JP4756630B2 - (100) Crystal surface cylindrical fluoride single crystal processing method - Google Patents

(100) Crystal surface cylindrical fluoride single crystal processing method Download PDF

Info

Publication number
JP4756630B2
JP4756630B2 JP2005011758A JP2005011758A JP4756630B2 JP 4756630 B2 JP4756630 B2 JP 4756630B2 JP 2005011758 A JP2005011758 A JP 2005011758A JP 2005011758 A JP2005011758 A JP 2005011758A JP 4756630 B2 JP4756630 B2 JP 4756630B2
Authority
JP
Japan
Prior art keywords
single crystal
cylindrical
fluoride
crystal
calcium fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005011758A
Other languages
Japanese (ja)
Other versions
JP2006199528A (en
Inventor
貴史 山崎
大輔 戸塚
正雄 関口
俊彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Nihon Kessho Koogaku Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Nihon Kessho Koogaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Nihon Kessho Koogaku Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005011758A priority Critical patent/JP4756630B2/en
Priority to PCT/JP2006/300546 priority patent/WO2006077836A1/en
Publication of JP2006199528A publication Critical patent/JP2006199528A/en
Application granted granted Critical
Publication of JP4756630B2 publication Critical patent/JP4756630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、(100)面方位の結晶内部の歪複屈折が大幅に低減された(100)結晶面の円筒状フッ化物単結晶の加工方法に関する。なお、ここでいう(100)結晶面とは、円筒体及び多角体の底面及び頂面であり、図1(a)に円筒体及び図1(b)に六角柱状体の例を示す。   The present invention relates to a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, in which the strain birefringence inside the (100) plane crystal is greatly reduced. The (100) crystal planes referred to here are the bottom and top surfaces of a cylindrical body and a polygon, and FIG. 1 (a) shows an example of a cylindrical body and FIG. 1 (b) shows a hexagonal columnar body.

近年、マイクロプロセッサー、メモリー、イメージセンサー等に用いられる半導体集積回路は、高集積化、高機能化が著しく進行している。そのため、ウエハの形成には微細な加工技術が要請されてきている。   In recent years, semiconductor integrated circuits used in microprocessors, memories, image sensors, and the like have remarkably advanced in integration and functionality. Therefore, a fine processing technique has been required for the formation of a wafer.

フォトリソグラフィーは、上記集積回路の微細パターンをウエハ上に露光、転写するもので、ステッパーと呼ばれる露光装置が用いられている。上記微細な加工技術の要請から、このステッパーにも高い性能が要求されてきている。   Photolithography exposes and transfers a fine pattern of the integrated circuit onto a wafer, and an exposure apparatus called a stepper is used. Due to the demand for the fine processing technology, this stepper is also required to have high performance.

このステッパーの投影レンズには、高い結像性能を得るために、高い解像度と深い焦点深度が必要である。解像度と焦点深度は、露光波長と開口数(NA)によって決まる。高い解像度を得るために、開口数を大きくすればよいが、焦点深度が浅くなる。従って、開口数を大きくすることには限度がある。露光波長は短いほど、同一パターンにおける回折光の角度は小さくなるので、レンズの開口数は少なくすむ。このため、露光波長を短波長化することが要求されている。   This stepper projection lens requires high resolution and deep depth of focus in order to obtain high imaging performance. Resolution and depth of focus are determined by exposure wavelength and numerical aperture (NA). In order to obtain a high resolution, the numerical aperture may be increased, but the depth of focus becomes shallow. Therefore, there is a limit to increasing the numerical aperture. The shorter the exposure wavelength, the smaller the angle of diffracted light in the same pattern, so the numerical aperture of the lens is reduced. For this reason, it is required to shorten the exposure wavelength.

このような要求から露光装置の光源として、KrF(波長248nm)、ArF(波長193nm)、F(波長157nm)等のエキシマレーザー光を光源とするステッパーも提案されている。しかし、このような短波長化に対して、従来の硝材は殆ど対応することができない。 In view of such requirements, steppers using an excimer laser beam such as KrF (wavelength 248 nm), ArF (wavelength 193 nm), F 2 (wavelength 157 nm) as a light source have been proposed as a light source for an exposure apparatus. However, conventional glass materials can hardly cope with such a short wavelength.

このような短波長化に対応できる硝材としてフッ化物結晶が挙げられる。フッ化物結晶としては、結晶粒界や結晶方位の影響を回避すべく、単結晶が用いられ、ブリッジマン法等によって育成されている。   An example of a glass material that can cope with such a short wavelength is a fluoride crystal. As the fluoride crystal, a single crystal is used in order to avoid the influence of crystal grain boundaries and crystal orientations, and it is grown by the Bridgman method or the like.

露光装置のレンズ材料等に用いられるフッ化物単結晶に要求される特性は、複屈折性(歪複屈折性)、光透過性、屈折率均質性等である。   Characteristics required for a fluoride single crystal used for a lens material of an exposure apparatus are birefringence (strain birefringence), light transmittance, refractive index homogeneity, and the like.

歪複屈折等を低減するためには、単結晶を育成後にアニール処理を行うことが一般的である。そして、特許文献1(特許第3466948号公報)には、アニール処理を行い、その時の降温速度を制御することによって、フッ化物結晶の複屈折率(歪複屈折率)を短時間で低減できることが記載されている。   In order to reduce strain birefringence and the like, it is common to perform annealing after growing a single crystal. In Patent Document 1 (Japanese Patent No. 3466948), the birefringence (strain birefringence) of the fluoride crystal can be reduced in a short time by performing an annealing process and controlling the cooling rate at that time. Are listed.

また、特許文献2(特許第3466950号公報)には、アニール処理時にフッ化物結晶の内部応力分布を補償するような力を加えた状態でアニールすることによって、にごりや着色が生じ難く、残留応力も低減されたフッ化物結晶が得られることが記載されている。   Further, Patent Document 2 (Japanese Patent No. 3466950) discloses that residual annealing is difficult to cause dust and coloring by annealing in a state in which a force that compensates the internal stress distribution of the fluoride crystal is applied during annealing. It is also described that reduced fluoride crystals can be obtained.

特許文献3(特開2000−34193号公報)には、アニール処理(加熱処理)工程前に表面清浄工程又はアニール処理工程後に変質層除去工程を各々設けることによって、透過率が高く、低歪で内部濁りがなく、表層部に変質層の存在しないフッ化物単結晶が製造できることが記載されている。   In Patent Document 3 (Japanese Patent Laid-Open No. 2000-34193), by providing a surface cleaning step or a deteriorated layer removing step after the annealing treatment (heat treatment) step, the transmittance is high and the distortion is low. It is described that a fluoride single crystal having no internal turbidity and having no altered layer in the surface layer can be produced.

特許文献4(特開2004−99409号公報)には、蛍石単結晶の製造に伴う冷却において、塑性変形を生じない内部応力レベルに保ちつつ、連続的に冷却速度を増加しながら冷却を行うことによって、歪複屈折が増大しやすい大型の蛍石単結晶であっても高品質でかつ生産性が良好である旨記載されている。   In Patent Document 4 (Japanese Patent Laid-Open No. 2004-99409), in cooling associated with the production of a fluorite single crystal, cooling is performed while continuously increasing the cooling rate while maintaining an internal stress level that does not cause plastic deformation. Therefore, it is described that even a large fluorite single crystal whose strain birefringence is likely to increase is of high quality and good productivity.

特許文献5(特開平10−251096号公報)には、最終製品の平面輪郭形状に近似又は相似する形状に加工した蛍石単結晶をアニール処理することにより、屈折率の均質性がよく、波面収差のパワー成分補正後のRMS値及び非回転対称成分のRMS値が小さい蛍石単結晶が得られると記載されている。   In Patent Document 5 (Japanese Patent Laid-Open No. 10-251096), annealing of a fluorite single crystal that has been processed into a shape that approximates or resembles the planar contour shape of the final product results in good homogeneity of the refractive index and the wavefront. It is described that a fluorite single crystal having a small RMS value after correction of the power component of aberration and a small RMS value of the non-rotationally symmetric component can be obtained.

特許第3466948号公報Japanese Patent No. 3466948 特許第3466950号公報Japanese Patent No. 3466950 特開2000−34193号公報JP 2000-34193 A 特開2004−99409号公報JP 2004-99409 A 特開平10−251096号公報JP-A-10-251096

特許文献1〜5は、フッ化カルシウム(蛍石)単結晶等のフッ化物単結晶の製造に際し、製造条件又は製造工程等を特定することによって、露光装置のレンズ材料等に用いられるフッ化物単結晶に要求される特性、例えば歪複屈折や透過率等を改善するものである。   Patent Documents 1 to 5 disclose that a fluoride single crystal used for a lens material of an exposure apparatus is specified by specifying a manufacturing condition or a manufacturing process when manufacturing a fluoride single crystal such as a calcium fluoride (fluorite) single crystal. It improves properties required for crystals, such as strain birefringence and transmittance.

露光装置の光学系に用いられるフッ化物単結晶には、(111)面方位と(100)面方位の単結晶を組み合わせ真性複屈折を打ち消すようにさせており、(100)面方位の結晶内部の歪複屈折を大幅に低減することは、露光装置のレンズ材料等の用途には極めて重要である。   The fluoride single crystal used in the optical system of the exposure apparatus combines a (111) plane orientation and a (100) plane orientation single crystal to cancel the intrinsic birefringence, and the (100) plane orientation inside the crystal. It is extremely important to significantly reduce the strain birefringence of the lens material of the exposure apparatus.

従って、本発明の目的は、(100)面方位の結晶内部の歪複屈折が大幅に低減された(100)結晶面の円筒状フッ化物単結晶の加工方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for processing a cylindrical fluoride single crystal having a (100) crystal plane in which the strain birefringence inside the crystal having a (100) plane orientation is greatly reduced.

本発明者らは、検討の結果、アニール処理されたフッ化物単結晶の多角体を多角柱状体に切断し、次いで円筒研削加工(丸目加工)することにより、(100)面方位の低歪単結晶の製造が達成し得ることを見出した。 As a result of the study, the inventors cut the annealed fluoride single crystal polyhedron into a polygonal columnar body and then cylindrical grinding (rounding), thereby obtaining a low strain single crystal having a (100) plane orientation. It has been found that the production of crystals can be achieved.

すなわち、本発明は、育成された単結晶インゴットを切断して多角体を得、該多角体をアニール処理した後、さらに多角柱状体に切断次いで円筒研削加工することを特徴とする、(100)結晶面の円筒状フッ化物単結晶の加工方法を提供するものである。 That is, the present invention is characterized by cutting a grown single crystal ingot to obtain a polygon, annealing the polygon, further cutting into a polygonal column , and then cylindrical grinding. 100) A method of processing a cylindrical fluoride single crystal having a crystal plane is provided.

本発明に係る上記加工方法において、上記円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS:2乗平均粗さ)が0.1〜5.0μmであることが望ましい。このような表面粗さを有することによって、(100)面方位の結晶内部の歪複屈折がより低減できる。In the processing method according to the present invention, the surface roughness (RMS: root mean square roughness) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding is 0.1 to 5.0 μm. Is desirable. By having such a surface roughness, strain birefringence inside the (100) plane crystal can be further reduced.

また、本発明に係る上記加工方法において、上記円筒加工が円筒軸方向への砥石の切り込み速度1mm/min〜300mm/min、砥石に対するフッ化物単結晶の回転速度5rpm〜15rpmで行われることが望ましい。このような条件を用いることによって、(100)面方位の結晶内部の歪複屈折がより低減できる。   In the processing method according to the present invention, it is desirable that the cylindrical processing is performed at a grinding stone cutting speed of 1 mm / min to 300 mm / min in the cylindrical axis direction and a rotational speed of the fluoride single crystal with respect to the grinding stone from 5 rpm to 15 rpm. . By using such conditions, strain birefringence inside the (100) plane crystal can be further reduced.

さらに、本発明に係る上記加工方法において上記円筒研削加工の砥石粒度が#100〜#240であることが望ましい。このような粒度の砥石を用いることによって、(100)面方位の結晶内部の歪複屈折がより低減できる。   Furthermore, in the processing method according to the present invention, it is desirable that the grindstone particle size of the cylindrical grinding is # 100 to # 240. By using a grindstone having such a grain size, the strain birefringence inside the (100) -oriented crystal can be further reduced.

本発明に係る加工方法によって、円筒状フッ化物単結晶の(100)面方位の結晶内部の歪複屈折を大幅に低減することができる。   By the processing method according to the present invention, the strain birefringence inside the (100) -oriented crystal of the cylindrical fluoride single crystal can be greatly reduced.

以下、本発明を実施するための最良の形態について説明する。
(フッ化物単結晶インゴットの育成工程)
本発明に係る加工方法においては、先ずフッ化物単結晶を育成する。フッ化物単結晶としては、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化マグネシウム等が例示されるが、透過率の高い光学部品として用いられ、蛍石と呼称されるフッ化カルシウムが代表的である。
Hereinafter, the best mode for carrying out the present invention will be described.
(Growth process of fluoride single crystal ingot)
In the processing method according to the present invention, a fluoride single crystal is first grown. Examples of fluoride single crystals include calcium fluoride, barium fluoride, strontium fluoride, magnesium fluoride, etc., but calcium fluoride used as an optical component with high transmittance and called fluorite is representative. Is.

フッ化物粉末や溶解粉砕品等のフッ化物原料を育成用ルツボに入れて融解した後、徐冷して結晶成長させて直径250〜350mm程度のフッ化物単結晶インゴットを作製する。結晶育成方法としては、ブリッジマン法(ストックバーガー法、ルツボ降下法)やチョクラルスキー法が採用される。また、使用するルツボは黒鉛ルツボが好ましく用いられる。   Fluoride raw materials such as fluoride powder and dissolved and pulverized products are put in a growth crucible and melted, and then slowly cooled to grow crystals to produce a fluoride single crystal ingot having a diameter of about 250 to 350 mm. As the crystal growth method, the Bridgeman method (stock burger method, crucible descent method) or the Czochralski method is employed. Moreover, a graphite crucible is preferably used as the crucible to be used.

このフッ化物単結晶の育成においては、炉内温度はルツボのフッ化物原料が融解する温度以上にまで上げ、ルツボ引き下げ終了後、5℃/hr〜25℃/hrの温度勾配で育成した単結晶を室温まで下げる。育成中はすべて真空雰囲気(1×10−3Pa〜1×10−5Pa)で行う。この単結晶の育成速度(引き下げ速度)は0.1mm/hr〜5.0mm/hrで行う。   In the growth of the fluoride single crystal, the furnace temperature is raised to a temperature higher than the melting temperature of the crucible fluoride raw material, and after the crucible is lowered, the single crystal is grown with a temperature gradient of 5 ° C./hr to 25 ° C./hr. To room temperature. All the growth is performed in a vacuum atmosphere (1 × 10 −3 Pa to 1 × 10 −5 Pa). The growth rate (pulling rate) of this single crystal is 0.1 mm / hr to 5.0 mm / hr.

(フッ化物単結晶インゴットの簡易アニール処理及び切断工程)
このようにして育成されたフッ化物単結晶インゴットは、残留歪が大きすぎて、そのまま切断、加工を行うと、インゴット中にクラックが生じる。そこで、インゴット中のクラックを防止すべく、低温で簡易アニール、具体的には200〜500℃、7〜21日、不活性雰囲気でアニールを行い、残留歪を低減させることが望ましい。
(Simple annealing treatment and cutting process of fluoride single crystal ingot)
The fluoride single crystal ingot grown in this way has too much residual strain, and if it is cut and processed as it is, cracks are generated in the ingot. Therefore, in order to prevent cracks in the ingot, it is desirable to perform simple annealing at a low temperature, specifically, annealing at 200 to 500 ° C. for 7 to 21 days in an inert atmosphere to reduce residual strain.

残留歪を低減したインゴットは、ダイヤモンドソー等を用いて、例えば1mm/min〜15mm/minの速度で切断され、多角体とされる。多角体としては六角柱状体や八角柱状体等の多角柱状体が一般的である。切断サイズ、側面方位は任意である。   The ingot with reduced residual strain is cut into a polygon by cutting with a diamond saw or the like at a speed of 1 mm / min to 15 mm / min, for example. Polygonal bodies such as hexagonal columnar bodies and octagonal columnar bodies are common as the polygonal bodies. The cutting size and side orientation are arbitrary.

(フッ化物単結晶多角体のアニール処理工程)
次に、フッ化物単結晶多角体をアニール炉中でアニール処理する。アニール処理の条件は、一般的には不活性雰囲気中で最高温度1100℃〜1300℃、アニール炉内の温度勾配0.4℃/cm以下であり、0.4℃/hr以上の降温速度で降温する。アニール処理期間は1〜2ヶ月である。このようにフッ化物単結晶多角体をアニール処理することにより、歪複屈折を低下させることができる。
(Annealing process of fluoride single crystal polyhedron)
Next, the fluoride single crystal polyhedron is annealed in an annealing furnace. The conditions for the annealing treatment are generally a maximum temperature of 1100 ° C. to 1300 ° C. in an inert atmosphere, a temperature gradient in the annealing furnace of 0.4 ° C./cm or less, and a temperature decreasing rate of 0.4 ° C./hr or more. Lower the temperature. The annealing treatment period is 1 to 2 months. Thus, by annealing the fluoride single crystal polyhedron, strain birefringence can be reduced.

(フッ化物単結晶多角体の多角柱状体への切断工程及び円筒研削加工工程)
フッ化物単結晶多角体(六角柱状体)の多角柱状体への切断工程及び円筒研削加工工程における底面(頂面)形状の一例をそれぞれ図2(a)〜(c)に示す。図2(a)はフッ化物単結晶多角体のアニール処理前後の底面形状を示し、底面形状は不等辺六角形である。図2(b)はアニール処理後のフッ化物単結晶多角体の切断後の底面形状を示し、底面形状は略正六角形である。なお、略正六角形内部の円は所定の円筒形状結晶を得る予定領域である。図2(c)はフッ化物単結晶多角体を円筒研削加工後の底面形状を示し、底面形状は製品規格に適合させた真円である。
(Cutting process of fluoride single crystal polyhedron into polygonal column and cylindrical grinding process)
An example of the bottom face (top face) shape in the cutting step of the fluoride single crystal polygon (hexagonal column) into the polygonal column and the cylindrical grinding step is shown in FIGS. FIG. 2A shows the bottom shape before and after annealing of the fluoride single crystal polyhedron, and the bottom shape is an unequal hexagon. FIG. 2B shows a bottom shape after cutting the fluoride single crystal polyhedron after the annealing treatment, and the bottom shape is a substantially regular hexagon. The circle inside the substantially regular hexagon is a region where a predetermined cylindrical crystal is to be obtained. FIG. 2 (c) shows the bottom shape after cylindrical grinding of the fluoride single crystal polyhedron, and the bottom shape is a perfect circle adapted to the product standard.

この工程では、先ずアニール処理が施されたフッ化物単結晶多角体を切断する。切断は上記と同様にダイヤモンドソー等を用いて上記と同様の速度で切断される。切断されるフッ化物の形状、切断サイズは、最終製品の形状、サイズにより任意に決定されるが、本発明では、最終的に円筒状とするのであるから、形状としてはこれに近い多角柱状体、例えば六角柱状体や八角柱状体とする。 In this step, the fluoride single crystal polyhedron that has been annealed is first cut. The cutting is performed at the same speed as described above using a diamond saw or the like as described above. The shape of the fluoride to be cut and the cut size are arbitrarily determined depending on the shape and size of the final product, but in the present invention, the shape is finally cylindrical, so that the shape is a polygonal column that is close to this. , it shall be the example hexagonal columnar body and an octagonal columnar body.

本発明の加工方法では、このようにアニール処理されたフッ化物単結晶の多角体を多角柱状体に切断することにより、(100)面方位の低歪単結晶の製造が達成される。また、本発明の加工方法では、後述するように、切断後に円筒研削加工することにより、さらなる(100)面方位の低歪単結晶の製造が達成される。 In the processing method of the present invention, the low-distortion single crystal having a (100) orientation is achieved by cutting the annealed fluoride single crystal polygon into polygonal prisms . Further, in the processing method of the present invention, as will be described later, the production of a low strain single crystal having a further (100) plane orientation is achieved by performing cylindrical grinding after cutting.

次に、底面形状が図2(b)に示されるような切断された多角柱状体のフッ化物単結晶を加工する。加工は円筒研削加工、すなわち丸目加工が採用される。本発明では、この円筒研削加工において、円筒軸方向への砥石の切り込み速度を好ましくは1mm/min〜300mm/min、さらに好ましくは5mm/min〜15mm/min、砥石に対する被研削加工物(ワーク)、すなわちフッ化物単結晶の回転速度を好ましくは5rpm〜15rpm、さらに好ましくは5rpm〜10rpmで行われることが望ましい。切り込み速度や回転速度が上記範囲外であると、(100)面方位の結晶内部の歪複屈折が大幅に低減することができない。また、この円筒研削加工に用いられる砥石粒度は#100〜#240、さらには#120〜#180であることが望ましい。このような粒度の砥石を用いることによって、(100)面方位の結晶内部の歪複屈折がより低減される。円筒研削加工によって、図2(c)に示されるような底面が真円の円筒体が得られる。底面の直径は製品規格によって決定される。   Next, the fluoride single crystal of a polygonal columnar body whose bottom surface shape is cut as shown in FIG. 2B is processed. Cylindrical grinding, that is, rounding is adopted as the processing. In the present invention, in this cylindrical grinding process, the cutting speed of the grindstone in the cylindrical axis direction is preferably 1 mm / min to 300 mm / min, more preferably 5 mm / min to 15 mm / min, and the workpiece to be ground (work) for the grindstone. That is, the rotation speed of the fluoride single crystal is preferably 5 rpm to 15 rpm, more preferably 5 rpm to 10 rpm. When the cutting speed and the rotational speed are outside the above ranges, the strain birefringence inside the crystal with the (100) plane orientation cannot be significantly reduced. Moreover, it is desirable that the grindstone particle size used in this cylindrical grinding is # 100 to # 240, and further # 120 to # 180. By using a grindstone with such a grain size, the strain birefringence inside the (100) -oriented crystal is further reduced. By cylindrical grinding, a cylindrical body having a perfect bottom as shown in FIG. 2C is obtained. The diameter of the bottom surface is determined by product standards.

このようにして得られた円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は0.1〜5.0μm、さらには1.0〜2.0μmであることが望ましい。このような表面粗さを有する単結晶は、(100)面方位の結晶内部の歪複屈折を低減できる。 The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding thus obtained is 0.1 to 5.0 μm, and further 1.0 to 2.0 μm. It is desirable . A single crystal having such a surface roughness can reduce strain birefringence inside the (100) -oriented crystal.

最後に、単結晶の対向する2面を平行にし、製品厚みとするために平面研削を行う。このときの切り込み速度は通常0.05〜0.2mm/minで行われる。   Finally, surface grinding is performed to make the two opposing faces of the single crystal parallel and to obtain a product thickness. The cutting speed at this time is usually 0.05 to 0.2 mm / min.

このようにして製造された(100) 面方位の結晶内部の歪複屈折が大幅に低減されたフッ化物単結晶は製品とされる。   The thus produced fluoride single crystal in which the strain birefringence inside the (100) -oriented crystal is greatly reduced is regarded as a product.

以下、本発明を実施例等に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and the like.

(参考例1)
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを250℃、14日、アルゴン雰囲気で簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。このフッ化カルシウム六角柱状体にアニール処理を施した。アニール処理は不活性雰囲気中で最高温度1100℃〜1300℃、アニール炉内の温度勾配0.4℃/cm以下、0.4℃/h以上の降温速度で降温した。アニール処理期間は1ヶ月である。
(Reference Example 1)
A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment at 250 ° C. for 14 days in an argon atmosphere, and then cut to obtain a calcium fluoride hexagonal columnar body. The calcium fluoride hexagonal column was annealed. The annealing treatment was performed in an inert atmosphere at a maximum temperature of 1100 ° C. to 1300 ° C., a temperature gradient in the annealing furnace of 0.4 ° C./cm or less, and a temperature decreasing rate of 0.4 ° C./h or more. The annealing treatment period is one month.

アニール処理されたフッ化カルシウム六角柱状体をさらに切断し、一回り小さいフッ化カルシウム六角柱状体を得た。   The annealed calcium fluoride hexagonal column was further cut to obtain a slightly smaller calcium fluoride hexagonal column.

アニール処理前後のフッ化カルシウム六角柱状体及び切断後のフッ化カルシウム六角柱状体における150mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表1に示す。なお、歪複屈折の単位はいずれもnm/cmである。   Automatically strain (100) orientation birefringence (average, deviation, root mean square, maximum, minimum) within 150 mm diameter in the calcium fluoride hexagonal column before and after annealing and the calcium fluoride hexagonal column after cutting It measured using the birefringence measuring device. The results are shown in Table 1. Note that the unit of strain birefringence is nm / cm.

Figure 0004756630
Figure 0004756630

(参考例2)
参考例1と同様に、ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得、さらにアニール処理を施した。
(Reference Example 2)
As in Reference Example 1, a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, then cut to obtain a calcium fluoride hexagonal columnar body, and further subjected to an annealing treatment.

アニール処理されたフッ化カルシウム六角柱状体をさらに切断し、一回り小さいフッ化カルシウム六角柱状体を得た。   The annealed calcium fluoride hexagonal column was further cut to obtain a slightly smaller calcium fluoride hexagonal column.

アニール処理前後のフッ化カルシウム六角柱状体及び切断後のフッ化カルシウム六角柱状体における110mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表2に示す。   Auto-distortion of strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within 110mm diameter in calcium fluoride hexagonal column before and after annealing and calcium fluoride hexagonal column after cutting It measured using the birefringence measuring device. The results are shown in Table 2.

Figure 0004756630
Figure 0004756630

ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。このフッ化カルシウム六角柱状体にアニール処理を施した。アニール処理は不活性雰囲気中で最高温度1100℃〜1300℃、アニール炉内の温度勾配0.4℃/cm以下、0.4℃/h以上の降温速度で降温した。アニール処理期間は1ヶ月である。   A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body. The calcium fluoride hexagonal column was annealed. The annealing treatment was performed in an inert atmosphere at a maximum temperature of 1100 ° C. to 1300 ° C., a temperature gradient in the annealing furnace of 0.4 ° C./cm or less, and a temperature decreasing rate of 0.4 ° C./h or more. The annealing treatment period is one month.

アニール処理されたフッ化カルシウム六角柱状体をさらに切断した後、円筒研削加工を行い、直径100mmのフッ化カルシウム円筒体を作製した。加工条件は円筒軸方向への砥石の切り込み速度5mm/min、砥石に対するワークの回転速度15rpmであり、砥石粒度は#150である。   The annealed calcium fluoride hexagonal columnar body was further cut and then subjected to cylindrical grinding to produce a calcium fluoride cylinder having a diameter of 100 mm. The processing conditions were a grinding wheel cutting speed of 5 mm / min in the cylindrical axis direction, a workpiece rotational speed of 15 rpm with respect to the grinding wheel, and a grinding wheel particle size of # 150.

アニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カルシウム円筒体における50から110mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表3に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.1μmであった。   Strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within a diameter of 50 to 110 mm in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 3. Further, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.1 μm.

Figure 0004756630
Figure 0004756630

ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。   A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.

このフッ化カルシウム六角柱状体を実施例に準じてアニール処理、切断及び円筒研削加工を行い、直径150mmのフッ化カルシウム円筒体を作製した。 This calcium fluoride hexagonal columnar body was annealed, cut and cylindrically ground according to Example 1 to produce a calcium fluoride cylinder having a diameter of 150 mm.

アニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カルシウム円筒体における50から150mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表4に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.6μmであった。   Strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within a diameter of 50 to 150 mm in the calcium fluoride hexagonal column after annealing and the cylinder after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 4. Further, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.6 μm.

Figure 0004756630
Figure 0004756630

比較例Comparative example

(比較例1)
実施例と同様に、ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム(111)面方位六角柱状体を得、このフッ化カルシウム六角柱状体を実施例に準じてアニール処理、切断及び円筒研削加工を行った。アニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カルシウム円筒体における87から240mm径内の(111)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表5に示す。
(Comparative Example 1)
As in Example 1 , a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride (111) oriented hexagonal columnar body. The hexagonal columnar body was annealed, cut, and cylindrically ground according to Example 1 . Strain birefringence (average, deviation, root mean square, maximum, minimum) of (111) plane orientation within a diameter of 87 to 240 mm in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 5.

Figure 0004756630
Figure 0004756630

(比較例2)
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。
(Comparative Example 2)
A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.

このフッ化カルシウム六角柱状体を実施例と同様の条件で円筒研削加工を行い、フッ化カルシウム円筒体を作製した。次いで、このフッ化カルシウム円筒体に実施例と同様の条件でアニール処理を施し、最終的に直径130mmのフッ化カルシウム円筒体を作製した。 This calcium fluoride hexagonal columnar body was subjected to cylindrical grinding under the same conditions as in Example 1 to produce a calcium fluoride cylindrical body. Next, this calcium fluoride cylinder was annealed under the same conditions as in Example 1 to finally produce a calcium fluoride cylinder having a diameter of 130 mm.

最終的に得られたフッ化カルシウム円筒体における50から120mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表6に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.7μmであった。   Using an automatic strain birefringence measuring instrument, strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within a diameter of 50 to 120 mm in the finally obtained calcium fluoride cylindrical body is measured. It was measured. The results are shown in Table 6. Moreover, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.7 μm.

Figure 0004756630
Figure 0004756630

(比較例3)
比較例2で作製したフッ化カルシウム円筒体について、再度、実施例と同様の条件で円筒研削加工を行い、最終的に直径129mmのフッ化カルシウム円筒体を作製した。
(Comparative Example 3)
The calcium fluoride cylinder produced in Comparative Example 2 was again subjected to cylindrical grinding under the same conditions as in Example 1, and finally a calcium fluoride cylinder having a diameter of 129 mm was produced.

最終的に得られたフッ化カルシウム円筒体における50から120mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表7に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.8μmであった。   Using an automatic strain birefringence measuring instrument, strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within a diameter of 50 to 120 mm in the finally obtained calcium fluoride cylindrical body is measured. It was measured. The results are shown in Table 7. Moreover, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.8 μm.

Figure 0004756630
Figure 0004756630

(比較例4)
比較例3で作製した、フッ化カルシウム円筒体について、再度、実施例と同様の条件で円筒研削加工を行い、最終的に直径120mmのフッ化カルシウム円筒体を作製した。
(Comparative Example 4)
The calcium fluoride cylindrical body produced in Comparative Example 3 was again subjected to cylindrical grinding under the same conditions as in Example 1 to finally produce a calcium fluoride cylindrical body having a diameter of 120 mm.

最終的に得られたフッ化カルシウム円筒体における50から120mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表8に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.8μmであった。   Using an automatic strain birefringence measuring instrument, strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within a diameter of 50 to 120 mm in the finally obtained calcium fluoride cylindrical body is measured. It was measured. The results are shown in Table 8. Moreover, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.8 μm.

Figure 0004756630
Figure 0004756630

(比較例5)
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。
(Comparative Example 5)
A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.

このフッ化カルシウム六角柱状体を実施例に準じてアニール処理後、エッチング液(H2O+HCl:濃度10%)に浸漬し、表面を0.05mm〜0.1mm溶解した。 This calcium fluoride hexagonal columnar body was annealed according to Example 1 , and then immersed in an etching solution (H 2 O + HCl: concentration 10%) to dissolve the surface by 0.05 mm to 0.1 mm.

エッチング処理前後のフッ化カルシウム六角柱状体の(100)面方位における50から120mm径内の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表9に示す。   Measurement of strain birefringence (average, deviation, root mean square, maximum, minimum) within a diameter of 50 to 120 mm in the (100) plane orientation of the hexagonal columnar calcium fluoride before and after etching using an automatic strain birefringence measuring instrument. did. The results are shown in Table 9.

Figure 0004756630
Figure 0004756630

表1〜9の結果から次のことが判る。すなわち、参考例1及び2は、フッ化カルシウム六角柱状体を切断したものであるが、(100)面方位の歪複屈折が小さくなることから、歪複屈折を低減することができる(表1及び表2参照)。また、実施例及びはフッ化カルシウム六角柱状体を切断後、一定条件で円筒研削加工したものであるが、(100)面方位の歪複屈折がさらに小さくなることから、歪複屈折をさらに低減することができる(表3及び表4参照)。しかし、比較例1のように、フッ化カルシウム六角柱状体を一定条件で円筒研削加工しても、(111)面方位の歪複屈折は円筒研削加工前後で大きな変化は見られない(表5参照)。 The following can be seen from the results of Tables 1-9. That is, Reference Examples 1 and 2 were obtained by cutting the calcium fluoride hexagonal columnar body, but the strain birefringence can be reduced because the (100) plane orientation strain birefringence is reduced (Table 1). And Table 2). In Examples 1 and 2 , the hexagonal columnar body of calcium fluoride was cut and then subjected to cylindrical grinding under certain conditions. However, since the strain birefringence in the (100) plane orientation is further reduced, strain birefringence is reduced. Further reduction can be achieved (see Tables 3 and 4). However, as in Comparative Example 1, even if the calcium fluoride hexagonal columnar body is subjected to cylindrical grinding under a certain condition, the strain birefringence of the (111) plane orientation does not change significantly before and after the cylindrical grinding (Table 5). reference).

比較例2〜4は、フッ化カルシウム六角柱状体をアニール処理する前に円筒研削加工し、アニール処理後、0〜2回円筒研削加工したものであるが、(100)面方位の歪複屈折は小さくならないことから、歪複屈折は低減されない(表6〜表8参照)。比較例5は、フッ化カルシウム六角柱状体をエッチング処理したものであるが、化学的研削では(100)面方位の歪複屈折は小さくならないことから、歪複屈折は低減されない(表9参照)。   In Comparative Examples 2 to 4, the calcium fluoride hexagonal columnar body was subjected to cylindrical grinding before annealing, and after annealing, cylindrical grinding was performed 0 to 2 times. Therefore, strain birefringence is not reduced (see Tables 6 to 8). In Comparative Example 5, the hexagonal columnar calcium fluoride was etched, but the strain birefringence is not reduced because the (100) orientation strain birefringence is not reduced by chemical grinding (see Table 9). .

本発明に係る加工方法により得られた円筒状フッ化物単結晶は、(100)面方位の結晶内部の歪複屈折が大幅に低減されていることから、露光装置のレンズとして好適に用いられるほか、他の光学部品の硝材としても用いることができる。   The cylindrical fluoride single crystal obtained by the processing method according to the present invention has a significantly reduced strain birefringence inside the crystal of (100) orientation, so that it can be suitably used as a lens of an exposure apparatus. It can also be used as a glass material for other optical components.

図1は、(100)結晶面を示す図であり、図1(a)は円柱体、図1(b)は六角柱状体である。1A and 1B are diagrams showing a (100) crystal plane, in which FIG. 1A is a cylindrical body, and FIG. 1B is a hexagonal columnar body. 図2は、本発明に係る加工方法のフッ化物単結晶多角体(六角柱状体)の切断、加工工程における底面(頂面)形状の一例を示す図であり、図2(a)はアニール処理前後、図2(b)は切断後、図2(c)は円筒研削加工後である。FIG. 2 is a diagram showing an example of the bottom (top) shape in the cutting and processing steps of a fluoride single crystal polyhedron (hexagonal column) in the processing method according to the present invention, and FIG. Before and after, FIG. 2 (b) is after cutting, and FIG. 2 (c) is after cylindrical grinding.

Claims (4)

育成された単結晶インゴットを切断して多角体を得、該多角体をアニール処理した後、さらに多角柱状体に切断次いで円筒研削加工することを特徴とする、(100)結晶面の円筒状フッ化物単結晶の加工方法。 A (100) crystal plane cylinder, characterized in that the grown single crystal ingot is cut to obtain a polygon, the polygon is annealed, further cut into a polygonal column , and then subjected to cylindrical grinding. Of processing fluoride single crystals. 上記円筒研削加工後の単結晶円筒研削加工面の表面粗さ(RMS)が0.1〜5.0μmである請求項1に記載の(100)結晶面の円筒状フッ化物単結晶の加工方法 2. The method for processing a cylindrical fluoride single crystal having a (100) crystal plane according to claim 1, wherein a surface roughness (RMS) of the single crystal cylindrical ground surface after the cylindrical grinding is 0.1 to 5.0 μm. . 上記円筒研削加工が円筒軸方向への砥石の切り込み速度1mm/min〜300mm/min、砥石に対するフッ化物単結晶の回転速度5rpm〜15rpmで行われる請求項1又は記載の円筒状フッ化物単結晶の加工方法。 The cylindrical fluoride unit according to claim 1 or 2 , wherein the cylindrical grinding is performed at a cutting speed of the grinding stone in the cylindrical axis direction of 1 mm / min to 300 mm / min, and a rotational speed of the fluoride single crystal with respect to the grinding wheel is 5 rpm to 15 rpm. Crystal processing method. 上記円筒研削加工の砥石粒度が#100〜#240である請求項1、2又は3記載の円筒状フッ化物単結晶の加工方法。 The method for processing a cylindrical fluoride single crystal according to claim 1, 2 or 3 , wherein a grindstone particle size of the cylindrical grinding is # 100 to # 240.
JP2005011758A 2005-01-19 2005-01-19 (100) Crystal surface cylindrical fluoride single crystal processing method Active JP4756630B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005011758A JP4756630B2 (en) 2005-01-19 2005-01-19 (100) Crystal surface cylindrical fluoride single crystal processing method
PCT/JP2006/300546 WO2006077836A1 (en) 2005-01-19 2006-01-17 Method of working fluoride single crystal into one with cylindrical (100) crystal face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011758A JP4756630B2 (en) 2005-01-19 2005-01-19 (100) Crystal surface cylindrical fluoride single crystal processing method

Publications (2)

Publication Number Publication Date
JP2006199528A JP2006199528A (en) 2006-08-03
JP4756630B2 true JP4756630B2 (en) 2011-08-24

Family

ID=36692225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011758A Active JP4756630B2 (en) 2005-01-19 2005-01-19 (100) Crystal surface cylindrical fluoride single crystal processing method

Country Status (2)

Country Link
JP (1) JP4756630B2 (en)
WO (1) WO2006077836A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839205B2 (en) * 2006-12-25 2011-12-21 三井金属鉱業株式会社 Fluorite manufacturing method
JP4839204B2 (en) * 2006-12-25 2011-12-21 三井金属鉱業株式会社 Fluorite
MY143208A (en) 2007-01-31 2011-03-31 Aica Kogyo Ltd Melamine decorative laminated sheet
JP6045633B2 (en) * 2015-05-25 2016-12-14 住友化学株式会社 Manufacturing method of nitride semiconductor substrate
JP2020179474A (en) * 2019-04-26 2020-11-05 株式会社ディスコ Method for working plate-like object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686204B2 (en) * 1997-03-10 2005-08-24 株式会社ニコン Annealing method of fluorite single crystal
US6994747B2 (en) * 2001-07-17 2006-02-07 Nikon Corporation Method for producing optical member

Also Published As

Publication number Publication date
WO2006077836A1 (en) 2006-07-27
JP2006199528A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4756630B2 (en) (100) Crystal surface cylindrical fluoride single crystal processing method
US7837969B2 (en) Method of making large-volume CaF2 single crystals for optical elements with an optic axis parallel to the (100)-or (110)-crystal axis and CaF2 single crystal made thereby
JP4078161B2 (en) Fluorite and its manufacturing method
WO2002103413A1 (en) Optical member, process for producing the same, and projection aligner
JP2000128696A (en) Fluoride single crystal-made raw material for making optical element and production of the same raw material
JP2006219361A (en) Method for manufacturing crystal
JP2006219352A (en) Apparatus and method for manufacturing single crystal
WO2012011373A1 (en) Fluorite production method
JP3686204B2 (en) Annealing method of fluorite single crystal
JP4092515B2 (en) Fluorite manufacturing method
JP4892192B2 (en) Method for producing low stress large volume non- (111) oriented crystals with reduced stress birefringence and more homogeneous refractive index and crystals produced by the same method
JP4723525B2 (en) Method for producing BaLiF3 single crystal
JP4836905B2 (en) Method for producing BaLiF3 single crystal
JP6035584B2 (en) Method for producing fluorite crystals
JP2005239540A (en) Method for producing low stress, large volume crystal with reduced stress birefringence and homogeneous refractive index, and crystal produced by the same
JP4797447B2 (en) Optical workpiece, optical member, optical system, and light exposure apparatus
JP2016175780A (en) Fluoride crystal and optical component
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP4839204B2 (en) Fluorite
JP2002160999A (en) Method for growing crystal, method for forming fluoride crystal, method for forming optical member, and seed crystal for growing crystal
JP2006078565A (en) Optical member and optical apparatus
JP2006001760A (en) Method for producing fluoride single crystal
JP2006248891A (en) Method for producing highly homogeneous low-stress single crystal with reduced scattering characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4756630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117