JP4763496B2 - Thin film and thin film laminate using the same - Google Patents

Thin film and thin film laminate using the same Download PDF

Info

Publication number
JP4763496B2
JP4763496B2 JP2006095788A JP2006095788A JP4763496B2 JP 4763496 B2 JP4763496 B2 JP 4763496B2 JP 2006095788 A JP2006095788 A JP 2006095788A JP 2006095788 A JP2006095788 A JP 2006095788A JP 4763496 B2 JP4763496 B2 JP 4763496B2
Authority
JP
Japan
Prior art keywords
thin film
heat
resistant
silicone oil
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006095788A
Other languages
Japanese (ja)
Other versions
JP2007268801A (en
Inventor
智仁 井上
克己 茂木
統 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006095788A priority Critical patent/JP4763496B2/en
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to KR1020087016592A priority patent/KR101446811B1/en
Priority to PCT/JP2007/056949 priority patent/WO2007114289A1/en
Priority to US12/294,436 priority patent/US20090233083A1/en
Priority to CN200780011929.2A priority patent/CN101415551B/en
Priority to EP07740387.1A priority patent/EP2030779A4/en
Priority to TW96111188A priority patent/TWI422487B/en
Publication of JP2007268801A publication Critical patent/JP2007268801A/en
Application granted granted Critical
Publication of JP4763496B2 publication Critical patent/JP4763496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は薄片状耐熱材が積層した構造を有し層間に耐熱性流動物資を含む薄膜に関するものである。   The present invention relates to a thin film having a structure in which flaky heat-resistant materials are laminated and including a heat-resistant fluid material between layers.

ディスプレイは、モバイル性や省スペースの面より、従来のブラウン管方式から液晶方式(LCD)に急激に変わりつつある。更に次世代ディスプレイとして、自発光デバイスであり、明るさ、鮮やかさ、消費電力の点でも優れた有機EL方式のものが生産され始めている。これらは従来のブラウン管方式のものと比べればモバイル性や省スペースの面で格段に優れているが、基板としてガラスが使用されているために、比較的重量があり、また、割れるという問題も有している。
これらの問題点を解決するため、一部の液晶方式のものではフィルム基板(プラセルと呼ばれている)が使用されている。しかしながら、次世代ディスプレイとして脚光を浴びている有機ELディスプレイの場合、低抵抗な透明導電膜が必要とされておりこの為、250℃を超える熱処理が不可欠である。従来のプラスチック基板ではこのような熱処理条件下に耐えうるものがなかったが、近年これらの要求を満たし得る材料として粘土薄膜が注目されている。
The display is rapidly changing from a conventional cathode ray tube system to a liquid crystal system (LCD) in terms of mobility and space saving. Furthermore, as a next-generation display, a self-luminous device that is excellent in terms of brightness, vividness, and power consumption is being produced. These are far superior in terms of mobility and space saving compared to the conventional CRT type, but because of the use of glass as a substrate, they are relatively heavy and have the problem of cracking. is doing.
In order to solve these problems, a film substrate (referred to as a “placel”) is used in some liquid crystal type devices. However, in the case of an organic EL display that has been in the spotlight as a next-generation display, a low-resistance transparent conductive film is required, and thus heat treatment exceeding 250 ° C. is indispensable. No conventional plastic substrate can withstand such a heat treatment condition, but in recent years, a clay thin film has attracted attention as a material that can satisfy these requirements.

粘土薄膜は、透明性をもち優れたフレキシビリティーを有し、粒子が層状に緻密に配向している構造を有しているので、気体バリア性に優れ、主成分が無機物である為に非常に耐熱性に優れた材料である(例えば、特許文献1参照)。しかしながら、液晶や有機ELディスプレイ用のフィルム基板として使用する場合、耐水性の問題を有している。一般的に用いられる粘土は層間に親水性の陽イオンを含んでおり、吸湿性の高い物質である。このため、水分による劣化が懸念される有機ELディスプレイ用のフィルム基板としては適さない。この問題を解決するため、粘土層間に含まれる親水性陽イオンを疎水性陽イオンに交換する方法が提案されている。しかしながら疎水性陽イオンに交換した場合、粘土膜の柔軟性が低下するために、柔軟性を与えるための樹脂分を加える必要があり、該樹脂分が熱に弱いため粘土のもつ耐熱性を十分に発揮することができないという問題があった。
特開2005−104133号公報
The clay thin film has transparency and excellent flexibility, and has a structure in which particles are densely oriented in layers, so it has excellent gas barrier properties and the main component is an inorganic substance. In addition, the material is excellent in heat resistance (see, for example, Patent Document 1). However, when it is used as a film substrate for liquid crystal or organic EL display, it has a problem of water resistance. Commonly used clay contains a hydrophilic cation between layers, and is a highly hygroscopic substance. For this reason, it is not suitable as a film substrate for an organic EL display in which deterioration due to moisture is a concern. In order to solve this problem, a method of exchanging hydrophilic cations contained between clay layers with hydrophobic cations has been proposed. However, when it is exchanged with a hydrophobic cation, the flexibility of the clay film decreases. Therefore, it is necessary to add a resin component for imparting flexibility, and since the resin component is vulnerable to heat, the heat resistance of the clay is sufficient. There was a problem that could not be demonstrated.
JP 2005-104133 A

前記したように、粘土薄膜を有機ELディスプレイ用のフィルム基板として利用するために透明性、耐熱性、耐水性に優れたフレキシブル性を有する薄膜を得る必要がある。したがって、本発明の目的は、十分な耐熱性と耐水性を備えると同時に柔軟性をも兼ね備えた薄膜及び薄膜積層体を提供することにある。   As described above, in order to use the clay thin film as a film substrate for an organic EL display, it is necessary to obtain a thin film having flexibility excellent in transparency, heat resistance and water resistance. Accordingly, an object of the present invention is to provide a thin film and a thin film laminate that have sufficient heat resistance and water resistance and at the same time have flexibility.

本発明の薄膜は、配向して積層した薄片状耐熱材と,該薄片状耐熱材の層間に疎水性陽イオン物質及び耐熱性流動物質を有する薄膜であって,該疎水性陽イオン物質が、第4級アンモニウム塩、第4級ホスホニウム塩、ピリジニウム塩、イミダゾリウム塩から選ばれた少なくとも1種からなり,該耐熱性流動物質が、ポリアルキレングリコール、燐酸エステル、アルキルベンゼン、ポリ−α−オレフィン、ポリオールエステル、アルキルナフタレン、シリコーンオイル,ハロカーボン、ポリアリールアルカン、ポリフェニル、珪酸エステル、ポリフェニルエーテルから選ばれた少なくとも1種からなり,かつ,該薄膜の温度40℃、湿度90%の環境下での水蒸気透過率が0.85g/m ・day以下であることを特徴とする
また、本発明の薄膜積層体は、上記薄膜の片面または両面に、無機薄膜または有機薄膜のうち少なくとも一方が単層または複層積層されたことを特徴とする。
The thin film of the present invention is a thin film having an oriented and laminated flaky heat-resistant material, and a hydrophobic cation substance and a heat-resistant fluid substance between the flaky heat-resistant materials, wherein the hydrophobic cation substance comprises: It consists of at least one selected from a quaternary ammonium salt, a quaternary phosphonium salt, a pyridinium salt, and an imidazolium salt, and the heat-resistant fluid substance is a polyalkylene glycol, a phosphate ester, an alkylbenzene, a poly-α-olefin, It consists of at least one selected from polyol ester, alkyl naphthalene, silicone oil, halocarbon, polyarylalkane, polyphenyl, silicate ester, polyphenyl ether, and the environment of the thin film at a temperature of 40 ° C. and a humidity of 90%. The water vapor transmission rate is 0.85 g / m 2 · day or less .
The thin film laminate of the present invention is characterized in that at least one of an inorganic thin film and an organic thin film is laminated on one side or both sides of the thin film.

本発明の薄膜は、耐水性、耐熱性、柔軟性に優れている。
また、本発明の薄膜積層体は、薄膜の片面または両面に、無機薄膜または有機薄膜のうち少なくとも一方が単層または複層積層されているため、高いガスバリア性を実現できる。
The thin film of the present invention is excellent in water resistance, heat resistance and flexibility.
In addition, since the thin film laminate of the present invention has at least one of an inorganic thin film or an organic thin film laminated on one side or both sides of the thin film, a high gas barrier property can be realized.

以下、本発明を詳細に説明する。
本発明の薄膜とは、例えば粘土粒子からなる薄片状耐熱材が配向して積層した構造を有する膜厚10〜2000μmの薄状物である。
図1は、本発明の薄膜の一例の模式的断面図である。図1のように厚さ0.5〜2ナノメートルで粒子径が1μm以下の複数の薄片状耐熱材1が配向して積層し、該薄片状耐熱材1の個々の間に耐熱性流動物質2が介在した構造の連続体で全体として薄膜を形成している。
本発明における薄片状耐熱材としては、例えば天然または合成物からなる粘土鉱物を挙げることができる。具体的には、雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト等から選ばれた少なくとも1種を挙げることができる。
Hereinafter, the present invention will be described in detail.
The thin film of the present invention is a thin product having a thickness of 10 to 2000 μm having a structure in which, for example, flaky heat-resistant materials made of clay particles are oriented and laminated.
FIG. 1 is a schematic cross-sectional view of an example of the thin film of the present invention. As shown in FIG. 1, a plurality of flaky heat-resistant materials 1 having a thickness of 0.5 to 2 nanometers and a particle diameter of 1 μm or less are oriented and laminated, and the refractory fluid is placed between the flaky heat-resistant materials 1. A thin film is formed as a whole by a continuous body having a structure in which 2 is interposed.
Examples of the flaky heat-resistant material in the present invention include clay minerals made of natural or synthetic materials. Specifically, at least one selected from mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, isralite, kanemite, layered titanic acid, smectite, etc. Can be mentioned.

また、耐熱性流動物質としては、潤滑油等に代表される200℃以上の加熱においても分解、沸騰等の変質を起こさない液状もしくはペースト状の物質であり、例えばポリアルキレングリコール、燐酸エステル、アルキルベンゼン、ポリ−α−オレフィン、ポリオールエステル、アルキルナフタレン、シリコーンオイル、ハロカーボン、ポリアリールアルカン、ポリフェニル、珪酸エステル、ポリフェニルエーテル等が挙げられる。
これらの耐熱性流動物質は、重量比で薄膜全体の5〜60%であることが好ましい。5%未満の場合では薄膜の柔軟性を得ることができにくく、60%を超えると膜として自立しにくくなる。
The heat-resistant fluid substance is a liquid or paste-like substance that does not undergo degradation such as decomposition and boiling even when heated at 200 ° C. or more, typified by a lubricating oil. For example, polyalkylene glycol, phosphate ester, alkylbenzene , Poly-α-olefin, polyol ester, alkylnaphthalene, silicone oil, halocarbon, polyarylalkane, polyphenyl, silicate ester, polyphenyl ether and the like.
These heat-resistant fluid substances are preferably 5 to 60% of the entire thin film by weight. If it is less than 5%, it is difficult to obtain the flexibility of the thin film, and if it exceeds 60%, it becomes difficult to stand alone as a film.

また、耐熱性流動物質としてはシリコーンオイルが好ましい。シリコーンオイルは、他の耐熱性流動物質と比べ温度による粘度変化が小さい為である。中でも耐熱性の高いメチルフェニルシリコーンオイルまたもしくはメチルフェニルシリコーンの変性オイルが望ましい。ここで、変性シリコーンオイルとは、シリコーンオイルのメチル基の一部に各種有機基を導入して、有機物との相性や化学反応性、水との溶解性、乳化性や撥水性等の特性を付与させたものをいう。下記にメチルフェニルシリコーンオイルの構造式を示す。   Further, silicone oil is preferable as the heat-resistant fluid substance. This is because silicone oil has a smaller viscosity change due to temperature than other heat-resistant fluid substances. Among them, methylphenyl silicone oil having high heat resistance or modified oil of methylphenyl silicone is preferable. Here, modified silicone oil introduces various organic groups into a part of the methyl group of silicone oil, and has properties such as compatibility with organic substances, chemical reactivity, solubility in water, emulsification and water repellency. This is what was granted. The structural formula of methylphenyl silicone oil is shown below.

Figure 0004763496
(式中、mおよびnは1以上の整数を示す)
Figure 0004763496
(In the formula, m and n represent an integer of 1 or more)

本発明においては、前記薄膜は,第4級アンモニウム塩(例えば、ジメリルジステアリルアンモニウム塩やトリメチルステアリルアンモニウム塩などの第4 級アンモニウム塩、ベンジル基やポリオキシエチレン基を有するアンモニウム塩)、第4級ホスホニウム塩、ピリジニウム塩、イミダゾリウム塩から選ばれた少なくとも1種の疎水性陽イオン物質を含む。これにより薄片状耐熱材間に耐熱性流動物質が含有しやすくなる。一般に粘土は内部に親水性の交換性陽イオンを含んでおり、容易に疎水性の陽イオンと交換することができる。前記の疎水性陽イオン物質を用い、粘土のイオン交換性、例えば、モンモリロナイトの陽イオン交換性を利用して有機化することができる。これにより、粘土の有機溶剤への分散が容易になり、シリコーンオイルのインターカレーションが容易となる。下記に上記に示した疎水性陽イオン物質の構造の例を示す。下記一般式(1)は第4級アンモニウム塩、一般式(2)は第4級ホスホニウム塩、一般式(3)はピリジウム塩、一般式(4)はイミダゾリウム塩を示す。
In the present invention, the thin film comprises a quaternary ammonium salt (for example, a quaternary ammonium salt such as dimethylyl distearyl ammonium salt or trimethyl stearyl ammonium salt, an ammonium salt having a benzyl group or a polyoxyethylene group), It contains at least one hydrophobic cationic substance selected from quaternary phosphonium salts, pyridinium salts, and imidazolium salts. Thereby, it becomes easy to contain a heat-resistant fluid substance between flaky heat-resistant materials. In general, clay contains a hydrophilic exchangeable cation and can be easily exchanged with a hydrophobic cation. Using the above-mentioned hydrophobic cation substance, it is possible to organically utilize the ion exchange property of clay, for example, the cation exchange property of montmorillonite. This facilitates dispersion of the clay in the organic solvent and facilitates intercalation of the silicone oil. An example of the structure of the hydrophobic cationic substance shown above is shown below. The following general formula (1) represents a quaternary ammonium salt, general formula (2) represents a quaternary phosphonium salt, general formula (3) represents a pyridium salt, and general formula (4) represents an imidazolium salt.

Figure 0004763496
(式中、Xはハロゲン元素、R1〜R11はアルキル基を示す)


Figure 0004763496
(In the formula, X represents a halogen element, and R1 to R11 represent an alkyl group)


また薄膜の強度を増すために、室温で固体形状を有する樹脂を含有させることができる。室温で固体形状を有する樹脂としては特に限定はしないが、熱もしくは紫外線で重合するエポキシ系樹脂、ポリアミドイミド、シリコーン樹脂等を挙げることができる。   In order to increase the strength of the thin film, a resin having a solid shape at room temperature can be contained. The resin having a solid shape at room temperature is not particularly limited, and examples thereof include epoxy resins that are polymerized by heat or ultraviolet rays, polyamide imides, and silicone resins.

本発明の薄膜は、例えば次のようにして得ることができる。(1)薄片状耐熱材と疎水性を有する陽イオン物質とを純水中に分散させた後、固液分離して乾燥させ有機化粘土を得る。(2)上記有機化粘土と耐熱性流動物質とを有機溶剤に分散させた後、この分散液を容器内に静置し、薄片状耐熱材を沈積させるとともに、有機溶剤を揮発させ除去し、任意に60〜300℃の温度条件下で乾燥させることによって自立した薄膜を得ることができる。   The thin film of the present invention can be obtained, for example, as follows. (1) A flaky heat-resistant material and a hydrophobic cationic substance are dispersed in pure water, and then solid-liquid separated and dried to obtain an organized clay. (2) After dispersing the organoclay and the heat-resistant fluid substance in an organic solvent, the dispersion is allowed to stand in a container, the flaky heat-resistant material is deposited, and the organic solvent is volatilized and removed. A self-supporting thin film can be obtained by optionally drying at a temperature of 60 to 300 ° C.

本発明の薄膜は、単独でも自立膜として利用可能であるが、より高いガスバリア性、耐薬品性、表面平滑性を得るために、薄膜の片面または両面に、無機薄膜または有機薄膜のうち少なくとも一方が単層または複層積層された薄膜積層体とすることができる。
上記無機薄膜または有機薄膜としては、特に限定しないが用途により最適なものを選択できる。例えば酸化珪素もしくは酸化窒化珪素をスパッタ法もしくはプラズマCVD法により製膜した無機薄膜を行うことにより高いガスバリア性及び耐薬品性を付与することができる。更には有機ポリマーを塗布して有機薄膜を形成することにより表面に平坦性を持たせることができる。これらの無機薄膜及び有機薄膜の表面コートを積層することにより薄膜単独では持ち得ない特性を付与することができる。
以下、本発明を実施するための最良の形態を実施例に基づいて説明するが、本発明はこれら実施例に限定されるものではない。
The thin film of the present invention can be used alone as a self-supporting film, but in order to obtain higher gas barrier properties, chemical resistance, and surface smoothness, at least one of an inorganic thin film and an organic thin film is provided on one or both sides of the thin film Can be a thin film stack in which a single layer or multiple layers are stacked.
Although it does not specifically limit as said inorganic thin film or organic thin film, The optimal thing can be selected by a use. For example, high gas barrier properties and chemical resistance can be imparted by performing an inorganic thin film obtained by forming silicon oxide or silicon oxynitride by sputtering or plasma CVD. Further, the surface can be made flat by applying an organic polymer to form an organic thin film. By laminating the surface coats of these inorganic thin films and organic thin films, it is possible to impart characteristics that cannot be obtained by the thin films alone.
Hereinafter, the best mode for carrying out the present invention will be described based on examples, but the present invention is not limited to these examples.

(有機化粘土の作製)
疎水性陽イオン物質としてテトラデシルトリメチルアンモニウムブロミド5gを純水50g中に分散させた後、薄片状耐熱材として合成スメクタイト(クニミネ社製 商品名:スメクトンSA)5g投入し十分に分散膨潤させた。この溶液を遠心分離器を用い固液分離し液分を取り除いた後、更に純水50gを投入し分散、固液分離を行った。この分散・固液分離を発泡がなくなるまで繰り返したのち、乾燥機で水分を完全に除去した。これにより粘土に含まれる親水性の交換性陽イオンとテトラデシルトリメチルアンモニウムイオンが交換され、無極性溶剤であるトルエンに対し膨潤性を持つ有機化粘土を得た。
(Production of organized clay)
After dispersing 5 g of tetradecyltrimethylammonium bromide as a hydrophobic cation substance in 50 g of pure water, 5 g of synthetic smectite (trade name: Smecton SA, manufactured by Kunimine Co., Ltd.) was added as a flaky heat-resistant material and sufficiently dispersed and swollen. This solution was subjected to solid-liquid separation using a centrifuge to remove the liquid component, and then 50 g of pure water was further added for dispersion and solid-liquid separation. This dispersion / solid-liquid separation was repeated until no foaming occurred, and then the moisture was completely removed with a dryer. As a result, the hydrophilic exchangeable cation and tetradecyltrimethylammonium ion contained in the clay were exchanged to obtain an organized clay having swelling properties with respect to toluene which is a nonpolar solvent.

(薄膜の作製)
上記により得られた有機化粘土を粉砕し、有機化粘土5gをトルエン100g中に分散・膨潤させ耐熱性流動物質としてジメチルフェニルシリコーンオイル4gを添加し更に分散を続けた。得られた溶液を底面が平坦で深さが2mmであるフッ素樹脂容器に注ぎ込んだ。これを室温雰囲気で放置し溶剤を揮発させた後、更に150℃の温風乾燥器で溶剤分を完全除去し、本発明の薄膜を得た。この薄膜は容器から容易に剥がすことができ、透明で柔軟性のある厚さ100μmのシリコーンオイル含有薄膜であった。
(Production of thin film)
The organic clay obtained above was pulverized, 5 g of the organic clay was dispersed and swollen in 100 g of toluene, 4 g of dimethylphenyl silicone oil was added as a heat-resistant fluid substance, and the dispersion was further continued. The obtained solution was poured into a fluororesin container having a flat bottom surface and a depth of 2 mm. This was allowed to stand in a room temperature atmosphere to volatilize the solvent, and then the solvent was completely removed with a hot air dryer at 150 ° C. to obtain a thin film of the present invention. This thin film could be easily peeled from the container, and was a transparent and flexible 100 μm thick silicone oil-containing thin film.

前記実施例1における疎水性陽イオンがオクタデシルトリフェニルホスホニウムブロミドとした以外は実施例1と同様の方法で本発明の薄膜を得た。   A thin film of the present invention was obtained in the same manner as in Example 1 except that the hydrophobic cation in Example 1 was octadecyltriphenylphosphonium bromide.

前記実施例1における粘土膜形成のジメチルフェニルシリコーンオイル投入時に同時に熱硬化性エポキシ樹脂を2g投入した以外は実施例1と同様の方法で本発明の薄膜を得た。   A thin film of the present invention was obtained in the same manner as in Example 1 except that 2 g of thermosetting epoxy resin was added at the same time when dimethylphenyl silicone oil for clay film formation in Example 1 was added.

前記実施例2により形成された薄膜の両面に紫外線硬化型アクリル樹脂を2μmの厚さで塗布した。この後塗布した樹脂上に反応性スパッタ装置を用いて60nmの酸化窒化珪素膜を製膜し、本発明の薄膜積層体を得た。   An ultraviolet curable acrylic resin was applied to both sides of the thin film formed in Example 2 to a thickness of 2 μm. Thereafter, a 60 nm silicon oxynitride film was formed on the applied resin by using a reactive sputtering apparatus to obtain a thin film laminate of the present invention.

[比較例1]
合成スメクタイト(クニミネ社製 商品名:スメクトンSA)5gを純水100g中に分散・膨潤させた後ポリアクリル酸ナトリウムを2g投入し更に分散した。得られた溶液を底面が平坦で深さが2mmであるフッ素樹脂容器に注ぎ込んだ。これを100℃乾燥させ水分を除去し、比較用の薄膜を得た。この薄膜は容器から容易に剥がすことができ、透明性のある厚さ100μmの薄膜であった。
[Comparative Example 1]
5 g of synthetic smectite (trade name: Smecton SA, manufactured by Kunimine) was dispersed and swollen in 100 g of pure water, and then 2 g of sodium polyacrylate was added and further dispersed. The obtained solution was poured into a fluororesin container having a flat bottom surface and a depth of 2 mm. This was dried at 100 ° C. to remove moisture, and a thin film for comparison was obtained. This thin film could be easily peeled off from the container and was a transparent thin film having a thickness of 100 μm.

[比較例2]
前記実施例1と同様の有機化粘土5gをトルエン100g中に分散・膨潤させ、得られた溶液を底面が平坦で深さが2mmであるフッ素樹脂容器に注ぎ込んだ。これを室温雰囲気で放置し溶剤を揮発させた後、更に150℃の温風乾燥器に投入し溶剤分を完全除去し、比較用の薄膜を得た。この薄膜は容器から容易に剥がすことができ、透明性のある厚さ100μmの薄膜であった。
[Comparative Example 2]
5 g of the same organized clay as in Example 1 was dispersed and swollen in 100 g of toluene, and the resulting solution was poured into a fluororesin container having a flat bottom and a depth of 2 mm. This was allowed to stand in a room temperature atmosphere to volatilize the solvent, and then poured into a warm air dryer at 150 ° C. to completely remove the solvent, thereby obtaining a comparative thin film. This thin film could be easily peeled off from the container and was a transparent thin film having a thickness of 100 μm.

[比較例3]
前記実施例1と同様の有機化粘土5gをトルエン100g中に分散・膨潤させ、熱硬化性エポキシ樹脂4gを投入し更に分散を続けた。得られた溶液を底面が平坦で深さが2mmであるフッ素樹脂容器に注ぎ込んだ。これを室温雰囲気で放置し溶剤を揮発させた後、更に150℃の温風乾燥器に投入し溶剤分を完全除去と樹脂の硬化を行い、比較用の薄膜を得た。薄膜は容器から容易に剥がすことができ、透明性のある厚さ100μmのエポキシ樹脂含有薄膜であった。
[Comparative Example 3]
5 g of the organized clay as in Example 1 was dispersed and swollen in 100 g of toluene, and 4 g of a thermosetting epoxy resin was added to continue the dispersion. The obtained solution was poured into a fluororesin container having a flat bottom surface and a depth of 2 mm. This was allowed to stand in a room temperature atmosphere to volatilize the solvent, and then charged into a warm air dryer at 150 ° C. to completely remove the solvent and cure the resin to obtain a comparative thin film. The thin film could be easily peeled off from the container, and was a transparent epoxy resin-containing thin film having a thickness of 100 μm.

(特性評価)
前記実施例1〜4および比較例1〜3で作製した薄膜及び薄膜積層体について下記の特性を評価した。
(1)水浸後の外観評価
前記実施例1〜4および比較例1〜3で作製した薄膜及び薄膜積層体を3cm×3cmの大きさに切断して水に1時間浸漬後の外観を評価し、その結果を表1に示した。
(2)屈曲後の外観
前記実施例1〜4および比較例1〜3で作製した薄膜及び薄膜積層体を3cm×6cmの大きさに切断し、直径が20mmの丸棒に巻きつけた時の外観を評価し、その結果を表1に示した。
(3)加熱後の外観
前記実施例1〜4および比較例1〜3で作製した薄膜及び薄膜積層体を3cm×3cmの大きさに切断した後、これらをオーブンにおいて200℃で15分間、250℃で15分間加熱後の外観を評価し、その結果を表1に示した。
(Characteristic evaluation)
The following characteristics were evaluated for the thin films and thin film laminates produced in Examples 1-4 and Comparative Examples 1-3.
(1) Appearance evaluation after water immersion The thin films and thin film laminates prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were cut into a size of 3 cm × 3 cm and the appearance after immersion in water for 1 hour was evaluated. The results are shown in Table 1.
(2) Appearance after bending When the thin film and thin film laminate produced in Examples 1 to 4 and Comparative Examples 1 to 3 were cut into a size of 3 cm × 6 cm and wound around a round bar having a diameter of 20 mm The appearance was evaluated, and the results are shown in Table 1.
(3) Appearance after heating After the thin films and thin film laminates produced in Examples 1 to 4 and Comparative Examples 1 to 3 were cut into a size of 3 cm × 3 cm, these were cut in an oven at 200 ° C. for 15 minutes, 250 The appearance after heating at 15 ° C. for 15 minutes was evaluated, and the results are shown in Table 1.

(4)全光線透過率
上記加熱後の薄膜及び薄膜積層体と未加熱のものとをヘーズメーター(Haze Meter NDH2000、日本電色社製)を用いて全光線透過率を測定し、その結果を表2に示した。
(5)線膨張率
線膨張率試験方法(JIS K 7197)によって線膨張率を測定し、その結果を表2に示した。
(6)水蒸気透過率
JIS K 7126 A法(差圧法)に準じた差圧式のガスクロ法により、ガス・蒸気等の透過率・透湿度の測定が可能なGTRテック株式会社製ガス・蒸気透過率測定装置を用いて、水蒸気透過率を測定し、その結果を表2に示した。水蒸気透過率は40℃/90%RHの条件で行なった。
(4) Total light transmittance Measure the total light transmittance of the thin film and thin film laminate after heating and the unheated one using a haze meter (Haze Meter NDH2000, manufactured by Nippon Denshoku Co., Ltd.). It is shown in Table 2.
(5) Linear expansion coefficient The linear expansion coefficient was measured by the linear expansion coefficient test method (JIS K 7197), and the results are shown in Table 2.
(6) Water vapor permeability Gas / vapor permeability manufactured by GTR Tech Co., Ltd., which can measure the permeability and moisture permeability of gases and vapors by the differential pressure type gas chromatography method according to JIS K 7126 A method (differential pressure method) The water vapor transmission rate was measured using a measuring apparatus, and the results are shown in Table 2. The water vapor transmission rate was 40 ° C./90% RH.

Figure 0004763496
Figure 0004763496

表1の結果から明らかなように本発明の薄膜及び薄膜積層体は、水浸後、屈曲後及び加熱後において何等変化なく、耐水性、耐熱性、柔軟性に優れていることが確認された。これに対し、比較例1のものでは柔軟性が悪く、比較例2及び3のものでは耐熱性が悪いことが確認された。   As is apparent from the results in Table 1, the thin film and thin film laminate of the present invention were confirmed to be excellent in water resistance, heat resistance and flexibility without any change after water immersion, after bending and after heating. . On the other hand, it was confirmed that the comparative example 1 had poor flexibility and the comparative examples 2 and 3 had poor heat resistance.

Figure 0004763496
Figure 0004763496

表2の結果から明らかなように本発明の薄膜及び薄膜積層体は、未加熱及び過熱後においても全光線透過率が81%以上有しており、線膨張率及び水蒸気透過率も実用上問題のない結果であった。これに対し、比較例1のものでは収縮が著しく生じ、水蒸気透過率も測定できないほど悪かった。また、比較例2及び3のものでは加熱後の全光線透過率が測定できないほど悪く、線膨張率及び水蒸気透過率も測定不能か実用上著しく悪い結果であった。   As is apparent from the results in Table 2, the thin film and thin film laminate of the present invention have a total light transmittance of 81% or more even after unheating and overheating, and the linear expansion coefficient and the water vapor transmission rate are practically problematic. There was no result. On the other hand, in the comparative example 1, the shrinkage occurred remarkably and the water vapor transmission rate was so bad that it could not be measured. In Comparative Examples 2 and 3, the total light transmittance after heating was so bad that it could not be measured, and the linear expansion coefficient and the water vapor transmittance were not measurable or practically bad.

本発明の薄膜は、薄膜が有する諸特性により、多くの製品に利用することができる。例えば電子ペーパー用基板、電子デバイス用封止フィルム、レンズフィルム、導光版用フィルム、プリズムフィルム、位相差板・偏光板用フィルム、視野角補正フィルム、PDP用フィルム、LED用フィルム、光通信用部材、タッチパネル用フィルム、各種機能性フィルムの基板、内部が透けて見える構造の電子機器用フィルム、ビデオディスク・CD/CD−R/CD−RW/DVD/MO/MD・相変化ディスク・光カードを含む光記録メディア用フィルム、燃料電池用封止フィルム、太陽電池用フィルム等に使用することができる。
また本発明の薄膜積層体は、高いガスバリア性を実現でき、液晶や有機ELディスプレイ用のフィルム基板として好適に使用することができる。
The thin film of the present invention can be used for many products due to various properties of the thin film. For example, electronic paper substrate, electronic device sealing film, lens film, light guide plate film, prism film, retardation plate / polarizing plate film, viewing angle correction film, PDP film, LED film, optical communication Materials, touch panel films, substrates for various functional films, films for electronic devices with a transparent structure, video discs, CD / CD-R / CD-RW / DVD / MO / MD, phase change discs, optical cards Can be used for films for optical recording media, sealing films for fuel cells, films for solar cells, and the like.
Moreover, the thin film laminated body of this invention can implement | achieve high gas barrier property, and can be used conveniently as a film substrate for a liquid crystal or an organic EL display.

本発明の薄膜の一例の模式的断面図である。It is typical sectional drawing of an example of the thin film of this invention.

符号の説明Explanation of symbols

1 薄片状耐熱材
2 耐熱性流動物質
1 Flaky heat-resistant material 2 Heat-resistant fluid substance

Claims (8)

配向して積層した薄片状耐熱材と,該薄片状耐熱材の層間に疎水性陽イオン物質及び耐熱性流動物質を有する薄膜であって,該疎水性陽イオン物質が、第4級アンモニウム塩、第4級ホスホニウム塩、ピリジニウム塩、イミダゾリウム塩から選ばれた少なくとも1種からなり,該耐熱性流動物質が、ポリアルキレングリコール、燐酸エステル、アルキルベンゼン、ポリ−α−オレフィン、ポリオールエステル、アルキルナフタレン、シリコーンオイル,ハロカーボン、ポリアリールアルカン、ポリフェニル、珪酸エステル、ポリフェニルエーテルから選ばれた少なくとも1種からなり,かつ,該薄膜の温度40℃、湿度90%の環境下での水蒸気透過率が0.85g/mA flaky heat-resistant material laminated in an oriented manner and a thin film having a hydrophobic cation material and a heat-resistant fluid material between the flaky heat-resistant materials, wherein the hydrophobic cation material is a quaternary ammonium salt, It consists of at least one selected from a quaternary phosphonium salt, a pyridinium salt, and an imidazolium salt, and the heat-resistant fluid substance is a polyalkylene glycol, a phosphate ester, an alkylbenzene, a poly-α-olefin, a polyol ester, an alkylnaphthalene, It consists of at least one selected from silicone oil, halocarbon, polyarylalkane, polyphenyl, silicic acid ester, and polyphenyl ether, and has a water vapor transmission rate in an environment of a temperature of 40 ° C. and a humidity of 90%. 0.85 g / m 2 ・day以下であることを特徴とする薄膜。A thin film characterized by being not more than day. 前記薄片状耐熱材が、雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイトから選ばれた少なくとも1種であることを特徴とする請求項1に記載の薄膜。 The flaky heat-resistant material is at least one selected from mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, ilarite, kanemite, layered titanate, and smectite. The thin film according to claim 1, wherein: 前記耐熱性流動物質の含有量が、重量比で薄膜全体の5〜60%であることを特徴とする請求項1に記載の薄膜。 The thin film according to claim 1 , wherein the content of the heat-resistant fluid substance is 5 to 60% of the whole thin film by weight ratio. 前記耐熱性流動物質が、シリコーンオイルであることを特徴とする請求項1に記載の薄膜。 The thin film according to claim 1, wherein the heat-resistant fluid substance is silicone oil. 前記シリコーンオイルが、メチルフェニルシリコーンオイルまたはメチルフェニルシリコーンの変性オイルであることを特徴とする請求項4に記載の薄膜。 5. The thin film according to claim 4 , wherein the silicone oil is methylphenyl silicone oil or methylphenylsilicone modified oil. 請求項1乃至請求項5のいずれか1項に記載の薄膜の片面または両面に、無機薄膜または有機薄膜のうち少なくとも一方が単層または複層積層されたことを特徴とする薄膜積層体。 A thin film laminate comprising at least one of an inorganic thin film and an organic thin film laminated on one side or both sides of the thin film according to any one of claims 1 to 5 . 前記無機薄膜が、酸化珪素もしくは酸化窒化珪素をスパッタ法もしくはプラズマCVD法により製膜したものであることを特徴とする請求項6に記載の薄膜積層体。 The thin film laminate according to claim 6 , wherein the inorganic thin film is formed by sputtering silicon oxide or silicon oxynitride by a sputtering method or a plasma CVD method. 前記有機薄膜が、有機ポリマーを塗布して形成したものであることを特徴とする請求項6に記載の薄膜積層体。 The thin film laminate according to claim 6 , wherein the organic thin film is formed by applying an organic polymer.
JP2006095788A 2006-03-30 2006-03-30 Thin film and thin film laminate using the same Active JP4763496B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006095788A JP4763496B2 (en) 2006-03-30 2006-03-30 Thin film and thin film laminate using the same
PCT/JP2007/056949 WO2007114289A1 (en) 2006-03-30 2007-03-29 Thin film and thin film laminate using the same
US12/294,436 US20090233083A1 (en) 2006-03-30 2007-03-29 Thin film and thin film laminate comprising the same
CN200780011929.2A CN101415551B (en) 2006-03-30 2007-03-29 Thin film and thin film laminate using the same
KR1020087016592A KR101446811B1 (en) 2006-03-30 2007-03-29 Thin film and thin film laminate using the same
EP07740387.1A EP2030779A4 (en) 2006-03-30 2007-03-29 Thin film and thin film laminate using the same
TW96111188A TWI422487B (en) 2006-03-30 2007-03-30 Film and film laminate using the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095788A JP4763496B2 (en) 2006-03-30 2006-03-30 Thin film and thin film laminate using the same

Publications (2)

Publication Number Publication Date
JP2007268801A JP2007268801A (en) 2007-10-18
JP4763496B2 true JP4763496B2 (en) 2011-08-31

Family

ID=38672104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095788A Active JP4763496B2 (en) 2006-03-30 2006-03-30 Thin film and thin film laminate using the same

Country Status (2)

Country Link
JP (1) JP4763496B2 (en)
CN (1) CN101415551B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293730B2 (en) 2013-10-15 2016-03-22 Samsung Display Co., Ltd. Flexible organic light emitting diode display and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436841B2 (en) * 2007-11-13 2014-03-05 株式会社巴川製紙所 Method for producing clay dispersion
TWI447030B (en) * 2011-05-31 2014-08-01 Nat Univ Tsing Hua Gas barrier film and method for manufactoring the same
CN103114498B (en) * 2011-07-12 2015-03-04 苏州斯迪克新材料科技股份有限公司 Method for preparing matte release paper for adhesive tapes
CN103147357B (en) * 2011-07-12 2015-03-04 苏州斯迪克新材料科技股份有限公司 Preparation method of matte release paper
CN104465538A (en) * 2014-11-21 2015-03-25 广西智通节能环保科技有限公司 Gas resisting film
CN107302036A (en) * 2017-05-12 2017-10-27 江苏东昇光伏科技有限公司 A kind of weather resistant photovoltaic back and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683162A (en) * 1986-04-09 1987-07-28 Essex Group, Inc. Mica product
JPH04288381A (en) * 1991-01-23 1992-10-13 Showa Electric Wire & Cable Co Ltd Heat-resistant coating material
JPH06187845A (en) * 1992-10-07 1994-07-08 Mitsubishi Cable Ind Ltd Heat-resistant insulated wire
JP3355716B2 (en) * 1993-09-01 2002-12-09 住友化学工業株式会社 Method for producing hydrophobic resin composition
JPH11203953A (en) * 1998-01-13 1999-07-30 Yazaki Corp Fire-resisting wire
US7303797B1 (en) * 1999-02-16 2007-12-04 E.I. Du Pont De Nemours And Company Gas barrier coating system for polymeric films and rigid containers
JP4061806B2 (en) * 2000-02-14 2008-03-19 三菱マテリアル株式会社 Raw material solution for forming perovskite type or Bi layered perovskite type oxide thin film, method for forming perovskite type or Bi layered perovskite type oxide thin film, and perovskite type or Bi layered perovskite type oxide thin film
US7754803B2 (en) * 2002-02-06 2010-07-13 Sekisui Chemical Co., Ltd. Resin composition
JP4046322B2 (en) * 2002-07-24 2008-02-13 日新製鋼株式会社 Heat-resistant clear pre-coated metal sheet with excellent design
JP2004224815A (en) * 2003-01-20 2004-08-12 Fuji Photo Film Co Ltd Gas-barrier laminated film and its manufacturing method
JP4383077B2 (en) * 2003-03-31 2009-12-16 大日本印刷株式会社 Gas barrier substrate
JP2004359927A (en) * 2003-05-15 2004-12-24 Sekisui Chem Co Ltd Polyimide resin composition and polyimide resin sheet
US7799395B2 (en) * 2003-09-08 2010-09-21 National Institute Of Advanced Industrial Science And Technology Clay film
JP4310788B2 (en) * 2004-06-18 2009-08-12 恵和株式会社 High barrier laminate sheet
JP4763552B2 (en) * 2006-08-25 2011-08-31 株式会社巴川製紙所 Clay thin film and laminated body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293730B2 (en) 2013-10-15 2016-03-22 Samsung Display Co., Ltd. Flexible organic light emitting diode display and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007268801A (en) 2007-10-18
CN101415551A (en) 2009-04-22
CN101415551B (en) 2013-03-20

Similar Documents

Publication Publication Date Title
KR101446811B1 (en) Thin film and thin film laminate using the same
JP4763496B2 (en) Thin film and thin film laminate using the same
JP5436841B2 (en) Method for producing clay dispersion
CA2617254C (en) Transparent film
JP6019518B2 (en) Water vapor barrier film, dispersion for water vapor barrier film, method for producing water vapor barrier film, solar cell back sheet, and solar cell
Putz et al. Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites
JP5688783B2 (en) Clay film and method for producing the same
JP5219059B2 (en) Protective film composed of clay alignment film
WO2011024782A1 (en) Clay dispersion liquid, method for producing the clay dispersion liquid, clay film, method for producing the clay film, and transparent material
JP5553330B2 (en) Moisture-proof film for electronic device and method for producing the same
US20140158277A1 (en) Clay film composite
Ebina Development of Clay‐Based Films
JP5462482B2 (en) Method for producing solid material containing layered inorganic compound, solid material and formed body formed using the same
JP4873566B2 (en) Inorganic compound film and method for producing the same
JP4930917B2 (en) Clay thin film, method for producing the same, and clay thin film laminate
JP4763552B2 (en) Clay thin film and laminated body thereof
JP5183261B2 (en) Clay thin film and thin film laminate
JP2009013015A (en) Clay thin film and clay thin film laminate
Wang et al. Fe3O4 Nanoparticle-Decorated Graphene Oxide Nanosheets for Magnetic Assembly of Artificial Nacre
JP5271501B2 (en) Clay thin film, laminate thereof, and method for producing clay thin film
JP5156248B2 (en) Clay thin film and laminated body thereof
TWI419836B (en) Clay, clay film, and laminate comprising the same
JP2006265517A (en) Gas-barrier material and gas-barrier method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250