JP4755756B2 - Photocatalytic material - Google Patents

Photocatalytic material Download PDF

Info

Publication number
JP4755756B2
JP4755756B2 JP2000387089A JP2000387089A JP4755756B2 JP 4755756 B2 JP4755756 B2 JP 4755756B2 JP 2000387089 A JP2000387089 A JP 2000387089A JP 2000387089 A JP2000387089 A JP 2000387089A JP 4755756 B2 JP4755756 B2 JP 4755756B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
film
palladium
mass
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000387089A
Other languages
Japanese (ja)
Other versions
JP2002186860A (en
Inventor
和也 小野
Original Assignee
日本テトラパック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テトラパック株式会社 filed Critical 日本テトラパック株式会社
Priority to JP2000387089A priority Critical patent/JP4755756B2/en
Publication of JP2002186860A publication Critical patent/JP2002186860A/en
Application granted granted Critical
Publication of JP4755756B2 publication Critical patent/JP4755756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒材料に関し、より詳細には汚染物質の分解性に優れた光触媒材料に関する。
【0002】
【従来の技術】
二酸化チタンは、紫外線により光活性を示すことが知られ、この光活性による光触媒作用を利用した有機物質の分解が行われている。この際、光活性に優れたアナターゼ型二酸化チタン膜を効率良く基材上に形成する必要があった。
【0003】
従来、上記二酸化チタン膜を基材上に形成する方法としては、塗布や下記の種々の方法が行われているが、そのいずれもが下記の通りの多くの問題がある。すなわち、塗布の場合は、アナターゼ型二酸化チタン微粒子をバインダーに分散させて行うために、全表面に占める二酸化チタンの比率が少なく、光触媒効果は十分でない。
【0004】
基材表面に直接二酸化チタン膜を形成させる方法としては、チタン鋼表面の酸化や金属基材上への二酸化チタン溶射等があるが、いずれも基材が限定されており、それらの光触媒効果も十分でない。又、金属基材や一部プラスチック基材の場合には、複合メッキの技術を用い、湿式の電解或いは無電解メッキの際、メッキ液中にアナターゼ型二酸化チタン微粒子を分散させることにより二酸化チタンを含むメッキ膜を形成させることが可能であるが、基材表面における二酸化チタンの比率が低いため光活性は十分でない。
【0005】
このような低い光活性のため、蛍光灯等による紫外線照射では、光触媒効果が不十分であったり、光触媒として機能させるためブラックライト等の紫外線発生源を極く間近かに設置させる必要があった。
【0006】
上記のように、二酸化チタン膜単独では光触媒として効果は不十分である。一方、二酸化チタン等の金属酸化物、硫化カドミウム等の金属硫化物、セレン化カドミウム等の金属セレン化物、リン酸ゲルマニムの金属リン化物等、或いはこれらに白金、ロジウム、ルテニウム、鉄又は銅を担持したものを基材上にPVD法で成膜することも試みられているが(特開平9−192498号公報)、これらの内二酸化チタンが触媒活性その他が高く特に好ましいとしている。
【0007】
又、光触媒の特性の一つに、材料表面の親水性を向上させる働きも確認されており、アナターゼ型二酸化チタンや、それに二酸化珪素を併用した親水性材料も報告されている。しかし、それらの親水性材料では、光照射を長くするか、強い光源を必要とした。
【0008】
【発明が解決しようとする課題】
本発明は、汚染物質の分解性に優れ、かつ親水性に富んだ光触媒効果を示す材料を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記の問題点を改善すべく二酸化チタンに組み合わせる金属種について鋭意検討した結果、二酸化チタンにパラジウムを組み合わせて基材上に真空蒸着法により皮膜を形成した材料が、本発明の目的を達成し得ることを見出し、本発明に到達した。
【0010】
すなわち、本発明は、基材の表面に二酸化チタン及び5.0〜60質量%のパラジウムからなる皮膜を真空蒸着法により形成してなる光触媒材料を要旨とする。
又、本発明の光触媒材料は、上記皮膜中のパラジウムの含有量が10質量%であることを特徴とする。
又、本発明の光触媒材料は、上記真空蒸着法がイオンプレーティング法により二酸化チタン及びパラジウムを蒸発させながら同時に成膜させるもので、前記皮膜はアモルファスであることを特徴とする。
【0011】
【発明の実施の態様】
本発明で用いられる二酸化チタンは、耐蝕処理用として真空蒸着法で用いられている汎用のルチル型二酸化チタンが好適であるが、アナターゼ型、ブルッカイト型、更には非晶質の二酸化チタンでも良い。なぜならば、るつぼに入れられた二酸化チタン原料はいったん蒸発し、基材上に蒸着するため、初期の結晶構造は蒸着膜の結晶に直接影響を与えないからである。
【0012】
本発明で用いられる成膜方法は真空蒸着法であるが、成膜の密着性等を考慮すると、イオンプレーティング法により二酸化チタン及びパラジウムを蒸発させながら同時に基材上に成膜させる方法が特に好ましい。原料の蒸発方法としては、多陰極熱電子照射法、中空陰極法、熱陰極法、アークプラズマ法等既存の技術を採用することができる。
【0013】
基材としては、真空蒸着法、特にイオンプレーティング条件下、材料からのガス放出、材料の変形等がなければ、どのような材料を用いることができ、合金を含む各種金属材料、ガラスやセラミック等の無機材料、プラスチック等が使用可能である。
【0014】
基材上に成膜される二酸化チタンとパラジウムの複合皮膜の厚さは、100オングストローム(10nm)〜50μmであり、皮膜の密着性や強度等を考慮すれば、0.1〜10μmが好ましい。
【0015】
複合皮膜はその中に、3.0〜80質量%のパラジウムを含むのが好ましく、皮膜物性を考慮すると、パラジウムの含有量は特に好ましくは5.0〜60質量%である。パラジウムの含有量が3.0質量%未満では、パラジウムを複合した効果が得られず、80質量%を超えると、光触媒活性の効果が低下すると共に皮膜の強度も低下してしまい、望ましくはない。
【0016】
金属酸化物の真空蒸着では、得られる皮膜の組成式が整数にならず、そのため真空中に酸素ガスを導入し、ある程度の酸素分圧下で蒸着されることもあるが、本発明においても同様の手法を用いることには何ら問題がない。
【0017】
上記のようにして得られる複合皮膜は、X線回折にて二酸化チタンの結晶形であるルチル型やアナターゼ型特有の回折を示さず、二酸化チタンはアモルファス(非晶質)である。
【0018】
上記本発明の光触媒材料は、その形状は何ら決められるものではなく、フィルム状、シート状、板状、ブロック状、円柱状等、使用される用途に応じて任意に加工することができる。
【0019】
【実施例】
以下、本発明を実施例により、詳細に説明する。
(実施例)
ルチル型二酸化チタンとパラジウムを原料として、50mm×50mm×1.0mmのSUS304製板の片面上に、複合皮膜中のパラジウムの含有量が3、5、10又は60質量%になるように厚さ1.0μmの二酸化チタン・パラジウムの複合皮膜をイオンプレーティング法により形成した。
【0020】
(比較例1)
ルチル型二酸化チタンとパラジウムからなる原料の代りに、ルチル型二酸化チタンからなる原料、又はパラジウムからなる原料を用いた以外は、実施例と同様にして厚さ1.0μmの二酸化チタンの単独皮膜及びパラジウムの単独皮膜をイオンプレーティング法により形成した。
【0021】
汚染物質の分解効果の確認試験
実施例及び比較例1で作製した各種試料並びに何ら処理しないSUS304製板(未処理板)を、蓋と本体が透明なポリスチレン製の容器に入れ、ここにメチレンブルーの2×10-5モル/lの溶液を注ぎ込み、試料全体が溶液と接触するようにした。波長360nm付近に分布のピークがある紫外線ランプを用いて、上記各試料の表面における強度が20〜35μW/cm2 になるように、紫外線を照射しながら室温で24時間放置した。分光光度計にて紫外線照射前後のメチレンブルー溶液の660nmにおける吸光度を測定して、その変化を見た。それらの結果を表1に示した。
【0022】
【表1】

Figure 0004755756
【0023】
表1から明らかのように、未処理板及びパラジウム単独皮膜からなる試料では、紫外線照射前後の吸光度に変化がなく、光触媒活性は全く見られず、又、二酸化チタン単独皮膜からなる試料では、紫外線照射後の吸光度は減少するものの、その度合いは僅かであり、光触媒活性が小さいことが判る。
これに対して、実施例で作製した二酸化チタン・パラジウムの複合皮膜からなる試料では、紫外線照射後の吸光度が大幅に減少し、光触媒活性が大きいことが判る。
【0024】
(比較例2)
ルチル型二酸化チタンとパラジウムからなる原料の代りに、ルチル型二酸化チタンと白金、金又は銀からなる原料を、成膜後の白金、金又は銀の含有量がそれぞれ10質量%になるようにして用いた以外は、実施例と同様にして厚さ1.0μmの二酸化チタン・白金、二酸化チタン・金又は二酸化チタン・銀の複合皮膜をイオンプレーティング法により形成した。得られた試料について、上記と同様にして汚染物質の分解効果の確認試験を行い、それらの結果を表2に示した。
【0025】
【表2】
Figure 0004755756
【0026】
表2から明らかのように、比較例2で作製した複合皮膜からなる試料は、紫外線照射後の吸光度は減少するものの、実施例で作製した二酸化チタン・パラジウムの複合皮膜からなる試料に比べ、減少程度が少なく、従って、それらの複合皮膜からなる試料は、本発明の二酸化チタン・パラジウムの複合皮膜からなる試料に比べて光触媒活性が劣ること判る。
【0027】
親水性の確認試験
更に、実施例で作製した複合皮膜(パラジウム含有量10質量%)からなる試料及び比較例2で作製した複合皮膜からなる試料について、それぞれの複合皮膜の表面に、30〜50μW/cm2 の紫外線を3時間照射させた後、精製水に浸漬してから引上げ、表面の濡れ性を観察した。比較のために、紫外線照射前のものについても同様に観察した。それらの結果を表3に示した。
【0028】
【表3】
Figure 0004755756
【0029】
表3から明らかのように、いずれの試料も紫外線照射前のものは、水で部分的に濡れる程度であった。しかし、紫外線照射後は、実施例で作製した複合皮膜からなる試料は、全体が水で覆われ、表面が親水性に変化したのに対して、比較例2で作製した複合皮膜からなる試料では、紫外線未照射の場合よりも若干は改善されたものの、部分的に水をはじき、活性化は十分ではなかった。
【0030】
【発明の効果】
本発明の光触媒材料は、金属類、セラミック類、ガラス、プラスチック等多くの材料を基材に用いることができ、各種有機性物質等からなる汚染物質の分解性が極めて優れているために、特に、食料品、医薬、飲料等を製造、販売、貯蔵、流通する分野等の汚染物質の付着を嫌う分野で用いられる包装材、機器やその部品の材料等として有効に用いることができる。
【0031】
又、浄水、地下水、生活排水、工業排水、下水、酪農排水等、各種水処理の光触媒材料として用いることができる。
【0032】
更に、本発明の光触媒材料は、光照射により親水性を示すので、表面の曇りが防止された鏡やガラスの材料、結露し易い環境下で用いられる結露防止用材料等として有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst material, and more particularly to a photocatalyst material excellent in degradability of pollutants.
[0002]
[Prior art]
Titanium dioxide is known to exhibit photoactivity by ultraviolet rays, and organic substances are decomposed by utilizing the photocatalytic action of this photoactivity. At this time, it was necessary to efficiently form an anatase-type titanium dioxide film excellent in photoactivity on the substrate.
[0003]
Conventionally, as a method of forming the titanium dioxide film on a substrate, coating and the following various methods have been performed, but all of them have many problems as described below. That is, in the case of coating, since anatase-type titanium dioxide fine particles are dispersed in a binder, the proportion of titanium dioxide in the entire surface is small and the photocatalytic effect is not sufficient.
[0004]
Methods for forming a titanium dioxide film directly on the substrate surface include oxidation of the titanium steel surface and thermal spraying of titanium dioxide onto a metal substrate, but all have limited substrates and their photocatalytic effect not enough. Also, in the case of metal substrates and some plastic substrates, titanium dioxide is dispersed by dispersing anatase-type titanium dioxide particles in the plating solution during wet electrolysis or electroless plating using composite plating technology. Although it is possible to form a plating film containing it, the photoactivity is not sufficient because the ratio of titanium dioxide on the surface of the substrate is low.
[0005]
Due to such low photoactivity, UV irradiation with a fluorescent lamp or the like has insufficient photocatalytic effect, or it has been necessary to install a UV light source such as black light very close to function as a photocatalyst. .
[0006]
As described above, the titanium dioxide film alone is insufficient in effect as a photocatalyst. On the other hand, metal oxide such as titanium dioxide, metal sulfide such as cadmium sulfide, metal selenide such as cadmium selenide, metal phosphide of germanium phosphate, etc., or these carry platinum, rhodium, ruthenium, iron or copper. Attempts have also been made to form a film on the substrate by PVD (Japanese Patent Laid-Open No. 9-192498), but these titanium dioxides are particularly preferred because of their high catalytic activity and the like.
[0007]
In addition, one of the characteristics of the photocatalyst has been confirmed to improve the hydrophilicity of the material surface, and anatase type titanium dioxide and hydrophilic materials using silicon dioxide in combination with it have been reported. However, these hydrophilic materials require longer light irradiation or a stronger light source.
[0008]
[Problems to be solved by the invention]
An object of this invention is to provide the material which is excellent in the decomposability | degradability of a pollutant and shows the photocatalytic effect rich in hydrophilic property.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on the metal species to be combined with titanium dioxide to improve the above problems, the present inventors have found that a material in which a film is formed on a substrate by vacuum deposition using a combination of titanium dioxide and palladium. The inventors have found that the object can be achieved, and have reached the present invention.
[0010]
That is, the gist of the present invention is a photocatalytic material obtained by forming a film made of titanium dioxide and 5.0 to 60% by mass of palladium on the surface of a substrate by a vacuum deposition method.
The photocatalytic material of the present invention is characterized in that the content of palladium in the film is 10 % by mass.
The photocatalyst material of the present invention is characterized in that the above-mentioned vacuum deposition method is formed simultaneously while evaporating titanium dioxide and palladium by an ion plating method , and the film is amorphous .
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The titanium dioxide used in the present invention is preferably general-purpose rutile type titanium dioxide used in a vacuum deposition method for corrosion resistance treatment, but may be anatase type, brookite type, or amorphous titanium dioxide. This is because the titanium dioxide raw material put in the crucible is once evaporated and deposited on the base material, so that the initial crystal structure does not directly affect the crystal of the deposited film.
[0012]
The film forming method used in the present invention is a vacuum evaporation method, but considering the adhesion of the film forming, etc., a method of forming a film on a substrate at the same time while evaporating titanium dioxide and palladium by an ion plating method is particularly preferable. preferable. As a raw material evaporation method, existing techniques such as a multi-cathode thermionic irradiation method, a hollow cathode method, a hot cathode method, and an arc plasma method can be employed.
[0013]
As the base material, any material can be used as long as there is no gas emission from the material, deformation of the material, etc. under vacuum deposition method, particularly ion plating conditions, various metal materials including alloys, glass and ceramics. It is possible to use inorganic materials such as plastics and the like.
[0014]
The thickness of the composite film of titanium dioxide and palladium formed on the substrate is 100 Å (10 nm) to 50 μm, and 0.1 to 10 μm is preferable in consideration of the adhesion and strength of the film.
[0015]
The composite film preferably contains 3.0 to 80% by mass of palladium, and considering the physical properties of the film, the content of palladium is particularly preferably 5.0 to 60% by mass. If the palladium content is less than 3.0% by mass, the effect of compounding palladium cannot be obtained, and if it exceeds 80% by mass, the effect of the photocatalytic activity decreases and the strength of the film also decreases, which is not desirable. .
[0016]
In the vacuum deposition of metal oxide, the composition formula of the resulting film is not an integer, so oxygen gas may be introduced into the vacuum and deposited under a certain partial pressure of oxygen. There is no problem in using the method.
[0017]
The composite coating obtained as described above does not show diffraction specific to the rutile type or anatase type, which is a crystal form of titanium dioxide, by X-ray diffraction, and titanium dioxide is amorphous.
[0018]
The shape of the photocatalyst material of the present invention is not determined in any way, and it can be arbitrarily processed according to the application to be used, such as a film shape, a sheet shape, a plate shape, a block shape, and a columnar shape.
[0019]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
(Example)
Using rutile titanium dioxide and palladium as raw materials, thickness is adjusted so that the content of palladium in the composite film is 3, 5, 10, or 60% by mass on one side of a 50 mm × 50 mm × 1.0 mm SUS304 plate. A 1.0 μm titanium dioxide / palladium composite film was formed by ion plating.
[0020]
(Comparative Example 1)
A single coating of titanium dioxide having a thickness of 1.0 μm and the same as in the Examples, except that instead of the raw material consisting of rutile titanium dioxide and palladium, a raw material consisting of rutile titanium dioxide or a raw material consisting of palladium was used, A single palladium film was formed by ion plating.
[0021]
Confirmation test of degradation effect of pollutants The various samples prepared in Examples and Comparative Example 1 and SUS304 plates (untreated plates) that were not treated at all were placed in a container made of polystyrene with a transparent lid and body. A 2 × 10 −5 mol / l solution of methylene blue was poured here so that the entire sample was in contact with the solution. Using an ultraviolet lamp having a distribution peak in the vicinity of a wavelength of 360 nm, the sample was allowed to stand at room temperature for 24 hours while being irradiated with ultraviolet rays so that the intensity on the surface of each sample was 20 to 35 μW / cm 2 . The absorbance at 660 nm of the methylene blue solution before and after UV irradiation was measured with a spectrophotometer, and the change was observed. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0004755756
[0023]
As is apparent from Table 1, the absorbance of the untreated plate and the palladium single coating was unchanged in the absorbance before and after UV irradiation, and no photocatalytic activity was observed. Although the absorbance after irradiation decreases, the degree is slight and it can be seen that the photocatalytic activity is small.
On the other hand, it can be seen that in the sample composed of the titanium dioxide / palladium composite film produced in the examples, the absorbance after ultraviolet irradiation is greatly reduced and the photocatalytic activity is large.
[0024]
(Comparative Example 2)
Instead of the raw material consisting of rutile titanium dioxide and palladium, the raw material consisting of rutile titanium dioxide and platinum, gold or silver is adjusted so that the content of platinum, gold or silver after film formation is 10% by mass, respectively. A composite film of titanium dioxide / platinum having a thickness of 1.0 μm, titanium dioxide / gold, or titanium dioxide / silver was formed by an ion plating method in the same manner as in Example except that it was used. The obtained sample was subjected to a test for confirming the effect of decomposing pollutants in the same manner as described above, and the results are shown in Table 2.
[0025]
[Table 2]
Figure 0004755756
[0026]
As is apparent from Table 2, the sample composed of the composite film prepared in Comparative Example 2 has a decrease in absorbance after irradiation with ultraviolet light, but is smaller than the sample composed of the titanium dioxide / palladium composite film prepared in Example. Therefore, it can be seen that the photocatalytic activity is inferior to the sample composed of the composite coating of titanium dioxide / palladium of the present invention.
[0027]
Test for confirming hydrophilicity Further, a sample made of the composite film (palladium content 10 mass%) prepared in the example and a sample made of the composite film prepared in Comparative Example 2 were applied to the surface of each composite film. After irradiating with 30 to 50 μW / cm 2 of ultraviolet rays for 3 hours, it was dipped in purified water and then pulled up to observe the wettability of the surface. For comparison, the same observations were also made before UV irradiation. The results are shown in Table 3.
[0028]
[Table 3]
Figure 0004755756
[0029]
As is clear from Table 3, all the samples before UV irradiation were only partially wetted with water. However, after UV irradiation, the sample made of the composite film produced in the example was entirely covered with water and the surface changed to hydrophilic, whereas the sample made of the composite film produced in Comparative Example 2 Although it was slightly improved as compared with the case without UV irradiation, it partially repelled water and was not activated sufficiently.
[0030]
【The invention's effect】
The photocatalyst material of the present invention can use many materials such as metals, ceramics, glass, plastics as a base material, and is particularly excellent in degradability of contaminants composed of various organic substances. In addition, it can be effectively used as a packaging material, a device, or a material for parts thereof used in a field where the adhering of pollutants such as a field of manufacturing, selling, storing, and distributing foods, medicines, beverages, and the like.
[0031]
Moreover, it can be used as a photocatalyst material for various water treatments such as purified water, groundwater, domestic wastewater, industrial wastewater, sewage, dairy wastewater.
[0032]
Furthermore, since the photocatalytic material of the present invention exhibits hydrophilicity when irradiated with light, it is effective as a mirror or glass material in which fogging of the surface is prevented, a dew condensation preventing material used in an environment where condensation is likely to occur, and the like.

Claims (3)

基材の表面に二酸化チタン及び5.0〜60質量%のパラジウムからなる皮膜を真空蒸着法により形成してなる光触媒材料。A photocatalytic material obtained by forming a film made of titanium dioxide and 5.0 to 60% by mass of palladium on the surface of a substrate by a vacuum deposition method. 上記皮膜中のパラジウムの含有量が10質量%であることを特徴とする請求項1記載の光触媒材料。The photocatalyst material according to claim 1, wherein the content of palladium in the film is 10 % by mass. 上記真空蒸着法がイオンプレーティング法により二酸化チタン及びパラジウムを蒸発させながら同時に成膜させるもので、前記皮膜はアモルファスであることを特徴とする請求項1又は2記載の光触媒材料。3. The photocatalytic material according to claim 1 , wherein the vacuum vapor deposition method is a method in which titanium dioxide and palladium are simultaneously vaporized by an ion plating method , and the film is amorphous .
JP2000387089A 2000-12-20 2000-12-20 Photocatalytic material Expired - Fee Related JP4755756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000387089A JP4755756B2 (en) 2000-12-20 2000-12-20 Photocatalytic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000387089A JP4755756B2 (en) 2000-12-20 2000-12-20 Photocatalytic material

Publications (2)

Publication Number Publication Date
JP2002186860A JP2002186860A (en) 2002-07-02
JP4755756B2 true JP4755756B2 (en) 2011-08-24

Family

ID=18854083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000387089A Expired - Fee Related JP4755756B2 (en) 2000-12-20 2000-12-20 Photocatalytic material

Country Status (1)

Country Link
JP (1) JP4755756B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100042A (en) * 1986-10-14 1988-05-02 Nippon Sheet Glass Co Ltd Glass article difficult-to be dirtied
JP3433546B2 (en) * 1994-12-12 2003-08-04 日本軽金属株式会社 Antibacterial / mildew-proof member utilizing catalytic action and manufacturing method
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
JP3518251B2 (en) * 1997-05-20 2004-04-12 株式会社日立製作所 Oxide photocatalytic thin film and article provided with the same
JP2000096212A (en) * 1998-09-28 2000-04-04 Sumitomo Electric Ind Ltd Photocatalyst film coated member and its production
JP2000288400A (en) * 1999-04-07 2000-10-17 Goro Yamauchi Photocatalyst composite material and its production
JP2002187806A (en) * 2000-12-20 2002-07-05 Nihon Tetra Pak Kk Antimicrobial material

Also Published As

Publication number Publication date
JP2002186860A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
Leyland et al. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections
KR100357482B1 (en) Multi-functional material with photo-catalytic functions and method of manufacturing same
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
Karuppuchamy et al. Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition
Rupp et al. Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications
US20120189681A1 (en) Photocatalytic coating for the controlled release of volatile agents
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JPH10244166A (en) Environment cleaning material and its production
Lin et al. Photocatalytic and antibacterial properties of medical‐grade PVC material coated with TiO2 film
Motola et al. UV light-induced photocatalytic, antimicrobial, and antibiofilm performance of anodic TiO 2 nanotube layers prepared on titanium mesh and Ti sputtered on silicon
Rudakova et al. Self-cleaning properties of zirconium dioxide thin films
EP3452216A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
Mills et al. A study of factors that change the wettability of titania films
Oveisi et al. Improved inactivation effect of bacteria: Fabrication of mesoporous anatase films with fine Ag nanoparticles prepared by coaxial vacuum Arc deposition
JP2000096212A (en) Photocatalyst film coated member and its production
Park et al. Supersonically sprayed copper oxide titania nanowires for antibacterial activities and water purification
JP4755756B2 (en) Photocatalytic material
Grine et al. Synthesis, characterization, and antibacterial activity of Ag–TiO2–Fe composite thin films
Fink et al. The “artificial ostrich eggshell” project: Sterilizing polymer foils for food industry and medicine
JP2002187806A (en) Antimicrobial material
JP2008523979A (en) Amorphous composite structures for photocatalysis
JP2002370027A (en) Columnar titanium oxide crystal photocatalyst material and applied article thereof
Tang et al. Photocatalytic activity and mechanical performance of o and n co-doped tio2 thin films
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
JP2001205105A (en) Photocatalytic thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees