JP4762683B2 - Biodegradable resin composition - Google Patents

Biodegradable resin composition Download PDF

Info

Publication number
JP4762683B2
JP4762683B2 JP2005324353A JP2005324353A JP4762683B2 JP 4762683 B2 JP4762683 B2 JP 4762683B2 JP 2005324353 A JP2005324353 A JP 2005324353A JP 2005324353 A JP2005324353 A JP 2005324353A JP 4762683 B2 JP4762683 B2 JP 4762683B2
Authority
JP
Japan
Prior art keywords
component
acid
biodegradable resin
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005324353A
Other languages
Japanese (ja)
Other versions
JP2007131690A (en
Inventor
俊樹 松尾
晃 武中
昌吾 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005324353A priority Critical patent/JP4762683B2/en
Publication of JP2007131690A publication Critical patent/JP2007131690A/en
Application granted granted Critical
Publication of JP4762683B2 publication Critical patent/JP4762683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生分解性樹脂組成物及びそれを用いた生分解性樹脂成形体の製造方法に関する。   The present invention relates to a biodegradable resin composition and a method for producing a biodegradable resin molded article using the same.

生分解性樹脂は、それぞれ固有の特徴を有し、それらに応じた用途展開がなされているが、中でも幅広い特性と汎用樹脂に近い加工性を有する生分解性ポリエステル樹脂が使われている。その中でもポリ乳酸樹脂は、トウモロコシ、芋などからとれる糖分から、発酵法によりL−乳酸が大量に作られ安価になってきたこと、原料が自然農作物なので総酸化炭素排出量が極めて少ない、また得られた樹脂の性能として剛性が強く透明性が良いという特徴があるので、現在その利用が期待されている。
しかし、ポリ乳酸樹脂の射出成形などによる成形体は、剛性は高いが、耐熱性、耐衝撃性、成形加工性、耐湿熱性が乏しく、実使用に耐えうる物性を有しておらず適用できる用途に制限があった。
Each biodegradable resin has its own unique characteristics and has been developed for use according to them. Among them, a biodegradable polyester resin having a wide range of properties and processability similar to general-purpose resins is used. Among them, polylactic acid resin has been made cheap by producing a large amount of L-lactic acid from sugars obtained from corn, straw, etc. by fermentation, and because the raw material is a natural crop, the total carbon oxide emissions are extremely low. As the performance of the obtained resin is characterized by high rigidity and good transparency, its use is currently expected.
However, the molded body by injection molding of polylactic acid resin has high rigidity but has poor heat resistance, impact resistance, molding processability, and heat and humidity resistance, and has no physical properties that can withstand actual use. There was a limit.

このような問題を解決するため、ポリ乳酸樹脂にポリ乳酸樹脂以外の生分解性ポリエステル樹脂やカルボジイミド化合物等の加水分解抑制剤や、可塑剤などを配合し、成形体の耐熱性、耐衝撃性、耐湿熱性を改良する研究がなされてきた(特許文献1、2)。しかしながら、これらの樹脂組成物においても耐熱性、耐衝撃性、成形加工性が十分でなく、また、剛性が依然として高いため、依然として適用できる分野に制限があり、さらなる改良が望まれていた。
特開平11−116788号公報 特開2005−232225号公報
In order to solve such problems, polylactic acid resin is blended with biodegradable polyester resins other than polylactic acid resin, hydrolysis inhibitors such as carbodiimide compounds, plasticizers, etc., and heat resistance and impact resistance of the molded product Studies have been made to improve the heat and moisture resistance (Patent Documents 1 and 2). However, even in these resin compositions, heat resistance, impact resistance and molding processability are not sufficient, and the rigidity is still high, so that there are still restrictions on applicable fields, and further improvements have been desired.
JP-A-11-116788 JP-A-2005-232225

本発明の課題は、耐熱性、耐衝撃性に優れる生分解性樹脂組成物及びそれを用いた生分解性樹脂成形体の製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the biodegradable resin composition which is excellent in heat resistance and impact resistance, and a biodegradable resin molding using the same.

本発明は、(A)ポリ乳酸樹脂、(B)ポリ乳酸樹脂以外の生分解性ポリエステル樹脂、(C)可塑剤、(D)有機核剤及び(E)無機核剤を含有する生分解性樹脂組成物、並びにこの生分解性樹脂組成物を用いた生分解性樹脂成形体の製造方法を提供する。   The present invention includes (A) polylactic acid resin, (B) biodegradable polyester resin other than polylactic acid resin, (C) plasticizer, (D) organic nucleating agent and (E) inorganic nucleating agent. A resin composition and a method for producing a biodegradable resin molded article using the biodegradable resin composition are provided.

本発明の生分解性樹脂組成物及びそれを用いて得られる生分解性樹脂成形体は、耐熱性、耐衝撃性に優れる。   The biodegradable resin composition of the present invention and the biodegradable resin molded product obtained using the same are excellent in heat resistance and impact resistance.

[(A)成分]
本発明の(A)成分はポリ乳酸樹脂である。ポリ乳酸樹脂とは、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーである。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられ、グリコール酸、ヒドロキシカプロン酸が好ましい。好ましいポリ乳酸の分子構造は、L−乳酸又はD−乳酸いずれかの単位20〜100モル%とそれぞれの対掌体の乳酸単位0〜20モル%からなるものである。また、乳酸とヒドロキシカルボン酸とのコポリマーは、L−乳酸又はD−乳酸いずれかの単位85〜100モル%とヒドロキシカルボン酸単位0〜15モル%からなるものである。これらのポリ乳酸樹脂は、L−乳酸、D−乳酸及びヒドロキシカルボン酸の中から必要とする構造のものを選んで原料とし、脱水重縮合することにより得ることができる。好ましくは、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド及びカプロラクトン等から必要とする構造のものを選んで開環重合することにより得ることができる。ラクチドにはL−乳酸の環状二量体であるL−ラクチド、D−乳酸の環状二量体であるD−ラクチド、D−乳酸とL−乳酸とが環状二量化したメソ−ラクチド及びD−ラクチドとL−ラクチドとのラセミ混合物であるDL−ラクチドがある。本発明ではいずれのラクチドも用いることができる。但し、主原料は、D−ラクチド又はL−ラクチドが好ましい。
[(A) component]
The component (A) of the present invention is a polylactic acid resin. The polylactic acid resin is polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and the like, and glycolic acid and hydroxycaproic acid are preferable. A preferred molecular structure of polylactic acid is composed of 20 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 20 mol% of each enantiomer. The copolymer of lactic acid and hydroxycarboxylic acid is composed of 85 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 15 mol% of hydroxycarboxylic acid units. These polylactic acid resins can be obtained by dehydrating polycondensation using L-lactic acid, D-lactic acid and hydroxycarboxylic acid as a raw material by selecting those having the required structure. Preferably, it can be obtained by ring-opening polymerization by selecting a desired structure from lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone. Lactide includes L-lactide which is a cyclic dimer of L-lactic acid, D-lactide which is a cyclic dimer of D-lactic acid, meso-lactide obtained by cyclic dimerization of D-lactic acid and L-lactic acid, and D-lactide. There is DL-lactide, which is a racemic mixture of lactide and L-lactide. Any lactide can be used in the present invention. However, the main raw material is preferably D-lactide or L-lactide.

市販されているポリ乳酸樹脂としては、例えば、三井化学(株)製、商品名レイシアシリーズ;ネイチャーワークス社製、商品名Nature worksシリーズ;トヨタ自動車(株)製、U’zシリーズ等が挙げられる。   Examples of commercially available polylactic acid resins include Mitsui Chemicals, Inc., trade name Lacia series; Nature Works, trade name Nature works series; Toyota Motor Corporation, U'z series, and the like. .

これらのポリ乳酸樹脂の中でも結晶化速度、物性の観点からL−乳酸高純度品である結晶グレードのもの、特に三井化学(株)製、LACEA H−400、LACEA H−100、LACEA H−440が好ましく、L−乳酸純度95%以上のポリ乳酸樹脂、特に三井化学(株)製、LACEA H−400、LACEA H−100がさらに好ましい。   Among these polylactic acid resins, from the viewpoint of crystallization speed and physical properties, L-lactic acid is a high-purity product, particularly a grade of L-lactic acid, particularly LACEA H-400, LACEA H-100, LACEA H-440, manufactured by Mitsui Chemicals. A polylactic acid resin having an L-lactic acid purity of 95% or more, particularly, LACEA H-400, LACEA H-100, manufactured by Mitsui Chemicals, Inc. is more preferable.

[(B)成分]
本発明の(B)成分は、ポリ乳酸樹脂以外の生分解性ポリエステル樹脂であり、JIS K6953(ISO14855)「制御された好気的コンポスト条件の好気的かつ究極的な生分解度及び崩壊度試験」に基づいた生分解性を有する、ポリ乳酸樹脂以外のポリエステル樹脂が好ましい。
[Component (B)]
The component (B) of the present invention is a biodegradable polyester resin other than polylactic acid resin, and JIS K6953 (ISO 14855) “Aerobic and ultimate degree of biodegradation and disintegration under controlled aerobic composting conditions. Polyester resins other than polylactic acid resin having biodegradability based on “test” are preferred.

本発明の(B)成分の例としては、脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる脂肪族ポリエステル、環状ラクトン類を開環重合した脂肪族ポリエステル、合成系脂肪族ポリエステル、菌体内で生合成される脂肪族ポリエステルなどが挙げられる。   Examples of the component (B) of the present invention include aliphatic polyesters obtained by condensing aliphatic diols and aliphatic dicarboxylic acids, aliphatic polyesters obtained by ring-opening polymerization of cyclic lactones, synthetic aliphatic polyesters, bacterial cells Aliphatic polyesters biosynthesized in

脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる脂肪族ポリエステルとしては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等の脂肪族ジオールと、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸の中から、それぞれ1種類以上選んで縮合重合して得られるものが好ましい。また必要に応じて、イソシアネート化合物やカーボネート結合形成化合物でジャンプアップして所望のポリマーを得ることができる。そのような例として、昭和高分子(株)製 ビオノーレシリーズ、三菱ガス化学(株)製 ユーペックシリーズ等が挙げられる。また、脂肪族ジオールと脂肪族ジカルボン酸と乳酸とを縮合して得られる脂肪族ポリエステルを用いてもよく、そのような例として三菱化学(株)製GS Plaシリーズ等が挙げられる。   As aliphatic polyester obtained by condensing aliphatic diol and aliphatic dicarboxylic acid, aliphatic diol such as ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, succinic acid, adipic acid, Those obtained by condensation polymerization by selecting one or more of aliphatic dicarboxylic acids such as suberic acid, sebacic acid and dodecanedioic acid are preferred. If necessary, a desired polymer can be obtained by jumping up with an isocyanate compound or a carbonate bond-forming compound. Examples thereof include the Bionore series manufactured by Showa Polymer Co., Ltd., the Upek series manufactured by Mitsubishi Gas Chemical Co., Ltd., and the like. Moreover, you may use the aliphatic polyester obtained by condensing an aliphatic diol, aliphatic dicarboxylic acid, and lactic acid, and the GS Pla series by Mitsubishi Chemical Corporation etc. are mentioned as such an example.

また、適量の芳香族ジカルボン酸を共重合した芳香族脂肪族ポリエステルも用いることができる。例えば、イーストマンケミカル社製 イースターバイオシリーズ、BASF社製 エコフレックスシリーズ、デュポン社製 バイオマックスシリーズ等が挙げられる。   An aromatic aliphatic polyester obtained by copolymerizing an appropriate amount of an aromatic dicarboxylic acid can also be used. Examples include the Easter Bio series manufactured by Eastman Chemical Co., the Ecoflex series manufactured by BASF, and the Biomax series manufactured by DuPont.

環状ラクトン類を開環重合した脂肪族ポリエステルとしては、ε−カプロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン等から選ばれる1種類以上の環状モノマーを重合したものが挙げられ、この例として、ダイセル化学工業(株)製セルグリーンシリーズ等が挙げられる。   Examples of the aliphatic polyester obtained by ring-opening polymerization of cyclic lactones include those obtained by polymerizing one or more cyclic monomers selected from ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone, and the like. As an example, Daicel Chemical Industries, Ltd. Cell Green Series and the like can be mentioned.

合成系脂肪族ポリエステルとしては、環状酸無水物とオキシラン類との共重合体等が挙げられる。上記環状酸無水物とオキシラン類との共重合体の例としては、無水コハク酸とエチレンオキサイド又はプロピレンオキサイドとの共重合体が挙げられ、具体例として、日本触媒(株)製ルナーレシリーズが挙げられる。   Examples of synthetic aliphatic polyesters include copolymers of cyclic acid anhydrides and oxiranes. Examples of the copolymer of the cyclic acid anhydride and the oxirane include a copolymer of succinic anhydride and ethylene oxide or propylene oxide. As a specific example, a lunale series manufactured by Nippon Shokubai Co., Ltd. Can be mentioned.

菌体内で生合成される脂肪族ポリエステルとしては、アルカリゲネスユートロファスを始めとする菌体内でアセチルコエンチームA(アセチルCoA)により生合成される脂肪族ポリエステルが挙げられる。具体例としては、三菱ガス化学(株)製 商標名:ビオグリーン(ポリヒドロキシブチレート)等が挙げられる。これらは、主にポリ−β−ヒドロキシ酪酸(ポリ3HB)であるが、プラスチックとしての実用特性向上のために、吉草酸ユニット(HV)を共重合し、ポリ(3HB−co−3HV)の共重合体にすることが工業的に有利である。HV共重合比は一般的に0〜40%である。さらに長鎖のヒドロキシアルカノエートを共重合してもよい。   Examples of the aliphatic polyester biosynthesized in the microbial cells include aliphatic polyesters biosynthesized by acetylcoenteam A (acetyl CoA) in the microbial cells including Alkaline geneus eutrophus. Specific examples include trade name: Biogreen (polyhydroxybutyrate) manufactured by Mitsubishi Gas Chemical Co., Ltd. These are mainly poly-β-hydroxybutyric acid (poly-3HB), but in order to improve practical properties as plastics, valeric acid units (HV) are copolymerized and poly (3HB-co-3HV) is co-polymerized. It is industrially advantageous to make it a polymer. The HV copolymerization ratio is generally 0 to 40%. Further, a long-chain hydroxyalkanoate may be copolymerized.

これらの(B)成分の中でも、耐熱性、耐衝撃性の観点から脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる脂肪族ポリエステルが好ましく、ポリブチレンサクシネート(昭和高分子(株)製 ビオノーレシリーズ)がより好ましい。   Among these components (B), an aliphatic polyester obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid is preferable from the viewpoint of heat resistance and impact resistance, and polybutylene succinate (manufactured by Showa Polymer Co., Ltd.) is preferable. Bionore series) is more preferred.

[(C)成分]
本発明の(C)成分は可塑剤である。本発明に用いられる可塑剤としては、特に限定されず、例えば、一般の生分解性樹脂に用いられるグリセリンジアセトモノラウレート、ジグリセリンテトラアセテート、アセチルクエン酸トリブチル等や、分子中に2個以上のエステル基を有するエチレンオキサイド付加物等が挙げられる。これらの中でも、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9、特に3〜9の化合物が好ましい。このような化合物としては、多価カルボン酸とポリエチレングリコールモノアルキルエーテルとのエステル、多価アルコールのアルキルエーテルエステル等が挙げられる。
[Component (C)]
Component (C) of the present invention is a plasticizer. The plasticizer used in the present invention is not particularly limited. For example, glycerin diacetomonolaurate, diglycerin tetraacetate, tributyl acetylcitrate and the like used in general biodegradable resins, and two or more in the molecule An ethylene oxide adduct having an ester group of Among these, compounds having 2 or more ester groups in the molecule and an average added mole number of ethylene oxide of 2 to 9, particularly 3 to 9 are preferable. Examples of such compounds include esters of polyvalent carboxylic acids and polyethylene glycol monoalkyl ethers, alkyl ether esters of polyhydric alcohols, and the like.

本発明に用いられる可塑剤の平均分子量は耐ブリード性及び耐揮発性の観点から、好ましくは250〜700であり、より好ましくは300〜600であり、更に好ましくは350〜550であり、特に好ましくは400〜500である。尚、平均分子量は、JIS K0070に記載の方法で鹸化価を求め、次式より計算で求めることができる。   The average molecular weight of the plasticizer used in the present invention is preferably from 250 to 700, more preferably from 300 to 600, still more preferably from 350 to 550, particularly preferably from the viewpoint of bleed resistance and volatile resistance. Is 400-500. The average molecular weight can be obtained by calculating the saponification value by the method described in JIS K0070 and calculating from the following formula.

平均分子量=56108×(エステル基の数)/鹸化価     Average molecular weight = 56108 × (number of ester groups) / saponification value

このような可塑剤の中では、生分解性樹脂成形体の成形性、耐衝撃性に優れる観点から、コハク酸とエチレンオキサイドの平均付加モル数が2〜4のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル等の多価カルボン酸とポリエチレングリコールモノメチルエーテルとのエステル;酢酸とグリセリンのエチレンオキサイド平均3〜9モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜9のポリエチレングリコールとのエステル等の多価アルコールのアルキルエーテルエステルがより好ましい。生分解性樹脂成形体の成形性、耐衝撃性及び可塑剤の耐ブリード性に優れる観点から、コハク酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とジエチレングリコールモノメチルエーテルとのエステル、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜6のポリエチレングリコールとのエステルがさらに好ましい。生分解性樹脂成形体の成形性、耐衝撃性及び可塑剤の耐ブリード性、耐揮発性及び耐刺激臭の観点から、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステルが特に好ましい。これらの可塑剤は単独又は2種以上組み合わせて用いてもよい。   Among such plasticizers, from the viewpoint of excellent moldability and impact resistance of the biodegradable resin molded article, an ester of succinic acid and polyethylene glycol monomethyl ether having an average added mole number of ethylene oxide of 2 to 4, Esters of adipic acid and polyethylene glycol monomethyl ether having an average addition mole number of ethylene oxide of 2 to 3, polyethylene glycol monomethyl ether of 1,3,6-hexanetricarboxylic acid and ethylene oxide having an average addition mole number of 2 to 3 Ester of polyvalent carboxylic acid such as ester of polyethylene glycol monomethyl ether; ester of acetic acid and glycerin in ethylene oxide average 3 to 9 mol adduct, polyethylene glycol having an average addition mole number of acetic acid and ethylene oxide in 4 to 9 Multivalent ester such as Alkyl ether esters of alcohol are more preferred. From the viewpoint of excellent moldability, impact resistance and plasticizer bleed resistance of the biodegradable resin molded product, an ester of a succinic acid and polyethylene glycol monomethyl ether having an average addition mole number of ethylene oxide of 2 to 3, adipic acid Esters of 1,3,6-hexanetricarboxylic acid and diethylene glycol monomethyl ether, esters of acetic acid and glycerol with an average of 3 to 6 moles of ethylene oxide adducts, average addition moles of acetic acid and ethylene oxide More preferred are esters with polyethylene glycol having a number of 4-6. From the viewpoints of moldability, impact resistance, plasticizer bleed resistance, volatilization resistance and pungent odor resistance of biodegradable resin moldings, esters of succinic acid and triethylene glycol monomethyl ether, ethylene oxide of acetic acid and glycerin Particularly preferred are esters with an average of 3-6 mole adducts. These plasticizers may be used alone or in combination of two or more.

尚、本発明のエステルは、可塑剤としての機能を十分発揮させる観点から、全てエステル化された飽和エステルであることが好ましい。   In addition, it is preferable that the ester of this invention is all the esterified saturated ester from a viewpoint of fully exhibiting the function as a plasticizer.

[(D)成分]
本発明の(D)成分は有機核剤である。本発明に用いられる有機核剤は、耐熱性、耐衝撃性、成形性さらには結晶化速度の観点から、有機核剤分子中にエステル基、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物が好ましく、水酸基を1つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物がより好ましく、水酸基を2つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物が更に好ましく、水酸基を2つ以上有し、エステル基又はアミド基を2つ以上有する脂肪族化合物が特に好ましい。
有機核剤の融点は、結晶化速度の観点から、65℃以上が好ましく、70℃〜220℃が好ましく、80〜190℃がより好ましい。
[(D) component]
The component (D) of the present invention is an organic nucleating agent. The organic nucleating agent used in the present invention has at least one group selected from an ester group, a hydroxyl group and an amide group in the organic nucleating agent molecule from the viewpoints of heat resistance, impact resistance, moldability and crystallization speed. Aliphatic compounds having two or more are preferable, aliphatic compounds having one or more hydroxyl groups and one or more ester groups or amide groups are more preferable, aliphatic compounds having two or more hydroxyl groups, and one ester group or amide group. An aliphatic compound having two or more is more preferable, and an aliphatic compound having two or more hydroxyl groups and two or more ester groups or amide groups is particularly preferable.
The melting point of the organic nucleating agent is preferably 65 ° C. or higher, preferably 70 ° C. to 220 ° C., and more preferably 80 to 190 ° C. from the viewpoint of crystallization speed.

本発明の有機核剤としては、脂肪族エステル、脂肪族アミド、脂肪酸金属塩等が挙げられ、脂肪族エステルとしては、ステアリン酸モノグリセライド、ベヘニン酸モノグリセライド等の脂肪酸エステル、12−ヒドロキシステアリン酸トリグリセライド等のヒドロキシ脂肪酸エステル;脂肪族アミドとしては12−ヒドロキシステアリン酸モノエタノールアミド等のヒドロキシ脂肪酸モノアミド、エチレンビスラウリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスカプリル酸アミド等の脂肪族ビスアミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のヒドロキシ脂肪酸ビスアミド;脂肪酸金属塩としては、12−ヒドロキシステアリン酸カルシウム等のヒドロキシ脂肪酸金属塩等が挙げられる。耐熱性、耐衝撃性、成形性さらには結晶化速度の観点から、12−ヒドロキシステアリン酸トリグリセライド、ベヘニン酸モノグリセライド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸モノエタノールアミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミドが好ましく、12−ヒドロキシステアリン酸トリグリセライド、エチレビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸モノエタノールアミドがより好ましく、12−ヒドロキシステアリン酸トリグリセライド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドがさらに好ましく、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドが特に好ましい。   Examples of the organic nucleating agent of the present invention include aliphatic esters, aliphatic amides, fatty acid metal salts and the like. Examples of the aliphatic esters include fatty acid esters such as stearic acid monoglyceride and behenic acid monoglyceride, 12-hydroxystearic acid triglyceride and the like. As the aliphatic amide, an aliphatic amide such as 12-hydroxystearic acid monoethanolamide, an aliphatic bisamide such as ethylene bislauric acid amide, ethylene biscapric acid amide, ethylene biscaprylic acid amide, ethylene bis-12 -Hydroxy fatty acid bisamides such as hydroxy stearic acid amide and hexamethylene bis 12-hydroxy stearic acid amide; as fatty acid metal salts, hydrides such as calcium 12-hydroxystearate Carboxymethyl fatty acid metal salts and the like. From the viewpoints of heat resistance, impact resistance, moldability and crystallization speed, 12-hydroxystearic acid triglyceride, behenic acid monoglyceride, ethylene bis 12-hydroxystearic acid amide, hexamethylene bis 12-hydroxystearic acid amide, 12- Hydroxy stearic acid monoethanolamide, ethylene biscaprylic acid amide, ethylene biscapric acid amide are preferred, 12-hydroxystearic acid triglyceride, ethylene bis 12-hydroxystearic acid amide, hexamethylene bis 12-hydroxystearic acid amide, 12-hydroxystearic acid amide Acid monoethanolamide is more preferable, 12-hydroxystearic acid triglyceride, ethylenebis12-hydroxystearic acid amide, hexamethyle More preferably bis 12-hydroxystearic acid amide, ethylenebis 12-hydroxystearic acid amide, hexamethylene bis hydroxystearic acid amide are particularly preferred.

[(E)成分]
本発明の(E)成分は無機核剤である。本発明に用いられる無機核剤としては、特に限定されないが、耐熱性、成形性、結晶化度の向上の観点から、タルク、スメクタイト、ベントナイト、ドロマイト、セリサイト、長石粉、カオリン、マイカ、モンモリロナイト等の珪酸塩が好ましい。これらの無機核剤の中でも生分解性樹脂成形体の結晶化速度、耐熱性、成形性の観点からタルクがより好ましい。
[(E) component]
The component (E) of the present invention is an inorganic nucleating agent. The inorganic nucleating agent used in the present invention is not particularly limited, but from the viewpoint of improving heat resistance, moldability and crystallinity, talc, smectite, bentonite, dolomite, sericite, feldspar powder, kaolin, mica, montmorillonite Silicates such as are preferred. Among these inorganic nucleating agents, talc is more preferable from the viewpoint of crystallization speed, heat resistance, and moldability of the biodegradable resin molded product.

[生分解性樹脂組成物]
本発明の生分解性樹脂組成物は、上記(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分を含有する。本発明の組成物中の(A)成分と(B)成分の重量比(A)/(B)は、耐衝撃性、耐熱性の観点から、50/50〜95/5が好ましい。特に、耐熱性、耐衝撃性の観点から60/40〜95/5がより好ましく、70/30〜95/5が更に好ましい。また、本発明の組成物中の(C)成分の含有量は、耐熱性、耐衝撃性、成形性、結晶化速度の観点から、(A)成分と(B)成分の合計量100重量部に対して、5〜70重量部が好ましく、10〜70重量部より好ましく、10〜50重量部がさらに好ましく、15〜45重量部が特に好ましい。また、本発明の組成物中の(D)成分の含有量は、耐熱性、耐衝撃性、成形性、結晶化速度の観点から、(A)成分と(B)成分の合計量100重量部に対して、0.1〜5重量部が好ましく、0.3〜5重量部がさらに好ましく、0.5〜3重量部が特に好ましい。また、本発明の組成物中の(E)成分の含有量は、耐熱性、耐衝撃性、成形性、結晶化速度の観点から、(A)成分と(B)成分の合計量100重量部に対して、0.1〜150重量部が好ましく、1〜100重量部がより好ましく、3〜80がさらに好ましく、5〜50重量部が特に好ましい。
[Biodegradable resin composition]
The biodegradable resin composition of the present invention contains the above component (A), component (B), component (C), component (D), and component (E). The weight ratio (A) / (B) of the component (A) and the component (B) in the composition of the present invention is preferably 50/50 to 95/5 from the viewpoint of impact resistance and heat resistance. In particular, from the viewpoint of heat resistance and impact resistance, 60/40 to 95/5 is more preferable, and 70/30 to 95/5 is still more preferable. The content of the component (C) in the composition of the present invention is 100 parts by weight of the total amount of the component (A) and the component (B) from the viewpoint of heat resistance, impact resistance, moldability, and crystallization speed. The amount is preferably 5 to 70 parts by weight, more preferably 10 to 70 parts by weight, still more preferably 10 to 50 parts by weight, and particularly preferably 15 to 45 parts by weight. The content of the component (D) in the composition of the present invention is 100 parts by weight of the total amount of the component (A) and the component (B) from the viewpoint of heat resistance, impact resistance, moldability, and crystallization speed. Is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 5 parts by weight, and particularly preferably 0.5 to 3 parts by weight. The content of the component (E) in the composition of the present invention is 100 parts by weight of the total amount of the component (A) and the component (B) from the viewpoints of heat resistance, impact resistance, moldability, and crystallization speed. Is preferably 0.1 to 150 parts by weight, more preferably 1 to 100 parts by weight, still more preferably 3 to 80, and particularly preferably 5 to 50 parts by weight.

一般的に、(E)成分のような無機物を樹脂に含有させた場合、耐衝撃性の低下を起こしやすい。これは、その組成物に衝撃が加わった場合、無機物と樹脂部との界面からクラックが発生しやすいためである。しかしながら、本発明の組成物では、(E)成分を含有させても、耐衝撃性の低下が見られるどころか、かえって耐衝撃性が大きく向上した。これは、(A)成分、(B)成分、(C)成分及び(D)成分それぞれが、なんらかの相互作用を起こすことにより、樹脂部分と(E)成分との界面状態を変化させていることによるものと考えられる。   Generally, when an inorganic material such as the component (E) is contained in a resin, impact resistance is likely to be lowered. This is because when an impact is applied to the composition, cracks are likely to occur from the interface between the inorganic substance and the resin part. However, in the composition of the present invention, even when the component (E) was contained, the impact resistance was greatly improved rather than a decrease in the impact resistance. This is because the (A) component, the (B) component, the (C) component, and the (D) component each change the interface state between the resin portion and the (E) component by causing some interaction. It is thought to be due to.

本発明の生分解性樹脂組成物は、上記の(A)〜(E)成分以外に、更に加水分解抑制剤を含有することが好ましい。加水分解抑制剤としては、カルボジイミド化合物、エポキシ化合物及びオキサゾリン化合物からなる群より選ばれる少なくとも1種の化合物が好ましい。
例えば、カルボジイミド化合物としては、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミド等のポリカルボジイミド;N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等のモノカルボジイミドが挙げられる。
The biodegradable resin composition of the present invention preferably further contains a hydrolysis inhibitor in addition to the components (A) to (E). The hydrolysis inhibitor is preferably at least one compound selected from the group consisting of carbodiimide compounds, epoxy compounds and oxazoline compounds.
For example, as the carbodiimide compound, poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3 , 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimides; monocarbodiimides such as N, N′-di-2,6-diisopropylphenylcarbodiimide.

ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績(株)製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミドはスタバクゾールP及びスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。
本発明の生分解性樹脂組成物における加水分解抑制剤の含有量は、耐加水分解性の観点から、(A)成分と(B)成分の合計量100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。
Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained by converting carbodilite LA-1 (manufactured by Nisshinbo Co., Ltd.) to poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5-trimethyl). Isopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide are stabuxol P and stabuxol P-100 (Rhein Chemie), and N, N'-di-2,6-diisopropylphenylcarbodiimide is stavaxol I (Rhein Chemie). ) Can be purchased and used separately.
Content of the hydrolysis inhibitor in the biodegradable resin composition of this invention is 0.05-3 with respect to 100 weight part of total amounts of (A) component and (B) component from a hydrolysis-resistant viewpoint. Part by weight is preferable, and 0.1 to 2 parts by weight is more preferable.

本発明の生分解性樹脂組成物は、上記の(A)〜(E)成分以外に、酸化防止剤又は滑剤等の他の成分を含有することができる。   The biodegradable resin composition of the present invention can contain other components such as an antioxidant or a lubricant in addition to the components (A) to (E).

本発明に用いられる酸化防止剤としては、ヒンダードフェノール又はフォスファイト系の酸化防止剤が挙げられる。酸化防止剤の含有量は、(A)成分と(B)成分の合計量100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。   Examples of the antioxidant used in the present invention include hindered phenols and phosphite antioxidants. The content of the antioxidant is preferably 0.05 to 3 parts by weight and more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B).

本発明に用いられる滑剤としては、例えば、ポリエチレンワックス等の炭化水素系ワックス類、ステアリン酸等の脂肪酸類、グリセロールエステル等の脂肪酸エステル類、ステアリン酸カルシウム等の金属石鹸類、モンタン酸ワックス等のエステルワックス類、アルキルベンゼンスルホン酸塩等の芳香環を有するアニオン型界面活性剤、ポリオキシエチレンアルキルエーテル硫酸塩等のアルキレンオキサイド付加部分を有するアニオン型界面活性剤等が挙げられる。これら滑剤の含有量は、(A)成分と(B)成分の合計量100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。   Examples of the lubricant used in the present invention include hydrocarbon waxes such as polyethylene wax, fatty acids such as stearic acid, fatty acid esters such as glycerol ester, metal soaps such as calcium stearate, and esters such as montanic acid wax. Examples thereof include anionic surfactants having an aromatic ring such as waxes and alkylbenzene sulfonates, and anionic surfactants having an alkylene oxide addition moiety such as polyoxyethylene alkyl ether sulfate. The content of these lubricants is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight, with respect to 100 parts by weight of the total amount of the components (A) and (B).

本発明の生分解性樹脂組成物は、上記以外の他の成分として、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、無機充填剤、防カビ剤、抗菌剤、発泡剤、難燃剤等を、本発明の目的達成を妨げない範囲で含有することができる。   The biodegradable resin composition of the present invention includes an antistatic agent, an antifogging agent, a light stabilizer, an ultraviolet absorber, a pigment, an inorganic filler, an antifungal agent, an antibacterial agent and a foaming agent as components other than those described above. In addition, flame retardants and the like can be contained as long as the object of the present invention is not hindered.

さらに、本発明の生分解性樹脂組成物は、(A)成分、(B)成分以外の他のポリエステル樹脂やポリカーボネート樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂等とブレンドすることもできる。   Furthermore, the biodegradable resin composition of the present invention includes (A) component, polyester resin other than component (B), polycarbonate resin, polystyrene resin, polyolefin resin, polyurethane resin, acrylic resin, phenol resin, epoxy resin, etc. Can also be blended with.

[生分解性樹脂成形体の製造方法]
本発明の生分解性樹脂成形体の製造方法は、特に限定されず、既知の方法、装置を用いることができ、成形体の形状に合わせ、射出成形、押出成形、プレス成形、ブロー成形、インフレーション成形、真空成形等を用いることができるが、より良好な物性を得る観点から、(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分を含有する生分解性樹脂組成物を、生分解性樹脂の融点(Tm)以上で混合する工程(1)と、生分解性樹脂組成物のガラス転移温度(Tg)以上Tm未満の温度で熱処理する工程(2)を含むことが好ましい。尚、生分解性樹脂のTmは、(A)成分のTmと(B)成分のTmのうち、高い方のTmを採用するものとする。
[Method for producing biodegradable resin molded article]
The method for producing the biodegradable resin molded body of the present invention is not particularly limited, and known methods and apparatuses can be used. According to the shape of the molded body, injection molding, extrusion molding, press molding, blow molding, inflation Biodegradation containing (A) component, (B) component, (C) component, (D) component and (E) component from the viewpoint of obtaining better physical properties, although molding, vacuum molding, etc. can be used A step (1) of mixing the biodegradable resin composition at a melting point (Tm) or higher of the biodegradable resin, and a step (2) of heat-treating at a temperature not lower than the glass transition temperature (Tg) of the biodegradable resin composition and lower than Tm. It is preferable to contain. In addition, Tm of biodegradable resin shall employ | adopt Tm of the higher one among Tm of (A) component, and Tm of (B) component.

(A)成分のポリ乳酸樹脂がレイシアH−400(三井化学(株)製)の場合、Tmは166℃であり、(B)成分がポリブチレンサクシネート樹脂(昭和高分子(株)製、ビオノーレ #1001)の場合では、Tmは114℃である。工程(1)の温度は、均一に溶融混合する観点及び各成分の劣化を抑制する観点から、170〜250℃が好ましく、170〜230℃がより好ましく、170〜210℃がさらに好ましい。   When the polylactic acid resin of component (A) is Lacia H-400 (manufactured by Mitsui Chemicals), Tm is 166 ° C., and component (B) is polybutylene succinate resin (manufactured by Showa Polymer Co., Ltd.) In the case of Bionore # 1001), Tm is 114 ° C. The temperature of the step (1) is preferably 170 to 250 ° C, more preferably 170 to 230 ° C, and further preferably 170 to 210 ° C from the viewpoint of uniformly melting and mixing and suppressing the deterioration of each component.

工程(1)の時間は、工程(1)により得られる生分解性樹脂組成物中の各成分が分散していればよく、特に制限されないが、各成分の劣化を抑制する観点及び経済性の観点から、0.1〜20分が好ましく、0.1〜10分がより好ましく、0.1〜5分がさらに好ましい。   The time of the step (1) is not particularly limited as long as each component in the biodegradable resin composition obtained by the step (1) is dispersed, but it is economical and economical. From the viewpoint, it is preferably 0.1 to 20 minutes, more preferably 0.1 to 10 minutes, and further preferably 0.1 to 5 minutes.

工程(2)の温度は、生分解性樹脂組成物のTg以上であり、好ましくは50〜120℃、より好ましくは60〜100℃である。本発明の効果は、工程(2)により熱処理を行い、ベース樹脂が結晶化することによってさらに発揮され、耐熱性、耐衝撃性の向上が大きくなる。また、感温性のほか、耐ブロッキング性、耐溶剤性等の向上も、結晶化することによって効果を十分に発揮することができる。   The temperature of a process (2) is more than Tg of a biodegradable resin composition, Preferably it is 50-120 degreeC, More preferably, it is 60-100 degreeC. The effect of the present invention is further exhibited when the base resin is crystallized by performing the heat treatment in the step (2), and the heat resistance and impact resistance are greatly improved. Further, in addition to temperature sensitivity, the improvement of blocking resistance, solvent resistance, etc. can be sufficiently exerted by crystallization.

工程(2)の時間は、特に制限されないが、成形サイクル向上の観点から、1〜120秒が好ましく、1〜60秒がより好ましく、1〜30秒がさらに好ましい。   The time of the step (2) is not particularly limited, but is preferably 1 to 120 seconds, more preferably 1 to 60 seconds, and further preferably 1 to 30 seconds from the viewpoint of improving the molding cycle.

尚、生分解性樹脂の融点(Tm)は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる値である。また、生分解性樹脂組成物のガラス転移温度(Tg)は、JIS−K7105に基づいて、動的粘弾性測定装置(アイティー計測制御製 DVA-200)にて、周波数50Hz、昇温速度2℃/分にて測定し、−20〜80℃の温度領域における損失弾性率(E’’)のピークトップから求められる値である。   In addition, melting | fusing point (Tm) of biodegradable resin is a value calculated | required from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121. Further, the glass transition temperature (Tg) of the biodegradable resin composition is a frequency of 50 Hz and a temperature rising rate of 2 with a dynamic viscoelasticity measuring device (DVA-200 manufactured by IT Measurement Control) based on JIS-K7105. It is a value determined from the peak top of the loss elastic modulus (E ″) in the temperature range of −20 to 80 ° C., measured at ° C./min.

本発明の生分解性樹脂成形体を得る方法の中で、例えば、射出成形法としては、本発明の生分解性樹脂組成物を、2軸押出機や加圧型ニーダー等で混合してペレット等の形状に整え、それを乾燥後に射出成形機で成形する方法が挙げられる。また、押出成形法としては、本発明の生分解性樹脂組成物を、2軸押出機や加圧型ニーダー等で混合してペレット等の形状に整え、それを乾燥後に押出機でシート又はフィルムに成形するか、押出機で混合後、直接シート又はフィルムに成形する方法が挙げられる。   Among the methods for obtaining the biodegradable resin molded body of the present invention, for example, as an injection molding method, the biodegradable resin composition of the present invention is mixed with a twin-screw extruder, a pressure type kneader, etc., pellets, etc. There is a method in which the shape is adjusted, and after drying, it is molded by an injection molding machine. Moreover, as an extrusion molding method, the biodegradable resin composition of the present invention is mixed with a twin-screw extruder, a pressure kneader or the like to prepare a pellet or the like, and after drying, it is formed into a sheet or film with an extruder. The method of shape | molding or mixing with an extruder, and shape | molding directly to a sheet | seat or a film is mentioned.

射出成形を行う場合においては、熱可塑性樹脂用の一般射出成形法、ガスアシスト成形法、射出圧縮成形法等の射出成形法を用いることができる。その他目的に合わせて、上記の方法以外でインモールド成形法、ガスプレス成形法、2色成形法、サンドイッチ成形法等を用いることもできる。   In the case of performing the injection molding, an injection molding method such as a general injection molding method for a thermoplastic resin, a gas assist molding method, or an injection compression molding method can be used. Other than the above methods, an in-mold molding method, a gas press molding method, a two-color molding method, a sandwich molding method, or the like can also be used according to other purposes.

射出成形装置は一般射出成形機、ガスアシスト成形機及び射出圧縮成形機等と、これらに用いられる成形用金型及び付帯機器、金型温度制御装置及び原料乾燥装置等から構成される。成形条件は射出シリンダー内での樹脂の熱分解を避けるため、溶融樹脂温度を150℃〜250℃の範囲で成形することが好ましい。   The injection molding apparatus includes a general injection molding machine, a gas assist molding machine, an injection compression molding machine, and the like, and a molding die and ancillary equipment used therefor, a mold temperature control device, a raw material drying device, and the like. The molding conditions are preferably such that the molten resin temperature is in the range of 150 ° C. to 250 ° C. in order to avoid thermal decomposition of the resin in the injection cylinder.

射出成形で得られた生分解性樹脂成形体を非晶状態で得る場合は、成形サイクル(型閉〜射出〜保圧〜冷却〜型開〜取出)を短くする点から金型温度はできるだけ低温とすることが好ましい。一般には15℃〜55℃で、チラーを用いることも望ましい。しかし、後結晶化時の成形体の収縮及び反り、変形を抑える点ではこの範囲で高温とすることが有利である。   When obtaining a biodegradable resin molding obtained by injection molding in an amorphous state, the mold temperature is as low as possible from the viewpoint of shortening the molding cycle (mold closing-injection-holding pressure-cooling-mold opening-removal). It is preferable that Generally, it is also desirable to use a chiller at 15 to 55 ° C. However, a high temperature within this range is advantageous in terms of suppressing shrinkage, warping, and deformation of the molded body during post-crystallization.

また、成形体の耐熱性、耐衝撃性の観点から、成形時の金型内、又は/ 及び、金型から取り出した後に、工程(2)により熱処理を行い、結晶化することが有効である。金型内で結晶化させる場合、加熱した金型内に溶融樹脂を充填した後、一定時間金型内で保持する。金型温度としては、ベース樹脂の結晶化をすばやく達成させるという観点から、50℃〜120℃が好ましく、60℃〜100℃がより好ましい。金型内で保持する時間としては、成形サイクル向上の観点から、1〜120秒が好ましく、1〜60秒がさらに好ましく、1〜30秒が特に好ましい。   Further, from the viewpoint of heat resistance and impact resistance of the molded body, it is effective to crystallize by performing heat treatment in the step (2) after taking out from the mold and / or from the mold during molding. . When crystallization is performed in the mold, the molten resin is filled in the heated mold and then held in the mold for a certain time. The mold temperature is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C., from the viewpoint of quickly achieving crystallization of the base resin. The holding time in the mold is preferably 1 to 120 seconds, more preferably 1 to 60 seconds, and particularly preferably 1 to 30 seconds from the viewpoint of improving the molding cycle.

また、金型から成形体を取り出した後に工程(2)により結晶化させることもできる。熱処理温度は、50〜120℃の範囲が好ましく、60〜100℃の範囲がより好ましい。熱処理温度が50℃より低い場合、成形工程において結晶化の進行が遅く、120℃より高い場合は、成形体の冷却時において変形や収縮を生じる可能性がある。加熱時間は組成、及び熱処理温度によって適宜決められるが、例えば、70℃の場合は5〜300秒の熱処理を行う。   Moreover, after taking out a molded object from a metal mold | die, it can also crystallize by a process (2). The heat treatment temperature is preferably in the range of 50 to 120 ° C, more preferably in the range of 60 to 100 ° C. When the heat treatment temperature is lower than 50 ° C., the progress of crystallization is slow in the molding process, and when it is higher than 120 ° C., deformation or shrinkage may occur during cooling of the molded body. The heating time is appropriately determined depending on the composition and the heat treatment temperature. For example, in the case of 70 ° C., the heat treatment is performed for 5 to 300 seconds.

結晶化の方法としては、事前に温度の上げられた金型で成形し、金型内で結晶化させる方法や、成形後に金型の温度を上げ金型内で結晶化させる方法、あるいは、成形体を非晶状態で金型から取り出した後、熱風、蒸気、温水、遠赤外線ヒーター、IHヒーターなどで結晶化させる方法が挙げられる。この時、成形体の変形を防止するために、金型、樹脂型などで固定することが好ましい。また、生産性を考慮に入れて、梱包した状態で熱処理を行うこともできる。   As a method of crystallization, a method in which a mold is heated in advance and then crystallized in the mold, a method in which the temperature of the mold is increased after molding and the crystal is crystallized in the mold, or a molding is performed. Examples include a method in which a body is taken out from a mold in an amorphous state and then crystallized with hot air, steam, hot water, a far-infrared heater, an IH heater, or the like. At this time, in order to prevent deformation of the molded body, it is preferable to fix with a mold, a resin mold or the like. Further, in consideration of productivity, heat treatment can be performed in a packed state.

実施例1〜10
ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)(以下PLAという)と、ポリブチレンサクシネート(昭和高分子(株)製、ビオノーレ#1001)(以下PBSという)と、可塑剤(コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル)と、有機核剤[エチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス H)]と、無機核剤[タルク(日本タルク(株)製 、Micro Ace P−6)]、更に必要により加水分解抑制剤[カルボジライトLA−1(日清紡績(株)製)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)]を、表1に示す割合で、5L加圧型ニーダー(森山製作所製加圧ニーダー)を用い、180〜200℃にて溶融混合し樹脂組成物のペレットを得た。
比較例1〜9
PLA、PBS、可塑剤、有機核剤、無機核剤、加水分解抑制剤を、表2に示す割合で用いる以外は実施例1〜10と同様にして樹脂組成物のペレットを得た。
Examples 1-10
A polylactic acid resin (manufactured by Mitsui Chemicals, LACEA H-400) (hereinafter referred to as PLA), polybutylene succinate (manufactured by Showa Polymer Co., Ltd., Bionore # 1001) (hereinafter referred to as PBS), and a plasticizer ( Diester of succinic acid and triethylene glycol monomethyl ether), organic nucleating agent [ethylene bis 12-hydroxystearic acid amide (Nippon Kasei Co., Ltd., Sripacks H)], and inorganic nucleating agent [talc (Nippon Talc Co., Ltd.) ), Micro Ace P-6)], and if necessary, hydrolysis inhibitors [Carbodilite LA-1 (Nisshinbo Co., Ltd.), poly (4,4′-dicyclohexylmethanecarbodiimide)] are shown in Table 1. Using a 5L pressure kneader (Moriyama Seisakusho Kneader) at a rate, melt-mixed at 180 to 200 ° C. To obtain the door.
Comparative Examples 1-9
Resin composition pellets were obtained in the same manner as in Examples 1 to 10 except that PLA, PBS, plasticizer, organic nucleating agent, inorganic nucleating agent, and hydrolysis inhibitor were used in the proportions shown in Table 2.

実施例及び比較例で得られたペレットは、70℃×24時間減圧下で乾燥し、水分量を500ppm以下とした。そのペレットを200℃、20秒の条件で溶融混練し、射出成形機(日本製鋼所製J75E型射出成形機)を用いて、金型温度80℃、金型保持時間60秒での射出成形を行い、生分解性樹脂成形体を作製した。   The pellets obtained in the examples and comparative examples were dried under reduced pressure at 70 ° C. for 24 hours to adjust the water content to 500 ppm or less. The pellets are melt-kneaded at 200 ° C. for 20 seconds, and injection molding is performed at a mold temperature of 80 ° C. and a mold holding time of 60 seconds using an injection molding machine (J75E type injection molding machine manufactured by Nippon Steel). And a biodegradable resin molded body was produced.

それぞれの生分解性樹脂成形体に対し、下記の方法で曲げ弾性率、荷重たわみ温度、アイゾット衝撃強さ、引張伸び、結晶化度を測定した。また、下記方法で射出成形性を評価した。これらの結果を表1及び表2に示す。   For each biodegradable resin molded product, the flexural modulus, the deflection temperature under load, the Izod impact strength, the tensile elongation, and the crystallinity were measured by the following methods. Moreover, the injection moldability was evaluated by the following method. These results are shown in Tables 1 and 2.

<曲げ弾性率>
JIS K7171に基づいて、長さ80mm×幅10mm×厚さ4mmの試験片を作製し、テンシロン(オリエンテック製テンシロン万能試験機RTC−1210A)を用いて曲げ弾性率を測定した。
<Bending elastic modulus>
Based on JIS K7171, the test piece of length 80mm * width 10mm * thickness 4mm was produced, and the bending elastic modulus was measured using Tensilon (Orientec Tensilon universal testing machine RTC-1210A).

<荷重たわみ温度>
JIS K7191に基づいて、長さ80mm×幅10mm×厚さ4mmの試験片を作製し、荷重たわみ温度測定装置(東洋精機製ヒートディステーションテスター)を用いて荷重たわみ温度を、荷重0.45MPaで測定した。
<Load deflection temperature>
Based on JIS K7191, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was prepared, and the deflection temperature under load was measured using a load deflection temperature measuring device (heat dissipation tester manufactured by Toyo Seiki Co., Ltd.) at a load of 0.45 MPa. It was measured.

<アイゾット衝撃強さ>
JIS K7110に基づいて、2号A(幅5mm)試験片を作製し、衝撃試験機(上島製作所製U−F INPACT TESTER)を用いてアイゾット衝撃強さを測定した。
<Izod impact strength>
Based on JIS K7110, a No. 2A (5 mm wide) test piece was prepared, and Izod impact strength was measured using an impact tester (U-F INPACT TESTER manufactured by Ueshima Seisakusho).

<引張伸び>
JIS K7113に基づいて、1号形試験片を作製し、テンシロン(オリエンテック製テンシロン万能試験機RTC−1210A)を用いて引張伸びを50mm/分の引張速度で測定した。
<Tensile elongation>
Based on JIS K7113, No. 1 type test piece was prepared, and tensile elongation was measured at a tensile rate of 50 mm / min using Tensilon (Orientec Tensilon Universal Tester RTC-1210A).

<結晶化度>
成形後の試験片について、広角X線回折測定装置(理学電機製RINT2500VPC,光源CuKα,管電圧40kV,管電流120mA)を使用し、2θ=5〜30°の範囲の非晶及び結晶のピーク面積を解析して結晶化度を求めた。
<Crystallinity>
About the test piece after shaping | molding, using the wide angle X-ray-diffraction measuring apparatus (RINT2500VPC by Rigaku Corporation, light source CuK (alpha), tube voltage 40kV, tube current 120mA), the peak area of the amorphous and crystal | crystallization of the range of 2 (theta) = 5-30 degrees Were analyzed to determine the crystallinity.

<射出成形性>
射出成形において、保圧時間15秒、冷却時間45秒で、温度80℃の金型での射出を行い、成形体の金型からの離型性を以下の基準で評価した。
○:変形もなく容易に離型できる、
△:離型するが、変形する、
×:離型しない(成形できない)
<Injection moldability>
In injection molding, injection was performed with a mold having a pressure holding time of 15 seconds and a cooling time of 45 seconds, and a temperature of 80 ° C., and the releasability of the molded body from the mold was evaluated according to the following criteria.
○: Can be easily released without deformation.
Δ: Mold is released but deformed
×: Not released (cannot be molded)

尚、比較例1〜5および7〜9においては、成形体の押し出しピンによる変形や、また、柔らかい状態のままであり金型から離型しないといった状態であった。これは、生分解性樹脂成形体の結晶化が十分でないことを意味する。物性比較を行うために、試験片を得る必要があるので、これらについては金型温度80℃、金型保持時間300秒での射出成形を行い生分解性樹脂成形体を得た。またさらに、前記条件においても評価が△または×の生分解性樹脂組成物については、金型温度30℃、金型保持時間60秒の金型での射出を行い、非晶状態で生分解性樹脂成形体を得た。   In Comparative Examples 1 to 5 and 7 to 9, there were deformations due to the extrusion pins of the molded body, and a state in which the molded body remained soft and was not released from the mold. This means that the crystallization of the biodegradable resin molding is not sufficient. In order to compare the physical properties, it is necessary to obtain test pieces. For these, injection molding was performed at a mold temperature of 80 ° C. and a mold holding time of 300 seconds to obtain a biodegradable resin molded body. Furthermore, for a biodegradable resin composition evaluated as Δ or × under the above conditions, injection is performed in a mold having a mold temperature of 30 ° C. and a mold holding time of 60 seconds, and biodegradable in an amorphous state. A resin molded body was obtained.

Figure 0004762683
Figure 0004762683

Figure 0004762683
Figure 0004762683

*1 PLA:ポリ乳酸(三井化学(株)製、LACEA H−400)
*2 PBS:ポリブチレンサクシネート(昭和高分子(株)製、Bionolle #1001)
*3 可塑剤: コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
*4 有機核剤:エチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス H)
*5 無機核剤:タルク(日本タルク(株)製 、Micro Ace P−6)
*6 加水分解抑制剤:ポリカルボジイミド(日清紡績(株)製、カルボジライトLA−1)
* 1 PLA: Polylactic acid (LACEA H-400, manufactured by Mitsui Chemicals, Inc.)
* 2 PBS: Polybutylene succinate (manufactured by Showa Polymer Co., Ltd., Biolole # 1001)
* 3 Plasticizer: Diester of succinic acid and triethylene glycol monomethyl ether
* 4 Organic nucleating agent: Ethylene bis 12-hydroxystearic acid amide (Nihon Kasei Co., Ltd., SLIPAX H)
* 5 Inorganic nucleating agent: Talc (Nihon Talc Co., Ltd., Micro Ace P-6)
* 6 Hydrolysis inhibitor: Polycarbodiimide (Nisshinbo Co., Ltd., Carbodilite LA-1)

Claims (3)

(A)ポリ乳酸樹脂、
(B)ポリ乳酸樹脂以外の生分解性ポリエステル樹脂、
(C)多価カルボン酸とポリエチレングリコールモノアルキルエーテルとのエステルからなる、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9の化合物、
(D)分子中にエステル基、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物及び
(E)無機核剤を含有する生分解性樹脂組成物((A)成分/(B)成分重量比=50/50〜95/5であり、且つ(A)成分と(B)成分の合計量100重量部に対して、(C)成分を5〜70重量部、(D)成分を0.1〜5重量部、(E)成分を0.1〜150重量部含有する)を、
生分解性樹脂の融点(Tm)以上で混合する工程(1)と、生分解性樹脂組成物のガラス転移温度(Tg)以上100℃以下の温度で熱処理する工程(2)を含む生分解性樹脂成形体の製造方法。
(A) polylactic acid resin,
(B) Biodegradable polyester resin other than polylactic acid resin,
(C) a compound composed of an ester of a polyvalent carboxylic acid and a polyethylene glycol monoalkyl ether , having two or more ester groups in the molecule, and an average added mole number of ethylene oxide of 2 to 9,
(D) a biodegradable resin composition ((A) component containing an aliphatic compound having at least two groups selected from an ester group, a hydroxyl group and an amide group in the molecule, and (E) an inorganic nucleating agent. / (B) component weight ratio = 50/50 to 95/5, and 5 to 70 parts by weight of component (C) with respect to 100 parts by weight of the total amount of component (A) and component (B), D) 0.1 to 5 parts by weight of component and (E) 0.1 to 150 parts by weight of component)
Biodegradability comprising a step (1) of mixing at a melting point (Tm) or higher of the biodegradable resin and a step (2) of heat-treating at a temperature of 100 ° C. or higher and a glass transition temperature (Tg) of the biodegradable resin composition Manufacturing method of resin molding.
(B)成分が、脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる脂肪族ポリエステルである請求項1記載の生分解性樹脂成形体の製造方法。   The method for producing a biodegradable resin molded article according to claim 1, wherein the component (B) is an aliphatic polyester obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid. (E)成分が、珪酸塩である請求項1又は2記載の生分解性樹脂成形体の製造方法。   (E) A component is a silicate, The manufacturing method of the biodegradable resin molding of Claim 1 or 2.
JP2005324353A 2005-11-09 2005-11-09 Biodegradable resin composition Expired - Fee Related JP4762683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324353A JP4762683B2 (en) 2005-11-09 2005-11-09 Biodegradable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324353A JP4762683B2 (en) 2005-11-09 2005-11-09 Biodegradable resin composition

Publications (2)

Publication Number Publication Date
JP2007131690A JP2007131690A (en) 2007-05-31
JP4762683B2 true JP4762683B2 (en) 2011-08-31

Family

ID=38153609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324353A Expired - Fee Related JP4762683B2 (en) 2005-11-09 2005-11-09 Biodegradable resin composition

Country Status (1)

Country Link
JP (1) JP4762683B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075775A1 (en) * 2006-12-19 2008-06-26 Kao Corporation Polylactic acid resin composition and method for producing polylactic acid resin molded body
JP5347238B2 (en) * 2007-05-15 2013-11-20 三菱化学株式会社 Thermoplastic resin composition and resin molded product
JP2009091453A (en) * 2007-10-09 2009-04-30 Mitsubishi Chemicals Corp Resin composition and injection-molded product
JP5009218B2 (en) * 2008-04-08 2012-08-22 花王株式会社 Polylactic acid resin composition
JP5556010B2 (en) * 2008-12-16 2014-07-23 株式会社リコー Thermoplastic resin molding method and molded article
JP5556009B2 (en) * 2008-12-16 2014-07-23 株式会社リコー Molding method and molded article of resin composition
KR100974639B1 (en) * 2009-06-30 2010-08-09 주식회사 삼우티씨씨 Biodegradable resin composition for film and pot, biodegradable film and pot and manufacturing method thereof
BE1019289A5 (en) * 2010-04-13 2012-05-08 Futerro Sa COMPOSITION OF POLYMERS FROM RENEWABLE RESOURCES.
JP6386910B2 (en) 2011-10-24 2018-09-05 ピュラック バイオケム ビー. ブイ. Composition comprising PLLA and PDLA
CN103554856B (en) * 2013-10-22 2015-10-21 山西省化工研究所(有限公司) A kind of nucleating agent in polylactic acid production composition and application thereof
CN106009561B (en) * 2016-05-23 2018-02-23 威海两岸环保新材料科技有限公司 Complete biodegradable weeding cloth and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226501A (en) * 1999-02-03 2000-08-15 Daicel Chem Ind Ltd Biodegradable resin composition excellent in impact resistance
JP3773501B2 (en) * 2003-04-25 2006-05-10 旭電化工業株式会社 Polylactic acid-based resin composition, molded article and method for producing the same
JP4145193B2 (en) * 2003-05-21 2008-09-03 クラシエホールディングス株式会社 Manufacturing method of heat-set molded product
JP2004359828A (en) * 2003-06-05 2004-12-24 Toyota Motor Corp Lactic acid-based polyester composition and its molded article
JP2005133039A (en) * 2003-10-31 2005-05-26 Toray Ind Inc Molded article of aliphatic polyester resin composition

Also Published As

Publication number Publication date
JP2007131690A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4762683B2 (en) Biodegradable resin composition
JP5751250B2 (en) Polylactic acid film
EP1674528B1 (en) Aliphatic polyester composition and moulded article
JP4611214B2 (en) Biodegradable resin composition
US20130137802A1 (en) Resin composition
US20160185955A1 (en) Heat Resistant Polylactic Acid
JP5556010B2 (en) Thermoplastic resin molding method and molded article
JP5143374B2 (en) Biodegradable resin composition
JPWO2013038770A1 (en) the film
JP2007126589A (en) Injection-molded article
JP2007217513A (en) Polylactic acid resin composition and molded product
JP2007145361A (en) Fermented soybean container
JP6556427B2 (en) Biodegradable resin composition
JP4034596B2 (en) Injection molded body
JP3984440B2 (en) Resin composition, film and disposal method
JP5556009B2 (en) Molding method and molded article of resin composition
JP4863684B2 (en) Porous sheet
JP4117147B2 (en) Injection molded body
JP5095487B2 (en) Crystalline polylactic acid resin composition and molded article comprising the same
US20090054602A1 (en) Thermoformed articles and compositions of poly (hydroxyalkanoic acid) and polyoxymethylene
JP2007112868A (en) Porous sheet
JP2006143829A (en) Polylactic acid-based resin molding and method for producing the same
JP3860163B2 (en) Aliphatic polyester resin composition and film
US8182734B1 (en) Thermoformed articles and compositions of poly(hydroxyalkanoic acid) and polyoxymethylene
JP2009242520A (en) Polylactic acid resin composition and molded article obtained by molding the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees