JP4756171B2 - Method for producing iron powder for reactants - Google Patents

Method for producing iron powder for reactants Download PDF

Info

Publication number
JP4756171B2
JP4756171B2 JP2006263453A JP2006263453A JP4756171B2 JP 4756171 B2 JP4756171 B2 JP 4756171B2 JP 2006263453 A JP2006263453 A JP 2006263453A JP 2006263453 A JP2006263453 A JP 2006263453A JP 4756171 B2 JP4756171 B2 JP 4756171B2
Authority
JP
Japan
Prior art keywords
iron powder
sample
reduced iron
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006263453A
Other languages
Japanese (ja)
Other versions
JP2008081790A (en
Inventor
和浩 妹尾
幸一 丸岡
尚久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2006263453A priority Critical patent/JP4756171B2/en
Publication of JP2008081790A publication Critical patent/JP2008081790A/en
Application granted granted Critical
Publication of JP4756171B2 publication Critical patent/JP4756171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、脱酸素剤、使い捨てカイロ、加温湿布剤および灸等の反応剤に使用する反応剤用鉄粉の製造方法に関する。   The present invention relates to a method for producing iron powder for a reactive agent used for a reactive agent such as an oxygen scavenger, a disposable body warmer, a warming poultice, and a bag.

従来の鉄粉は脱酸素剤や使い捨てカイロ等の反応剤として使用すると、貯蔵中に水素が発生し、包装袋が膨らむという問題があった。そこで当該問題を解決するため、以下のような提案がなされた。   When conventional iron powder is used as a reactive agent such as an oxygen scavenger or a disposable body warmer, there is a problem that hydrogen is generated during storage and the packaging bag is inflated. In order to solve the problem, the following proposals have been made.

特許文献1には、鉄粉へ、アルカリ性物質を加え、水素の発生を抑制することが提案されている。また、特許文献2には、鉄粉へ、粒径100μm以下のシリカ粉末を混合し、水素の発生を抑制することが提案されている。さらに、特許文献3には、鉄粉へ、アルカリ性物質,S,Sb,Se,P,Teから選択される少なくとも2種の水素抑制剤を混合して、水素の発生を抑制することが提案されている。さらに、特許文献4には、鉄粉を、酸素濃度10%以下の雰囲気中において200〜500℃の温度で熱処理し、ウスタイトの量を5%以下にすることで水素の発生を抑制することが提案されている。   Patent Document 1 proposes adding an alkaline substance to iron powder to suppress the generation of hydrogen. Patent Document 2 proposes mixing silica powder with a particle size of 100 μm or less into iron powder to suppress generation of hydrogen. Furthermore, Patent Document 3 proposes that iron powder is mixed with at least two hydrogen inhibitors selected from alkaline substances, S, Sb, Se, P, and Te to suppress generation of hydrogen. ing. Furthermore, in Patent Document 4, iron powder is heat-treated at a temperature of 200 to 500 ° C. in an atmosphere having an oxygen concentration of 10% or less, and the amount of wustite is suppressed to 5% or less to suppress generation of hydrogen. Proposed.

特開昭55−56180号公報JP-A-55-56180 特開平9−271661号公報JP-A-9-271661 特開昭57−172974号公報JP 57-172974 A 特開平8−192831号公報JP-A-8-192831

しかしながら本発明者らの検討によると、特許文献1から3に記載の提案は、水素発生の抑制には効果があるものの、鉄の酸化反応性が悪化するという新たな問題が発生した。
特許文献4に記載の提案も、水素発生の抑制には効果があるものの、初期酸化反応性が劣化し、また酸化により鉄含有量が低下するという新たな問題が発生した。さらに、熱処理に回転炉を用いるため、生産性(単位時間の生産量)に難点があった。
本発明は、上述の状況のもとに為されたものであり、その解決しようとする課題は、鉄の酸化反応性を保持したまま、貯蔵中の鉄粉における水素発生の抑制には効果があり、生産性にも優れた反応剤用鉄粉の製造方法を提供することである。
However, according to the study by the present inventors, although the proposals described in Patent Documents 1 to 3 are effective in suppressing hydrogen generation, there is a new problem that iron oxidation reactivity deteriorates.
Although the proposal described in Patent Document 4 is also effective in suppressing hydrogen generation, a new problem has arisen in that the initial oxidation reactivity is deteriorated and the iron content is reduced by oxidation. Further, since a rotary furnace is used for the heat treatment, there is a difficulty in productivity (production amount per unit time).
The present invention has been made under the above situation, and the problem to be solved is effective in suppressing hydrogen generation in iron powder during storage while maintaining the oxidation reactivity of iron. It is to provide a method for producing a reactive iron powder that is also excellent in productivity.

本発明者らは、上記の課題を解決すべく鋭意研究をおこない、まず水素発生の反応メカニズムを検討した。
ここで、アノード側およびカソード側での反応を説明する。
アノード側での反応:Fe→Fe2++2e-・・・・・・ ・(1)
カソード側での反応:2H+2e-→H・・・・・・・ ・(2)
2HO+2e-→H+2OH・・・・・・・・・・(3)
または、HO+1/2O+2e-→2OH・・・・(4)
アノード側で生じたFe2+は次の反応で酸化物を形成する。
Fe2++2OH→Fe(OH)・・・・・・ ・・(5)
2Fe(OH)+1/2O→Fe+2HO・(6)
このようにカソード側では、(2)に示すように水素が発生する。
当該カソード側での水素発生を抑制するために、本発明者らは、(I)pHを上げることでアノード反応を起こし易い鉄の活性点を潰す、(II)熱処理によりアノード反応を起こし易い鉄の活性点を潰し不動態化する、等の方策に想到した。
The present inventors conducted intensive research to solve the above-mentioned problems, and first examined the reaction mechanism of hydrogen generation.
Here, reactions on the anode side and the cathode side will be described.
Reaction on the anode side: Fe → Fe 2+ + 2e (1)
Reaction on the cathode side: 2H + + 2e → H 2 ... (2)
2H 2 O + 2e → H 2 + 2OH (3)
Or, H 2 O + 1 / 2O 2 + 2e → 2OH (4)
Fe 2+ generated on the anode side forms an oxide by the following reaction.
Fe 2+ + 2OH → Fe (OH) 2 ... (5)
2Fe (OH) 2 + 1 / 2O 2 → Fe 2 O 3 + 2H 2 O. (6)
Thus, on the cathode side, hydrogen is generated as shown in (2).
In order to suppress the generation of hydrogen on the cathode side, the present inventors (I) crush the active sites of iron that easily causes an anodic reaction by raising the pH, and (II) iron that easily causes an anodic reaction by heat treatment. I came up with measures such as crushing the active sites of the material and passivating it.

ところが、当該(I)のpHを上げる方法は、水素ガス発生の抑制には効果があるものの、鉄の酸化反応性が低下するという問題点があることが判明した。一方、(II)の熱処理により鉄の活性点を潰す方法は、初期酸化反応の立ち上がりが遅くなり、さらに、当該熱処理に伴う鉄の酸化により、鉄粉中の鉄含有量が低下するという問題点があることが判明した。   However, although the method of raising the pH of (I) is effective in suppressing the generation of hydrogen gas, it has been found that there is a problem that the oxidation reactivity of iron is lowered. On the other hand, the method of crushing the active sites of iron by the heat treatment (II) has a problem that the initial oxidation reaction starts slowly, and further, the iron content in the iron powder decreases due to the oxidation of iron accompanying the heat treatment. Turned out to be.

そこで本発明者らは、(II)で説明した、初期酸化反応の立ち上がりが遅くなる、鉄粉中の鉄含有量が低下するという問題点を克服するために、さらに研究を行った。
まず、鉄粉の均一な表面酸化方法として回転炉を使用し、大気または水蒸気を含んだ雰囲気ガス中で熱処理を行っていた。しかし、回転炉では生産性(単位時間の生産量)に難点があった。しかし、生産性に優れる連続式ベルト炉を用いて熱処理すると今度は、鉄粉の表面層から酸化がおこるため、均一な酸化が出来なかった。
Therefore, the present inventors have further studied in order to overcome the problems described in (II) that the initial oxidation reaction slows down and the iron content in the iron powder decreases.
First, a rotary furnace was used as a method for uniformly oxidizing iron powder, and heat treatment was performed in an atmosphere gas containing air or water vapor. However, the rotary furnace has a difficulty in productivity (production amount per unit time). However, when heat treatment was performed using a continuous belt furnace excellent in productivity, oxidation occurred from the surface layer of the iron powder, so uniform oxidation could not be performed.

以上の知見から、(II)で説明した熱処理により鉄の活性点を潰す方法では、水素発生が抑制され、酸化反応性が良好な鉄粉を製造することは困難かと思われた。しかし、本発明者らは試行錯誤の結果、鉄粉を窒素雰囲気中にて所定温度で熱処理することにより、水素ガス発生が顕著に抑えられることを見出した。さらに、当該鉄粉へゲーサイトおよび/またはアルカリ性物質を混合し、前記所定温度で熱処理することにより、水素ガス発生がさらに抑えられることを見出し、本発明を完成した。   From the above knowledge, it was considered that it was difficult to produce an iron powder with suppressed hydrogen generation and good oxidation reactivity by the method of crushing the active sites of iron by the heat treatment described in (II). However, as a result of trial and error, the present inventors have found that the generation of hydrogen gas can be remarkably suppressed by heat-treating the iron powder at a predetermined temperature in a nitrogen atmosphere. Furthermore, the present inventors have found that hydrogen gas generation can be further suppressed by mixing goethite and / or an alkaline substance into the iron powder and performing a heat treatment at the predetermined temperature, thereby completing the present invention.

即ち、課題を解決するための第1の手段は、
還元鉄粉を、窒素雰囲気中において550℃〜700℃の温度で熱処理することを特徴とする反応剤用鉄粉の製造方法である。
That is, the first means for solving the problem is:
A reduced iron powder is heat-treated at a temperature of 550 ° C. to 700 ° C. in a nitrogen atmosphere.

第2の手段は、
還元鉄粉と、600℃以下の温度で分解して水蒸気を発生する化合物、および/または、アルカリ性物質、との混合物を、窒素雰囲気中において550℃〜700℃の温度で熱処理することを特徴とする反応剤用鉄粉の製造方法。
The second means is
A mixture of reduced iron powder and a compound that decomposes at a temperature of 600 ° C. or lower to generate water vapor and / or an alkaline substance is heat-treated at a temperature of 550 ° C. to 700 ° C. in a nitrogen atmosphere. To produce iron powder for reactants.

第3の手段は、
前記600℃以下の温度で分解して水蒸気を発生する化合物が、ゲーサイト、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛から選択される1種類以上であり、前記アルカリ性物質が、水酸化ナトリウム、水酸化カルシウムから選択される1種類以上であることを特徴とする第2の手段に記載の反応剤用鉄粉である。
The third means is
The compound that decomposes at a temperature of 600 ° C. or lower to generate water vapor is at least one selected from goethite, aluminum hydroxide, magnesium hydroxide, and zinc hydroxide, and the alkaline substance is sodium hydroxide, The iron powder for a reactive agent according to the second means, wherein the iron powder is one or more selected from calcium hydroxide.

第4の手段は、
前記600℃以下の温度で分解して水蒸気を発生する化合物がゲーサイト、前記アルカリ性物質が水酸化カルシウムであることを特徴とする第3の手段に記載の反応剤用鉄粉である。
The fourth means is
The iron powder for a reactant according to the third means, wherein the compound that decomposes at a temperature of 600 ° C. or lower to generate water vapor is goethite, and the alkaline substance is calcium hydroxide.

第5の手段は、
前記還元鉄粉と、600℃以下の温度で分解して水蒸気を発生する化合物、および/または、アルカリ性物質の添加量を、反応剤用鉄粉の全重量の2wt%以下とすることを特徴とする第2から第4の手段のいずれかに記載の反応剤用鉄粉の製造方法である。
The fifth means is
The amount of addition of the reduced iron powder, a compound that decomposes at a temperature of 600 ° C. or less to generate water vapor, and / or an alkaline substance is 2 wt% or less of the total weight of the iron powder for a reactant, A method for producing an iron powder for a reactive agent according to any one of second to fourth means.

第6の手段は、
前記還元鉄粉が、トンネルキルン還元鉄粉またはロータリーキルン還元鉄粉であることを特徴とする第1から第5の手段のいずれかに記載の反応剤用鉄粉の製造方法である。
The sixth means is
The method for producing a reactive iron powder according to any one of the first to fifth means, wherein the reduced iron powder is a tunnel kiln reduced iron powder or a rotary kiln reduced iron powder.

本発明に用いられる還元鉄粉は、製造方法によりトンネルキルン還元鉄粉とロータリーキルン還元鉄粉との2種類に分けられる。
トンネルキルン還元鉄粉は、ミルスケールや鉄鉱石からなる粉粒状原料と、還元剤であるコークスとを、耐火容器へ円柱層状に充填してトンネルキルン内で1100℃〜1200℃の温度で加熱し、得られた中空円柱状の還元鉄を、ジョークラッシャー、ハンマーミル等で粗粉砕し、さらにノボローターミル等で微粉砕後、所望の粒度に篩い分けしたものである。
一方、ロータリーキルン還元鉄粉は、鉄鉱石を整粒した原料と還元剤の石炭チャーを、同時にロータリーキルンに装入し、1000℃〜1100℃の温度で加熱し、得られた粒状還元鉄を、ハンマーミル等で粗粉砕し、振動ミル等で微粉砕後、所望の粒度に篩い分けしたものである。
酸素との反応速度及び反応効率(酸素との反応率)つまり脱酸素性能の観点から、トンネルキルン還元鉄粉とロータリーキルン還元鉄粉とを比較すると、ロータリーキルン還元鉄粉の方が優れているので、本発明に係る反応剤用鉄粉の原料としてはロータリーキルン還元鉄粉の方が好ましい。
尤も、当該還元鉄粉の形態としてはアトマイズ粉、その他の形態でも良い。
The reduced iron powder used in the present invention is classified into two types, a tunnel kiln reduced iron powder and a rotary kiln reduced iron powder, depending on the production method.
Tunnel kiln reduced iron powder is a powdery raw material consisting of mill scale or iron ore and coke, which is a reducing agent, packed in a refractory container in a cylindrical layer shape and heated in a tunnel kiln at a temperature of 1100 ° C to 1200 ° C. The obtained hollow cylindrical reduced iron is coarsely pulverized with a jaw crusher, a hammer mill or the like, further finely pulverized with a Novo rotor mill or the like, and sieved to a desired particle size.
On the other hand, the rotary kiln reduced iron powder is a raw material obtained by adjusting the iron ore and the coal char of the reducing agent are charged into the rotary kiln at the same time and heated at a temperature of 1000 ° C to 1100 ° C. It is coarsely pulverized with a mill or the like, finely pulverized with a vibration mill or the like, and then sieved to a desired particle size.
From the viewpoint of reaction rate and reaction efficiency with oxygen (reaction rate with oxygen), that is, deoxygenation performance, when comparing tunnel kiln reduced iron powder and rotary kiln reduced iron powder, rotary kiln reduced iron powder is superior. As a raw material of the iron powder for a reactant according to the present invention, rotary kiln reduced iron powder is preferable.
However, the reduced iron powder may be atomized powder or other forms.

当該還元鉄粉を、非酸化性ガス雰囲気下で熱処理する。
当該非酸化性ガス雰囲気としては、H、N、Arガス等が使用可能である。
尤も、雰囲気ガスがHであると、当該還元鉄粉中の酸化鉄が金属鉄に還元される為、新たな水素発生の活性点となることが考えられ、水素発生抑制効果が相殺される可能性がある。当該観点からは、不活性ガス雰囲気であるN、Arガスが好ましいが、コストの観点も考慮するとNガスが最も好ましい。
The reduced iron powder is heat-treated in a non-oxidizing gas atmosphere.
As the non-oxidizing gas atmosphere, H 2 , N 2 , Ar gas, or the like can be used.
However, if the atmospheric gas is H 2 , iron oxide in the reduced iron powder is reduced to metallic iron, which may be a new active point for hydrogen generation, and the effect of suppressing hydrogen generation is offset. there is a possibility. From this point of view, N 2 and Ar gas which are inert gas atmospheres are preferable, but N 2 gas is most preferable from the viewpoint of cost.

さらに、当該熱処理により還元鉄粉の加工歪を除去することが出来る。当該還元鉄粉の加工歪は、反応剤用鉄粉における水素の発生要因の一つである為である。当該熱処理温度が550℃以上あれば加工歪を除去することが出来、700℃以下であれば当該熱処理により生成する活性金属鉄が新たな水素発生の活性点となり、歪除去による効果が相殺される以上に水素が発生する事態を回避することが出来る。従って、当該熱処理温度は550℃〜700℃が好ましく、さらに好ましくは570℃〜610℃である。熱処理時間は、30分間〜120分間が好ましい。   Further, the processing distortion of the reduced iron powder can be removed by the heat treatment. This is because the processing distortion of the reduced iron powder is one of the generation factors of hydrogen in the iron powder for a reactant. If the heat treatment temperature is 550 ° C. or higher, processing strain can be removed. If the heat treatment temperature is 700 ° C. or lower, the active metal iron generated by the heat treatment becomes a new active point for hydrogen generation, and the effect of strain removal is offset. The situation where hydrogen is generated can be avoided. Therefore, the heat treatment temperature is preferably 550 ° C to 700 ° C, more preferably 570 ° C to 610 ° C. The heat treatment time is preferably 30 minutes to 120 minutes.

ここで、前記還元鉄粉に、600℃以下の温度で分解して水蒸気を発生する化合物、および/または、アルカリ性物質を0.5wt%〜2wt%混合した上で、上述した熱処理を施すことにより水素ガス発生抑制効果をさらに高めることが出来る。
これは、還元鉄粉と分解して水蒸気を発生する化合物とを混合して熱処理することにより、還元鉄粉と均一に混合された化合物から、均一に水蒸気が発生し、周囲の鉄の活性点を均一に潰すことができるからである。一方、還元鉄粉とアルカリ性物質とを併用することで水素発生を抑えられる。勿論、当該水蒸気を発生する化合物と、アルカリ性物質との併用も好ましい。
Here, the reduced iron powder is subjected to the heat treatment described above after being mixed with 0.5 wt% to 2 wt% of a compound that decomposes at a temperature of 600 ° C. or less to generate water vapor and / or an alkaline substance. The effect of suppressing the generation of hydrogen gas can be further enhanced.
This is because the reduced iron powder and the compound that decomposes to generate water vapor are mixed and heat-treated to uniformly generate water vapor from the compound uniformly mixed with the reduced iron powder, and the active points of the surrounding iron This is because it can be uniformly crushed. On the other hand, hydrogen generation can be suppressed by using the reduced iron powder and an alkaline substance in combination. Of course, the combined use of the compound that generates water vapor and an alkaline substance is also preferable.

さらに、本発明に係る反応剤用鉄粉中の鉄分量を90wt%以上に保ちたい場合は、600℃以下の温度で分解して水蒸気を発生する化合物、および/または、アルカリ性物質の添加量を、反応剤用鉄粉の全重量の2wt%以下とすることが好ましい。   Furthermore, when it is desired to keep the iron content in the iron powder for a reactant according to the present invention at 90 wt% or more, the amount of the compound that decomposes at a temperature of 600 ° C. or less to generate water vapor and / or an alkaline substance is added. It is preferable to make it 2 wt% or less of the total weight of the iron powder for a reactant.

まず、600℃以下の温度で分解して水蒸気を発生する化合物について説明する。当該化合物としては、ゲーサイト[FeO(OH)水酸化酸化鉄]、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛等の金属水酸化物、およびその水和物がある。なかでも、水素ガス発生抑制の観点からはゲーサイトが最も好ましい。これは、ゲーサイトが136℃で分解・脱水を行い、水蒸気を発生することによると考えられる。さらに、当該ゲーサイトの平均粒径が、0.1μm〜1.0μmの範囲にあると、本発明に係る還元鉄粉の空隙に坦持できる。当該ゲーサイトが本発明に係る還元鉄粉の空隙に坦持されると、後工程で遊離することが抑制される上、還元鉄粉表面の空隙が封孔されるので好ましい構成である。
当該化合物を本発明に係る還元鉄粉と混合する際は、V型、二重円錐型、正立法体型等の容器回転型混合機、リボン型、パグミル型、高速攪拌型、遊星運動型等の容器固定型混合機、のいずれを用いてもよいが、短時間に均一混合ができる観点からは高速攪拌型混合機(例えばヘンシェルミキサー)が好ましい。
尚、本実施の形態において、各種粉体の粒径は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)を用いて測定した。
First, a compound that decomposes at a temperature of 600 ° C. or lower to generate water vapor will be described. Examples of the compound include goethite [FeO (OH) iron hydroxide oxide], metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and zinc hydroxide, and hydrates thereof. Of these, goethite is most preferable from the viewpoint of suppressing the generation of hydrogen gas. This is thought to be due to the fact that goethite decomposes and dehydrates at 136 ° C. to generate water vapor. Furthermore, when the average particle size of the goethite is in the range of 0.1 μm to 1.0 μm, it can be carried in the voids of the reduced iron powder according to the present invention. When the goethite is carried in the voids of the reduced iron powder according to the present invention, it is preferable to be free from being released in a subsequent process and the voids on the surface of the reduced iron powder are sealed.
When the compound is mixed with the reduced iron powder according to the present invention, V-type, double-cone type, upright body type container rotating type mixer, ribbon type, pug mill type, high-speed stirring type, planetary motion type, etc. Any of the container-fixed mixers may be used, but a high-speed stirring mixer (for example, a Henschel mixer) is preferable from the viewpoint of uniform mixing in a short time.
In the present embodiment, the particle size of various powders was measured using a laser diffraction particle size distribution measuring device (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.).

次に、アルカリ性物質について説明する。当該アルカリ性物質としては、水酸化ナトリウム、水酸化カルシウム等がある。なかでも、水素ガス発生抑制の観点からは水酸化カルシウムが最も好ましい。
さらに、当該アルカリ性物質の平均粒径が、上述したゲーサイトと同様に0.1μm〜1.0μmの範囲にあると、本発明に係る還元鉄粉の空隙に坦持できる。また、当該アルカリ性物質を本発明に係る還元鉄粉と混合する際も、高速攪拌混合(例えばヘンシェルミキサー)を用いて混合すれば良い。
Next, the alkaline substance will be described. Examples of the alkaline substance include sodium hydroxide and calcium hydroxide. Among these, calcium hydroxide is most preferable from the viewpoint of suppressing hydrogen gas generation.
Furthermore, when the average particle size of the alkaline substance is in the range of 0.1 μm to 1.0 μm as in the above-described goethite, it can be carried in the voids of the reduced iron powder according to the present invention. Moreover, what is necessary is just to mix using the high-speed stirring mixing (for example, Henschel mixer) also when mixing the said alkaline substance with the reduced iron powder concerning this invention.

さらに、これら600℃以下の温度で分解して水蒸気を発生する化合物とアルカリ性物質とは、各々単独で使用しても良いが混合して使用しても良い。   Further, the compound that decomposes at a temperature of 600 ° C. or lower to generate water vapor and the alkaline substance may be used alone or in combination.

次に、本発明に係る還元鉄粉の熱処理操作について説明する。
本発明における熱処理操作は、酸化性雰囲気下における均一な酸化を目的とするものではないので、回転炉等を用いる必要はなく、予め、600℃以下の温度で分解して水蒸気を発生する化合物、および/または、アルカリ性物質を混合しておいた場合も、量産性に優れる連続式ベルト炉等で均一な熱処理が可能である。
Next, the heat treatment operation of the reduced iron powder according to the present invention will be described.
Since the heat treatment operation in the present invention is not intended for uniform oxidation in an oxidizing atmosphere, it is not necessary to use a rotary furnace or the like, and a compound that decomposes at a temperature of 600 ° C. or lower to generate water vapor in advance. In addition, even when an alkaline substance is mixed, uniform heat treatment is possible in a continuous belt furnace having excellent mass productivity.

(実施例1)
還元鉄粉として、同和鉱業(株)製、還元鉄粉RKを準備した。
当該還元鉄粉3kgを長さ30cm、幅15cm、深さ6cmのステンレス製の長方形容器に充填した。
プッシャー式焼結試験炉の炉内雰囲気を窒素雰囲気として、炉内の加熱帯を520℃に昇温し、炉内雰囲気を窒素雰囲気として2m/時間で流通させた。前記還元鉄粉を充填した容器を当該加熱帯に装入して、60分間その状態を保った後、水冷ジャケット式の冷却帯で60分間冷却した。当該冷却後、炉内より前記還元鉄粉を充填した容器を取り出して室温に戻して試料1とした。
Example 1
As reduced iron powder, Dowa Mining Co., Ltd., reduced iron powder RK was prepared.
3 kg of the reduced iron powder was filled into a stainless rectangular container having a length of 30 cm, a width of 15 cm, and a depth of 6 cm.
The atmosphere inside the pusher-type sintering test furnace was a nitrogen atmosphere, the heating zone inside the furnace was heated to 520 ° C., and the atmosphere inside the furnace was a nitrogen atmosphere and circulated at 2 m 3 / hour. The container filled with the reduced iron powder was charged into the heating zone and maintained in that state for 60 minutes, and then cooled for 60 minutes in a water-cooled jacket type cooling zone. After the cooling, the container filled with the reduced iron powder was taken out from the furnace and returned to room temperature to obtain Sample 1.

炉内を550℃に昇温した以外は、試料1と同様の操作を行って試料2を得た。さらに、同様に、昇温温度を580℃として試料3、昇温温度を590℃として試料4、昇温温度を600℃として試料5、昇温温度を620℃として試料6、昇温温度を650℃として試料7、昇温温度を700℃として試料8、昇温温度を800℃として試料9を得た。
さらに、当該熱処理を行わない還元鉄粉試料を、試料0とした。
Sample 2 was obtained by performing the same operation as Sample 1 except that the temperature in the furnace was raised to 550 ° C. Further, similarly, Sample 3 with a temperature rise temperature of 580 ° C., Sample 4 with a temperature rise temperature of 590 ° C., Sample 5 with a temperature rise temperature of 600 ° C., Sample 6 with a temperature rise temperature of 620 ° C., and Temperature rise of 650 Sample 7 was obtained at a temperature of 700 ° C., sample 8 at a temperature rise of 700 ° C., and sample 9 at a temperature rise of 800 ° C.
Furthermore, the reduced iron powder sample which does not perform the said heat processing was made into the sample 0. FIG.

得られた試料0および試料1〜9を用い、以下に示す方法により水素ガスの発生量測定を行った。
(1)各試料30gとバーミキュライト10gとを、十分に混合する。
(2)10wt%の食塩水10ccを、(1)の各混合物へ添加し十分に混合する。
(3)(2)の混合物をアルミラミネート袋に移しヒートシールする。そして吸引ポンプに接続したチューブの針を当該アルミラミネート袋に刺し、当該アルミラミネート袋を脱気してシールする。
(4)シールしたアルミラミネート袋を、65℃の送風定温乾燥機内に設置し24時間保持する。
(5)(4)で保持前後のアルミラミネート袋の容積を水中置換法で測定し、その差を水素ガス発生量とする。
以上、試料0および試料1〜9の製造条件および水素ガスの発生量測定結果を表1に記載し、試料1〜9の水素ガスの発生量測定結果を図1(A)に記載した。但し、図1(A)は縦軸に水素ガスの発生量を採り、横軸に熱処理温度を採ったグラフである。
Using the obtained sample 0 and samples 1 to 9, the amount of hydrogen gas generated was measured by the following method.
(1) 30 g of each sample and 10 g of vermiculite are sufficiently mixed.
(2) Add 10 cc of 10 wt% saline to each mixture of (1) and mix thoroughly.
(3) The mixture of (2) is transferred to an aluminum laminate bag and heat sealed. Then, the needle of the tube connected to the suction pump is inserted into the aluminum laminated bag, and the aluminum laminated bag is deaerated and sealed.
(4) The sealed aluminum laminate bag is placed in a 65 ° C. blowing constant temperature dryer and held for 24 hours.
(5) In (4), the volume of the aluminum laminate bag before and after holding is measured by the underwater substitution method, and the difference is defined as the hydrogen gas generation amount.
The production conditions of Sample 0 and Samples 1 to 9 and the hydrogen gas generation amount measurement results are described in Table 1 above, and the hydrogen gas generation amount measurement results of Samples 1 to 9 are described in FIG. However, FIG. 1A is a graph in which the vertical axis represents the amount of hydrogen gas generated and the horizontal axis represents the heat treatment temperature.

表1および図1(A)の結果より以下のことが判明した。
本発明に係る還元鉄粉は、窒素雰囲気下の熱処理により、水素ガスの発生量が大きく減少した。特に、熱処理温度が550℃〜700℃の範囲、さらに好ましくは570℃〜610℃の範囲で水素ガスの発生量が減少することが判明した。
From the results shown in Table 1 and FIG.
In the reduced iron powder according to the present invention, the amount of hydrogen gas generated was greatly reduced by the heat treatment under a nitrogen atmosphere. In particular, it has been found that the amount of hydrogen gas generated decreases when the heat treatment temperature is in the range of 550 ° C. to 700 ° C., more preferably in the range of 570 ° C. to 610 ° C.

Figure 0004756171
Figure 0004756171

(実施例2)
実施例1と同様に、炉内雰囲気を水素雰囲気とし、2m/時間で流通させた。
昇温温度を550℃として試料11、昇温温度を600℃として試料12、昇温温度を700℃として試料13、昇温温度を800℃として試料14を得た。
得られた試料0および試料11〜14を用い、実施例1と同様の方法により水素ガスの発生量測定を行った。
以上、試料0および試料11〜14の製造条件および水素ガスの発生量測定結果を表2に記載し、試料11〜14の水素ガスの発生量測定結果を図1(B)に記載した。但し、図1(B)は縦軸に水素ガスの発生量を採り、横軸に熱処理温度を採ったグラフである。
(Example 2)
In the same manner as in Example 1, the atmosphere in the furnace was a hydrogen atmosphere, and was circulated at 2 m 3 / hour.
Sample 11 was obtained with a temperature rise temperature of 550 ° C., Sample 12 with a temperature rise temperature of 600 ° C., Sample 13 with a temperature rise temperature of 700 ° C., and Sample 14 with a temperature rise temperature of 800 ° C.
Using the obtained Sample 0 and Samples 11 to 14, the amount of hydrogen gas generated was measured by the same method as in Example 1.
As described above, the production conditions of Sample 0 and Samples 11 to 14 and the hydrogen gas generation amount measurement results are shown in Table 2, and the hydrogen gas generation amount measurement results of Samples 11 to 14 are shown in FIG. However, FIG. 1B is a graph in which the vertical axis represents the amount of hydrogen gas generated and the horizontal axis represents the heat treatment temperature.

表2および図1(B)の結果より以下のことが判明した。
本発明に係る還元鉄粉は、水素雰囲気下の550℃〜700℃の熱処理により、水素ガスの発生量が減少する。但し、当該減少は、実施例1で説明した窒素雰囲気下の熱処理の場合よりは劣るものであった。
From the results shown in Table 2 and FIG.
The amount of hydrogen gas generated in the reduced iron powder according to the present invention is reduced by heat treatment at 550 ° C. to 700 ° C. in a hydrogen atmosphere. However, the decrease was inferior to that in the case of the heat treatment under the nitrogen atmosphere described in Example 1.

Figure 0004756171
Figure 0004756171

(実施例3)
実施例1と同様の還元鉄粉を準備した。
当該還元鉄粉3Kgへ、平均粒径0.8μmのゲーサイトを0.5wt%添加してヘンシェルミキサー(三井鉱山株式会社製、ヘンシェルミキサー:FM−10B)に仕込み、3000回転/分で6分間運転して混合攪拌した。当該攪拌物を実施例1で説明した炉内に設置し、窒素ガス雰囲気下で590℃、60分間の熱処理を行って試料21を得た。
ゲーサイトの添加量を1.0wt%とした以外は、試料21と同様の操作を行って試料22を得た。さらに、同様に、ゲーサイトの添加量を1.5wt%として試料23、ゲーサイトの添加量を2.0wt%として試料24を得た。
(Example 3)
The same reduced iron powder as in Example 1 was prepared.
0.5 wt% of goethite with an average particle diameter of 0.8 μm is added to 3 kg of the reduced iron powder and charged into a Henschel mixer (Mitsui Mining Co., Ltd., Henschel mixer: FM-10B) for 6 minutes at 3000 rpm. Run and mix with stirring. The stirrer was placed in the furnace described in Example 1, and heat treatment was performed at 590 ° C. for 60 minutes in a nitrogen gas atmosphere to obtain Sample 21.
A sample 22 was obtained by performing the same operation as the sample 21 except that the added amount of goethite was 1.0 wt%. Further, similarly, sample 23 was obtained with the addition amount of goethite being 1.5 wt%, and sample 24 was obtained with the addition amount of goethite being 2.0 wt%.

当該還元鉄粉3kgに0.5wt%の水酸化カルシウムを添加し、ヘンシェルミキサー(同上)に仕込み、3000回転/分で6分間運転して混合攪拌した。当該攪拌物を実施例1で説明した炉内に設置し、窒素ガス雰囲気流通下で590℃、60分間の熱処理を行って試料25を得た。
水酸化カルシウムの添加量を1.0wt%とした以外は、試料25と同様の操作を行って試料26を得た。さらに、同様に、水酸化カルシウムの添加量を1.5wt%として試料27を得た。
0.5 wt% calcium hydroxide was added to 3 kg of the reduced iron powder, charged into a Henschel mixer (same as above), and stirred for 6 minutes at 3000 rpm. The stirrer was placed in the furnace described in Example 1, and subjected to heat treatment at 590 ° C. for 60 minutes under a nitrogen gas atmosphere to obtain Sample 25.
A sample 26 was obtained in the same manner as the sample 25 except that the amount of calcium hydroxide added was 1.0 wt%. Similarly, Sample 27 was obtained with the addition amount of calcium hydroxide being 1.5 wt%.

当該還元鉄粉3kgに1.13wt%のゲーサイトと0.38wt%の水酸化カルシウムとを添加し、ヘンシェルミキサー(同上)に仕込み、3000回転/分で6分間運転して混合攪拌した。当該攪拌物を実施例1で説明した炉内に設置し、窒素ガス雰囲気下で590℃、60分間の熱処理を行って試料28を得た。
ゲーサイトの添加量を0.75wt%、水酸化カルシウムの添加量を0.75wt%とした以外は、試料28と同様の操作を行って試料29を得た。さらに、同様に、ゲーサイトの添加量を0.5wt%、水酸化カルシウムの添加量を1.0wt%として試料30、ゲーサイトの添加量を0.38wt%、水酸化カルシウムの添加量を1.13wt%として試料31を得た。
1.13 wt% goethite and 0.38 wt% calcium hydroxide were added to 3 kg of the reduced iron powder, charged into a Henschel mixer (same as above), and operated at 3000 rpm for 6 minutes, followed by mixing and stirring. The stirrer was placed in the furnace described in Example 1 and heat-treated at 590 ° C. for 60 minutes in a nitrogen gas atmosphere to obtain Sample 28.
Sample 29 was obtained by performing the same operation as Sample 28 except that the addition amount of goethite was 0.75 wt% and the addition amount of calcium hydroxide was 0.75 wt%. Further, similarly, the addition amount of goethite is 0.5 wt%, the addition amount of calcium hydroxide is 1.0 wt%, the sample 30, the addition amount of goethite is 0.38 wt%, and the addition amount of calcium hydroxide is 1 Sample 31 was obtained as 13 wt%.

さらに、試料25と同様の組成(水酸化カルシウム0.5wt%添加)だが、熱処理を行わない試料を試料32、試料26と同様の組成(水酸化カルシウム1.0wt%添加)だが、熱処理を行わない試料を試料33とした。   Further, the same composition as sample 25 (calcium hydroxide 0.5 wt% added), but the sample not subjected to heat treatment is the same composition as sample 32 and sample 26 (calcium hydroxide 1.0 wt% added), but heat treated. Sample 33 was designated as Sample 33.

得られた試料21〜33を用い、実施例1と同様の方法により水素ガスの発生量測定を行った。
さらに、試料21〜33に加え、試料0、試料4も含めて、試料中の金属鉄量の測定を行った。
当該試料中の金属鉄量の測定は、
JIS M 8713−1993「鉄鉱石類の還元試験方法」の解説 参考 6.1金属鉄定量方法に準拠して、試料を臭素-メタノール溶液中で攪拌し、金属鉄を抽出・溶解し、電位差自動滴定装置を用いてキレートで滴定する方法で行った。
以上、試料0、試料4および試料21〜33の組成、水素ガスの発生量測定結果、および試料中の金属鉄量の測定結果を表3に記載した。
Using the obtained samples 21 to 33, the amount of generated hydrogen gas was measured by the same method as in Example 1.
Furthermore, in addition to Samples 21 to 33, the amount of metallic iron in the samples including Sample 0 and Sample 4 was measured.
Measurement of the amount of metallic iron in the sample
Explanation of JIS M 8713-1993 “Reduction Test Method for Iron Ore” Reference 6.1 In accordance with the determination method of metallic iron, the sample is stirred in a bromine-methanol solution to extract and dissolve metallic iron, and automatic potential difference This was carried out by titration with chelate using a titrator.
Table 3 shows the compositions of Sample 0, Sample 4, and Samples 21 to 33, the results of measuring the amount of hydrogen gas generated, and the results of measuring the amount of metallic iron in the sample.

Figure 0004756171
Figure 0004756171

次に、試料4、試料21〜24、試料25〜27の水素ガスの発生量測定結果を図2に記載した。但し、図2は縦軸に水素ガスの発生量を採り、横軸に単独添加の場合における各添加剤の添加量を採り、添加剤がゲーサイトの場合(試料21〜24)は、◇でプロットし破線で結び、添加剤が水酸化カルシウムの場合(試料25〜27)は、■でプロットし実線で結んだグラフである。   Next, the measurement results of the generation amount of hydrogen gas of Sample 4, Samples 21 to 24, and Samples 25 to 27 are shown in FIG. However, in FIG. 2, the vertical axis represents the amount of hydrogen gas generated, the horizontal axis represents the amount of each additive added alone, and the additive is goethite (samples 21 to 24). When plotting and connecting with a broken line and the additive is calcium hydroxide (samples 25 to 27), the graph is plotted with ■ and connected with a solid line.

さらに、試料23、試料27〜31の水素ガスの発生量測定結果を図3に記載した。但し、図3は縦軸に水素ガスの発生量を採り、横軸にゲーサイトと水酸化カルシウムとを同時添加した場合における水酸化カルシウムの添加量(試料23:0.0wt%、試料28:0.38wt%、試料29:0.75wt%、試料30:1.0wt%、試料31:1.13wt%、試料27:1.5wt%)を採ったグラフである。   Furthermore, the hydrogen gas generation amount measurement results of Sample 23 and Samples 27 to 31 are shown in FIG. However, in FIG. 3, the vertical axis represents the amount of hydrogen gas generated, and the horizontal axis represents the added amount of calcium hydroxide when sampled simultaneously with goethite and calcium hydroxide (sample 23: 0.0 wt%, sample 28: 0.38 wt%, Sample 29: 0.75 wt%, Sample 30: 1.0 wt%, Sample 31: 1.13 wt%, Sample 27: 1.5 wt%).

表3および図2、3の結果より、以下のことが判明した。
(1)還元鉄粉へのゲーサイト添加は、当該還元鉄粉への熱処理による水素ガス発生の抑制効果を増強する効果がある。
(2)還元鉄粉への水酸化カルシウム添加は、当該還元鉄粉への熱処理による水素ガス発生の抑制効果を増強する効果がある。
(3)還元鉄粉への、ゲーサイトおよび水酸化カルシウムの同時添加は、単独添加より当該還元鉄粉への熱処理による水素ガス発生の抑制効果を増強する場合がある。
(4)当該試料を、脱酸素剤や使い捨てカイロ等の反応剤として用いることを考えると試料中の金属鉄量は、90wt%以上あることが好ましい。当該観点からロータリーキルン還元鉄粉の金属鉄量が92wt%程度であることを考えると、ゲーサイトや水酸化カルシウム等の600℃以下の温度で分解して水蒸気を発生する化合物やアルカリ性物質の添加量を、試料の全重量の2wt%以下とすることが好ましいと考えられる。
(5)本発明に係る熱処理を行わないで、還元鉄粉へ水酸化カルシウムを添加した試料においても水素ガス発生の抑制効果はみられるものの、その効果は小さい。ここで(4)で説明した、試料中の金属鉄量を90wt%以上に保つ観点からすると、本発明に係る熱処理を行わずに添加剤の添加のみで、本発明水準の水素ガス発生の抑制効果を得ることは困難であることも判明した。
From the results shown in Table 3 and FIGS.
(1) Addition of goethite to reduced iron powder has the effect of enhancing the effect of suppressing the generation of hydrogen gas by heat treatment of the reduced iron powder.
(2) The addition of calcium hydroxide to the reduced iron powder has the effect of enhancing the effect of suppressing the generation of hydrogen gas by heat treatment of the reduced iron powder.
(3) The simultaneous addition of goethite and calcium hydroxide to the reduced iron powder may enhance the effect of suppressing the generation of hydrogen gas by the heat treatment of the reduced iron powder compared to the single addition.
(4) Considering that the sample is used as a reactive agent such as an oxygen scavenger or a disposable body warmer, the amount of metallic iron in the sample is preferably 90 wt% or more. Considering that the amount of metallic iron in the rotary kiln reduced iron powder is about 92 wt% from this point of view, the added amount of compounds such as goethite and calcium hydroxide that decompose at a temperature of 600 ° C. or lower to generate water vapor and alkaline substances Is considered to be preferably 2 wt% or less of the total weight of the sample.
(5) Although the heat treatment according to the present invention is not performed and the sample in which calcium hydroxide is added to the reduced iron powder has an effect of suppressing the generation of hydrogen gas, the effect is small. From the viewpoint of keeping the amount of metallic iron in the sample at 90 wt% or more as described in (4), the addition of the additive without the heat treatment according to the present invention suppresses the generation of hydrogen gas at the level of the present invention. It has also proved difficult to obtain an effect.

(A)縦軸に水素ガスの発生量を採り、横軸に熱処理温度を採り、試料1〜9の水素発生量の測定結果を示したグラフである。(B)縦軸に水素ガスの発生量を採り、横軸に熱処理温度を採り、試料11〜14の水素発生量の測定結果を示したグラフである。(A) It is the graph which showed the measurement result of the hydrogen generation amount of Samples 1-9 by taking the generation amount of hydrogen gas on the vertical axis and taking the heat treatment temperature on the horizontal axis. (B) The vertical axis represents the amount of hydrogen gas generated, the horizontal axis represents the heat treatment temperature, and is a graph showing the measurement results of the hydrogen generation amount of Samples 11-14. 縦軸に水素ガスの発生量を採り、横軸に各添加剤の添加割合を採り、試料4、21〜27の水素発生量の測定結果を示したグラフである。It is the graph which showed the measurement result of the amount of hydrogen generation of sample 4,21-27, taking the generation amount of hydrogen gas on the vertical axis | shaft, and taking the addition ratio of each additive on the horizontal axis | shaft. 縦軸に水素ガスの発生量を採り、横軸にゲーサイトと水酸化カルシウムとを同時添加した場合における水酸化カルシウムの添加割合を採り、試料23、27〜31の水素発生量の測定結果を示したグラフである。The vertical axis represents the amount of hydrogen gas generated, the horizontal axis represents the addition ratio of calcium hydroxide when goethite and calcium hydroxide are added simultaneously, and the measurement results of the hydrogen generation amount of samples 23 and 27 to 31 are shown. It is the shown graph.

Claims (3)

還元鉄粉と、600℃以下の温度で分解して水蒸気を発生する化合物であるゲーサイト、および/または、アルカリ性物質である水酸化カルシウムとの混合物を、窒素雰囲気中において550℃〜700℃の温度で熱処理することを特徴とする反応剤用鉄粉の製造方法。 A mixture of reduced iron powder and goethite , which is a compound that decomposes at a temperature of 600 ° C. or less to generate water vapor, and / or calcium hydroxide that is an alkaline substance , is 550 ° C. to 700 ° C. in a nitrogen atmosphere. A method for producing a reactive iron powder, characterized by heat treatment at a temperature. 前記還元鉄粉への、600℃以下の温度で分解して水蒸気を発生する化合物であるゲーサイト、および/または、アルカリ性物質である水酸化カルシウムの添加量を、反応剤用鉄粉の全重量の2wt%以下とすることを特徴とする請求項1に記載の反応剤用鉄粉の製造方法。 Total weight of said to reduced iron powder, goethite is a compound decompose to generate steam at 600 ° C. or less of the temperature and / or the amount of calcium hydroxide is an alkaline substance, the reaction agent for iron powder The method for producing iron powder for a reactant according to claim 1, wherein the content is 2 wt% or less. 前記還元鉄粉が、トンネルキルン還元鉄粉またはロータリーキルン還元鉄粉であることを特徴とする請求項1または2に記載の反応剤用鉄粉の製造方法。 The method for producing an iron powder for a reactant according to claim 1 or 2, wherein the reduced iron powder is a tunnel kiln reduced iron powder or a rotary kiln reduced iron powder.
JP2006263453A 2006-09-27 2006-09-27 Method for producing iron powder for reactants Active JP4756171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263453A JP4756171B2 (en) 2006-09-27 2006-09-27 Method for producing iron powder for reactants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263453A JP4756171B2 (en) 2006-09-27 2006-09-27 Method for producing iron powder for reactants

Publications (2)

Publication Number Publication Date
JP2008081790A JP2008081790A (en) 2008-04-10
JP4756171B2 true JP4756171B2 (en) 2011-08-24

Family

ID=39352943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263453A Active JP4756171B2 (en) 2006-09-27 2006-09-27 Method for producing iron powder for reactants

Country Status (1)

Country Link
JP (1) JP4756171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222763A (en) * 2007-03-09 2008-09-25 Powdertech Co Ltd Reduced iron powder for heat-generating composition, method for producing the same, and heat-generating composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693424B2 (en) * 1996-07-03 2005-09-07 同和鉄粉工業株式会社 Method for producing iron powder for reactants

Also Published As

Publication number Publication date
JP2008081790A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5565311B2 (en) Method for producing oxide
JP2000212651A (en) Production of reduced iron pellet
KR20110031630A (en) Desulfurizing agent and fabricsting method thereof
WO2021097693A1 (en) Smelting method for bastnaesite and use of carbon powder
JP4756171B2 (en) Method for producing iron powder for reactants
JP2024023759A (en) Al4SiC4 composition or Al4SiC4 powder
RU2294945C2 (en) Initial refractory materials, the method of their production and the refractory products manufactured with their usage
JP2021147251A (en) Method for producing lithium sulfide
JP5627515B2 (en) Aluminum nitride powder and method for producing the same
JP6790955B2 (en) Free carbon production method from carbon oxide
JP6648161B2 (en) Zirconium boride and method for producing the same
JP2013121887A (en) Method of producing metal nitride, and method of producing nitride phosphor using the same
JP2008013739A (en) Exothermic agent
Pengfei et al. High temperature dephosphorus behavior of Baotou mixed rare earth concentrate with carbon
JP5052963B2 (en) Method for producing molten zinc
RU2792036C1 (en) METHOD OF OBTAINING VANADIUM-ALUMINUM CARBIDE V2AlC USING SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
JP2016130341A (en) Method of producing sintered ore raw material using magnetite ore
JP7175470B2 (en) Method for producing aluminum nitride
WO2022168685A1 (en) Method for producing sodium borohydride
JP3912580B2 (en) Method for producing titanium carbonitride
JP2762913B2 (en) Method for reducing agglomerates of fine iron ore with a solid reducing agent
JP5565143B2 (en) Blast furnace operation method
JP2022136392A (en) METHOD OF PRODUCING Al4SiC4 COMPOSITION, AND Al4SiC4 COMPOSITION
JP5918024B2 (en) Method for reducing tin oxide
KR20100076139A (en) Reduced iron from mill scale and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4756171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250