JP4759258B2 - Coating film, film forming method and film forming apparatus - Google Patents

Coating film, film forming method and film forming apparatus Download PDF

Info

Publication number
JP4759258B2
JP4759258B2 JP2004354740A JP2004354740A JP4759258B2 JP 4759258 B2 JP4759258 B2 JP 4759258B2 JP 2004354740 A JP2004354740 A JP 2004354740A JP 2004354740 A JP2004354740 A JP 2004354740A JP 4759258 B2 JP4759258 B2 JP 4759258B2
Authority
JP
Japan
Prior art keywords
diamond fine
fine particle
liquid composition
particle film
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004354740A
Other languages
Japanese (ja)
Other versions
JP2006159094A (en
Inventor
昌彦 内山
秀俊 本宮
由久 渡部
弘之 坂上
隆行 高萩
正三 新宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Rorze Corp
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Rorze Corp
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Rorze Corp, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004354740A priority Critical patent/JP4759258B2/en
Publication of JP2006159094A publication Critical patent/JP2006159094A/en
Application granted granted Critical
Publication of JP4759258B2 publication Critical patent/JP4759258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダイヤモンド微粒子を分散させた液状組成物をノズルから吐出することで被塗物に塗布してダイヤモンド微粒子膜の膜厚を制御する方法、及び、前記ダイヤモンド微粒子膜の形成装置に関する。The present invention relates to a method for controlling the film thickness of a diamond fine particle film by discharging a liquid composition in which diamond fine particles are dispersed from a nozzle and applying the liquid composition to an object to be coated, and an apparatus for forming the diamond fine particle film.

半導体集積回路素子のうち、特に超LSIデバイスでは、配線の微細化・高集積化に伴い、デバイス中に作られる配線を通る信号の遅延が、消費電力を低下させようという問題とともに大きな課題となっている。特に高速ロジックデバイスでは、配線の抵抗や分布容量によるRC遅延が最大の課題となっており、中でも分布容量を小さくするために、配線間の絶縁材料に低誘電率の材料を用いることが必要とされている。   Among semiconductor integrated circuit elements, especially in VLSI devices, signal miniaturization and higher integration, the delay of signals passing through the wiring created in the device becomes a major issue as well as the problem of reducing power consumption. ing. Particularly in high-speed logic devices, RC delay due to wiring resistance and distributed capacitance is the biggest issue, and in particular, in order to reduce the distributed capacitance, it is necessary to use a low dielectric constant material for the insulating material between the wires. Has been.

従来、半導体集積回路内の絶縁膜としては、シリカ膜(SiO2)、酸化タンタル膜(Ta)、酸化アルミニウム膜(Al23)、窒化膜(Si34)などが使用され、特に多層配線間の絶縁材料として、窒化膜、有機物やフッ素を添加したシリカ膜が低誘電率膜として使用され、或いは、検討されている。また、さらなる低誘電率化のための絶縁膜として、フッ素樹脂、発泡性有機シリカ膜を焼成したシリカ膜、シリカ微粒子を堆積したポーラスシリカ膜などが検討されている。 Conventionally, as an insulating film in a semiconductor integrated circuit, a silica film (SiO 2 ), a tantalum oxide film (Ta 2 O 5 ), an aluminum oxide film (Al 2 O 3 ), a nitride film (Si 3 N 4 ), or the like has been used. In particular, as an insulating material between multilayer wirings, a nitride film, a silica film to which organic matter or fluorine is added is used or studied as a low dielectric constant film. Further, as an insulating film for further lowering the dielectric constant, a fluororesin, a silica film obtained by firing a foamable organic silica film, a porous silica film on which silica fine particles are deposited, and the like have been studied.

他方、ダイヤモンドは熱伝導度や機械的強度が、他の材料より優れているため、集積度が高く発熱量の多い半導体デバイスには、放熱に好適な材料として、近年、研究されている。例えば、特開平6−97671号公報では、スパッタ法、イオンプレーティング法、クラスターイオンビーム法などの製膜法により、厚さ5μmのダイヤモンド膜を提案している。また、特開平9−263488号公報では、ダイヤモンド微粒子を基板上に散布し、これを核にCVD(化学蒸着堆積)法により炭素を供給してダイヤモンド結晶を成長させる製膜法を提案している。   On the other hand, since diamond has better thermal conductivity and mechanical strength than other materials, it has recently been studied as a material suitable for heat dissipation for semiconductor devices having a high degree of integration and a large calorific value. For example, Japanese Patent Laid-Open No. 6-97671 proposes a diamond film having a thickness of 5 μm by a film forming method such as a sputtering method, an ion plating method, or a cluster ion beam method. Japanese Patent Laid-Open No. 9-263488 proposes a film forming method in which diamond fine particles are dispersed on a substrate and carbon is supplied to the core by CVD (chemical vapor deposition) to grow diamond crystals. .

本発明者らは、すでに特開2002−110870号公報に提示したように、ポーラス構造のダイヤモンド微粒子膜によって比誘電率2.72を得た。また、特開平2002−289604号公報では、ヘキサクロロジシロキサン処理によりダイヤモンド微粒子間を架橋結合させて強化する方法を提案したが、この処理によっても、同等な比誘電率が得られることを示した。さらに本発明者らは、ダイヤモンド微粒子を精製することにより、比誘電率2.1が得られたことを学会で発表している。
特開平6−97671号公報 特開平9−025110号公報 特開平9−263488号公報 特開2002−110870号公報 特開2002−289604号公報 第50回応用物理学関係連合講演会要旨集N0.2,p193(2003)
The present inventors have obtained a dielectric constant of 2.72 by using a porous diamond fine particle film as already disclosed in JP-A No. 2002-110870. Japanese Patent Application Laid-Open No. 2002-289604 has proposed a method in which diamond fine particles are cross-linked and strengthened by hexachlorodisiloxane treatment, and it has been shown that equivalent dielectric constant can be obtained by this treatment. Furthermore, the present inventors have announced at the academic conference that a dielectric constant of 2.1 was obtained by refining diamond fine particles.
JP-A-6-97671 Japanese Patent Laid-Open No. 9-025110 JP-A-9-263488 JP 2002-110870 A JP 2002-289604 A Abstracts of the 50th Applied Physics-related Conference Lecture N0.2, p193 (2003)

従来、ダイヤモンド微粒子膜の形成方法として、水性分散媒中にダイヤモンド微粒子を分散させ、得られたコロイド状の液状組成物を適当な粘度に調整して、スピン塗布方法により膜を形成し、乾燥・焼成後、各種膜強化剤で微粒子間を結合させて、絶縁膜として使用可能なダイヤモンド微粒子膜を製造していた。   Conventionally, as a method for forming a diamond fine particle film, diamond fine particles are dispersed in an aqueous dispersion medium, the obtained colloidal liquid composition is adjusted to an appropriate viscosity, a film is formed by a spin coating method, dried, After firing, the fine particle film that can be used as an insulating film has been manufactured by bonding fine particles with various film reinforcing agents.

前述のダイヤモンド微粒子膜を製造するために、スピン塗布方法は、高価なダイヤモンド微粒子液状組成物の大部分が飛散して歩留まりが極めてわるく、工業化の面から見ると好ましくない。飛散する前記液状組成物を回収して再利用することも試みたが、コロイド状に再分散することが困難で、且つ、汚染が激しく初期の物性が再現されないため半導体用途としては再利用できず、また、回収率も低かった。   In order to produce the diamond fine particle film described above, the spin coating method is not preferable from the viewpoint of industrialization because most of the expensive diamond fine particle liquid composition is scattered and the yield is extremely low. It was also attempted to collect and reuse the scattered liquid composition, but it was difficult to re-disperse in a colloidal form, and the initial physical properties could not be reproduced because the contamination was so severe that it could not be reused as a semiconductor application. Also, the recovery rate was low.

また、コロイド状のダイヤモンド微粒子液状組成物は、粘度が低いため増粘剤で粘度を上げなければスピン塗布では所望の膜厚が得られない。この増粘剤の添加量により膜厚を制御するが、塗膜中に残存して膜の電気的物性を低下させるため、増粘剤を使用できない場合がある。また、増粘剤はコロイドの安定性を悪化させる場合もある。 In addition, since the colloidal diamond fine particle liquid composition has a low viscosity, a desired film thickness cannot be obtained by spin coating unless the viscosity is increased with a thickener. Although the film thickness is controlled by the addition amount of the thickener, the thickener cannot be used because it remains in the coating film and lowers the electrical properties of the film. Thickeners may also deteriorate the stability of the colloid.

さらに、粘度が低いままで公知のナイフコータ法やスクリーン印刷法では、塗布自体が困難であり、例え増粘剤を添加しても300nmから500nmという薄い膜を得ることは困難であり、且つ、得られた塗膜の電気特性は不十分であった。また、スプレー塗布法ではコロイドが破壊され塗布困難となった。 Furthermore, with the known knife coater method or screen printing method with a low viscosity, coating itself is difficult, and it is difficult to obtain a thin film of 300 nm to 500 nm even if a thickener is added. The electrical properties of the resulting coating were insufficient. Also, the spray coating method made colloidal destruction and difficult to apply.

本発明者らは、ダイヤモンド微粒子液状組成物を低粘度のまま塗布する方法について試行錯誤をかさねて研究した結果、1または2以上の小さなパイプ状のノズルから被塗物上に押し出して塗布する方法が好ましいことを見出した。特に、インクジェット塗布法、即ち、複数のノズルから制御しながら吐出して塗布する方法が最適であることを見出し、本発明に到達した。この際、ダイヤモンド微粒子液状組成物は液滴状に吐出される方法が、ポーラスダイヤモンド薄膜の形成に好ましいことを見出した。   As a result of investigating trial and error on a method of applying a diamond fine particle liquid composition with low viscosity, the present inventors have applied a method of extruding a coating material from one or more small pipe-shaped nozzles onto an object to be coated. Has been found to be preferable. In particular, the present inventors have found that an ink jet coating method, that is, a method of discharging and coating while controlling from a plurality of nozzles is optimal, and reached the present invention. At this time, it was found that a method of discharging the diamond fine particle liquid composition in the form of droplets is preferable for forming a porous diamond thin film.

ノズルが複数の場合は、これらを整列して並べてヘッドを構成していることが好ましく、このヘッドを被塗物に平行な平面内を非接触で相対的に移動させる。また、被塗物上に複数のノズルの列方向に移動させながら吐出して直線を描画する方法、或いは、前記列方向に直角または斜めの角度をもって相対的移動させながらダイヤモンド微粒子液状組成物を吐出して帯状に描画する方法を実施することもできる。また、ヘッドの移動平面内を任意の方向に移動させて自由な形状に塗布することもできる。   In the case where there are a plurality of nozzles, it is preferable that these are aligned and arranged to constitute a head, and this head is relatively moved in a non-contact manner in a plane parallel to the object to be coated. Also, a method of drawing a straight line by discharging while moving in the row direction of a plurality of nozzles on the object to be coated, or discharging a diamond fine particle liquid composition while relatively moving at a right angle or oblique angle to the row direction. Thus, a method of drawing in a band shape can be implemented. Further, it can be applied in any shape by moving in an arbitrary direction within the moving plane of the head.

本発明では、ダイヤモンド微粒子液状組成物に限らず、少なくとも固形分と分散媒とからなる液状組成物を重ね塗りすることにより固形分からなる塗膜の厚みを制御することができる。即ち、特定のノズルから、被塗物上の一定領域に1回目の液状組成物を連続的に吐出し、好ましくは液滴状にして吐出して塗布し終えた後、一定時間後に、再び同一場所に、または、望むならば一定距離ずらした近傍に、例えば前回吐出した複数の位置の中間点に、液滴を吐出することができる。換言すると、液状組成物を液滴状に吐出する場合、1回目の複数の着弾点と同じ場所、または、各着弾点の中間点に吐出して重ね塗りし、この動作を繰り返すことによって膜厚を制御することができる。   In the present invention, not only the diamond fine particle liquid composition but also the thickness of the coating film made of the solid content can be controlled by repeatedly applying the liquid composition made of at least the solid content and the dispersion medium. That is, the liquid composition of the first time is continuously discharged from a specific nozzle to a predetermined area on the object to be coated, preferably discharged in the form of droplets, and after a certain time, the same is again performed. Droplets can be ejected at a place or in the vicinity of a certain distance if desired, for example, at the midpoint of a plurality of previously ejected positions. In other words, when the liquid composition is discharged in the form of droplets, the film thickness is determined by discharging the liquid composition to the same place as the first plurality of landing points or at the intermediate point of each landing point and repeating this operation. Can be controlled.

ここで、前記重ね塗りの時間的間隔は、塗布された液状組成物が流動性を有している時間以内である場合と、塗布された液状組成物が流動しない程度に乾燥するための時間以上であることの二通りを特徴とする膜形成方法をとることができる。即ち、塗布された液状組成物が乾燥しない間に重ね塗りしても(以後、連続塗布法という)、また、1回塗布毎に乾燥させた後に重ね塗り(以後、不連続塗布法という)してもよい。前記2つの塗布方法によって得られる塗膜は、それぞれ空隙率などの特性が異なるため、所望する塗膜特性によって膜形成方法を選択する。ここで1回塗布ごとに乾燥させる不連続塗布方法では、被塗物上に吐出された液状組成物が乾燥しやすいように、低湿度環境保持手段を有する装置とすることが好ましい。一方、吐出液が乾燥しないうちに重ね塗りする連続塗布法においては、その逆に被塗物上に吐出された液状組成物が高湿度環境に保持される手段を具備する装置とすることが好ましい。前記の連続塗布法、不連続塗布法の区別は塗布環境の条件、即ち、温度、湿度、分散媒雰囲気濃度などの条件をかえて、重ね塗り間隔の時間を制御することにより達成する。   Here, the time interval of the overcoating is not less than the time when the applied liquid composition has fluidity and the time for drying to the extent that the applied liquid composition does not flow. It is possible to take a film forming method characterized by two ways. That is, the applied liquid composition may be overcoated while it is not dried (hereinafter referred to as a continuous coating method), or may be overcoated (hereinafter referred to as a discontinuous coating method) after drying for each application. May be. Since the coating films obtained by the two coating methods have different properties such as porosity, the film forming method is selected depending on the desired coating film characteristics. Here, in the discontinuous coating method in which each coating is dried once, it is preferable to use an apparatus having a low-humidity environment holding means so that the liquid composition discharged onto the object can be easily dried. On the other hand, in the continuous coating method in which the discharge liquid is repeatedly dried before drying, it is preferable to conversely use an apparatus having means for maintaining the liquid composition discharged on the object to be coated in a high humidity environment. . The distinction between the continuous coating method and the discontinuous coating method is achieved by controlling the time of the overcoating interval by changing the conditions of the coating environment, that is, the conditions such as temperature, humidity, and dispersion medium atmosphere concentration.

このようにして得た本発明の塗膜は、例えば、後述の実施例に示す如く、ダイヤモンド微粒子液状組成物を連続的に重ね塗りして微粒子同士を架橋させる強化処理を施した後、電気物性を測定すると、現在実用的材料として最高と言われるフッ素添加シリカの比誘電率3.7より高性能である比誘電率2.8を示す低誘電率膜を得た。また、絶縁体として必要なリーク電流値と絶縁破壊電圧も、十分実用に供することのできるデータを与えた。ここで1回毎に乾燥させて重ね塗りする方法をとれば、さらに空隙率を高めることができ、改善された比誘電率を発現させることができる。   The coating film of the present invention thus obtained is subjected to a strengthening treatment to crosslink the fine particles by continuously overcoating the diamond fine particle liquid composition, as shown in the examples below. As a result, a low dielectric constant film having a relative dielectric constant of 2.8, which is higher than that of fluorine-added silica, which is said to be the highest practical material, was obtained. Moreover, the leak current value and dielectric breakdown voltage required as an insulator were also given data that can be sufficiently put into practical use. Here, if a method of drying and recoating each time is adopted, the porosity can be further increased, and an improved relative dielectric constant can be exhibited.

本発明は、少なくともダイヤモンド微粒子と分散媒とからなる液状組成物を複数のノズルから吐出し、且つ、被塗物上の同位置場所またはその近傍に少なくとも1回以上吐出させて塗布する手段を有することを特徴とする、ダイヤモンド微粒子膜の形成装置をも含む。ここで、吐出とはノズルから液状組成物を出すこと、塗布とは吐出された液状組成物が被塗物上に面的に広がること、膜形成とは塗布された液状組成物が物理的処理あるいは化学的処理されて固体の膜となること、と定義する。
2以上のノズルからヘッドを製造する場合は、ノズルを任意の形状に配置できるが、好ましくは、1列に配設することがこのましい。ここでノズルから吐出される液状組成物は液滴状であることが好ましい。
The present invention has means for discharging and applying a liquid composition comprising at least diamond fine particles and a dispersion medium from a plurality of nozzles and at least once at or near the same position on the object to be coated. And a diamond fine particle film forming apparatus. Here, the discharge means that the liquid composition is discharged from the nozzle, the application means that the discharged liquid composition spreads over the object to be coated, and the film formation means that the applied liquid composition is physically treated. Alternatively, it is defined as being chemically processed to form a solid film.
When the head is manufactured from two or more nozzles, the nozzles can be arranged in an arbitrary shape, but it is preferable to arrange them in one row. Here, the liquid composition discharged from the nozzle is preferably in the form of droplets.

一般の印刷装置においてインクを複数のノズルから吐出して印刷するインクジェット装置には、ピエゾ素子を電気的に制御してインクを吐出する方法と、インク配管の一部を局所的に加熱してインク中の溶剤を瞬時に蒸発させインクを吐出させる方法とがある。本発明の各ノズルの吐出液を液滴状に形成する手段を有する装置は、いずれの公知方法を実施する手段を利用してもよいが、これに加えて従来にはなかった重ね塗りのための手段を有する。   In an inkjet apparatus that discharges and prints ink from a plurality of nozzles in a general printing apparatus, a method of discharging ink by electrically controlling a piezo element and ink by locally heating a part of an ink pipe There is a method of instantly evaporating the solvent therein and discharging ink. The apparatus having means for forming the discharge liquid of each nozzle in the form of droplets according to the present invention may use any means for carrying out any known method. It has the means.

本発明の装置は、1つのノズルから吐出される液状組成物の一定時間内における吐出量を制御する手段を有してもよい。ここでは、液滴の大きさを変える制御をしてもよいが、一定時間内に吐出する液滴の数を制御してもよい。また本発明の装置は、前記各ノズルから吐出される液状組成物の吐出量制御を全ノズル一斉に行ってもよいが、各ノズルを個別に吐出の有無を制御してもよい。 The apparatus of the present invention may have means for controlling the discharge amount of the liquid composition discharged from one nozzle within a certain time. Here, control of changing the size of the droplet may be performed, but the number of droplets ejected within a certain time may be controlled. The apparatus of the present invention may control the discharge amount of the liquid composition discharged from each nozzle at the same time, but may control whether each nozzle is discharged individually.

この際、被塗物の表面にX−Y座標軸を設けて場所を特定してもよいし、また、基準線を特定した曲座標を設けて場所を特定してもよい。さらにこれに時間的要素を加えて被塗物の相対的移動速度を特定してもよい。これにより、被塗物とノズルヘッドとの相対的位置関係が決めて機械的手段を制御する。
ついで各ノズルの吐出時期、吐出速度、液滴の大きさを制御する手段を備え、これと前記機械的手段の制御とを連携させて、本発明の吐出液の着弾点をきめる制御手段を構成する。
At this time, the location may be specified by providing an XY coordinate axis on the surface of the object to be coated, or the location may be specified by providing a music coordinate specifying the reference line. Further, a time factor may be added to the relative movement speed of the object to be coated. As a result, the relative positional relationship between the object to be coated and the nozzle head is determined to control the mechanical means.
Next, a means for controlling the discharge timing, discharge speed, and droplet size of each nozzle is provided, and the control means for determining the landing point of the discharge liquid according to the present invention is configured by linking this with the control of the mechanical means. To do.

また本発明の方法および装置において、前記被塗物と前記ノズルヘッドが非接触で且つ相対的に移動する方法を説明する。即ち、前記ノズルヘッドを移動させる方法、被塗物を移動させる方法、或いは、双方を移動させる方法があるが、本発明ではいずれの方法をも採用することができる。尚、被塗物がガラス基板やセラミックス基板、シリコンウエハなど硬質材料である場合はこれをX−Yテーブルに載置固定して自在に移動させ、前記ノズルは移動させず基台に固定するなどの方法をとることができる。また、ノズルヘッドとしては公知のインクノズルヘッドが利用できる。 In the method and apparatus of the present invention, a method in which the object to be coated and the nozzle head move relatively without contact with each other will be described. That is, there are a method of moving the nozzle head, a method of moving the object to be coated, or a method of moving both of them, and any method can be adopted in the present invention. If the object to be coated is a hard material such as a glass substrate, a ceramic substrate, or a silicon wafer, this is placed and fixed on an XY table and moved freely, and the nozzle is fixed on the base without moving. Can be taken. A known ink nozzle head can be used as the nozzle head.

本発明では、このような被塗場所間距離の制御手段と重ね塗り手段が必要であり、これら手段に加えて、例えば、全ノズルから連続的に前記液状組成物を吐出させながらこれを相対的に一方向に移動させて帯状に塗布する方法、各ノズルを1つおき、或いは2つおきにそれぞれ時間差をおきながら吐出して千鳥模様に塗布し、2回目の重ね塗りに置いては1回目に塗布しなかった場所に吐出し、これを繰り返して所望する膜厚まで塗布する方法など、ソフトウエア的に制御する手段を有してもよい。 In the present invention, such a means for controlling the distance between the coating places and the overcoating means are necessary. In addition to these means, for example, the liquid composition is continuously ejected from all nozzles while being relatively discharged. In this case, the nozzle is applied in a zigzag pattern by applying a time difference every other nozzle or every two nozzles, and placed in the second overcoat for the first time. There may be provided a means for controlling in software such as a method of discharging to a place where the coating is not applied and repeating this to apply to a desired film thickness.

本発明では、固形分と分散剤とからなる液状組成物において、固形分としてはダイヤモンド微粒子に限るものではない。例えば、金ナノ粒子コロイドや銀ナノ粒子液状組成物など導電性を必要とする配線を塗布によって形成することも出来る。通常の半導体プロセスにおける配線のみならず、液晶ディスプレーやプラズマディスプレイの製造において、数マイクロメートルから数ミリメートル幅の電気配線にも応用できる。   In the present invention, in a liquid composition comprising a solid content and a dispersant, the solid content is not limited to diamond fine particles. For example, wirings that require electrical conductivity, such as gold nanoparticle colloids and silver nanoparticle liquid compositions, can be formed by coating. In addition to wiring in normal semiconductor processes, it can be applied to electrical wiring with a width of several micrometers to several millimeters in the production of liquid crystal displays and plasma displays.

本発明の方法によって得られるダイヤモンド微粒子膜は、重ね塗りによって膜厚を自由に制御できることに利点がある。一般に、インクジェット方式は小さなノズルから吐出するため、低粘度であることが好ましく、一方、ダイヤモンド微粒子コロイドを安定化させた液状組成物は数センチポイズ前後或いはそれ以下の粘度となり、この方法に最適である。本発明の装置は、ダイヤモンド微粒子コロイドの液滴の大きさを制御でき、且つ、ジェット間隔も自由に制御できるので単位面積当りの塗布量を制御でき、従って、1回の塗布による厚みが規定でき、所望の厚みまで重ね塗りして膜形成することができる。   The diamond fine particle film obtained by the method of the present invention is advantageous in that the film thickness can be freely controlled by overcoating. In general, since the ink jet method discharges from a small nozzle, it is preferable that the viscosity is low. On the other hand, a liquid composition in which the diamond fine particle colloid is stabilized has a viscosity of about several centipoises or less, and is optimal for this method. . The apparatus of the present invention can control the size of the droplets of the diamond fine particle colloid and also can freely control the jet interval, so that the coating amount per unit area can be controlled, and thus the thickness by one coating can be defined. The film can be formed by recoating up to a desired thickness.

前述の重ね塗りの方法において、例えば、本発明は重ね塗りの間隔を短く、即ち、吐出した前記液状組成物が乾燥しない間に次の重ね塗りをする連続法と、ポーラスダイヤモンド微粒子膜など膜の密度を比較的高くすることができる。他方、重ね塗りの間隔を長く、即ち、吐出した前記液状組成物が乾燥してから次の重ね塗りをする不連続法と、膜の密度を比較的低くすることができ、膜の密度制御をすることができるのである。   In the above-described method of overcoating, for example, the present invention shortens the interval of overcoating, that is, the continuous method of performing the next overcoating while the discharged liquid composition is not dried, and the film of a porous diamond fine particle film or the like. The density can be made relatively high. On the other hand, the interval between overcoats is increased, that is, the discontinuous method in which the discharged liquid composition is dried and the next overcoating is performed, and the film density can be made relatively low, and the density of the film can be controlled. It can be done.

本発明では、ノズルから液状組成物を連続的に吐出してもよいが、液滴状に不連続に吐出することが好ましい。微細な液滴状に吐出することにより、細い線や任意の図形を描画できる利点がある。さらに、従来のリソグラフィーによる造形法では、スピン塗布機により被塗物全面に塗布して膜形成した後、不要部分をエッチングして廃棄するが、このような従来の方法に比べ、大幅に液状組成物の歩留まりが向上する。   In the present invention, the liquid composition may be continuously discharged from the nozzle, but it is preferable that the liquid composition be discharged discontinuously. By discharging in the form of fine droplets, there is an advantage that thin lines and arbitrary figures can be drawn. Furthermore, in the conventional lithography modeling method, a film is formed by coating the entire surface of an object to be coated with a spin coater, and then unnecessary portions are etched and discarded. However, compared with such a conventional method, the liquid composition is greatly increased. Product yield is improved.

従来のスピン塗布機では、まず塗布できる液状組成物とするために、次に膜厚を制御するために、元来粘度の低いダイヤモンド微粒子コロイド液など液状組成物に不純物である増粘剤を添加しなければならない。しかし、本発明の膜形成方法では、そのような不純物の添加は不要であり、或いは添加したとしても微量であり、純粋な膜を形成するには最も好ましい。 In conventional spin coaters, in order to obtain a liquid composition that can be applied first, in order to control the film thickness, a thickening agent that is an impurity is added to the liquid composition such as a colloidal liquid of diamond particles having a low viscosity. Must. However, in the film forming method of the present invention, such addition of impurities is unnecessary, or even if added, the amount is very small, and is most preferable for forming a pure film.

このため、本発明では、市販品であるフッ素化シリカ膜の比誘電率3.7を大きく下回る良好な比誘電率2.8を達成し、絶縁材料としての要求リーク電流値と絶縁破壊電圧も、ほぼ実用基準を達成した。
また、塗布したダイヤモンド微粒子を樹脂で固めて研磨紙などに利用することもできる。
For this reason, the present invention achieves a good relative dielectric constant of 2.8, which is well below the relative dielectric constant of 3.7 of the commercially available fluorinated silica film, and the required leakage current value and dielectric breakdown voltage as an insulating material are also achieved. Almost achieved practical standards.
Further, the applied diamond fine particles can be hardened with a resin and used for polishing paper or the like.

図1に、本発明のダイヤモンド微粒子膜形成装置(1)を示す。机状の架台(5)の上に、それぞれ高精度エンコーダ(13)と原点センサ(不図示)を備えたX−Yテーブル(4)を設置し、その上に被塗物(10)である、表面を親水性シリカに処理した清浄な6インチシリコンウエハを載置固定する。架台(5)に柱で固定した梁材(11)の中央に、複数のノズルを有するノズルヘッド(2)とこれにダイヤモンド微粒子液状組成物を供給する塗布液タンク(3)を固定する。ここでノズルヘッド(2)は内径20μmのノズルが直線状に180個、100μm間隔で並べてある。コントローラ(7)には塗布制御回路基板(PC104デバイス)が格納され、電源ボックス(9)にはトランスなどの電源機器を格納してある。電源スイッチ(12)から電力を投入し、制御装置(6)でのコマンド入力と、これに組み込んだ塗布プログラムと別に設けたコントローラ(7)により、ノズルヘッド(2)からの液滴塗出のタイミングとX−Yテーブル(4)の移動開始点、移動開始時期、移動方向、移動速度とを制御する。同時に制御装置(6)とコントローラ(7)からの指令により、X−Yテーブルサーボアンプ(8)の出力が制御されてX−Yテーブル(4)を塗布プログラム通りに稼動させる。尚、塗布プログラムは、塗布制御回路基板のアクセス、塗布プログラムのエントリーポイント、コマンドラインオプションの処理、X−Yテーブル駆動処理、記憶領域、ノズルヘッド制御処理、シリアル信号通信の7つのモジュールから成り立っている。この装置で幅18mm長さ60mmを、1回当たり3秒で塗布、元の位置に帰るために1秒、即ち、最低1サイクル4秒で重ね塗りできるようにした。   FIG. 1 shows a diamond fine particle film forming apparatus (1) of the present invention. An XY table (4) provided with a high-precision encoder (13) and an origin sensor (not shown) is installed on a desk-like mount (5), and an object to be coated (10) is provided thereon. Then, a clean 6-inch silicon wafer whose surface is treated with hydrophilic silica is mounted and fixed. A nozzle head (2) having a plurality of nozzles and a coating liquid tank (3) for supplying a diamond fine particle liquid composition to the center of a beam member (11) fixed to a gantry (5) by a column are fixed. Here, the nozzle head (2) has 180 nozzles with an inner diameter of 20 μm arranged linearly at intervals of 100 μm. The controller (7) stores a coating control circuit board (PC104 device), and the power supply box (9) stores power supply equipment such as a transformer. Power is supplied from the power switch (12), and a command input from the control device (6) and a controller (7) provided separately from the coating program incorporated in the controller are used to apply droplets from the nozzle head (2). The timing and the movement start point, movement start time, movement direction, and movement speed of the XY table (4) are controlled. At the same time, the output of the XY table servo amplifier (8) is controlled by commands from the controller (6) and the controller (7), and the XY table (4) is operated according to the application program. The application program consists of seven modules: application control circuit board access, application program entry point, command line option processing, XY table drive processing, storage area, nozzle head control processing, and serial signal communication. Yes. With this apparatus, a width of 18 mm and a length of 60 mm were applied in 3 seconds at a time, and it was possible to reapply in 1 second to return to the original position, that is, at least 1 cycle of 4 seconds.

図2に本発明の塗布方法の一例をフローチャートにより説明する。ステップ1(S1)で開始のコマンドを入力すると、塗布制御回路基板(PC104規格準拠の拡張基板)のシリアルポードが開き(S2)、正常な信号か否かをチェックし(S3)、エラーがあればエラー表示(S3−2)し、終了する(S3−3)。(S3)でエラーがなければコマンドラインを解析し(S4)、塗布し方のオプションを処理設定する(S5)。乾燥防止のためノズルヘッド(2)の塗出口にかぶせられていた乾燥防止用キャップを自動的にはずし(S6)、X−Yテーブル(4)を駆動するためのサーボアンプソフトを初期化し(S7)、塗布装置全体の初期化を行い(S8)、5インチのシリコンウエハ(10)の塗布原点をX−Yテーブル(4)を移動させてノズルヘッド(2)の下にセットする(S9)。前回使用した論理座標ソフトをクリアし(S10)、今回の塗布用データを生成し(S11)、塗布ループ(S12)に入り、網目状塗布の位置座標を計算し(S13)、その座標位置へノズルから塗布して行く(S14)。1回目の塗布が終わると、乾燥防止キャップ位置であるホームへ戻り(S15)、重ね塗りする場合は塗布ループの(S16)から(S12)に帰って同様に繰り返す。これで塗布を終える場合は、塗布ループ(S16)から出て、乾燥防止キャップをかぶせ(S17)、終了する(S18)。   An example of the coating method of the present invention will be described with reference to the flowchart in FIG. When the start command is input in step 1 (S1), the serial port of the coating control circuit board (PC104 standard compliant expansion board) opens (S2), and checks whether it is a normal signal (S3) and there is an error. If an error is displayed (S3-2), the process is terminated (S3-3). If there is no error in (S3), the command line is analyzed (S4), and the application options are set (S5). The anti-drying cap that has been put on the nozzle head (2) for preventing dryness is automatically removed (S6), and the servo amplifier software for driving the XY table (4) is initialized (S7). The entire coating apparatus is initialized (S8), and the coating origin of the 5-inch silicon wafer (10) is moved under the XY table (4) and set under the nozzle head (2) (S9). . The logical coordinate software used last time is cleared (S10), the application data for this time is generated (S11), the application loop (S12) is entered, the position coordinates of the mesh-like application are calculated (S13), and the coordinate position is obtained. Application is performed from the nozzle (S14). When the first application is finished, the process returns to the home which is the position of the anti-drying cap (S15). When the application is finished, the process exits from the application loop (S16), covers the drying prevention cap (S17), and ends (S18).

図3に、シリコン基板上に100μm間隔で約10pLの小さい液滴を、複数のノズルから同時に塗出して1回目の塗布している状態を拡大して模式的に示した。液状組成物のシリコン基板への接触角が小さい場合は、各液滴がシリコン基板上で広がってやがてすべて合体し一層の塗布膜となる。接触角が大きい場合は、塗布液滴間に隙間ができる場合があるが、この場合は、図4のように2回目は千鳥格子状に塗布すれば、ほぼ均一の厚みに塗布することができる。これを繰り返して重ね塗りすれば、制御された均一の厚みのダイヤモンド微粒子塗布膜が得られる。 FIG. 3 schematically shows an enlarged view of a state in which small droplets of about 10 pL at 100 μm intervals are simultaneously applied from a plurality of nozzles on a silicon substrate. When the contact angle of the liquid composition to the silicon substrate is small, each droplet spreads on the silicon substrate and eventually coalesces to form a single coating film. If the contact angle is large, there may be a gap between the applied droplets. In this case, if the second coating is applied in a staggered pattern as shown in FIG. it can. If this is repeatedly applied, a diamond fine particle coating film having a controlled and uniform thickness can be obtained.

本実施例では、本発明の塗布装置(1)を用いて製造した低誘電率膜について述べる。
<原料ダイヤモンドの精製>
爆発法で製造した市販のクラスタダイヤモンド(ラマンスペクトル法測定:ダイヤモンド80%、グラファイト6%、非晶質炭素約10%、炭素一重結合成分4%)6gを10%濃硝酸−濃硫酸550mlとともに石英製フラスコに入れ、300から310℃で2時間煮沸した。室温に冷却した後、多量の水を加えて遠心分離しそれに続くデカンテーションを繰り返して、PHが3を超えるまで精製すると、特に分散剤を加えなくとも沈殿しない灰色の分散液を得た。これを乾燥して精製ダイヤモンド微粒子とした。これの純度を測定したところ、ダイヤモンド96.5%、グラファイト1.5%、非晶質炭素約0%、炭素一重結合成分2.0%であった。
In this example, a low dielectric constant film manufactured using the coating apparatus (1) of the present invention will be described.
<Purification of raw diamond>
Commercially available cluster diamond produced by the explosion method (Raman spectrum method measurement: diamond 80%, graphite 6%, amorphous carbon about 10%, carbon single bond component 4%) 6g quartz with 550ml 10% concentrated nitric acid-concentrated sulfuric acid The flask was placed in a flask and boiled at 300 to 310 ° C. for 2 hours. After cooling to room temperature, a large amount of water was added, the mixture was centrifuged, and subsequent decantation was repeated until purification was carried out until the pH exceeded 3. In particular, a gray dispersion liquid that did not precipitate even when no dispersant was added was obtained. This was dried to obtain purified diamond fine particles. When the purity of the carbon was measured, it was 96.5% diamond, 1.5% graphite, about 0% amorphous carbon, and 2.0% carbon single bond component.

<液状組成物の調製>
石英製ビーカに、精製ダイヤモンド微粒子を5重量%、ポリエチレングリコール600を1重量%、モノエタノールアミンを1重量%とそれぞれなるように添加し、0.5mmφのボールとともにボールミルに仕込み3日間混練した。得られたダイヤモンド微粒子液状組成物は黒色の粘度の低いコロイド液で、E型粘度計(東京計器製、25.0℃)で、10rpmから100rpmまで回転数を上昇させて粘度を測定したところ、1から1.5mPa・secとほぼ一定であった。この低粘度液状組成物を、図1の塗布装置で、よく洗浄し表面をUV処理した表面酸化処理済シリコンウエハに、乾燥しない間に100μmの着弾点間距離で3回塗布した。これを乾燥してジクロロテトラメチルジシロキサン(DCTMDS)蒸気で処理し干渉色がある低誘電率膜を得た。
<Preparation of liquid composition>
To a quartz beaker, 5% by weight of refined diamond fine particles, 1% by weight of polyethylene glycol 600, and 1% by weight of monoethanolamine were added, and charged into a ball mill with 0.5 mmφ balls and kneaded for 3 days. The obtained diamond fine particle liquid composition is a black colloid liquid having a low viscosity, and when the viscosity was measured with an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd., 25.0 ° C.) by increasing the rotational speed from 10 rpm to 100 rpm, It was almost constant from 1 to 1.5 mPa · sec. This low-viscosity liquid composition was applied three times to a surface-oxidized silicon wafer that had been thoroughly cleaned and UV-treated on the surface using the coating apparatus shown in FIG. This was dried and treated with dichlorotetramethyldisiloxane (DCTMDS) vapor to obtain a low dielectric constant film having an interference color.

<電流−電圧特性の測定>
大気中で水銀電極を膜上に置きシリコン基板との間に電圧をかけ、電圧、電流値、絶縁破壊電圧を測定し、予め測定していた膜厚で割って電界強度を算出したところ、膜厚は520nmほぼ均一で比誘電率は2.8であった。図5に、ここで得たポーラスダイヤモンド微粒子膜を測定した電流−電圧特性を示す。DCTMDS処理した本発明のポーラスダイヤモンド微粒子膜は、絶縁破壊電圧は1.95MV/cmで要求実用絶縁破壊電圧1.0MV/cm以上を達成している。絶縁抵抗を表すリーク電流は、同様に比較して電圧が0.8MV/cm以下で要求実用絶縁リーク電流1×10−6A/cm以下を満たしており、十分実用に耐える。また、本実施例のポーラスダイヤモンド微粒子膜は、電気特性測定用プローブを接触させて測定する際や、指触摩擦しても粒子間結合が破壊するなどの不都合はなく、十分な強度を保持していた。
<Measurement of current-voltage characteristics>
When a mercury electrode was placed on the film in the atmosphere and a voltage was applied between the film and the silicon substrate, the voltage, current value, and dielectric breakdown voltage were measured, and the electric field strength was calculated by dividing by the previously measured film thickness. The thickness was almost uniform at 520 nm and the relative dielectric constant was 2.8. FIG. 5 shows the current-voltage characteristics measured for the porous diamond fine particle film obtained here. The porous diamond fine particle film of the present invention treated with DCTMDS has a dielectric breakdown voltage of 1.95 MV / cm and a required practical dielectric breakdown voltage of 1.0 MV / cm or more. Similarly, the leakage current representing the insulation resistance satisfies the required practical insulation leakage current of 1 × 10 −6 A / cm 2 or less at a voltage of 0.8 MV / cm or less, and sufficiently withstands practical use. In addition, the porous diamond fine particle film of this example does not suffer from inconveniences such as breakage of interparticle bonds even when contact is made with a probe for measuring electrical characteristics, or even when it is rubbed with a finger, and it retains sufficient strength. It was.

酸化処理を施しUV洗浄機にて十分に洗浄したシリコン基板上に、20重量%濃度に調整した銀微粒子インキ(住友電気工業株式会社製SEITRNICS
INK)を塗布間隔50μm、液滴の量を約10ピコリットルとなるように実施例1の装置を制御し、乾燥しない間に5回重ね塗りした。その後、80℃にて30分間乾燥させ、さらに250℃にて60分間焼成を行った。厚さは表面粗さ計(ミツトヨ株式会社製SURFPAK−TC)で測定すると2.0μmであった。配線として幅2.5mm、長さ3mmとなるように切り出し、その抵抗値をマルチメーター(Agilent Technorogies社製 Digital Multimeter 34401A)にて測定すると2.3μΩ・cmであった。
Silver fine particle ink adjusted to 20% by weight on a silicon substrate that has been oxidized and thoroughly cleaned with a UV washer (SEITRNICS manufactured by Sumitomo Electric Industries, Ltd.)
The apparatus of Example 1 was controlled so that the coating interval of INK) was 50 μm and the amount of droplets was about 10 picoliters. Then, it was dried at 80 ° C. for 30 minutes and further baked at 250 ° C. for 60 minutes. The thickness was 2.0 μm as measured by a surface roughness meter (SURFPAK-TC manufactured by Mitutoyo Corporation). The wiring was cut out to have a width of 2.5 mm and a length of 3 mm, and the resistance value was 2.3 μΩ · cm when measured with a multimeter (Digital Multimeter 34401A, manufactured by Agilent Technologies).

本発明のダイヤモンド微粒子膜形成装置の斜視図である。It is a perspective view of the diamond fine particle film forming apparatus of the present invention. 本発明の塗布方法の1例を示すフローチャートである。It is a flowchart which shows an example of the coating method of this invention. 本発明の装置による1回目の塗布例を表す斜視図である。It is a perspective view showing the example of the 1st application by the device of the present invention. 本発明の装置による2回目の塗布例を表す斜視図である。It is a perspective view showing the example of the 2nd application by the device of the present invention. 本発明の膜形成装置で塗布した低誘電率膜の電流・電圧特性を示すグラフである。It is a graph which shows the electric current and voltage characteristic of the low dielectric constant film | membrane apply | coated with the film | membrane formation apparatus of this invention.

符号の説明Explanation of symbols

1 塗布装置
2 ノズルヘッド
3 塗布液タンク
4 X−Yテーブル
5 架台
6 制御装置
7 コントローラ
8 X−Yテーブルサーボアンプ
9 電装ボックス
10 被塗物
11 梁材
12 電源スイッチ
13 エンコーダ





















DESCRIPTION OF SYMBOLS 1 Application | coating apparatus 2 Nozzle head 3 Coating liquid tank 4 XY table 5 Base 6 Control apparatus 7 Controller 8 XY table servo amplifier 9 Electrical box 10 Coating object 11 Beam material 12 Power switch 13 Encoder





















Claims (10)

少なくとも精製されたダイヤモンド微粒子とポリエチレングリコールを含む分散媒とからなる液状組成物が、
1又は2以上のノズルから液滴状に吐出されて被塗物上に塗布されるダイヤモンド微粒子膜形成方法において、
前記液状組成物を前記被塗布物上の一定領域に塗布した後、
さらに1回以上重ね塗りを行って膜を形成する方法であって、
前記重ね塗りは、
前記被塗物上の前回塗布した場所から一定距離ずらした近傍に千鳥格子状に塗布することを特徴とする、ダイヤモンド微粒子膜形成方法。
A liquid composition comprising at least purified diamond fine particles and a dispersion medium containing polyethylene glycol ,
In the diamond fine particle film forming method in which droplets are discharged from one or more nozzles and applied onto an object to be coated,
After applying the liquid composition to a certain area on the object to be coated,
Further, a method of forming a film by overcoating once or more,
The overcoat is
A method for forming a diamond fine particle film, wherein the diamond fine particle film is applied in a staggered pattern in the vicinity of a predetermined distance from a previously applied position on the object.
前記重ね塗りの時間間隔は、
塗布された前記液状組成物が流動しない程度に乾燥するための時間以上であることを特徴とする、請求項1に記載のダイヤモンド微粒子膜形成方法。
The time interval of the overcoating is
2. The method for forming a diamond fine particle film according to claim 1, wherein the time is at least a time for drying the applied liquid composition so as not to flow.
前記分散媒の主成分が水であることを特徴とする、
請求項1または2のいずれかに記載のダイヤモンド微粒子膜形成方法。
The main component of the dispersion medium is water,
The diamond fine particle film forming method according to claim 1.
前記液状組成物に、前記ダイヤモンド微粒子分散剤としてモノエタノールアミンが添加されていることを特徴とする、請求項1から3のいずれかに記載のダイヤモンド微粒子膜形成方法。The diamond fine particle film forming method according to any one of claims 1 to 3, wherein monoethanolamine is added to the liquid composition as the diamond fine particle dispersant. 少なくとも精製されたダイヤモンド微粒子とポリエチレングリコールを含む分散媒とからなる液状組成物を、被塗物上の一定領域に液滴状に吐出して塗布し、
さらに複数回重ね塗りして膜を形成するダイヤモンド微粒子膜形成装置であって、
少なくとも、前記被塗物に対し非接触の位置に配置された1又は2以上のノズルと、
前記ノズルと前記被塗物とを相対的に移動させる機械的手段と、
前記液状組成物を、前記被塗物上の前記一定領域に塗布した後、前回塗布した場所から一定距離ずらした近傍場所に吐出して千鳥格子状に塗布させる制御手段と、
を有することを特徴とする、ダイヤモンド微粒子膜形成装置。
A liquid composition composed of at least purified diamond fine particles and a dispersion medium containing polyethylene glycol is applied by discharging in a droplet form to a certain area on the object to be coated,
Furthermore, a diamond fine particle film forming apparatus that forms a film by repeatedly coating multiple times,
At least one or two or more nozzles arranged in a non-contact position with respect to the object to be coated;
Mechanical means for relatively moving the nozzle and the object to be coated;
Control means for applying the liquid composition to the predetermined area on the object to be coated, and then discharging the liquid composition to a nearby location shifted by a predetermined distance from the previously applied position;
A diamond fine particle film forming apparatus characterized by comprising:
前記制御手段が、
前回塗布された前記液状組成物が流動しない程度に乾燥する時間以上の間隔を置いて、
重ね塗りを開始するよう制御する手段を有する
ことを特徴とする、請求項5に記載のダイヤモンド微粒子膜形成装置。
The control means is
With an interval more than the time to dry so that the liquid composition applied last time does not flow,
6. The diamond fine particle film forming apparatus according to claim 5, further comprising means for controlling to start overcoating.
前記制御手段が、
前記機械的手段の動作を少なくともX軸とY軸と時間軸に対して制御する手段と、
これに連動して前記各ノズルの吐出時刻を制御する手段と、を有する、
ことを特徴とする、請求項5または6のいずれかに記載のダイヤモンド微粒子膜形成装置。
The control means is
Means for controlling the operation of the mechanical means at least with respect to the X, Y and time axes;
Means for controlling the discharge time of each nozzle in conjunction with this,
The diamond fine particle film forming apparatus according to any one of claims 5 and 6, wherein
前記制御手段が、
1つの前記ノズルから吐出される前記液状組成物の、
液滴1滴の大きさ、及び又は液滴の数を制御する手段を有する、
ことを特徴とする、請求項5から7のいずれかに記載のダイヤモンド微粒子膜形成装置。
The control means is
Of the liquid composition discharged from one of the nozzles,
Having means for controlling the size of one drop and / or the number of drops;
The diamond fine particle film forming apparatus according to any one of claims 5 to 7, wherein
前記ノズルが複数であって、
前記制御手段が、
前記各ノズルから吐出される前記液状組成物の吐出量を、
前記ノズル毎に制御する手段を有する、ことを特徴とする、請求項5から8のいずれかに記載のダイヤモンド微粒子膜形成装置。
A plurality of the nozzles,
The control means is
A discharge amount of the liquid composition discharged from each nozzle,
The diamond fine particle film forming apparatus according to claim 5, further comprising a control unit for each nozzle.
前記被塗物上に塗布された前記液状組成物の、
乾燥を促す低湿度環境保持手段を有する、
ことを特徴とする、請求項5から9のいずれかに記載のダイヤモンド微粒子膜形成装置。
Of the liquid composition applied on the object to be coated,
Having a low-humidity environment retention means to promote drying,
The diamond fine particle film forming apparatus according to any one of claims 5 to 9, wherein
JP2004354740A 2004-12-07 2004-12-07 Coating film, film forming method and film forming apparatus Expired - Fee Related JP4759258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354740A JP4759258B2 (en) 2004-12-07 2004-12-07 Coating film, film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354740A JP4759258B2 (en) 2004-12-07 2004-12-07 Coating film, film forming method and film forming apparatus

Publications (2)

Publication Number Publication Date
JP2006159094A JP2006159094A (en) 2006-06-22
JP4759258B2 true JP4759258B2 (en) 2011-08-31

Family

ID=36661678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354740A Expired - Fee Related JP4759258B2 (en) 2004-12-07 2004-12-07 Coating film, film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP4759258B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688602B (en) * 2011-07-08 2016-10-26 住友重机械工业株式会社 Manufacture of substrates and apparatus for manufacturing substrate
JP6159624B2 (en) * 2013-09-02 2017-07-05 富士フイルム株式会社 Method for producing acid gas separation membrane
US20240001398A1 (en) * 2022-07-01 2024-01-04 Applied Materials, Inc. Substrate carrier improvement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133691A (en) * 2001-10-22 2003-05-09 Seiko Epson Corp Method and device for forming film pattern, conductive film wiring, electro-optical device, electronic equipment, and non-contact card medium
JP2004305990A (en) * 2003-04-10 2004-11-04 Seiko Epson Corp Pattern forming method, pattern forming apparatus, conductive film wiring, production method for device, electro-optical device and electronic equipment
WO2005038897A1 (en) * 2003-10-22 2005-04-28 Japan Science And Technology Agency Liquid composition, process for producing the same, film of low dielectric constant, abradant and electronic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326231A (en) * 1996-04-05 1997-12-16 Canon Inc Electron emitting element, electron source, and manufacture of image forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133691A (en) * 2001-10-22 2003-05-09 Seiko Epson Corp Method and device for forming film pattern, conductive film wiring, electro-optical device, electronic equipment, and non-contact card medium
JP2004305990A (en) * 2003-04-10 2004-11-04 Seiko Epson Corp Pattern forming method, pattern forming apparatus, conductive film wiring, production method for device, electro-optical device and electronic equipment
WO2005038897A1 (en) * 2003-10-22 2005-04-28 Japan Science And Technology Agency Liquid composition, process for producing the same, film of low dielectric constant, abradant and electronic component

Also Published As

Publication number Publication date
JP2006159094A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR101113773B1 (en) Semiconductor producing apparatus
KR101032338B1 (en) Display manufacturing method
JP5213452B2 (en) Method and apparatus for aerodynamic injection of aerosolized fluid to produce a passive structure
TWI381414B (en) Method for forming pattern and drop discharge apparatus
Pekkanen et al. Utilizing inkjet printing to fabricate electrical interconnections in a system-in-package
WO2011084337A2 (en) Method and apparatus for processing bevel edge
US20040266073A1 (en) Method of manufacturing semiconductor device and display device
JP4096868B2 (en) Film forming method, device manufacturing method, and electro-optical device
JP4759258B2 (en) Coating film, film forming method and film forming apparatus
KR100212089B1 (en) Apparatus and method for forming thin film
CN101142487A (en) Nat inst of advanced ind scien (jp)
CN1327481C (en) Method of forming multilayer interconnection structure, method of manufacturing circuit board, and method of manufacturing device
US20080083700A1 (en) Method and Apparatus for Maximizing Cooling for Wafer Processing
JP4180706B2 (en) Substance / Material Processing Method
KR100810674B1 (en) Electronic device and method for manufacturing the electronic device
US20140138345A1 (en) Methods of forming conductive patterns using inkjet printing methods
KR100666226B1 (en) Patterning method of microelectronic circuit and a fabricating apparatus thereof, and a printed circuit board using the method
US10347487B2 (en) Cell contact
US20060046491A1 (en) CMP polishing method and method for manufacturing semiconductor device
TW200303342A (en) Chemical mechanical polishing of dual orientation polycrystalline materials
CN114141705A (en) Array substrate, manufacturing method thereof and display panel
JP4077291B2 (en) Manufacturing method of semiconductor device
US6927177B2 (en) Chemical mechanical electropolishing system
JP2007180213A (en) Semiconductor device, method of manufacturing the same, device and electronic equipment
WO2024006105A1 (en) Substrate carrier improvement

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees