed gas contains carbon (char) purified by decomposition of tar, and chlorine contained in the waste is volatilized in the gas as hydrogen chloride gas. This chlorine content causes corrosion at the gas use destination.

したがって、従来、特許文献2、3に記載のようにガス化ガスをコークス炉ガスラインや高炉ガスラインに合流させる技術はあるが、揮発分リッチな廃棄物のガス化ガスを利用する場合には塩素による輸送設備、利用先での設備トラブルが発生するおそれがある。   Therefore, conventionally, as described in Patent Documents 2 and 3, there is a technique for joining the gasified gas to the coke oven gas line or the blast furnace gas line, but when using the gasified gas of the waste rich in volatile matter, There is a risk of transportation troubles due to chlorine and equipment troubles at users.

これに対して、特許文献4には、高温改質によってタール、軽油を改質ガスに変換した後、この改質ガスを冷却し、ダスト分離、塩素除去した後にコークス炉ガスラインに導入しコークス炉ガスと混合して利用する技術が開示されている。   On the other hand, in Patent Document 4, after tar and light oil are converted to reformed gas by high-temperature reforming, the reformed gas is cooled, dust is separated, chlorine is removed, and then introduced into the coke oven gas line. A technique to be used by mixing with furnace gas is disclosed.

しかし、特許文献4の技術において、ガスの冷却やダスト除去に水スクラバーを、また塩素除去にアルカリスクラバーを用いた場合、その排水の処理が必要となる、また、分離されたダスト(捕捉物)は塩素分を含有し、さらにはダイオキシン類を含む可能性があるため、これを廃棄物処理設備外にて製品として利用することは環境に対する影響を抑えるという意味で難しい。したがって、分離されたダストは外部に出さないように処理をするか、ダイオキシン類の分解が必要になる。
特開2003−39056号公報 特開2004−115786号公報 特開2004−238508号公報 特開2004−238535号公報
However, in the technique of Patent Document 4, when a water scrubber is used for gas cooling or dust removal and an alkali scrubber is used for chlorine removal, it is necessary to treat the waste water, and separated dust (captured matter). Since it contains chlorine and may contain dioxins, it is difficult to use it as a product outside the waste treatment facility in terms of suppressing environmental impact. Therefore, it is necessary to treat the separated dust so that it does not go out or to decompose dioxins.
JP 2003-39056 A JP 2004-115786 A JP 2004-238508 A JP 2004-238535 A

本発明が解決しようとする課題は、廃タイヤ、廃プラスチック等の高カロリーかつ揮発分リッチな廃棄物をガス化処理し、高カロリーガスを得る場合に、ガスに含まれる、チャー、タール、軽油、塩素分、ダイオキシン類等の不純物を適切に除去できるようにすることにある。   The problem to be solved by the present invention is that when high-calorie and volatile-rich waste such as waste tire and waste plastic is gasified to obtain high-calorie gas, char, tar, light oil contained in the gas It is to be able to appropriately remove impurities such as chlorine and dioxins.

他の課題は、熱分解によって発生するチャーやタール等の持つ熱量を有効利用すると共に、チャー、タールに含まれるダイオキシン類による環境汚染を防止することにある。   Another problem is to effectively use the amount of heat of char and tar generated by thermal decomposition and to prevent environmental pollution caused by dioxins contained in char and tar.

本発明に係るガス化ガスの精製方法は、可燃性廃棄物を熱分解炉でガス化させ、燃料ガスを得るガス化ガスの精製方法において、熱分解炉で生成した熱分解ガスを、改質炉で酸素及び水蒸気と反応させて1000℃以上に昇温し、ガスに含まれるタール及び軽油を改質によりガス及びチャーに変換し、この改質ガスを第1のガス冷却器に導入し、水噴霧又は液中燃焼によりガス温度を断熱飽和温度以下の90〜70℃に冷却してガス中のチャー主体のダスト及び残存するタール、軽油を水側に捕捉物として捕捉し、ガス中のダイオキシン類濃度を0.1ng−TEQ/m N(酸素濃度12%換算値)以下とした後に、製鉄所に既存のコークス炉ガスライン又は高炉ガスラインに合流させ、コークス炉ガス又は高炉ガスと混合して利用すると共に、第1のガス冷却器の排水から前記捕捉物を分離し、熱分解炉に戻して再度熱分解してガス化させる、又は、熱分解炉に熱源を供給するための燃料として利用し、さらに、ガス精製工程で発生する排水の一部又は全てを熱分解炉若しくは熱分解炉に熱を供給する燃焼炉、又はその燃焼炉排ガスを完全燃焼させる2次燃焼炉に噴霧して乾燥・焼却処理し、焼却処理後の残余分、又は全量については、(1)固形物、タール及び軽油の加圧浮上による分離、又は比重差による分離、(2)排水を冷却後、水層にアルカリを加え、pH9.5以上12以下に調整して、排水に含まれる金属を凝集沈殿させることによる分離、(3)アンモニアストリッピングによる窒素、アンモニアの除去、
のいずれか又はすべてを事前処理として実施し水中のダイオキシン濃度を10pg−TEQ/L以下とした上で、製鉄所に既存の安水活性汚泥処理に合流させることを特徴とするものである。
A gasification gas purification method according to the present invention is a gasification gas purification method in which combustible waste is gasified in a pyrolysis furnace to obtain fuel gas. In the gasification gas purification method, the pyrolysis gas generated in the pyrolysis furnace is reformed. React with oxygen and water vapor in a furnace to raise the temperature to 1000 ° C. or more, convert tar and light oil contained in the gas into gas and char by reforming, introduce this reformed gas into the first gas cooler, Dioxin in the gas is obtained by cooling the gas temperature to 90 to 70 ° C. below the adiabatic saturation temperature by water spraying or in-liquid combustion to capture the char-based dust in the gas and the remaining tar and light oil as traps on the water side. After reducing the concentration to 0.1 ng-TEQ / m 3 N (oxygen concentration 12% conversion value) or less, join the steel plant with the existing coke oven gas line or blast furnace gas line and mix with coke oven gas or blast furnace gas to use and Together, the captured matter is separated from the waste water of the first gas cooler and returned to the pyrolysis furnace to be pyrolyzed again for gasification, or used as a fuel for supplying a heat source to the pyrolysis furnace, Furthermore, some or all of the wastewater generated in the gas purification process is sprayed into a pyrolysis furnace, a combustion furnace that supplies heat to the pyrolysis furnace, or a secondary combustion furnace that completely burns the combustion furnace exhaust gas, and then dried and incinerated. For the remainder or total amount after incineration, (1) Separation by pressure rise of solids, tar and light oil, or separation by specific gravity difference, (2) After cooling the waste water, In addition, the pH is adjusted to 9.5 or more and 12 or less, and the separation is performed by coagulating and precipitating the metal contained in the waste water. (3) Removal of nitrogen and ammonia by ammonia stripping;
Any one or all of the above are implemented as a pretreatment, and the dioxin concentration in water is set to 10 pg-TEQ / L or less, and then the steelworks is combined with the existing water-reduced activated sludge treatment.

本発明においては、第1のガス冷却器の水相にHCl、HS等の酸性ガスを吸収させてガス側の酸性ガスを除去すると共に、水相に、NaOH、安水(NH)等の水溶液を中和剤として注入して、そのpHを5〜9の範囲に調整することができる。 In the present invention, the aqueous phase of the first gas cooler absorbs acidic gas such as HCl and H 2 S to remove the acidic gas on the gas side, and the aqueous phase contains NaOH, water (NH 3 ). The pH can be adjusted in the range of 5-9 by injecting an aqueous solution such as a neutralizing agent.

また、第1のガス冷却器の後流側に設けた電気集塵機にガスを導入し、ガス中に残留するダスト、ミスト状の水及び油を捕捉してガスを精製すると共に、この捕捉物を第1のガス冷却器の捕捉物と混合し、熱分解炉に戻して再度熱分解してガス化させる、又は、熱分解炉に熱源を供給するために燃料として利用することもできる。   In addition, gas is introduced into an electric dust collector provided on the downstream side of the first gas cooler, dust and mist water and oil remaining in the gas are captured to purify the gas, It can be mixed with the trapped material of the first gas cooler and returned to the pyrolysis furnace to be pyrolyzed again for gasification, or used as a fuel for supplying a heat source to the pyrolysis furnace.

また、第1のガス冷却器の後流側に設けた第2のガス冷却器にガスを導入し、冷却水と熱交換させることによりガス温度を40℃以下として含有する水蒸気を凝縮させることもできる。   In addition, it is possible to condense the water vapor contained at a gas temperature of 40 ° C. or less by introducing gas into the second gas cooler provided on the downstream side of the first gas cooler and exchanging heat with the cooling water. it can.

また、第2のガス冷却器から出たガスを、ブロア昇圧又は間接加熱器により加熱してガス中の水分をミスト気化した後に集塵機構に導入し、微細な粒子状物質を除去することもできる。   In addition, the gas discharged from the second gas cooler can be heated by a blower pressurization or an indirect heater to vaporize moisture in the gas and then introduced into the dust collecting mechanism to remove fine particulate matter. .

また、集塵機構の後流側において、活性炭として活性コークス又は粒状活性炭を充填した活性炭充填層若しくは活性炭移動層にガスを通し、ガス中のダイオキシン類等の微量有機ハロゲン化合物を吸着により、除去・低減することもできる。   Also, on the downstream side of the dust collection mechanism, gas is passed through an activated carbon packed bed or activated carbon moving bed filled with activated coke or granular activated carbon as activated carbon, and trace organic halogen compounds such as dioxins in the gas are removed and reduced by adsorption. You can also

また、第1のガス冷却器の補給水として、製鉄所に既存のコークス炉で副生する安水を使用することもできる。   In addition, as the supplementary water for the first gas cooler, it is also possible to use the safety water produced as a by-product in an existing coke oven at an ironworks.

そして、以上のガス化ガスの精製方法により、ガス化ガス中のダイオキシン類濃度を0.1ng−TEQ/mN(酸素濃度12%換算値)以下とした後に、製鉄所に既存のコークス炉ガスライン又は高炉ガスラインに合流させ、コークス炉ガス又は高炉ガスと混合して利用するコークス炉ガスラインに合流させる場合、ガス化ガスをコークス炉に付随するドライメーンでコークス炉ガスラインに合流させることが好ましい。 And after making the dioxin density | concentration in gasification gas below 0.1ng-TEQ / m < 3 > N (oxygen concentration 12% conversion value) by the purification method of the above gasification gas, the existing coke oven in a steelworks Combined with gas line or blast furnace gas line, mixed with coke oven gas or blast furnace gas . When joining the coke oven gas line, the gasification gas is preferably joined to the coke oven gas line by a dry main attached to the coke oven.

本発明によれば、揮発分リッチな廃棄物をガス化処理する場合であっても、熱分解によって得られた熱分解ガス中のチャー、タール、軽油、HS、HCl、HCN、塩素分、ダイオキシン類等のガス利用時に障害となる不純物含有量を十分に低減することができる。 According to the present invention, even when gasifying volatile-rich waste, char, tar, light oil, H 2 S, HCl, HCN, chlorine content in the pyrolysis gas obtained by pyrolysis is obtained. In addition, it is possible to sufficiently reduce the impurity content which becomes an obstacle when using gas such as dioxins.

また、第1のガス冷却器に捕捉され排水から分離されたチャー、タール、軽油等の捕捉物を熱分解炉に戻して再度熱分解してガス化させる、又は、熱分解炉に熱源を供給する燃料として利用することで、熱分解によって発生するチャーやタール等の持つ熱量を有効利用できると共に、チャー、タールに含まれる重金属類、ダイオキシン類等の有機ハロゲン化合物による環境汚染を防止することができる。   In addition, the captured matter such as char, tar, light oil, etc., captured by the first gas cooler and separated from the waste water is returned to the pyrolysis furnace and pyrolyzed again to be gasified, or a heat source is supplied to the pyrolysis furnace. By using it as a fuel, it is possible to effectively use the amount of heat of char, tar, etc. generated by pyrolysis, and to prevent environmental pollution by organic halogen compounds such as heavy metals and dioxins contained in char, tar. it can.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係るガス化ガスの精製装置を示す構成図である。   FIG. 1 is a configuration diagram showing a gasification gas purification apparatus according to the present invention.

まず、ガス化プロセスと燃焼排ガス処理プロセスについて説明する。図1に示す装置では、廃タイヤ、廃プラスチック等の揮発分リッチな可燃性廃棄物を対象にガス化する。対象物は、熱分解炉2の滞留時間内で熱分解ガス化が完了するように、破砕機1により事前に一定の大きさ以下まで破砕した後に熱分解炉2に投入する。その際、対象と炉形式の組み合わせによっては、金属、不燃物等の処理不適物が含まれる場合があり、そのときは磁力選別、風力選別、手選別等により処理不適物を除去する。   First, a gasification process and a combustion exhaust gas treatment process will be described. In the apparatus shown in FIG. 1, combustible waste rich in volatile matter such as waste tires and waste plastics is gasified. The target object is crushed to a certain size or less in advance by the crusher 1 so that the pyrolysis gasification is completed within the residence time of the pyrolysis furnace 2 and then put into the pyrolysis furnace 2. At that time, depending on the combination of the target and the furnace type, unsuitable materials such as metals and incombustible materials may be included. In this case, unsuitable materials are removed by magnetic sorting, wind sorting, manual sorting, or the like.

熱分解炉2に投入された廃棄物は外部燃料を燃焼して得た熱、若しくは廃棄物を部分燃焼して自身の持つエネルギーを消費して得た熱によって熱分解温度まで加熱し、熱分解ガスを発生させる。炉形式としては、実施例ではロータリーキルンを利用しているが、そのほか、シャフト炉、流動層炉等が利用可能である。即ち、外熱式キルンや2塔流動層炉のように外部間接加熱で熱分解ガス化する方式、あるいは、シャフト炉、流動層炉のように廃棄物を部分燃焼させて熱分解する部分燃焼方式が利用可能である。   The waste put into the pyrolysis furnace 2 is heated to the pyrolysis temperature by the heat obtained by burning external fuel or the heat obtained by partially burning the waste and consuming its own energy. Generate gas. As a furnace type, a rotary kiln is used in the embodiment, but a shaft furnace, a fluidized bed furnace, and the like can also be used. That is, a method of pyrolysis gasification by external indirect heating such as an external heating kiln or two-column fluidized bed furnace, or a partial combustion method of pyrolyzing waste by partial combustion such as a shaft furnace or fluidized bed furnace Is available.

また、必要に応じて廃棄物の事前処理、熱分解ガスの精製工程等で発生する排水を熱分解炉2又は熱分解炉2に熱を供給する燃焼炉16に噴霧して乾燥・焼却処理することもできる。   In addition, if necessary, wastewater generated in the pretreatment of waste, the purification process of pyrolysis gas, and the like is sprayed on the pyrolysis furnace 2 or the combustion furnace 16 that supplies heat to the pyrolysis furnace 2 to be dried and incinerated. You can also

外部間接加熱にてガス化する場合には、熱分解ガス側に、熱源を得るための燃焼排ガスが混入しないため、熱分解ガスの発熱量、有用成分の濃度を高く維持することができ、ガスとしての価値は高くできるが、熱源を得るための燃焼排ガスが別系統で発生するため、図1に示すとおり別系統の排ガス処理が必要となる。   In the case of gasification by external indirect heating, combustion exhaust gas for obtaining a heat source is not mixed on the pyrolysis gas side, so that the calorific value of the pyrolysis gas and the concentration of useful components can be kept high. However, since combustion exhaust gas for obtaining a heat source is generated in a separate system, a separate exhaust gas treatment is required as shown in FIG.

別系統の排ガスの処理方法としては、必要に応じて2次燃焼炉3を設け、温度と滞留時間を所定値以上に確保してダイオキシン類や他の未燃分を完全分解する。また、この2次燃焼炉3では、廃棄物の事前処理や熱分解ガスの精製工程等で発生する排水を噴霧して乾燥・焼却処理することもできる。2次燃焼炉3としては、鋼板製若しくは伝熱管によって炉殻を構成し、内面に耐火物を内張りすることが多い。ダイオキシン類の分解を促進するために2次燃焼炉3内の温度は一定レベル(850℃、好ましくは900℃以上)に維持される。2次燃焼炉3内の温度は炉内に設けられた温度計の温度指示値がある目標値になるように燃焼空気量、若しくは希釈空気量を調整することで維持される。   As a method for treating exhaust gas of another system, a secondary combustion furnace 3 is provided as necessary, and the temperature and residence time are ensured to a predetermined value or more to completely decompose dioxins and other unburned components. In the secondary combustion furnace 3, wastewater generated in the pretreatment of waste, the purification process of pyrolysis gas, or the like can be sprayed and dried and incinerated. As the secondary combustion furnace 3, a furnace shell is often made of a steel plate or a heat transfer tube, and a refractory is lined on the inner surface. In order to promote the decomposition of dioxins, the temperature in the secondary combustion furnace 3 is maintained at a constant level (850 ° C., preferably 900 ° C. or more). The temperature in the secondary combustion furnace 3 is maintained by adjusting the amount of combustion air or dilution air so that the temperature indication value of a thermometer provided in the furnace becomes a certain target value.

2次燃焼炉3にて完全燃焼されたガスは熱交換機4に導入し、廃熱を回収する。熱交換機4としてはボイラ、温水発生器、空気予熱器等が該当する。   The gas completely burned in the secondary combustion furnace 3 is introduced into the heat exchanger 4 to recover waste heat. Examples of the heat exchanger 4 include a boiler, a hot water generator, an air preheater, and the like.

ボイラにて廃熱回収した場合、得られた蒸気はタービンを駆動して電力に変換することができ、また、熱分解炉2内の攪拌ガス、後述する改質炉13での改質反応ための水蒸気源として利用することができる。ボイラは自然循環式の水管ボイラでボイラ壁も伝熱面とし熱回収効率の向上を図る。尚、処理対象物が塩素及び硫黄を含有する廃棄物である場合、廃棄物に含まれる塩素分、アルカリ金属類の影響で灰の融点が低くなる傾向がある。そのため、内部の伝熱管にダストが付着して伝熱効率が低下するあるいはボイラが閉塞する可能性がある。そこで、付着を防止するために、蒸気駆動式のスートブロアを設けることが多い。   When the waste heat is recovered by the boiler, the obtained steam can be converted into electric power by driving the turbine, and because of the reforming reaction in the stirring gas in the pyrolysis furnace 2 and the reforming furnace 13 described later. It can be used as a water vapor source. The boiler is a natural circulation water tube boiler, and the boiler wall is also used as a heat transfer surface to improve heat recovery efficiency. When the object to be treated is waste containing chlorine and sulfur, the melting point of ash tends to be lowered due to the influence of chlorine and alkali metals contained in the waste. Therefore, there is a possibility that dust adheres to the internal heat transfer tube and heat transfer efficiency is lowered or the boiler is blocked. Therefore, in order to prevent adhesion, a steam-driven soot blower is often provided.

一方、温水発生器にて廃熱回収した場合には近隣の設備での余熱利用が可能となる。また、空気予熱器にて廃熱回収した場合には加熱された空気は熱分解炉2における熱分解用燃焼空気、燃焼炉16の燃焼空気等に利用することができる。   On the other hand, when waste heat is recovered with a hot water generator, residual heat can be used in nearby facilities. Further, when waste heat is recovered by the air preheater, the heated air can be used as combustion air for pyrolysis in the pyrolysis furnace 2, combustion air in the combustion furnace 16, and the like.

熱回収された排ガスは排ガス減温塔5にて水噴霧され、後流に設置される除塵機6(バグフィルター、電気集塵機等)にて除塵が可能となる温度(200℃以下)までガス温度を低減される。除塵機6にバグフィルターを用いる場合には、ガス中に含まれる塩化水素ガス、ダイオキシンを吸着するために、除塵機6入り側において吹込装置7にて消石灰や活性炭を吹き込むことができる。   The heat-recovered exhaust gas is sprayed with water in the exhaust gas temperature-decreasing tower 5, and the gas temperature reaches a temperature (200 ° C. or less) at which dust can be removed by a dust remover 6 (bag filter, electrostatic precipitator, etc.) installed downstream. Is reduced. When a bag filter is used for the dust remover 6, slaked lime or activated carbon can be blown by the blowing device 7 on the dust remover 6 entry side in order to adsorb the hydrogen chloride gas and dioxin contained in the gas.

排ガスは誘引通風機8によって吸引されているが、誘引通風機8は一般的に、除塵機6出側に設置される。これにより、誘引通風機8のインペラーにダスト付着して重量バランスが崩れる等のダストトラブルを防ぐことができる。   Although the exhaust gas is sucked by the induction fan 8, the induction fan 8 is generally installed on the outlet side of the dust remover 6. Thereby, dust troubles, such as dust adhering to the impeller of the induction fan 8 and weight balance breaking, can be prevented.

誘引通風機8にて昇圧されたガスは、必要に応じて、排ガス再加熱器9(蒸気式間接化熱方式、外部燃料追い焚き方式等)にて180℃〜250℃に加熱されたのち触媒反応層あるいは活性炭充填層10に通ガスされ、ガス中のダイオキシン類、NOxが分解、吸着される。触媒にてNOxを分解する際には触媒の上流側にアンモニアを吹き込むことで高いNOx分解性能が得られる。   The gas pressurized by the induction fan 8 is heated to 180 ° C. to 250 ° C. after being heated by an exhaust gas reheater 9 (steam indirect heat system, external fuel reheating system, etc.) as necessary. The gas is passed through the reaction layer or the activated carbon packed bed 10 and the dioxins and NOx in the gas are decomposed and adsorbed. When NOx is decomposed by the catalyst, high NOx decomposition performance can be obtained by blowing ammonia upstream of the catalyst.

除塵機6、触媒等でガス処理された排ガスは煙突11から大気に放散される。煙突11では排ガス分析計を設置して排ガス中のNOx、SOx、HCl等、大気汚染物質の排出量を監視しており、排出量の増減に応じて消石灰、アンモニア等の薬剤を増減させ、排ガス中大気汚染物質の排出量を規定値以下に抑えることができる。   The exhaust gas gas-treated by the dust remover 6, the catalyst, etc. is diffused from the chimney 11 to the atmosphere. At the chimney 11, an exhaust gas analyzer is installed to monitor the amount of NOx, SOx, HCl, and other air pollutants in the exhaust gas. The amount of chemicals such as slaked lime and ammonia is increased or decreased according to the increase or decrease in the amount of exhaust. Emissions of atmospheric air pollutants can be kept below the specified value.

2次燃焼炉3、熱交換機4、排ガス減温塔5、除塵機6からは廃棄物由来のダストが捕集される。捕集されたダストは集められ、灰処理設備12にて薬剤(キレート)と混合し、重金属等有害物質の溶出を防止する措置をした後に最終処分場に処分する等、廃棄物として処理される。また、飛灰中の鉛、亜鉛等の重金属濃度が高い場合には、重金属を抽出・濃縮し、リサイクルすることも可能である。   Waste-derived dust is collected from the secondary combustion furnace 3, the heat exchanger 4, the exhaust gas temperature reducing tower 5, and the dust remover 6. The collected dust is collected and mixed with chemicals (chelates) in the ash treatment facility 12 and treated as waste, such as disposal at the final disposal site after taking measures to prevent elution of toxic substances such as heavy metals. . Further, when the concentration of heavy metals such as lead and zinc in the fly ash is high, heavy metals can be extracted, concentrated and recycled.

次に、ガス化プロセスにより生成した熱分解ガスの精製プロセスについて説明する。上述のとおり、図1に示す装置では、廃タイヤ、廃プラスチック等の揮発分リッチな廃棄物を熱分解炉2でガス化する。図1に示す熱分解炉2は間接加熱方式の乾留キルンであって、無酸素状態で熱分解ガス化する。熱分解生成物としては、常温に冷却すると凝縮する液成分と常温でもガス体のガス成分及び熱分解残渣としての固体成分がある。乾留キルンの場合、ガス成分は、可燃性のH、CO、CHを主成分とし、そのほか、可燃性のC2〜C4の炭化水素ガス、不燃性のCO、Nが含まれる。また、液成分は、油成分及び凝縮水がある。油は重質分(タール)から軽質分(軽油)まで分布があり、凝縮水にはHClやHSといった酸性成分及びNHが含まれる。固体成分は、有機物が炭化して固定炭素主体物になったカーボン残渣(チャー)と無機成分主体の不燃残渣がある。 Next, a purification process of the pyrolysis gas generated by the gasification process will be described. As described above, in the apparatus shown in FIG. 1, wastes rich in volatile components such as waste tires and waste plastics are gasified in the pyrolysis furnace 2. A pyrolysis furnace 2 shown in FIG. 1 is an indirect heating type dry distillation kiln and pyrolyzes and gasifies in an oxygen-free state. The pyrolysis products include a liquid component that condenses when cooled to room temperature, a gas component of a gas body even at room temperature, and a solid component as a pyrolysis residue. In the case of a dry distillation kiln, the gas components include flammable H 2 , CO, and CH 4 as main components, and in addition, flammable C 2 to C 4 hydrocarbon gas and non-flammable CO 2 and N 2 are included. The liquid component includes an oil component and condensed water. Oil has distribution from heavy (tar) to light (light oil), and condensed water contains acidic components such as HCl and H 2 S and NH 3 . The solid component includes a carbon residue (char) obtained by carbonizing an organic substance into a fixed carbon main body and an incombustible residue mainly including an inorganic component.

廃プラスチック等の揮発分リッチな可燃性廃棄物は、低温域で熱分解するため、熱分解生成物はタール、軽油といった油成分が多く、ガス成分は多くない。このような場合、油成分をガスに転換してガス収率を上げる目的で改質炉13を設ける。改質炉13では、純酸素をノズルを介して高流速で導入し、可燃成分を部分的に燃焼することによる発生熱で温度上昇させ、油成分を熱分解させることによりガスとチャーに転換させる。また、その際、導入酸素に水蒸気を混合することで、水性ガス化反応によるチャー生成抑制とガス化率向上、炉内攪拌強化、反応温度の均一化を図る。   Since combustible waste rich in volatile content such as waste plastic is thermally decomposed in a low temperature range, the pyrolysis product has many oil components such as tar and light oil, and not many gas components. In such a case, the reforming furnace 13 is provided for the purpose of converting the oil component into gas and increasing the gas yield. In the reforming furnace 13, pure oxygen is introduced at a high flow rate through a nozzle, the temperature is increased by heat generated by partially burning the combustible component, and the oil component is thermally decomposed to be converted into gas and char. . At that time, by mixing water vapor with the introduced oxygen, char generation suppression by water gasification reaction, improvement of gasification rate, strengthening of stirring in the furnace, and uniform reaction temperature are achieved.

改質温度は概ね1000〜1400℃、望ましくは1000〜1200℃の範囲であり、炉出口のガス温度を測定し、その温度が目標値となるように酸素、水蒸気の量を調整する。この改質によりタール、軽油は、CO、CO、H、CH、HO等のガスとチャー(スス)に転換される。改質温度を高く設定すると改質効率が上がり、タール、軽油の含有量を低減でき、さらにはダイオキシン類等の微量の有機ハロゲン化合物も低減できるが、同時にメタン、エタン、プロパン等の炭化水素ガスも分解して、CO、Hとなるため、ガスカロリーは低下しガスボリュームが増加する。 The reforming temperature is generally in the range of 1000 to 1400 ° C., preferably 1000 to 1200 ° C. The gas temperature at the furnace outlet is measured, and the amounts of oxygen and water vapor are adjusted so that the temperature becomes a target value. By this reforming, tar and light oil are converted to gas such as CO, CO 2 , H 2 , CH 4 , H 2 O, and char (soot). Setting a high reforming temperature increases the reforming efficiency, reduces tar and light oil content, and also reduces trace amounts of organic halogen compounds such as dioxins, but at the same time, hydrocarbon gases such as methane, ethane, and propane Is also decomposed into CO and H 2 , so that the gas calorie decreases and the gas volume increases.

また、熱効率の観点から、改質に使用する水蒸気は上述の熱交換機4(ボイラ)での熱回収によって得られた水蒸気であることが望ましく、蒸気の温度は高い方が良い(200℃以上、好ましくは400℃以上)。但し、高すぎる場合には、ボイラ伝熱管にて腐食が発生するため、蒸気温度は400〜450℃程度が適している。尚、蒸気の製造に外部燃料を用いる場合にはこの限りではない。   Further, from the viewpoint of thermal efficiency, the steam used for reforming is desirably steam obtained by heat recovery in the heat exchanger 4 (boiler) described above, and the steam temperature is preferably higher (200 ° C. or higher, Preferably 400 ° C. or higher). However, when the temperature is too high, corrosion occurs in the boiler heat transfer tube, so that the steam temperature is preferably about 400 to 450 ° C. However, this is not the case when external fuel is used for the production of steam.

高温の改質ガスは、プレクーラ14(第1のガス冷却器)内で水噴霧することによって急冷する。改質ガスはガス温度が高く、水分不飽和であるため、噴霧された水は瞬時に気化し、水1kg当たり640kcalの蒸発潜熱を奪う。その結果、ガスは急速冷却され、断熱飽和温度を僅かに下回る温度(70〜90℃)まで冷却される。ガス温度低下に伴い、沸点が高いタールは凝縮し、水噴霧により、微細なチャー主体のダスト(以下単にチャーという)は水滴に捕捉される。その結果、未蒸発の噴霧水と共に、チャー、タールはプレクーラ14底部に溜まり、タールデカンタ15(分離装置)に流出する。捕集されたタールは、水温によって性状が変化する。即ち、温度が高いとタールが重質になり、低ければ軽質になる。タールは冷えると粘度が上昇・硬化してハンドリングが困難になり、タールと水の比重も温度の影響を受ける。通常、経験的には冷却温度を80〜85℃に調整し、適宜スチームトレース等により保温して温度維持するのが良い。尚、プレクーラ14では水噴霧ではなく液中燃焼によって改質ガスを急冷しても良い。   The hot reformed gas is rapidly cooled by spraying water in the precooler 14 (first gas cooler). Since the reformed gas has a high gas temperature and is unsaturated in water, the sprayed water is instantly vaporized and loses 640 kcal of latent heat of evaporation per kg of water. As a result, the gas is rapidly cooled and cooled to a temperature (70-90 ° C.) slightly below the adiabatic saturation temperature. As the gas temperature decreases, tar having a high boiling point is condensed, and fine char-based dust (hereinafter simply referred to as char) is trapped in water droplets by water spray. As a result, the char and tar are collected at the bottom of the precooler 14 together with the non-evaporated spray water and flow out to the tar decanter 15 (separator). The properties of the collected tar change depending on the water temperature. That is, the tar becomes heavy when the temperature is high, and light when the temperature is low. When tar cools, its viscosity increases and hardens, making handling difficult, and the specific gravity of tar and water is also affected by temperature. Normally, it is experientially adjusted to a cooling temperature of 80 to 85 ° C. and appropriately maintained by steam tracing or the like to maintain the temperature. In the precooler 14, the reformed gas may be rapidly cooled not by water spray but by submerged combustion.

熱分解ガスには、HCl(塩化水素)、HS(硫化水素)、HCN(青酸)等の酸性ガス及びNH(アンモニア)、アルカリ塩ダスト、水溶性有機分が含まれ、これらは水中に溶解し、通常、水は、HClによって酸性を示す。設備の酸腐食を防止するために、プレクーラ14の噴霧水(補給水)にはアルカリを添加してpH調整し、濃縮を避けるために適正にブローして希釈する。アルカリとしては、苛性ソーダ、水酸化マグネシウム、消石灰乳、アンモニア水等が用いられ、アルカリ添加量を適切に調整するために、循環水のpHを測定し、pHが目標値(好ましくは5以上9以下)となるよう管理している。また、設備の近傍にコークス炉がある場合には、噴霧水としてコークス炉で副生する安水を用いることで、運転費用を安価に抑えることができる。また、改質温度が高い場合、タールが減り、チャーが生成するのでタールとチャーの比率がチャーリッチになる。 The pyrolysis gas contains acidic gases such as HCl (hydrogen chloride), H 2 S (hydrogen sulfide), HCN (hydrocyanic acid), NH 3 (ammonia), alkali salt dust, and water-soluble organic components. Normally, water is acidic with HCl. In order to prevent acid corrosion of the equipment, alkali is added to the spray water (makeup water) of the precooler 14 to adjust the pH, and in order to avoid concentration, it is appropriately blown and diluted. As the alkali, caustic soda, magnesium hydroxide, slaked lime milk, ammonia water or the like is used. In order to appropriately adjust the alkali addition amount, the pH of the circulating water is measured, and the pH is a target value (preferably 5 to 9) ). In addition, when there is a coke oven in the vicinity of the facility, the operation cost can be reduced at low cost by using the low temperature water produced as a by-product in the coke oven as the spray water. Further, when the reforming temperature is high, tar is reduced and char is generated, so that the ratio of tar to char becomes char rich.

プレクーラ14にて冷却することで改質ガスに含まれる有害物質(ダイオキシン、重金属等)の大部分は凝集し、液体若しくは固体となり、タール、チャーは水に混濁した状態でプレクーラ14の底部に沈降、堆積する。但し、プレクーラ14を出たガス中にはミスト状態、ガス状態として飛散していくものも存在する。これらの飛散を削減する方法として、噴霧水を高圧で噴霧する、ミストの粒径を小さくする等の対策がある。   By cooling with the precooler 14, most of the harmful substances (dioxins, heavy metals, etc.) contained in the reformed gas aggregate and become liquid or solid, and tar and char settle in the water at the bottom of the precooler 14 in a turbid state. ,accumulate. However, some of the gas exiting the precooler 14 is scattered as a mist state or a gas state. As a method for reducing such scattering, there are measures such as spraying spray water at a high pressure and reducing the particle size of mist.

上述のとおり、プレクーラ14で水中に捕捉されたチャーやタール等の捕捉物は、水と共にタールデカンタ15に流出させる。通常、タールは比重が水よりも重く、タールデカンタ15の底に沈んだタールを掻上げて分離できる。また、改質温度を上げてチャーリッチになる場合は、チャーはタールを伴って塊状で成長しやすく、また、比重が軽くなるため、連続的に加圧浮上により固液分離して取り出すのが良い。   As described above, the captured matter such as char and tar captured in the water by the precooler 14 is caused to flow out to the tar decanter 15 together with water. Usually, tar has a specific gravity heavier than water and can be separated by scraping the tar that has settled at the bottom of the tar decanter 15. In addition, when the reforming temperature is raised to become char-rich, char is likely to grow in a lump with tar, and the specific gravity is lightened. good.

タールデカンタ15で水相から分離回収したタールやチャー及び熱分解炉2から排出される熱分解残渣中の固定炭素主体物は可燃性であり、燃料として利用可能である。しかしながら、塩素、アンモニア、ダイオキシン類をはじめ、環境上注意が必要な物質を含むため、生産設備用の燃料としては適さない。   Tar and char separated and recovered from the aqueous phase by the tar decanter 15 and the fixed carbon main body in the pyrolysis residue discharged from the pyrolysis furnace 2 are combustible and can be used as fuel. However, it contains substances that require environmental care, such as chlorine, ammonia, dioxins, and is not suitable as a fuel for production facilities.

したがって、本発明では廃棄物焼却炉として構成される燃焼炉の燃料、即ち、熱分解炉2用の燃料若しくは原料として利用する。具体的には、1)図1に示すように熱分解炉2が間接加熱式であれば、高温熱源である燃焼炉16の燃料若しくは熱分解炉2の原料として利用し、又は、2)部分燃焼方式であれば熱分解炉に再投入して、部分燃焼により熱分解させることができる。これによりタールやチャーは、熱源もしくはガスとして有効に回収することができる。このように、副生物を燃料として利用することで、熱分解炉用の外部燃料、廃棄物の一部を削減することができ、得られるガスの量を増大できる。水相からの分離方法としては、デカンタのほか、加圧浮上、フィルタープレス、遠心分離等の技術が利用できる。   Therefore, in this invention, it utilizes as a fuel of a combustion furnace comprised as a waste incinerator, ie, the fuel or raw material for the pyrolysis furnace 2. Specifically, 1) If the pyrolysis furnace 2 is an indirect heating type as shown in FIG. 1, it is used as a fuel for the combustion furnace 16 that is a high-temperature heat source or as a raw material for the pyrolysis furnace 2, or 2) part If it is a combustion system, it can be recharged into a pyrolysis furnace and thermally decomposed by partial combustion. Thereby, tar and char can be effectively recovered as a heat source or gas. Thus, by using by-products as fuel, it is possible to reduce part of the external fuel and waste for the pyrolysis furnace and increase the amount of gas obtained. As a method for separation from the aqueous phase, techniques such as pressure levitation, filter press, and centrifugal separation can be used in addition to a decanter.

チャーやタールを分離した水は循環使用するが、塩類等の濃縮とそれによる装置腐食を防ぐために、適宜抜き出しブローを行う。ブロー水は、固形物(SS)、COD、油分(n−HEX)、ダイオキシン類等を含むので適切に排水処理を行い放流される。   The water from which char and tar are separated is circulated and used, but it is appropriately extracted and blown to prevent the concentration of salts and the like, and the corrosion of the equipment. Blow water contains solid matter (SS), COD, oil (n-HEX), dioxins, etc., and thus is appropriately discharged and discharged.

プレクーラの水噴霧によるガス冷却及びガス洗浄ではダイオキシン類の除去が不十分となる場合には、後流にプライマリークーラ17(第2のガス冷却器)を設置し、さらに冷却により、40℃以下にガス温度の低下を図る。ガス温度が低下すると、ガス相の水蒸気及び軽油分リッチなタールはさらに凝縮により液化し、ダイオキシン類は油層に溶け込んで、ガス相から分離される。その結果、プライマリークーラ17では、凝縮水と軽質タールが分離回収され、同時にダイオキシン類、チャー等のダスト類もガス相から除去できる。プライマリークーラ17の装置方式としては、間接熱交換方式が採用できる。間接熱交換方式では、プライマリークーラ17内に設置された伝熱管の中に15℃〜30℃程度の冷却水を流し、ガスを間接的に冷却する。   When dioxins are not sufficiently removed by gas cooling and gas cleaning by water spraying of the precooler, a primary cooler 17 (second gas cooler) is installed in the downstream and further cooled to 40 ° C. or lower. Reduce gas temperature. When the gas temperature is lowered, the gas phase water vapor and light oil rich tar are further liquefied by condensation, and the dioxins are dissolved in the oil layer and separated from the gas phase. As a result, in the primary cooler 17, condensed water and light tar are separated and recovered, and at the same time, dusts such as dioxins and char can be removed from the gas phase. As an apparatus method of the primary cooler 17, an indirect heat exchange method can be adopted. In the indirect heat exchange system, cooling water of about 15 ° C. to 30 ° C. is allowed to flow through a heat transfer tube installed in the primary cooler 17 to indirectly cool the gas.

凝縮水には、ガスに含まれる酸性ガス成分が溶解し、強酸性で腐食性を現すことから、アルカリ薬剤を投入し、pH=5〜9となるように中和する。アルカリには苛性ソーダ、アンモニア水を用いることが好ましい。このためプライマリークーラ17内壁には、アルカリを添加した凝縮水を循環して装置内に噴霧し、凝縮水を洗い流すことで、凝縮水が酸性になることを防止する。また、この水噴霧は同時に凝縮する軽質タール成分の壁、伝熱管への付着成長を防止し、ダスト類、タールミスト類の捕捉除去の効果もある。このプライマリークーラ17で使用するアルカリ性の水(中和剤)としては、コークス炉で副生する安水を用いることで、運転費用を安価に抑えることができる。   In the condensed water, the acidic gas component contained in the gas dissolves and becomes strongly acidic and corrosive. Therefore, an alkali chemical is introduced and neutralized so that the pH is 5-9. It is preferable to use caustic soda and aqueous ammonia as the alkali. For this reason, condensed water added with alkali is circulated on the inner wall of the primary cooler 17 and sprayed into the apparatus, and the condensed water is washed away to prevent the condensed water from becoming acidic. Further, this water spray prevents the light tar component condensing at the same time from growing on the wall and heat transfer tube, and has the effect of capturing and removing dusts and tar mists. As the alkaline water (neutralizing agent) used in the primary cooler 17, the operation cost can be suppressed at low cost by using the water that is by-produced in the coke oven.

ここで、プレクーラ14出口で、ガスに残留するチャー、タールミストが多い場合には、プレクーラ14とプライマリークーラ17の間に電気集塵機(図示せず)を設置し、チャー等のダスト類、軽油主体のタールミスト、水蒸気ミストを除去することもできる。これにより、ガス中のダイオキシン類濃度はさらに低減し、また後流のプライマリークーラ17へのダスト類、油類の負荷が低減し、内壁での付着、閉塞等のトラブルを防止しやすくなる。   Here, when there is a large amount of char and tar mist remaining in the gas at the outlet of the precooler 14, an electric dust collector (not shown) is installed between the precooler 14 and the primary cooler 17, and dust such as char or light oil mainly It is also possible to remove tar mist and water vapor mist. As a result, the concentration of dioxins in the gas is further reduced, the load of dusts and oils on the downstream primary cooler 17 is reduced, and troubles such as adhesion and blockage on the inner wall can be easily prevented.

実施例では、図1に示すように、プライマリークーラ17の後流側に蒸気間接熱交換式のガス加熱器18を設け、このガス加熱器18によりガスを加熱してガス中の水分をミスト気化した後に電気集塵機19に導入し、ガス中に含まれる軽油主体のタールミスト等の微細な粒子状物質を捕集することにより、いわゆる粒子状のダイオキシン類も捕捉し、ガス中ダイオキシン類濃度の低減を図るようにしている。なお、ガスの加熱はブロア昇圧によって行ってもよい。   In the embodiment, as shown in FIG. 1, a steam indirect heat exchange type gas heater 18 is provided on the downstream side of the primary cooler 17, and the gas is heated by the gas heater 18 to vaporize moisture in the gas. After that, it is introduced into the electrostatic precipitator 19 and traps fine particulate matter such as light oil-based tar mist contained in the gas, thereby capturing so-called particulate dioxins and reducing the concentration of dioxins in the gas. I try to plan. The gas may be heated by blower pressure increase.

得られたガスはブロア20(ガス排送機)によって、後述するコークス炉ガス精製設備24に送られるが、ブロア20の後流側に活性炭充填層若しくは活性炭移動層21を設け、その中にガスを通すことによってダイオキシンを吸着する。ここで活性炭は、活性コークス、粒状活性炭である。ブロア昇圧による温度上昇のみでは、ガス温度が飽和温度より低く、活性炭充填層若しくは活性炭移動層21内の冷えやすい部分で軽油、水分の凝縮が起こる場合には、上述のガス加熱器18により、ガス温度を上記凝縮が防止できる温度まで、上昇させることができる。   The obtained gas is sent to a coke oven gas purification facility 24, which will be described later, by a blower 20 (gas exhauster). An activated carbon packed bed or an activated carbon moving layer 21 is provided on the downstream side of the blower 20, and the gas is contained therein. Dioxin is adsorbed by passing through. Here, activated carbon is activated coke or granular activated carbon. When the gas temperature is lower than the saturation temperature only by the temperature increase due to the blower pressure increase, and the light oil and moisture condense in the portion that is easily cooled in the activated carbon packed bed or the activated carbon moving layer 21, the gas heater 18 causes the gas to be condensed. The temperature can be raised to a temperature at which the condensation can be prevented.

以上の工程により、ガス中のダイオキシン類濃度を基準値(0.1ng−TEQ/mN(酸素濃度12%換算値))以下にする。そして、本発明では、この清浄化されたガスをコークス炉22のコークス炉ガス(COG)精製設備24に混合することで、ガス配送〜ガス利用まで既設のインフラを利用する。設備の設置位置によってはガス洗浄からCOGラインまでの距離が長い場合がある。この場合にはガス移送中に放熱等でガス温度が低下し、ガスダクト中に軽油成分が析出固化し、ダクト閉塞等の問題があった。そのために上述のガス加熱器18により再度ガス温度を上昇させ、ガス利用先での温度が軽油成分の凝縮温度以上になるようにコントロールする。 Through the above steps, the dioxin concentration in the gas is set to a reference value (0.1 ng-TEQ / m 3 N (converted value of oxygen concentration 12%)) or less. In the present invention, this cleaned gas is mixed with the coke oven gas (COG) refining equipment 24 of the coke oven 22 to use the existing infrastructure from gas delivery to gas use. Depending on the installation position of the equipment, the distance from the gas cleaning to the COG line may be long. In this case, the gas temperature decreased due to heat dissipation during the gas transfer, and the light oil component precipitated and solidified in the gas duct, causing problems such as duct blockage. Therefore, the gas temperature is raised again by the gas heater 18 described above, and the temperature at the gas utilization destination is controlled to be equal to or higher than the condensation temperature of the light oil component.

コークス炉ガス精製設備24に接続する前の段階では硫化水素、軽油等の不純物除去操作が十分ではなく、また、塩化水素等の塩素系ガスも一部残留する場合がある。これらの不純物によって、ガス利用先での腐食、温度低下に伴う軽油成分の凝縮・液化、ナフタリン、アントラセン等の析出によるガスラインやバーナでの閉塞等が起こる場合があり、既存ガスラインの利用は難しい場合がある。そこで、本実施例では、コークス炉ガス精製設備24における既存の脱硫装置(硫黄分、塩素分除去)、軽油除去装置(軽油スクラバー)を利用することでガス精製の純度を上げ、上記問題を回避するようにしている。   Prior to connection to the coke oven gas purification facility 24, impurities such as hydrogen sulfide and light oil are not sufficiently removed, and some chlorine-based gases such as hydrogen chloride may remain. These impurities may cause corrosion at the gas application site, condensation / liquefaction of light oil components due to temperature decrease, gas line blockage due to precipitation of naphthalene, anthracene, etc., burner clogging, etc. It can be difficult. Therefore, in this embodiment, the existing desulfurization device (sulfur content and chlorine content removal) and light oil removal device (light oil scrubber) in the coke oven gas refining equipment 24 are used to increase the purity of gas purification and avoid the above problems. Like to do.

コークス炉ガス精製設備24の利用を狙ってCOGラインへ合流させる場合は、COG精製機能のすべてを利用することが可能で圧力も大気圧に近い、ドライメーン23とすることが好ましい。   When merging into the COG line with the aim of using the coke oven gas refining equipment 24, it is preferable to use the dry main 23 which can use all of the COG refining functions and has a pressure close to atmospheric pressure.

ドライメーン23ではコークス炉22にて発生したガスに安水を噴霧・洗浄し、ガスを冷却することでガスからタール、スラッジを分離している。廃棄物のガス化炉、ガス精製設備にて精製されたガス化ガスはドライメーン23にてCOGと混合される。ドライメーン23では安水と共に、COGに含まれるタール分、スラッジ分が回収され、安水デカンタ25に移される。安水デカンタ25では、安水、タール、スラッジの混合液は比重差により、重力沈降され、タール、安水、スラッジに分離される。分離されたタールは回収され、タール製品として有効利用される。また、回収された安水は循環利用される。   In the dry main 23, the gas generated in the coke oven 22 is sprayed and washed with water and the gas is cooled to separate tar and sludge from the gas. The gasification gas refined in the waste gasification furnace and gas purification equipment is mixed with COG in the dry main 23. In the dry main 23, tar and sludge contained in the COG are collected together with the low water and transferred to the low water decanter 25. In the low water decanter 25, the mixed liquid of the low water, tar, and sludge is gravity settled due to the difference in specific gravity and separated into tar, low water, and sludge. The separated tar is recovered and effectively used as a tar product. The recovered water is recycled.

上述のプライマリークーラ17及び電気集塵機19の捕捉物(軽質タール、軽油、チャー、水の混合物)は、プレクーラ14の捕捉物と混合され、タールデカンタ15で水相から分離回収され、熱分解炉2若しくは燃焼炉16にて熱源として利用される。   The trapped matter (mixture of light tar, light oil, char and water) of the primary cooler 17 and the electrostatic precipitator 19 is mixed with the trapped matter of the precooler 14, separated and recovered from the aqueous phase by the tar decanter 15, and the pyrolysis furnace 2. Alternatively, it is used as a heat source in the combustion furnace 16.

一方、水分は有害物を多く含みそのままでは放流できないため、ガス化の処理によって生じる熱、つまり外熱用の燃焼炉16若しくは2次燃焼炉3にて乾燥・焼却処理することが望ましいが、熱効率の向上を図るため、原料の水分量が高く、炉内では処理できない場合には、発生した排水を製鉄所に既存の安水活性汚泥処理に合流させて処理することもできる。その場合には、一旦排水槽26に溜めて、その後水処理を行う必要がある。水処理の方法としては活性汚泥法が最適である。   On the other hand, since moisture contains a lot of harmful substances and cannot be discharged as it is, it is desirable to dry and incinerate the heat generated by the gasification process, that is, the external combustion furnace 16 or the secondary combustion furnace 3, but the thermal efficiency Therefore, when the amount of water in the raw material is high and cannot be treated in the furnace, the generated waste water can be treated by joining the existing water-activated activated sludge treatment in the steelworks. In that case, it is necessary to once accumulate in the drainage tank 26 and then perform water treatment. The activated sludge method is the most suitable water treatment method.

本実施例では、COG精製過程から出る余剰安水を処理する安水活性汚泥処理設備27において安水と本排水を合流して処理するようにしている。   In the present embodiment, the low water activated sludge treatment facility 27 that treats surplus water from the COG refining process joins the water and main waste water to be treated.

但し、廃棄物を熱分解したガスの洗浄過程で生じた排水には、亜鉛、鉛等の重金属類、種々の有害な有機化合物、特にダイオキシン類等の有機塩素化合物、シアン化合物やベンゾニトリル等が含まれており、活性汚泥が阻害を受けるので活性を高く保つことが難しい。そこで、既設の安水活性汚泥処理設備27に合流し効率的に処理するためには、阻害物質を事前処理により除去することが望ましい。   However, wastewater generated in the process of cleaning pyrolyzed waste gas includes heavy metals such as zinc and lead, various harmful organic compounds, especially organic chlorine compounds such as dioxins, cyanide compounds and benzonitrile. It is difficult to keep the activity high because the activated sludge is contained. Therefore, in order to join the existing low water activated sludge treatment facility 27 and efficiently treat it, it is desirable to remove the inhibitory substance by pretreatment.

事前処理の方法としては、1)SS分離、2)凝集沈殿、3)安水蒸留のいずれか若しくはすべてを適応することが有効である。   As a pretreatment method, it is effective to apply any one or all of 1) SS separation, 2) coagulation sedimentation, and 3) aqueous distillation.

SS分離はタール及びSS(固形物)を含む排水を加圧浮上又は比重差により分離する技術である。凝集沈殿はSS分離により分離された水層を冷却後アルカリの薬剤を加え、pHを9.5〜12.0に調整し、重金属等を凝集沈殿させる技術である。安水蒸留はSS分離により分離された水層のアンモニアストリッピングによって窒素、アンモニアを除去する技術である。これらの処理のいずれか又はすべてを実施することにより、水中のダイオキシン類濃度を10pg−TEQ/L以下とする。   SS separation is a technique for separating wastewater containing tar and SS (solid matter) by pressurized flotation or specific gravity difference. Aggregation precipitation is a technique in which the aqueous layer separated by SS separation is cooled, an alkali chemical is added, the pH is adjusted to 9.5 to 12.0, and heavy metals and the like are aggregated and precipitated. Aqueous distillation is a technique for removing nitrogen and ammonia by ammonia stripping of the aqueous layer separated by SS separation. By carrying out any or all of these treatments, the concentration of dioxins in water is set to 10 pg-TEQ / L or less.

図2は、本発明に係るガス化ガスの精製装置の他の例を示す構成図である。同図に示す例は、図1に示す構成においてプレクーラ14以降の精製処理を省略したものである、ガス化ガス中の塩素分やダイオキシン類の濃度が低い場合には、この例によっても塩素分やダイオキシン類濃度を基準値以下にすることが可能であり、設備も簡略化される。   FIG. 2 is a block diagram showing another example of the gasification gas purifying apparatus according to the present invention. In the example shown in the figure, the purification process after the precooler 14 in the configuration shown in FIG. 1 is omitted. When the concentration of chlorine and dioxins in the gasification gas is low, this example also shows the chlorine content. It is possible to make the concentration of dioxins and below the standard value, and the equipment is simplified.

本発明に係るガス化ガスの精製装置を示す構成図である。It is a block diagram which shows the purification apparatus of the gasification gas which concerns on this invention. 本発明に係るガス化ガスの精製装置の他の例を示す構成図である。It is a block diagram which shows the other example of the purification apparatus of the gasification gas which concerns on this invention.

符号の説明Explanation of symbols

1 破砕機
2 熱分解炉
3 2次燃焼炉
4 熱交換機
5 排ガス減温塔
6 除塵機
7 吹込装置
8 誘引通風機
9 排ガス再加熱器
10 触媒反応層あるいは活性炭充填層
11 煙突
12 灰処理設備
13 改質炉
14 プレクーラ(第1のガス冷却器)
15 タールデカンタ(分離装置)
16 燃焼炉
17 プライマリークーラ(第2のガス冷却器)
18 ガス加熱器
19 電気集塵機
20 ブロア(ガス排送機)
21 活性炭充填層若しくは活性炭移動層
22 コークス炉
23 ドライメーン
24 コークス炉ガス精製設備
25 安水デカンタ
26 油水分離槽
27 排水槽
28 安水活性汚泥処理設備
DESCRIPTION OF SYMBOLS 1 Crusher 2 Pyrolysis furnace 3 Secondary combustion furnace 4 Heat exchanger 5 Exhaust gas temperature reduction tower 6 Dust remover 7 Blowing device 8 Induction ventilator 9 Exhaust gas reheater 10 Catalytic reaction layer or activated carbon packed bed 11 Chimney 12 Ash processing equipment 13 Reforming furnace 14 Precooler (first gas cooler)
15 Tar decanter (separator)
16 Combustion furnace 17 Primary cooler (second gas cooler)
18 Gas heater 19 Electric dust collector 20 Blower (gas exhauster)
21 Activated carbon packed bed or activated carbon moving bed 22 Coke oven 23 Dry main 24 Coke oven gas purification equipment 25 Aqueous decanter 26 Oil / water separation tank 27 Drainage tank 28 Aqueous activated sludge treatment equipment

Claims (1)

可燃性廃棄物を熱分解炉でガス化させ、燃料ガスを得るガス化ガスの精製方法において、
熱分解炉で生成した熱分解ガスを、改質炉で酸素及び水蒸気と反応させて1000℃以上に昇温し、ガスに含まれるタール及び軽油を改質によりガス及びチャーに変換し、
この改質ガスを第1のガス冷却器に導入し、水噴霧又は液中燃焼によりガス温度を断熱飽和温度以下の90〜70℃に冷却してガス中のチャー主体のダスト及び残存するタール、軽油を水側に捕捉物として捕捉し、ガス中のダイオキシン類濃度を0.1ng−TEQ/m N(酸素濃度12%換算値)以下とした後に、製鉄所に既存のコークス炉ガスライン又は高炉ガスラインに合流させ、コークス炉ガス又は高炉ガスと混合して利用すると共に、第1のガス冷却器の排水から前記捕捉物を分離し、熱分解炉に戻して再度熱分解してガス化させる、又は、熱分解炉に熱源を供給するための燃料として利用し、
さらに、ガス精製工程で発生する排水の一部又は全てを熱分解炉若しくは熱分解炉に熱を供給する燃焼炉、又はその燃焼炉排ガスを完全燃焼させる2次燃焼炉に噴霧して乾燥・焼却処理し、焼却処理後の残余分、又は全量については、
(1)固形物、タール及び軽油の加圧浮上による分離、又は比重差による分離、
(2)排水を冷却後、水層にアルカリを加え、pH9.5以上12以下に調整して、排水に含まれる金属を凝集沈殿させることによる分離、
(3)アンモニアストリッピングによる窒素、アンモニアの除去、
のいずれか又はすべてを事前処理として実施し水中のダイオキシン濃度を10pg−TEQ/L以下とした上で、製鉄所に既存の安水活性汚泥処理に合流させることを特徴とするガス化ガスの精製方法。
In the purification method of gasification gas which obtains fuel gas by gasifying combustible waste in a pyrolysis furnace,
The pyrolysis gas generated in the pyrolysis furnace is reacted with oxygen and water vapor in the reforming furnace to raise the temperature to 1000 ° C. or more, and tar and light oil contained in the gas are converted into gas and char by reforming,
This reformed gas is introduced into the first gas cooler, and the gas temperature is cooled to 90 to 70 ° C. below the adiabatic saturation temperature by water spraying or in-liquid combustion, and the char-based dust in the gas and the remaining tar, After capturing light oil as a trapped substance on the water side and setting the dioxin concentration in the gas to 0.1 ng-TEQ / m 3 N (oxygen concentration 12% equivalent) or less, the existing coke oven gas line or Combined with the blast furnace gas line, mixed with coke oven gas or blast furnace gas, used, separated the trapped material from the waste water of the first gas cooler, returned to the pyrolysis furnace and pyrolyzed again for gasification Or use as a fuel to supply a heat source to the pyrolysis furnace,
Furthermore, some or all of the wastewater generated in the gas purification process is sprayed into a pyrolysis furnace, a combustion furnace that supplies heat to the pyrolysis furnace, or a secondary combustion furnace that completely burns the combustion furnace exhaust gas, and then dried and incinerated. About the remainder after processing, incineration processing, or the whole quantity,
(1) Separation by pressurized flotation of solid matter, tar and light oil, or separation by specific gravity difference,
(2) Separation by cooling the waste water, adding alkali to the aqueous layer, adjusting the pH to 9.5 or more and 12 or less, and coagulating and precipitating the metal contained in the waste water,
(3) removal of nitrogen and ammonia by ammonia stripping;
Gasification gas purification, characterized in that any or all of the above is carried out as a pre-treatment and the dioxin concentration in water is 10 pg-TEQ / L or less, and then combined with the existing water-reduced activated sludge treatment at the steelworks Method.
JP2005228533A 2005-08-05 2005-08-05 Purification method of gasification gas Expired - Fee Related JP4764095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228533A JP4764095B2 (en) 2005-08-05 2005-08-05 Purification method of gasification gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228533A JP4764095B2 (en) 2005-08-05 2005-08-05 Purification method of gasification gas

Publications (2)

Publication Number Publication Date
JP2007045852A JP2007045852A (en) 2007-02-22
JP4764095B2 true JP4764095B2 (en) 2011-08-31

Family

ID=37848962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228533A Expired - Fee Related JP4764095B2 (en) 2005-08-05 2005-08-05 Purification method of gasification gas

Country Status (1)

Country Link
JP (1) JP4764095B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829478A (en) * 2012-08-31 2012-12-19 南开大学 Energy-saving two-section type thermal treatment furnace for organic chemical industrial effluent
CN103723853A (en) * 2013-12-04 2014-04-16 江苏双净净化科技有限公司 Intermittent comprehensive treating system for gas generating station and treating method of intermittent comprehensive treating system
CN111056588A (en) * 2020-02-05 2020-04-24 新昌德劳污水处理有限公司 Domestic wastewater recycling device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814621B2 (en) * 2005-11-21 2011-11-16 新日鉄エンジニアリング株式会社 Waste disposal method
JP5173643B2 (en) * 2008-07-22 2013-04-03 大陽日酸株式会社 Liquid crystal panel processing method and processing apparatus
KR101006967B1 (en) 2010-06-28 2011-01-12 (주)대우건설 Method and apparatus for processing tar water generated from gasification process
JP5935119B2 (en) * 2012-05-31 2016-06-15 一般財団法人電力中央研究所 Condensate detection device
JP6302720B2 (en) * 2014-03-31 2018-03-28 日立造船株式会社 Gasification processing system
JP2015196698A (en) * 2014-03-31 2015-11-09 日立造船株式会社 Gasification treatment system
JP6269465B2 (en) * 2014-12-16 2018-01-31 Jfeスチール株式会社 Surplus water treatment method
JP6369693B2 (en) * 2015-08-21 2018-08-08 Jfeスチール株式会社 Method for reducing molecular weight of organic substance and facility for reducing molecular weight
JP6369694B2 (en) * 2015-08-25 2018-08-08 Jfeスチール株式会社 Method for reducing molecular weight of organic substance and facility for reducing molecular weight
KR102032483B1 (en) * 2018-03-14 2019-11-08 한국생산기술연구원 The method and apparatus for collection of bio-oil produced from slow pyrolysis
CN108659890B (en) * 2018-06-26 2024-04-12 西安建筑科技大学 Separation device and separation method for dust, coal tar and coal gas after pyrolysis of pulverized coal
WO2020235725A1 (en) * 2019-05-23 2020-11-26 한국생산기술연구원 Method and apparatus for collecting bio-oil produced through slow pyrolysis
KR102400124B1 (en) * 2020-07-15 2022-05-19 주식회사 정도하이텍 Purifying system and method of pollutants discharging from waste plastics emulsification plant
CN114317039A (en) * 2022-01-05 2022-04-12 新疆八一钢铁股份有限公司 Condensate oil supplementing method for coking horizontal pipe primary cooler
CN115583655B (en) * 2022-11-03 2024-04-02 陕西煤业化工技术研究院有限责任公司 Method for classifying, extracting, utilizing and converting high-calcium and high-iron gasification slag elements

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122265A (en) * 1974-08-20 1976-02-21 Nippon Kokan Kk Katsuseiodeiho nyori shorisuru haisuino maeshoriho
JPS56166991A (en) * 1980-05-29 1981-12-22 Kurita Water Ind Ltd Disposal of gas-filled liquid
JPS5861892A (en) * 1981-10-08 1983-04-13 Nippon Kokan Kk <Nkk> Activated sludge treatment for ammonia liquor
JPS58219981A (en) * 1982-06-14 1983-12-21 Kubota Ltd Evaporation and oxidation treatment of waste water of incinerating plant
JP2870845B2 (en) * 1989-09-06 1999-03-17 株式会社デンソー Hologram manufacturing method
JP3755259B2 (en) * 1997-10-29 2006-03-15 三菱化学株式会社 Wastewater treatment method in coke production facility
JP2003039056A (en) * 2001-07-31 2003-02-12 Nippon Steel Corp Waste treatment method and apparatus utilizing metal refining process
JP2003041261A (en) * 2001-07-31 2003-02-13 Nippon Steel Corp Method for converting copper-containing combustible waste into raw material or fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829478A (en) * 2012-08-31 2012-12-19 南开大学 Energy-saving two-section type thermal treatment furnace for organic chemical industrial effluent
CN103723853A (en) * 2013-12-04 2014-04-16 江苏双净净化科技有限公司 Intermittent comprehensive treating system for gas generating station and treating method of intermittent comprehensive treating system
CN103723853B (en) * 2013-12-04 2015-08-26 江苏双净净化科技有限公司 Gas generating station intermittent type total system and treatment process thereof
CN111056588A (en) * 2020-02-05 2020-04-24 新昌德劳污水处理有限公司 Domestic wastewater recycling device

Also Published As

Publication number Publication date
JP2007045852A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4764095B2 (en) Purification method of gasification gas
JP4648794B2 (en) Gasification gas purification method and apparatus
JP4594821B2 (en) Purification method of gasification gas
CN108097703B (en) Plasma gasification melting system for centralized treatment of solid wastes
JP3723061B2 (en) Complete resource recycling method for waste without chimney using oxygen-enriched gas
CN109539272A (en) The high-temperature plasma recycling recovery process of waste containing chlorine and system
JP2007167782A (en) Waste treatment method
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
US6018090A (en) Process and plant for the thermal treatment of waste material
JPH09235148A (en) Use of residue, waste and fuel of low heating value in cement furnace
WO2018018615A1 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
CN106765142B (en) Solid waste grading gasification system
JP2008132409A (en) Gasification melting method and apparatus of sludge
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
CN111637464A (en) Organic hazardous waste and inorganic hazardous waste cooperative comprehensive utilization power generation system and process
JP2004209314A (en) Treatment method and treatment apparatus of waste or the like by superheated steam
JP2012107110A (en) Method for treating gas-treatment drainage, gasification apparatus of carbonaceous material, and method for treating carbonaceous material
JPH09241666A (en) Use of residue, waste and low-heating value fuel in terms of energy in steam power generating plant
CN108726487B (en) Burn H2S, carbothermic reduction of SO2Device and process for recovering sulfur resources
RU2570331C1 (en) Method for processing solid household and industrial wastes and device for thereof realisation
JP4156483B2 (en) Gasification and melting method of sludge
JP2000273473A (en) Method for treating waste generated in coke oven
JP5279062B2 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JP3962260B2 (en) Shredder dust treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees