JP4756911B2 - Boron recovery method - Google Patents

Boron recovery method Download PDF

Info

Publication number
JP4756911B2
JP4756911B2 JP2005153396A JP2005153396A JP4756911B2 JP 4756911 B2 JP4756911 B2 JP 4756911B2 JP 2005153396 A JP2005153396 A JP 2005153396A JP 2005153396 A JP2005153396 A JP 2005153396A JP 4756911 B2 JP4756911 B2 JP 4756911B2
Authority
JP
Japan
Prior art keywords
boron
eluent
acid
exchange resin
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005153396A
Other languages
Japanese (ja)
Other versions
JP2006326488A (en
Inventor
嘉久 佐藤
弘晃 寺山
Original Assignee
日本錬水株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本錬水株式会社 filed Critical 日本錬水株式会社
Priority to JP2005153396A priority Critical patent/JP4756911B2/en
Publication of JP2006326488A publication Critical patent/JP2006326488A/en
Application granted granted Critical
Publication of JP4756911B2 publication Critical patent/JP4756911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、ホウ素含有排水からのホウ素の回収方法に係わる。詳しくは、鉄、マグネシウム等の多価陽イオンを含むホウ素含有排水をホウ素選択性樹脂で処理し、ホウ素を吸着しているホウ素選択性樹脂から鉱酸溶液を用いて該吸着したホウ素を溶離させ、得られた溶離液から効率的にホウ素を高純度で回収する方法に関する。   The present invention relates to a method for recovering boron from boron-containing wastewater. Specifically, boron-containing wastewater containing polyvalent cations such as iron and magnesium is treated with a boron-selective resin, and the adsorbed boron is eluted from the boron-selective resin adsorbing boron using a mineral acid solution. The present invention relates to a method for efficiently recovering boron with high purity from the obtained eluent.

ホウ素化合物は、メッキ、ガラス、医薬、染料、合成繊維製造工程等に広く利用されており、これらの製造工程からはホウ素含有排水が排出される。従来、これらの製造工程から排出されるホウ素含有排水はホウ素選択性樹脂によりホウ素を吸着処理し、回収していた。例えば、特開2001−104807号公報においては、ホウ素含有排水を、ホウ素選択性吸着樹脂によりホウ素を吸着させ、この吸着ホウ素を鉱酸溶液で溶離した溶離液をOH形弱塩基性陰イオン交換樹脂に通液して、ホウ素溶液と鉱酸溶液に分画し、高純度ホウ素を回収する方法が提案されている。   Boron compounds are widely used in plating, glass, medicine, dye, synthetic fiber manufacturing processes, and the like, and boron-containing wastewater is discharged from these manufacturing processes. Conventionally, boron-containing wastewater discharged from these manufacturing processes has been recovered by adsorbing boron with a boron-selective resin. For example, in Japanese Patent Application Laid-Open No. 2001-104807, boron-containing wastewater is adsorbed with a boron-selective adsorption resin, and an eluate obtained by eluting the adsorbed boron with a mineral acid solution is used as an OH-type weakly basic anion exchange resin. A method for recovering high-purity boron has been proposed in which the solution is fractionated into a boron solution and a mineral acid solution.

ところが、ホウ素含有排水中には、ホウ素以外にカルシウム、マグネシウム、鉄などの多価陽イオンも含まれていることが多く、ホウ素含有排水を処理する際これらの多価陽イオンの一部がホウ素選択性樹脂により捕捉されるので、鉱酸溶液によるホウ素溶離液中にこれらの陽イオンが持ち込まれてくる。そのため、ホウ素含有溶離液から、遊離塩基形(通称OH形)の弱塩基性陰イオン交換樹脂により鉱酸を除去する処理過程において、これらの多価陽イオンが水酸化物に変換され、該弱塩基性陰イオン交換樹脂内部および/または樹脂表面において析出し、該陰イオン交換樹脂層で偏流を起こし満足な処理が行えなかった。このため鉱酸除去能力は著しく低く、しかもこれらの水酸化物が処理液中に漏出してホウ素の処理液質を低下させる原因となっていた。これらの多価陽イオンを含むホウ素選択性樹脂からのホウ素溶離液は、ホウ素を高純度で回収することができないため濃縮して産業廃棄物として処理するか、あるいはセメント等により固化して埋立て処理する等の手段をとらざるを得なかった。   However, boron-containing wastewater often contains polyvalent cations such as calcium, magnesium, and iron in addition to boron, and some of these polyvalent cations are treated with boron when treating boron-containing wastewater. Since these are captured by the selective resin, these cations are brought into the boron eluent by the mineral acid solution. Therefore, in the process of removing mineral acid from a boron-containing eluent with a weak base anion exchange resin in a free base form (commonly called OH form), these polyvalent cations are converted into hydroxides, Precipitation occurred inside the basic anion exchange resin and / or on the resin surface, causing a drift in the anion exchange resin layer, and satisfactory treatment could not be performed. For this reason, the mineral acid removing ability is remarkably low, and furthermore, these hydroxides leak into the treatment liquid and cause a decrease in the treatment liquid quality of boron. Boron eluents from boron-selective resins containing these polyvalent cations cannot be recovered with high purity, so they can be concentrated and treated as industrial waste, or solidified with cement, etc. We had to take measures such as processing.

この問題を解決するために、特開2002−233773号公報においては、ホウ素以外のNa、Ca,Mg等の陽イオンを含むホウ素溶離液を、H形の強酸性陽イオン交換樹脂塔に通液した後、OH形強塩基性陰イオン交換樹脂または弱塩基性陰イオン交換樹脂に通液する方法が提案されている。しかしながら、この方法では、塩基性陰イオン交換樹脂層で水酸化物を生じ易い多価イオン、特に鉄イオンを含む溶離液の場合、必ずしも十分な効果が得られなかった。
特開2001−104807号公報 特開2002−233773号公報
In order to solve this problem, in Japanese Patent Application Laid-Open No. 2002-233773, a boron eluent containing cations such as Na, Ca and Mg other than boron is passed through an H-type strongly acidic cation exchange resin tower. Then, a method of passing through an OH-type strongly basic anion exchange resin or weakly basic anion exchange resin has been proposed. However, this method does not always have a sufficient effect in the case of an eluent containing polyvalent ions, particularly iron ions, which are likely to generate hydroxide in the basic anion exchange resin layer.
JP 2001-104807 A JP 2002-233773 A

本発明者等は、ホウ素含有排水から効率的に高純度のホウ素を回収する方法を提供することを目的とし、ホウ素化合物を使用する製造工程から排出されるホウ素以外の多価陽イオンを共に含むホウ素含有排水から、ホウ素選択性樹脂を用いてホウ素を回収する処理方法について鋭意検討した結果、該ホウ素含有排水を処理したホウ素選択性樹脂から吸着ホウ素を溶離したホウ素含有溶離液を、OH形弱塩基性陰イオン交換樹脂で処理してホウ素含有液を回収するにあたり、特定の方法で処理すれば多価イオン、特に鉄イオンによる障害を回避して高純度のホウ素含有液を効率よく回収し得ることを見出し本発明に達した。   The present inventors aim to provide a method for efficiently recovering high-purity boron from boron-containing wastewater, and include both polyvalent cations other than boron discharged from the production process using a boron compound. As a result of intensive studies on a method for recovering boron from a boron-containing wastewater using a boron-selective resin, a boron-containing eluent obtained by eluting adsorbed boron from a boron-selective resin that has been treated with the boron-containing wastewater is reduced to a weak OH form. When recovering a boron-containing liquid by treatment with a basic anion exchange resin, treatment with a specific method can efficiently recover a high-purity boron-containing liquid by avoiding obstacles caused by polyvalent ions, particularly iron ions. The present invention has been found.

本発明は、上記課題を解決するためのものであり、その要旨は、少なくとも鉄イオンを含むホウ素含有排水を処理してホウ素を吸着したホウ素選択性樹脂から、該吸着したホウ素を鉱酸溶液により溶離させて得た溶離液を、遊離塩基形弱塩基性陰イオン交換樹脂層に通液し、ホウ素溶液と鉱酸溶液に分画してホウ素溶液を回収する方法において、溶離の前半段階で得られるホウ素が主含有成分である溶離液画分を該陰イオン交換樹脂層に対して上向流で通液することを特徴とするホウ素の回収方法に存する。
本発明方法の好適な態様としては、上記ホウ素の回収方法において、該溶離液を通液した後、次いで水を該陰イオン交換樹脂層に対し下向流で通液し、陰イオン交換樹脂層内の残存溶離液の押出を行うこと、及び押出を行った後、更にホウ素を含まない鉱酸溶液を該イオン交換樹脂層に通薬することからなるホウ素の回収方法を挙げることができる。
The present invention is for solving the above-mentioned problems, and the gist of the present invention is that a boron-containing resin containing at least iron ions is treated to adsorb boron, and the adsorbed boron is removed by a mineral acid solution. the eluate obtained by eluting, then passed through a free base form weakly basic anion exchange resin layer, a method of recovering a boron solution fractionated boron solution and mineral acid solution, obtained in the first half stage of elution In the method for recovering boron , the eluent fraction containing boron as a main component is passed through the anion exchange resin layer in an upward flow.
As a preferred embodiment of the method of the present invention, in the boron recovery method, after passing through the eluent, water is then passed downwardly through the anion exchange resin layer, and an anion exchange resin layer is obtained. performing the extrusion of the remaining eluent inner and after extrusion, the further mineral acid solution without boron can be mentioned a method of recovering boron consists in Tsuyaku to the anion exchange resin layer.

本発明方法によれば、多価陽イオンが付随するホウ素溶離液を、弱塩基性陰イオン交換樹脂の交換容量に相当する量まで処理が可能であるので極めて効率的であり、また処理液への不純物の漏洩が少なく、高純度のホウ素回収液を得ることができる。   According to the method of the present invention, the boron eluent accompanied by the polyvalent cation can be treated up to an amount corresponding to the exchange capacity of the weakly basic anion exchange resin, so that it is extremely efficient. Thus, a high-purity boron recovery liquid can be obtained.

以下、本発明の実施形態を更に詳細に説明する。
本発明方法は、ホウ素化合物を使用する製造工程から排出されるホウ素以外の少量の鉄、マグネシウム等の多価陽イオンを含有するホウ素含有排水をホウ素選択性樹脂で処理し、吸着したホウ素を鉱酸溶液で溶離させることにより得られる溶離液を、OH形弱塩基性陰イオン交換樹脂で処理してホウ素含有液を回収するものである。
Hereinafter, embodiments of the present invention will be described in more detail.
The method of the present invention treats boron-containing wastewater containing polyvalent cations such as iron and magnesium other than boron discharged from the production process using a boron compound with a boron-selective resin and deposits the adsorbed boron into minerals. The eluent obtained by elution with an acid solution is treated with an OH-type weakly basic anion exchange resin to recover a boron-containing liquid.

ホウ素の吸着に使用されるホウ素選択性樹脂としては、ホウ素吸着能力を有し、かつホウ素を選択的に吸着するイオン交換樹脂であれば特に限定されるものではないが、交換基としてN−メチルグルカミン基を有するホウ素選択性樹脂が最も好ましい。このN−メチルグルカミン基を有するホウ素選択性樹脂としては、ダイヤイオン(登録商標:三菱化学)CRB01、CRB02,CRB03,CRB05、アンバーライト(登録商標;ロームアンドハース)IRA743、デュオライト(登録商標:ロームアンドハース)ES−371N,ユニセレック(登録商標:ユニチカ)UR−3500等の市販品から適宜選ぶことができる。   The boron selective resin used for the adsorption of boron is not particularly limited as long as it is an ion exchange resin having boron adsorption ability and selectively adsorbing boron. Most preferred is a boron-selective resin having a glucamine group. Examples of the boron-selective resin having an N-methylglucamine group include Diaion (registered trademark: Mitsubishi Chemical) CRB01, CRB02, CRB03, CRB05, Amberlite (registered trademark; Rohm and Haas) IRA743, Duolite (registered trademark). : Rohm and Haas) ES-371N, Uniselec (registered trademark: Unitika) UR-3500, etc.

ホウ素を含有する原排水を処理し、ホウ素選択性樹脂へのホウ素の吸着性能を最大限に発揮させるためには、原排水のpHは弱アルカリ性とすることが好ましいが、このpH域においては、原排水中に鉄、マグネシウムなどが共存するとそれらは水酸化物として存在する。そのため、原排水の前処理ろ過で除去しきれないコロイダル状のものが、ホウ素選択性樹脂でろ過および/または物理的に吸着され、ホウ素の回収処理の際、ホウ素を溶離する目的で使用する鉱酸によりこれら水酸化物が溶解して溶離液に持ち込まれることになり、その結果ホウ素回収液の品質低下の原因となる。
また、ホウ素選択性樹脂へのホウ素の吸着形態は下記反応式で示すように、交換基であるN−メチルグルカミン基とエステル化することにより捕捉されると考えられている。このエステル化された基は酸解離して、あたかも陽イオン交換基として作用することが考えられ、この部位に陽イオンとしての鉄、マグネシウムなどが陽イオン交換することも考えられる。
In order to treat the raw wastewater containing boron and maximize the adsorption performance of boron to the boron selective resin, the pH of the raw wastewater is preferably weakly alkaline, but in this pH range, When iron, magnesium, etc. coexist in the raw wastewater, they exist as hydroxides. Therefore, colloidal materials that cannot be removed by pretreatment filtration of raw wastewater are filtered and / or physically adsorbed with a boron-selective resin, and used for the purpose of eluting boron during the boron recovery process. These hydroxides are dissolved by the acid and brought into the eluent, and as a result, the quality of the boron recovery solution is degraded.
Moreover, it is thought that the adsorption | suction form of the boron to boron selective resin is capture | acquired by esterifying with the N-methylglucamine group which is an exchange group, as shown by the following reaction formula. This esterified group is considered to be acid-dissociated to act as a cation exchange group, and it is also possible that iron, magnesium, etc. as a cation undergo cation exchange at this site.

Figure 0004756911
Figure 0004756911

本発明方法においては、このようにして多価の陽イオンを伴うホウ素の選択吸着樹脂からの溶離液を、遊離塩基形(OH形)弱塩基性陰イオン交換樹脂で処理する際、この陽イオンがホウ素溶液に取りこまれることを抑制し、該陰イオン交換樹脂の処理能力低下を生ずることなく高純度のホウ素溶液の取得を可能にするのである。   In the method of the present invention, when the eluate from the selective adsorption resin of boron with a multivalent cation is treated with a free base form (OH form) weakly basic anion exchange resin, this cation is used. Is prevented from being taken into the boron solution, and a high-purity boron solution can be obtained without causing a reduction in the processing capacity of the anion exchange resin.

次に本発明によるホウ素の回収方法について図−1および図−2に従って更に詳細に説明する。
図−1は、本発明の実施態様を説明するための工程概略図であり、また図−2は弱塩基性陰イオン交換樹脂が充填された酸吸着塔の説明図である。
図―1中、1は原排水槽、2はホウ素選択性樹脂が充填されたホウ素吸着塔、3は処理排水放流管、4はホウ素溶離液回収槽、5は鉱酸回収槽、6は希薄酸回収槽、7は弱塩基性陰イオン交換樹脂が充填された酸吸着塔、8は弱塩基性陰イオン交換樹脂で鉱酸が除去されたホウ素回収液槽、9は鉱酸供給管である。
Next, the boron recovery method according to the present invention will be described in more detail with reference to FIGS.
FIG. 1 is a process schematic diagram for explaining an embodiment of the present invention, and FIG. 2 is an explanatory diagram of an acid adsorption tower packed with a weakly basic anion exchange resin.
In Fig. 1, 1 is an original drainage tank, 2 is a boron adsorption tower filled with boron-selective resin, 3 is a treated wastewater discharge pipe, 4 is a boron eluent recovery tank, 5 is a mineral acid recovery tank, and 6 is dilute. An acid recovery tank, 7 is an acid adsorption tower filled with a weakly basic anion exchange resin, 8 is a boron recovery liquid tank from which mineral acid has been removed with a weakly basic anion exchange resin, and 9 is a mineral acid supply pipe. .

ホウ素選択性樹脂で処理されるホウ素含有排水は、各種の製造工程から排出されるもので、水中のホウ素は、通常、ホウ酸またはホウ酸塩として含まれている(なお、本明細書中、ホウ素はホウ酸およびホウ酸塩の総称を意味する)。
これらの製造工程から排出されるホウ素含有排水は、その排水の種類にもよるが、通常10〜200mg−B/L程度のホウ素を含有しており、また、鉄、マグネシウム等の多価陽イオンは、通常0.2〜2mg/L程度含有しており、一旦原排水槽1に貯蔵される。原排水槽に貯蔵されたホウ素含有排水はカセイソーダ等のアルカリ剤によりpH4〜10、好ましくは7〜10に調整される。ここで、pH調整は次工程でのホウ素選択性樹脂によるホウ素吸着を効果的に行うためのものである。原排水槽に貯蔵されたホウ素含有排水は、pH調整した後、ホウ素吸着塔へ移送するが、その際予め凝集沈殿および/または濾過器等により原排水中に含まれる不溶解性不純物、例えばpH調整により生じた多価イオンの水酸化物等の不純物を除去しておくのがよい。
Boron-containing wastewater treated with a boron-selective resin is discharged from various manufacturing processes, and boron in water is usually contained as boric acid or a borate (in this specification, Boron is a generic name for boric acid and borate).
Boron-containing wastewater discharged from these production processes usually contains about 10 to 200 mg-B / L of boron, and polyvalent cations such as iron and magnesium, depending on the type of wastewater. Is usually contained in an amount of about 0.2 to 2 mg / L, and is once stored in the raw drainage tank 1. The boron-containing wastewater stored in the raw drainage tank is adjusted to pH 4 to 10, preferably 7 to 10 with an alkaline agent such as caustic soda. Here, the pH adjustment is for effectively performing boron adsorption by the boron selective resin in the next step. The boron-containing wastewater stored in the raw wastewater tank is adjusted to pH and then transferred to the boron adsorption tower. In this case, insoluble impurities contained in the raw wastewater by coagulation sedimentation and / or a filter or the like in advance, for example, pH It is preferable to remove impurities such as hydroxide of multivalent ions generated by the adjustment.

pH調整されたホウ素含有排水は、ホウ素選択性樹脂が充填されたホウ素吸着塔2に通水してホウ素の吸着除去を行う。その際、pH調整されたホウ素含有排水は、ホウ素吸着塔2に、通常、空間速度(SV)5〜15h−1で供給され、ホウ素が樹脂に吸着除去される。ホウ素吸着塔2に充填されるホウ素選択性樹脂としては、前記のような市販品から適宜選択して用いられる。 The pH-adjusted boron-containing wastewater is passed through a boron adsorption tower 2 filled with a boron-selective resin to adsorb and remove boron. At that time, the boron-containing wastewater whose pH has been adjusted is usually supplied to the boron adsorption tower 2 at a space velocity (SV) of 5 to 15 h −1 , and boron is adsorbed and removed by the resin. As boron selective resin with which the boron adsorption tower 2 is filled, it selects from the above-mentioned commercial item suitably, and is used.

ホウ素吸着塔2から流出する処理水はホウ素を含まないので、処理排水放流管3より放流する。その際、必要に応じてホウ素吸着塔の流出水と処理排水放流管3との間にpH調整槽を設けてpH調整後放流する。また処理水に重金属が含まれているおそれがある場合には、さらに重金属吸着用キレート樹脂による処理、あるいは苛性ソーダ、消石灰のアルカリ剤により重金属水酸化物を形成させて固液分離する等の後処理工程に付した後放流するのが好ましい。   Since the treated water flowing out from the boron adsorption tower 2 does not contain boron, it is discharged from the treated wastewater discharge pipe 3. At that time, if necessary, a pH adjustment tank is provided between the outflow water of the boron adsorption tower and the treated wastewater discharge pipe 3 and discharged after pH adjustment. If there is a possibility that heavy water is contained in the treated water, further treatment with a chelating resin for heavy metal adsorption, or post-treatment such as formation of heavy metal hydroxide with caustic soda or slaked lime alkali agent and solid-liquid separation It is preferable to discharge | release after attaching | subjecting to a process.

次にホウ素含有排水の通水によりホウ素を吸着して機能が低下したホウ素吸着塔には、硫酸、塩酸等の鉱酸を溶離剤として通液し、吸着したホウ素を樹脂から溶離するが、硫酸水溶液が好適に使用される。その際の溶離剤は、濃度1〜10wt%の鉱酸水溶液であり、ホウ素吸着塔2には空間速度(SV)1〜5h−1で通液する。その後、濃度1〜10wt%のカセイソーダ水溶液を空間速度(SV)1〜5h−1で通薬して樹脂を再生する。再生された樹脂が充填されているホウ素吸着塔2はホウ素を吸着させるために再びホウ素含有排水の通水に供される。また、鉱酸溶液としては、その前の処理サイクルで得られた回収鉱酸溶液を使用することもできる。 Next, the boron adsorbing tower, whose function has been reduced by adsorbing boron by passing boron-containing wastewater, is passed through mineral acid such as sulfuric acid and hydrochloric acid as an eluent, and the adsorbed boron is eluted from the resin. An aqueous solution is preferably used. The eluent at that time is a mineral acid aqueous solution having a concentration of 1 to 10 wt%, and passes through the boron adsorption tower 2 at a space velocity (SV) of 1 to 5 h −1 . Thereafter, a caustic soda aqueous solution having a concentration of 1 to 10 wt% is passed through at a space velocity (SV) of 1 to 5 h −1 to regenerate the resin. The boron adsorption tower 2 filled with the regenerated resin is again supplied to the flow of boron-containing waste water in order to adsorb boron. Further, as the mineral acid solution, the recovered mineral acid solution obtained in the previous treatment cycle can also be used.

一方、ホウ素吸着塔2からの溶離液はホウ素と鉱酸との混合物であるが、ホウ素吸着塔から流出する溶離液はその液質の経時的な変化に応じ分画する。例えば、溶離の前半段階における流出液の主含有成分がホウ素であって鉱酸を低濃度で含む溶離液をホウ素溶離液としてホウ素溶離液槽4へ回収し、これに続く流出液の鉱酸を主成分とし、ホウ素濃度が低い後半部分の一部を回収酸として鉱酸回収槽5に回収し、さらにこれに続く最終流出液部分を希薄酸回収槽6に回収する。ホウ素吸着塔からの溶離液の分画は、予めホウ素及び鉱酸の溶離曲線(流出容量基準)を作成し、それに従って行うことができる。また、溶離液分画の切替は、ホウ素吸着塔からの流出液の出口管に電気伝導度計を設置し、電気伝導率の変化を測定することにより行うことができる。   On the other hand, the eluent from the boron adsorption tower 2 is a mixture of boron and mineral acid, but the eluent flowing out of the boron adsorption tower is fractionated according to the change in the liquid quality over time. For example, an eluent containing a low concentration of mineral acid in the first stage of elution is boron and is recovered in the boron eluent tank 4 as a boron eluent, and the mineral acid in the subsequent effluent is recovered. A part of the latter half portion having a low boron concentration as a main component is recovered as a recovered acid in the mineral acid recovery tank 5, and a final effluent portion subsequent thereto is recovered in the dilute acid recovery tank 6. Fractionation of the eluent from the boron adsorption tower can be carried out in accordance with a boron and mineral acid elution curve (outflow volume standard) prepared in advance. The eluent fraction can be switched by installing an electrical conductivity meter in the outlet pipe of the effluent from the boron adsorption tower and measuring the change in electrical conductivity.

本発明方法では、この溶離の前半段階における主含有成分がホウ素であり、鉱酸を低濃度で含む溶離液画分を、ホウ素溶離液としてOH型弱塩基性陰イオン交換樹脂が充填された酸吸着塔7に上向流で通液し、鉱酸を除去することにより高純度のホウ素含有液を得る。
これについて図―2でさらに詳細に説明する。図―2中、7は弱塩基性陰イオン交換樹脂10が充填された酸吸着塔であり、11はホウ素溶離液供給管、12はホウ素精製液流出管、13は押出用水供給管、14は押出液流出管、15は希薄酸供給管、16は希薄酸処理排水流出管、17は逆洗用水供給管、18は逆洗排水流出管、19は再生剤供給管、20は水洗用水供給管、21は再生廃液流出管である。
In the method of the present invention, the main component in the first half of the elution is boron, and an eluent fraction containing a mineral acid at a low concentration is used as the boron eluent. By passing the liquid upward through the adsorption tower 7 and removing the mineral acid, a high-purity boron-containing liquid is obtained.
This will be described in more detail with reference to FIG. In FIG. 2, 7 is an acid adsorption tower packed with a weakly basic anion exchange resin 10, 11 is a boron eluent supply pipe, 12 is a boron purified liquid outflow pipe, 13 is an extrusion water supply pipe, 14 is Extrudate outflow pipe, 15 is a dilute acid supply pipe, 16 is a dilute acid treatment drainage outflow pipe, 17 is a backwash water supply pipe, 18 is a backwash drainage outflow pipe, 19 is a regenerant supply pipe, and 20 is a flush water supply pipe. , 21 is a recycled waste liquid outflow pipe.

酸吸着塔7に充填される弱塩基性陰イオン交換樹脂としては、ダイヤイオン(登録商標:三菱化学)WA21J、WA30、アンバーライト(登録商標:ロームアンドハース)IRA−93、ダウエックス(登録商標:ダウケミカル)66、デュオライト(登録商標:ロームアンドハース)A368、レバチット(登録商標:バイエル)MP62等の市販品から適宜選ばれるが、これらの弱塩基性陰イオン交換樹脂のうち、スチレン系架橋共重合体を母体とするポーラス型イオン交換樹脂が好ましい。   Examples of weakly basic anion exchange resins packed in the acid adsorption tower 7 include Diaion (registered trademark: Mitsubishi Chemical) WA21J, WA30, Amberlite (registered trademark: Rohm and Haas) IRA-93, Dowex (registered trademark). : Dow Chemical) 66, Duolite (Registered Trademark: Rohm and Haas) A368, Levacit (Registered Trademark: Bayer) MP62, and the like, which are appropriately selected from among these weakly basic anion exchange resins. A porous ion exchange resin based on a cross-linked copolymer is preferred.

本発明方法においては、ホウ素溶離液を、ホウ素溶離液供給管11からOH形の弱塩基性陰イオン交換樹脂10が充填された酸吸着塔7に上向流で供給し、通液することが重要である。その際、ホウ素溶離液の供給速度は、密度の大きい酸吸着形樹脂がほとんど流動せず、密度の低いOH形樹脂が僅かに流動する流速が好ましく、通常、空間速度(SV)1〜5h−1、線速度(LV)0.5〜3m/hで供給される。通液は、酸吸着塔からの流出液の電気伝導率を測定し、酸が漏出し電気伝導率が上昇し始めた時点で停止する。これを過ぎて通液を行うと、鉄イオン等の不純物がホウ素回収液に持ち込まれ好ましくない。 In the method of the present invention, the boron eluent is supplied in an upward flow from the boron eluent supply pipe 11 to the acid adsorption tower 7 filled with the OH-type weakly basic anion exchange resin 10 and passed therethrough. is important. At that time, the supply rate of the boron eluent is preferably a flow rate at which the acid-adsorption resin having a large density hardly flows and the OH resin having a low density slightly flows. Usually, the space velocity (SV) is 1 to 5 h −. 1. It is supplied at a linear velocity (LV) of 0.5-3 m / h. The liquid flow is stopped when the electric conductivity of the effluent from the acid adsorption tower is measured and the acid leaks and the electric conductivity starts to increase. If the liquid is passed after this, impurities such as iron ions are brought into the boron recovery liquid, which is not preferable.

本発明方法では、ホウ素溶離液を上向流で通液することにより、ホウ素溶離液に付随する微量の多価イオン、例えば鉄イオンがOH形弱塩基性陰イオン交換樹脂等との接触により水酸化鉄に変換したとしても、通液方向、即ち下から上方へ順次酸性の溶離液が供給されているので水酸化鉄も液の流れと共に移送され、また樹脂が酸形に転換されるので水酸化鉄は再び鉄イオンになりやすく、析出した水酸化鉄の局在による陰イオン交換樹脂層内での円滑な通液を妨げるような現象が回避されるものと推察される。また、下向流で通液すると樹脂層が密に詰まるために樹脂層中に析出した水酸化鉄が残りやすくなるのに対し、上向流で通液すると樹脂層に隙間ができやすいため、水酸化鉄の蓄積が起こり難い。本発明方法では、これらの相乗作用の結果、陰イオン交換樹脂の交換容量に相当する量の溶離液の処理が可能になるのである。一方、ホウ素溶離液を下向流で通液した場合、生成した水酸化鉄等は溶離液の通液とともに下方に移行するが、その際の加重により水酸化鉄はイオン交換樹脂内部や塔壁等に局在しやすく、それによって溶離液の流れが均一(ピストンフロー)にならず、陰イオン交換樹脂の能力を十分利用できずに能力低下をもたらすため、その交換容量よりも少ない量の溶離液しか処理できないのである。   In the method of the present invention, by passing the boron eluent in an upward flow, a trace amount of polyvalent ions, for example, iron ions accompanying the boron eluent is brought into contact with the OH-type weakly basic anion exchange resin. Even if it is converted to iron oxide, the acidic eluent is supplied in the direction of liquid flow, that is, from bottom to top, so iron hydroxide is also transferred along with the flow of the liquid, and the resin is converted to the acid form, so It is presumed that iron oxide tends to become iron ions again, and a phenomenon that prevents smooth liquid flow through the anion exchange resin layer due to the localization of precipitated iron hydroxide is avoided. In addition, when the liquid is passed in the downward flow, the resin layer is tightly packed, so iron hydroxide precipitated in the resin layer tends to remain, whereas when the liquid is passed in the upward flow, a gap is easily formed in the resin layer. Accumulation of iron hydroxide is unlikely to occur. In the method of the present invention, as a result of these synergistic effects, it is possible to treat an eluent in an amount corresponding to the exchange capacity of the anion exchange resin. On the other hand, when the boron eluent is passed in a downward flow, the generated iron hydroxide and the like move downward together with the eluent flow. Elution volume is less than the exchange capacity because the eluent flow is not uniform (piston flow) and the capacity of the anion exchange resin cannot be fully utilized. Only liquid can be processed.

本発明方法により、酸吸着塔で酸が除去されたホウ素精製液はホウ素精製液流出管12からホウ素回収槽8に回収する。この回収液は更に高純度化する必要がある場合には、強酸性陽イオン交換樹脂が充填された陽イオン交換樹脂塔および弱塩基性陰イオン交換樹脂が充填された陰イオン交換塔或いは両陽イオン交換樹脂及び陰イオン交換樹脂を含む混床塔でポリッシングすることも可能である。   By the method of the present invention, the boron purified liquid from which the acid has been removed by the acid adsorption tower is recovered from the boron purified liquid outflow pipe 12 to the boron recovery tank 8. When it is necessary to further purify the recovered liquid, a cation exchange resin column packed with a strongly acidic cation exchange resin and an anion exchange column packed with a weakly basic anion exchange resin or a cation exchange column. It is also possible to perform polishing in a mixed bed column containing an ion exchange resin and an anion exchange resin.

本発明方法では、酸吸着塔は酸除去能力が破過した時点で通液を止め、次いで押出用水供給管13より下向流で水を供給して酸吸着塔内に残留する処理途中の溶離液を押し出す。押出用の水を上向流で供給すると、押出された樹脂中の酸が上部に蓄積した水酸化鉄を溶解し、押出された溶離液中に高濃度の鉄が混入することになるので、高純度のホウ素回収が困難となり好ましくない。押出液流出管14からの流出液はホウ素を含有しているのでホウ素溶離液槽4に戻すか、あるいは再生が終わって待機している別の一系列の酸吸着塔に供給してもよい。押出用の水を通液する際の流速は溶離液の通液速度と同じ流速で流すことで達成でき、押出用水の通液は、通常は樹脂量に対し1〜5倍量を通水する。   In the method of the present invention, the acid adsorption tower stops liquid passing when the acid removal capability breaks through, and then supplies water in a downward flow from the water supply pipe 13 for extrusion and elutes during the process remaining in the acid adsorption tower. Extrude the liquid. When the water for extrusion is supplied in an upward flow, the acid in the extruded resin dissolves the iron hydroxide accumulated on the top, and high concentration iron is mixed in the extruded eluent. High purity boron recovery becomes difficult, which is not preferable. Since the effluent from the extrudate effluent pipe 14 contains boron, it may be returned to the boron eluent tank 4 or supplied to another series of acid adsorption towers waiting for regeneration. The flow rate for passing water for extrusion can be achieved by flowing at the same flow rate as the flow rate of the eluent, and the flow rate of water for extrusion is normally 1 to 5 times the amount of resin. .

押出用の水の供給を停止した後、次いで、酸吸着塔内に存する水酸化鉄等の沈殿・析出した鉄を追い出す目的で希薄酸水溶液を供給する。希薄酸水溶液の供給は、上向流でも下向流でもよく、例えば、希薄酸供給管15から上向流で供給することができる。これにより酸吸着塔内に残存しているOH形陰イオン交換樹脂に鉱酸を吸着させ、鉄イオンを含むその排水は希薄酸処理排水流出管16より排出する。この際、希薄酸水溶液は、溶離液供給流速と同程度とすることが望ましい。希薄酸水溶液としては、塩酸、硫酸等の鉱酸の水溶液が挙げられ、その濃度は、通常、0.2〜2wt%程度である。この希薄酸水溶液として、例えば、ホウ素吸着塔から溶出した分画液である希薄酸回収槽6の希薄酸水溶液を用いることもできる。排出された排水は、必要に応じpH調整等を行った後廃棄される。   After the supply of water for extrusion is stopped, a dilute aqueous acid solution is then supplied for the purpose of expelling precipitated and precipitated iron such as iron hydroxide present in the acid adsorption tower. The dilute acid aqueous solution may be supplied in an upward flow or a downward flow. For example, the dilute acid aqueous solution can be supplied in an upward flow from the diluted acid supply pipe 15. As a result, the mineral acid is adsorbed to the OH-type anion exchange resin remaining in the acid adsorption tower, and the waste water containing iron ions is discharged from the diluted acid treatment waste water outlet pipe 16. At this time, it is desirable that the dilute acid aqueous solution has the same level as the eluent supply flow rate. Examples of the dilute acid aqueous solution include aqueous solutions of mineral acids such as hydrochloric acid and sulfuric acid, and the concentration is usually about 0.2 to 2 wt%. As the dilute acid aqueous solution, for example, the dilute acid aqueous solution in the dilute acid recovery tank 6 which is a fraction eluted from the boron adsorption tower can be used. The discharged waste water is discarded after pH adjustment or the like as necessary.

希薄酸水溶液による処理の後、次いで、酸吸着塔の陰イオン交換樹脂は、常法に従って逆洗用水供給管17から逆洗水を供給して逆洗を行い、沈静後、再生剤供給管19よりアルカリ剤を供給しOH形に再生し、次いで、水洗用水供給管20より水を供給しアルカリ等の再生剤を押出し洗浄する。
再生処理された酸吸着塔は、再びホウ素溶離液からの酸除去に供される。
After the treatment with the dilute acid aqueous solution, the anion exchange resin in the acid adsorption tower is then backwashed by supplying backwash water from the backwash water supply pipe 17 in accordance with a conventional method. An alkali agent is supplied to regenerate the OH form, and then water is supplied from the washing water supply pipe 20 to extrude and regenerate the alkali and the like.
The regenerated acid adsorption tower is again subjected to acid removal from the boron eluent.

以下、本発明を参考例及び実施例により更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although a reference example and an Example demonstrate this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded.

参考例1
(ホウ素の吸着・分離)
産業廃棄物処理工程から排出されたホウ素含有排水を原水とし、この原水をカセイソーダでpH8に調整した。沈殿した水酸化鉄を砂ろ過した後の表−1に示すろ過原水中には、鉄が1.26mg/L含有されていた。内径12.5cmの塩化ビニル製カラムにカセイソーダ溶液による再生済みのホウ素選択性樹脂ダイヤイオン(登録商標)CRB05 10Lを充填したホウ素吸着塔に、ろ過済みの原水を空間速度(SV)15h−1で4000L通水し、ホウ素を吸着させた。
Reference example 1
(Boron adsorption / separation)
Boron-containing wastewater discharged from the industrial waste treatment process was used as raw water, and this raw water was adjusted to pH 8 with caustic soda. The filtered raw water shown in Table 1 after sand-filtering the precipitated iron hydroxide contained 1.26 mg / L of iron. The filtered raw water was fed at a space velocity (SV) of 15 h −1 to a boron adsorption tower filled with 10 L of boron selective resin Diaion (registered trademark) CRB05 10 L regenerated with a caustic soda solution in a vinyl chloride column having an inner diameter of 12.5 cm. 4000 L of water was passed to adsorb boron.

次いで、ホウ素吸着塔に、前の処理サイクルで回収した2w/w%の回収硫酸10Lを空間速度(SV)1.5h―1で通液し、次いで、濃度5w/w%の硫酸溶液12Lを空間速度(SV)1.5h−1で通液した。次いで、工業用水30Lを同一流速で流して押出しを行い、ホウ素を溶離した。その際の流出液のホウ素および硫酸濃度の流出曲線を図−3に示す。この流出液量の1.4〜2.9L/L−Rをホウ素溶離液画分とし、2.9より以上〜3.9L/L−Rを回収硫酸画分、3.9より以上〜5.1L/L−Rを希薄酸画分としてそれぞれ別に容器に回収した。回収された各画分溶液の組成を表−2に示す。得られたホウ素溶離液の組成はホウ素2.2g/L、硫酸0.8wt%、鉄50mg/Lであった。 Next, 10 L of 2 w / w% recovered sulfuric acid recovered in the previous treatment cycle was passed through the boron adsorption tower at a space velocity (SV) of 1.5 h- 1 and then 12 L of sulfuric acid solution having a concentration of 5 w / w% was added. The liquid was passed at a space velocity (SV) of 1.5 h- 1 . Next, extrusion was performed by flowing 30 L of industrial water at the same flow rate to elute boron. Figure 3 shows the effluent curves of boron and sulfuric acid concentrations in the effluent at that time. From 1.4 to 2.9 L / LR of this effluent amount is the boron eluent fraction, and from 2.9 to 3.9 L / LR is the recovered sulfuric acid fraction, from 3.9 to -5 to .1 L / LR was collected in a separate container as a dilute acid fraction. The composition of each collected fraction solution is shown in Table-2. The composition of the obtained boron eluent was 2.2 g / L of boron, 0.8 wt% sulfuric acid, and 50 mg / L of iron.

Figure 0004756911
Figure 0004756911

Figure 0004756911
Figure 0004756911

実施例1
内径1.5cmのガラス製カラムにOH形弱塩基性陰イオン交換樹脂レバチット(登録商標)MP62 100mLを充填した酸吸着塔に、参考例1で得られたホウ素溶離液の一部を空間速度(SV)2h−1で上向流として通液した。その際、酸吸着塔からの流出液の電気伝導率を測定しながら、硫酸が漏洩し始めるまでホウ素溶離液を通液した。硫酸が漏洩し始めた時点で通液を止め、上水200mLを空間速度(SV)2h―1で下向流として通水して、塔内の処理途中のホウ素溶離液を押出し回収した。次いで、希薄硫酸水溶液(濃度0.2wt%)400mLを空間速度(SV)3h―1で上向流で通液して、酸吸着塔最上部まで酸負荷形に変換した。その後、上水30mLを線速度(LV)5m/hで流して逆洗を行い、沈静後、4w/w%カセイソーダ250mLを空間速度(SV)2.5h―1で流し、次いで純水200mLを同一流速で流してカセイソーダを押出し洗浄した。
ホウ素溶離液の通液、水による押出、希薄酸水溶液の通水、及びイオン交換樹脂の再生の処理工程を1サイクルとし、この処理工程を繰り返し3サイクル行った際に回収精製液の硫酸が破過し電気伝導率が上昇を始めた時点の処理液量を表−3に示す。この結果、通液3サイクルを通じて安定した処理が行えることが確認された。
Example 1
A portion of the boron eluent obtained in Reference Example 1 was measured at a space velocity (100%) on an acid adsorption column in which 100 mL of an OH-type weakly basic anion exchange resin Levatit (registered trademark) MP62 was packed in a glass column having an inner diameter of 1.5 cm. SV) 2h −1 and passed as an upward flow. At that time, while measuring the electric conductivity of the effluent from the acid adsorption tower, the boron eluent was passed until the sulfuric acid began to leak. When the sulfuric acid began to leak, the liquid flow was stopped, and 200 mL of clean water was passed as a downward flow at a space velocity (SV) of 2h- 1 to extrude and recover the boron eluent during the treatment in the tower. Next, 400 mL of dilute sulfuric acid aqueous solution (concentration: 0.2 wt%) was passed in an upward flow at a space velocity (SV) of 3h- 1 and converted to an acid-loaded form up to the top of the acid adsorption tower. Then, 30 mL of clean water is flowed at a linear velocity (LV) of 5 m / h, backwashing is performed, and after calming, 250 mL of 4 w / w% caustic soda is flowed at a space velocity (SV) of 2.5 h- 1 , and then 200 mL of pure water is added. The caustic soda was extruded and washed by flowing at the same flow rate.
The treatment process of boron eluent flow, extrusion with water, dilute acid aqueous solution flow, and ion exchange resin regeneration is defined as one cycle, and when this process step is repeated three times, sulfuric acid in the recovered purified solution is broken. Table 3 shows the amount of the treatment liquid when the electrical conductivity starts to increase. As a result, it was confirmed that stable treatment could be performed through 3 cycles of liquid flow.

比較例1
内径1.5cmのガラス製カラムにOH形弱塩基性陰イオン交換樹脂レバチット(登録商標)MP62 100mLを充填した酸吸着塔に、参考例1で得られたホウ素溶離液と同一組成の液から鉄のみを除いた組成の液を試薬で調製した調製液をホウ素溶離液として、空間速度(SV)1h−1で下向流として通液した。その際、酸吸着塔からの流出液の電気伝導率を測定しながら、硫酸が漏洩し始めるまでホウ素溶離液を通液した。硫酸が漏洩し始めた時点で通液を止め、上水200mLを空間速度(SV)1h―1で下向流として通水して、塔内の処理途中のホウ素溶離液を押出し回収した。その後、上水30mLを線速度(LV)5m/hで流して逆洗を行い、沈静後、4w/w%カセイソーダ250mLを空間速度(SV)2.5h―1で流し、次いで純水200mLを同一流速で流してカセイソーダを押出し洗浄した。この処理工程における流出液の電気伝導率が上昇し始めた時点の処理液量を表−3に示す。
この結果、実施例1に示した結果は、鉄を含まないホウ素溶離液を下向流で通液した本比較例1の結果と同等であり、実施例1の処理が満足されるものであることを示した。
Comparative Example 1
An acid adsorption tower in which 100 mL of an OH-type weakly basic anion exchange resin Levatit (registered trademark) MP62 is packed in a glass column having an inner diameter of 1.5 cm is charged with iron having the same composition as the boron eluent obtained in Reference Example 1. A solution having a composition excluding only the sample was prepared using a reagent as a boron eluent, and was passed as a downward flow at a space velocity (SV) of 1 h- 1 . At that time, while measuring the electric conductivity of the effluent from the acid adsorption tower, the boron eluent was passed until the sulfuric acid began to leak. When the sulfuric acid began to leak, the liquid flow was stopped, and 200 mL of clean water was passed as a downward flow at a space velocity (SV) of 1h- 1 to extrude and recover the boron eluent during the treatment in the tower. Then, 30 mL of clean water is flowed at a linear velocity (LV) of 5 m / h, backwashing is performed, and after calming, 250 mL of 4 w / w% caustic soda is flowed at a space velocity (SV) of 2.5 h- 1 , and then 200 mL of pure water is added. The caustic soda was extruded and washed by flowing at the same flow rate. Table 3 shows the amount of the treatment liquid at the time when the electrical conductivity of the effluent in this treatment process started to increase.
As a result, the result shown in Example 1 is equivalent to the result of Comparative Example 1 in which a boron eluent containing no iron is passed in a downward flow, and the treatment of Example 1 is satisfied. Showed that.

比較例2
内径1.5cmのガラス製カラムにOH形弱塩基性陰イオン交換樹脂レバチット(登録商標)MP62 100mLを充填した酸吸着塔に、参考例1で得られたホウ素溶離液の一部を空間速度(SV)1h−1で下向流として通液した。その際、酸吸着塔からの流出液の電気伝導率を測定しながら、硫酸が漏洩し始めるまでホウ素溶離液を通液した。硫酸が漏洩し始めた時点でホウ素溶離液の通液を止め、次いで上水200mLを空間速度(SV)1h―1で下向流として通水し、酸吸着塔内の処理途中のホウ素溶離液を押出し回収した。その後、上水30mLを線速度(LV)5m/hで流して逆洗を行い、沈静後、4w/w%カセイソーダ250mLを空間速度(SV)2.5h―1で流し、次いで、純水200mLを同一流速で流してカセイソーダを押出し洗浄した。
同様な処理工程を繰り返し3サイクル行った際の電気伝導率が上昇し始めた時点の処理液量を表−3に示す。処理途中において、酸吸着塔内の弱塩基性陰イオン交換樹脂充填層内で水酸化鉄の沈殿による閉塞、それによる液の偏流が認められ、処理量は著しく減少した。
Comparative Example 2
A portion of the boron eluent obtained in Reference Example 1 was measured at a space velocity (100%) on an acid adsorption column in which 100 mL of an OH-type weakly basic anion exchange resin Levatit (registered trademark) MP62 was packed in a glass column having an inner diameter of 1.5 cm. SV) 1 h −1 and passed as a downward flow. At that time, while measuring the electric conductivity of the effluent from the acid adsorption tower, the boron eluent was passed until the sulfuric acid began to leak. When sulfuric acid begins to leak, stop the flow of boron eluent, and then pass 200 mL of upper water as a downward flow at a space velocity (SV) of 1h- 1 to process the boron eluent during the treatment in the acid adsorption tower. Was recovered by extrusion. Thereafter, 30 mL of clean water is flowed at a linear velocity (LV) of 5 m / h, backwashing is performed, and after calming, 250 mL of 4 w / w% caustic soda is flowed at a space velocity (SV) of 2.5 h− 1 , and then 200 mL of pure water Were washed at the same flow rate to extrude and wash caustic soda.
Table 3 shows the amount of the treatment liquid at the time when the electrical conductivity began to rise when the same treatment process was repeated for 3 cycles. During the treatment, clogging due to precipitation of iron hydroxide in the weakly basic anion exchange resin packed bed in the acid adsorption tower and liquid drift due to precipitation were observed, and the treatment amount was remarkably reduced.

Figure 0004756911
Figure 0004756911

図−1は、本発明の実施態様を説明するための工程概略図。FIG. 1 is a process schematic diagram for explaining an embodiment of the present invention. 図−2は弱塩基性陰イオン交換樹脂が充填された酸吸着塔の説明図。FIG. 2 is an explanatory diagram of an acid adsorption tower packed with a weakly basic anion exchange resin. 図−3は実施例1におけるホウ素を溶離した際の流出液のホウ素および硫酸濃度の流出曲線を示す。FIG. 3 shows an outflow curve of boron and sulfuric acid concentrations in the effluent when boron is eluted in Example 1.

符号の説明Explanation of symbols

1 :原排水槽
2 :ホウ素選択性樹脂が充填されたホウ素吸着塔
3 :処理排水放流管
4 :ホウ素溶離液回収槽
5 :鉱酸回収槽
6 :希薄酸回収槽
7 :弱塩基性陰イオン交換樹脂が充填された酸吸着塔
8 :弱塩基性陰イオン交換樹脂で鉱酸が除去されたホウ素回収液槽
9 :鉱酸供給管
10:弱塩基性陰イオン交換樹脂
11:ホウ素溶離液供給管
12:ホウ素精製液流出管
13:押出用水供給管
14:押出液流出管
15:希薄酸供給管
16:希薄酸処理排水流出管
17:逆洗用水供給管
18:逆洗排水流出管
19:再生剤供給管
20:水洗用水供給管
21:再生廃液流出管
DESCRIPTION OF SYMBOLS 1: Original drainage tank 2: Boron adsorption tower filled with boron selective resin 3: Treatment drainage discharge pipe 4: Boron eluent recovery tank 5: Mineral acid recovery tank 6: Dilute acid recovery tank 7: Weak basic anion Acid adsorption tower filled with exchange resin 8: Boron recovery liquid tank from which mineral acid has been removed with weakly basic anion exchange resin 9: Mineral acid supply pipe 10: Weakly basic anion exchange resin 11: Boron eluent supply Pipe 12: Boron purification liquid outflow pipe 13: Extrusion water supply pipe 14: Extrusion liquid outflow pipe 15: Dilute acid supply pipe 16: Dilute acid treatment drainage outflow pipe 17: Backwash water supply pipe 18: Backwash drainage outflow pipe 19: Regenerant supply pipe 20: Washing water supply pipe 21: Recycle waste liquid outflow pipe

Claims (3)

少なくとも鉄イオンを含むホウ素含有排水を処理してホウ素を吸着したホウ素選択性樹脂から、該吸着したホウ素を鉱酸溶液により溶離させて得た溶離液を、遊離塩基形弱塩基性陰イオン交換樹脂層に通液し、ホウ素溶液と鉱酸溶液に分画してホウ素溶液を回収する方法において、溶離の前半段階で得られるホウ素が主含有成分である溶離液画分を該陰イオン交換樹脂層に対して上向流で通液することを特徴とするホウ素の回収方法。 An eluate obtained by treating boron-containing wastewater containing at least iron ions and adsorbing boron from the boron-selective resin by eluting the adsorbed boron with a mineral acid solution is used as a free base type weakly basic anion exchange resin. In the method of collecting the boron solution by passing the solution through a layer and fractionating the solution into a boron solution and a mineral acid solution , the eluate fraction obtained by the first half of the elution is mainly contained in the anion exchange resin layer. The boron recovery method is characterized by passing the liquid in an upward flow. 該溶離液を通液した後、次いで水を該陰イオン交換樹脂層に対し下向流で通液し、陰イオン交換樹脂層内の残存溶離液の押出を行うことを特徴とする請求項1記載のホウ素の回収方法。   2. After passing through the eluent, water is then passed downward through the anion exchange resin layer to extrude the remaining eluent in the anion exchange resin layer. The method for recovering boron as described. 押出を行った後、更にホウ素を含まない鉱酸溶液を該イオン交換樹脂層に通薬することを特徴とする請求項2に記載のホウ素の回収方法。 After extrusion, a method of recovering a boron according to claim 2, characterized in that Tsuyaku further mineral acid solution without boron to the anion exchange resin layer.
JP2005153396A 2005-05-26 2005-05-26 Boron recovery method Expired - Fee Related JP4756911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153396A JP4756911B2 (en) 2005-05-26 2005-05-26 Boron recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153396A JP4756911B2 (en) 2005-05-26 2005-05-26 Boron recovery method

Publications (2)

Publication Number Publication Date
JP2006326488A JP2006326488A (en) 2006-12-07
JP4756911B2 true JP4756911B2 (en) 2011-08-24

Family

ID=37548775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153396A Expired - Fee Related JP4756911B2 (en) 2005-05-26 2005-05-26 Boron recovery method

Country Status (1)

Country Link
JP (1) JP4756911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825858B2 (en) * 2008-09-17 2011-11-30 株式会社東芝 Boron separation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567386A (en) * 1978-11-17 1980-05-21 Kurita Water Ind Ltd Treatment of mercury-containing waste water
JP3913939B2 (en) * 1999-10-07 2007-05-09 日本錬水株式会社 Boron recovery method
JP4733807B2 (en) * 2000-04-28 2011-07-27 日本電工株式会社 Method for purifying boron eluent and method for producing boron raw material
JP2002233773A (en) * 2001-02-08 2002-08-20 Nippon Denko Kk Method for recovering water containing high purity boron and device for treating boron eluting solution eluted from resin selectively adsorbing boron
JP2004216310A (en) * 2003-01-16 2004-08-05 Maezawa Ind Inc Waste water treatment apparatus

Also Published As

Publication number Publication date
JP2006326488A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
AU709121B2 (en) Method for minimizing wastewater discharge
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP5540574B2 (en) Metal recovery method
JPS6231613B2 (en)
JP4756911B2 (en) Boron recovery method
JP3913939B2 (en) Boron recovery method
JP2012016673A (en) Device and method of treating iodine/boron-containing solution
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JP5648231B2 (en) Purification method of alkaline aqueous solution
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JP5023809B2 (en) Electrolysis method of aqueous sodium chloride solution
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP2018058010A (en) Purification method of boron eluent
JP3160435B2 (en) Pure water production apparatus and method for regenerating the same
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material
JP5311227B2 (en) Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP3883781B2 (en) Apparatus and method for purifying boron eluent
JP2004283767A (en) Method and apparatus for treating geothermal water
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
JPH11165168A (en) Pure water producing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4756911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees