JP4754358B2 - Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower - Google Patents

Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower Download PDF

Info

Publication number
JP4754358B2
JP4754358B2 JP2006006316A JP2006006316A JP4754358B2 JP 4754358 B2 JP4754358 B2 JP 4754358B2 JP 2006006316 A JP2006006316 A JP 2006006316A JP 2006006316 A JP2006006316 A JP 2006006316A JP 4754358 B2 JP4754358 B2 JP 4754358B2
Authority
JP
Japan
Prior art keywords
adsorption tower
gas
regeneration
inner cylinder
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006006316A
Other languages
Japanese (ja)
Other versions
JP2007185617A (en
Inventor
貴洋 秋山
将行 河岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2006006316A priority Critical patent/JP4754358B2/en
Publication of JP2007185617A publication Critical patent/JP2007185617A/en
Application granted granted Critical
Publication of JP4754358B2 publication Critical patent/JP4754358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,吸着剤を収納したガス精製用の吸着塔および吸着塔内の吸着剤の再生処理方法に関するものである。   The present invention relates to an adsorption tower for gas purification containing an adsorbent and a method for regenerating the adsorbent in the adsorption tower.

一般的に圧力温度スイング(PTSA)式,または温度スイング(TSA)式の加熱再生式のガス精製装置は,精製,加熱再生,冷却工程を,複数の吸着塔を切り替えながら行って,連続的に精製ガスを供給するようにしている。
したがってこの方式では,加熱工程および冷却工程時間の短縮が,吸着塔の小型化/精製度の向上につながる。加熱工程では,吸着剤を適切な温度(150℃〜300℃程度)にまで加熱することによって効果的に吸着剤を再生することができるが,過度な高温(例えば300℃を超える温度)になりすぎると吸着剤の性能劣化につながる恐れがあるため,加熱工程終了直前における吸着塔内温度分布を極力均一に加熱することが,吸着剤の性能を最大限に引き出すために重要となる。
In general, a pressure / temperature swing (PTSA) type or temperature swing (TSA) type heat regenerative gas purifier continuously performs the purification, heat regeneration, and cooling steps while switching a plurality of adsorption towers. Purified gas is supplied.
Therefore, in this method, shortening the heating and cooling process time leads to downsizing / improvement of the adsorption tower. In the heating process, the adsorbent can be effectively regenerated by heating the adsorbent to an appropriate temperature (about 150 ° C. to 300 ° C.), but it becomes an excessively high temperature (for example, a temperature exceeding 300 ° C.). If it is too high, the performance of the adsorbent may be deteriorated. Therefore, heating the temperature distribution in the adsorption tower immediately before the end of the heating process as much as possible is important to maximize the performance of the adsorbent.

この点に関し,吸着塔に充填された吸着剤の再生方法としては,従来は以下の方法が取られている。
(1)ヒータによって再生用ガスを加熱し,高温の再生ガスによって吸着剤を加熱する方法(特許文献1)。
(2)吸着塔の内部にヒータを挿入し,当該ヒータによって吸着剤を直接加熱しながら,吸着塔内を常温の再生用ガスでパージし,吸着塔自体を加熱する方法。
With respect to this point, conventionally, the following methods have been adopted as a method for regenerating the adsorbent packed in the adsorption tower.
(1) A method in which the regeneration gas is heated by a heater and the adsorbent is heated by a high-temperature regeneration gas (Patent Document 1).
(2) A method in which a heater is inserted inside the adsorption tower and the adsorbent is directly heated by the heater while purging the interior of the adsorption tower with a regeneration gas at room temperature to heat the adsorption tower itself.

特公昭64−7810公報Japanese Patent Publication No. 64-7810

しかしながら加熱した再生ガスを吸着塔内に導入して加熱再生する方法では,比熱の小さな少流量の再生用ガスを加熱の熱搬送媒体として利用するため,吸着塔自体やヒータ〜吸着塔間の配管の熱容量,熱損失の影響を受けやすく,多大な加熱時間を必要とする。   However, in the method of heating and regenerating by introducing the heated regeneration gas into the adsorption tower, the regeneration gas with a small specific heat and a small flow rate is used as a heat transfer medium for heating. Therefore, the adsorption tower itself and the piping between the heater and the adsorption tower are used. It is easily affected by heat capacity and heat loss, and requires a lot of heating time.

一方,吸着塔の内部にヒータを挿入し,当該ヒータによって吸着剤を直接加熱しながら,吸着塔内を常温の再生用ガスでパージする方法では,吸着剤を直接加熱することができるため,高温再生ガスを用いる場合に比べて,短時間で吸着剤を加熱でき,加熱工程時間を短くできる。しかしながら,吸着塔内では常温の再生用ガスによる熱搬送のために,再生ガスが導入される入口側よりも,出口側の方が高温になり,吸着塔内の吸着剤の温度分布は不均一になってしまう。
さらに従来の技術では,特に冷却に関して格別工夫された点はなく,そのため再生後の冷却においては,多大な冷却時間が必要となっていた。
On the other hand, in a method in which a heater is inserted inside the adsorption tower and the adsorbent is directly heated by the heater and the inside of the adsorption tower is purged with a regeneration gas at normal temperature, the adsorbent can be directly heated. Compared to the case of using regenerative gas, the adsorbent can be heated in a short time, and the heating process time can be shortened. However, in the adsorption tower, the temperature on the outlet side is higher than that on the inlet side where the regeneration gas is introduced due to heat transfer by the room temperature regeneration gas, and the temperature distribution of the adsorbent in the adsorption tower is uneven. Become.
Furthermore, in the prior art, there is no point that is particularly devised with respect to cooling, and therefore, a lot of cooling time is required for cooling after regeneration.

本発明は,かかる点に鑑みてなされたものであり,吸着塔内の吸着剤の加熱再生,再生後の冷却を短時間で行え,しかも加熱再生時における吸着塔内の吸着剤の温度分布の不均一さを,従来よりも改善することを目的としている。   The present invention has been made in view of the above points, and it is possible to perform heating regeneration of the adsorbent in the adsorption tower and cooling after the regeneration in a short time, and further, the temperature distribution of the adsorbent in the adsorption tower during the heat regeneration. The purpose is to improve the non-uniformity.

前記目的を達成するため,本発明のガス精製用の吸着塔は,吸着剤を収納した筒内に原料ガスを導入し,前記吸着剤によって当該原料ガスを精製する吸着塔であって,前記吸着剤を収納した内筒の外側に空隙をおいて設けられた外筒と,内筒の内部に設けられて前記吸着剤を加熱するヒータと,内筒の上端側に再生ガスを導入する再生ガス導入部と,内筒に導入された前記再生ガスを内筒の下端側から排出するための再生ガス排出口と,外筒の上端側に設けられ,前記空隙内に通ずる上部通気孔と,外筒の下端側に設けられ,前記空隙内に通ずる下部通気孔と,を有することを特徴としている。 To achieve the above object, the gas purification adsorption tower of the present invention is an adsorption tower for introducing a raw material gas into a cylinder containing an adsorbent and purifying the raw material gas with the adsorbent, wherein the adsorption column An outer cylinder provided with a gap outside the inner cylinder containing the agent, a heater provided inside the inner cylinder for heating the adsorbent, and a regeneration gas for introducing the regeneration gas to the upper end side of the inner cylinder An introduction portion, a regeneration gas discharge port for discharging the regeneration gas introduced into the inner cylinder from the lower end side of the inner cylinder, an upper vent hole provided on the upper end side of the outer cylinder and communicating with the inside of the gap; A lower vent hole provided on the lower end side of the cylinder and communicating with the gap.

本発明においては,ヒータを作動させて内筒内の吸着剤を加熱しつつ,上端側の再生ガス導入部から常温の再生ガスを導入することで,吸着剤の加熱再生が行われる。この場合,吸着剤を直接加熱することができるため,短時間で加熱工程を完了できる。そしてかかる加熱工程では,内筒上部より下部へと流通する再生用ガスによって熱搬送が行なわれるが,内筒と外筒との間の空隙によって形成された通気空間では,下部通気孔から流入する気流が内筒表面で熱交換されて昇温し,上部通気孔から排出されるいわゆる煙突効果による上昇気流が生じ,この上昇気流によって内筒下部から上部への熱搬送が行なわれる。すなわち,内筒内部での再生ガスによる「下方向」への熱搬送と,内筒外部での上昇気流による「上方向」への熱搬送によって,両者の影響が相殺され,内筒内に収納されている加熱中の吸着剤の温度分布を均一に保つことができる。   In the present invention, the adsorbent is heated and regenerated by operating the heater to heat the adsorbent in the inner cylinder and introducing the normal temperature regenerative gas from the regeneration gas introduction section on the upper end side. In this case, since the adsorbent can be directly heated, the heating process can be completed in a short time. In such a heating process, heat transfer is performed by the regeneration gas flowing from the upper part of the inner cylinder to the lower part. However, in the ventilation space formed by the gap between the inner cylinder and the outer cylinder, it flows from the lower ventilation hole. The airflow is heat-exchanged on the surface of the inner cylinder and the temperature rises, and an ascending airflow is generated by a so-called chimney effect that is discharged from the upper vent, and heat is conveyed from the lower part of the inner cylinder to the upper part by the ascending airflow. In other words, the effects of both are offset by the “downward” heat transfer by the regenerative gas inside the inner cylinder and the “upward” heat transfer by the rising air flow outside the inner cylinder, and are stored in the inner cylinder. The temperature distribution of the adsorbent during heating can be kept uniform.

またかかる加熱工程が終了した後,高温になった吸着剤を冷却するには,内筒内に常温の再生ガスを導入するのであるが,かかる場合,当該常温の再生ガスによる冷却だけではなく,内筒と外筒との間の空隙によって形成された通気空間での上昇気流による冷却も同時に行なわれる。したがって従来よりも短時間で冷却工程を完了することができる。   In order to cool the adsorbent that has reached a high temperature after the heating process is completed, a normal temperature regenerative gas is introduced into the inner cylinder. Cooling by the rising air current in the ventilation space formed by the gap between the inner cylinder and the outer cylinder is also performed at the same time. Therefore, the cooling process can be completed in a shorter time than before.

外筒に設けられる前記上部通気孔や下部通気孔は,外筒の周面において,筒の周面を連続的に巡るように環状に形成され,又は筒の周面を断続的に巡るように環状に並んで複数形成されていることが好ましい。これによって,内筒の温度の均一さがより一層向上する。 The upper vent hole and the lower vent hole provided in the outer cylinder are formed in an annular shape so as to continuously circulate around the circumferential surface of the cylinder, or intermittently circulate around the circumferential surface of the cylinder. it is preferable that a plurality of formed side by side in a ring shape. As a result, the temperature uniformity of the inner cylinder is further improved.

さらに本発明は,上記したガス精製用の吸着塔を用いて,吸着塔を再生処理する方法であって,再生時には,前記ヒータを作動させると共に,再生ガスを再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させ,再生後の冷却時には前記ヒータを停止させると共に,常温の再生ガスを再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させることを特徴としている。かかる場合,   Furthermore, the present invention is a method of regenerating an adsorption tower using the above-described gas purification adsorption tower. During regeneration, the heater is operated and the regeneration gas is introduced into the inner cylinder from the regeneration gas introduction section. Introduce and discharge from the regeneration gas outlet, stop the heater at the time of cooling after regeneration, introduce normal temperature regeneration gas into the inner cylinder from the regeneration gas introduction part, and exhaust from the regeneration gas outlet It is characterized by. In such a case,

これによって,従来よりも均一でかつ短時間で加熱再生,再生後の冷却が行える。   This makes it possible to perform heating regeneration and cooling after regeneration in a shorter time than in the past.

また本発明は,上記したガス精製用の吸着塔を2以上用いて,吸着塔内の吸着剤を再生処理する方法であって,再生時には,一の吸着塔における前記ヒータを作動させると共に,再生ガスを再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させ,再生後の冷却時には当該一の吸着塔における前記ヒータを停止させると共に,他の吸着塔で精製された精製ガスを,再生ガスとして当該一の吸着塔の再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させることを特徴としている。   The present invention also relates to a method for regenerating the adsorbent in the adsorption tower by using two or more gas purification adsorption towers as described above. In the regeneration, the heater in one adsorption tower is operated and the regeneration is performed. Gas is introduced into the inner cylinder from the regenerative gas introduction section, discharged from the regenerative gas discharge port, and when cooling after regeneration, the heater in the one adsorption tower is stopped and the refinement purified in another adsorption tower The gas is introduced into the inner cylinder as a regeneration gas from the regeneration gas introduction portion of the one adsorption tower, and is discharged from the regeneration gas discharge port.

このように,再生後の冷却時に用いる再生ガスに,他の吸着塔で精製された精製ガスを使用してもよい。他の吸着塔で精製された精製ガスを一の吸着塔の再生ガスに用いる場合,精製後に冷水や冷媒コイル等によってプレ冷却した後に一の吸着塔の再生ガス導入部に導入するようにすれば,再生後の冷却時間をより短縮することができる。   Thus, you may use the refinement | purification gas refine | purified with the other adsorption tower for the regeneration gas used at the time of the cooling after reproduction | regeneration. When the purified gas purified in another adsorption tower is used as the regeneration gas for one adsorption tower, it can be precooled after cooling with cold water, a refrigerant coil, etc., and then introduced into the regeneration gas introduction section of one adsorption tower. , The cooling time after regeneration can be further shortened.

本発明によれば,吸着塔内の吸着剤の加熱再生,再生後の冷却を短時間で行え,しかも加熱再生時における吸着塔内の吸着剤の温度分布の不均一さを,従来よりも改善することができる。   According to the present invention, the adsorbent in the adsorption tower can be heated and regenerated and cooled after the regeneration in a short time, and the non-uniform temperature distribution of the adsorbent in the adsorption tower at the time of heating and regeneration is improved as compared with the prior art. can do.

以下,本発明の好ましい実施の形態について説明する。図1は,ガス精製装置1の正面を示し,図2は背面の一部破断した断面,図3は側面の断面を各々示している。このガス精製装置1は全体として略箱型の本体2の中に,2本の吸着塔11,12を有している。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows the front of the gas purification apparatus 1, FIG. 2 shows a partially broken cross section of the back, and FIG. 3 shows a cross section of the side. This gas purification apparatus 1 has two adsorption towers 11 and 12 in a substantially box-shaped main body 2 as a whole.

本体2は,各々パネルで構成された前面板2a,左側板2b,右側板2c,天板2d,背面板2eによって外形が構成されている。前面板2aの下部には,開口部3が設けられ,当該開口部3には,メッシュ板,パンチングメタルなどによって構成される通気板3aが装着されている。前面板2aの上部側は傾斜しており,当該傾斜面の表面には計器,スイッチ等が設けられている。当該傾斜部分の下方には,多数のスリット2fが形成されている。背面板2eの上部は開口部4が形成され,当該開口部4には,メッシュ板,パンチングメタルなどによって構成される通気板4aが装着されている。本体2の下面には,自在キャスタ5が設けられている。   The main body 2 has an outer shape composed of a front plate 2a, a left plate 2b, a right plate 2c, a top plate 2d, and a back plate 2e each formed of a panel. An opening 3 is provided in the lower part of the front plate 2a, and a ventilation plate 3a made of a mesh plate, punching metal or the like is attached to the opening 3. The upper side of the front plate 2a is inclined, and instruments, switches, etc. are provided on the surface of the inclined surface. A large number of slits 2f are formed below the inclined portion. An opening 4 is formed in the upper part of the back plate 2e, and a ventilation plate 4a made of a mesh plate, punching metal or the like is attached to the opening 4. A free caster 5 is provided on the lower surface of the main body 2.

本体2内に収納されている吸着塔11,12は,同一構成であるから,代表して吸着塔11の構成について,図4,図5,図6に基づいて説明すると,この吸着塔11は,内筒21の外側に,空隙dをおいて配置された外筒22を有する二重管構造になっている。吸着塔11の上端には天板23,24が設けられ,一方吸着塔11の下端には底板25,26が設けられており,内筒21,外筒22とも閉塞されている。シースヒータ32が天板24とセットになっていることから,天板23の頂部には,電極カバー27が取り付けられている。   Since the adsorption towers 11 and 12 housed in the main body 2 have the same configuration, the configuration of the adsorption tower 11 will be described based on FIGS. 4, 5 and 6 as a representative. , A double pipe structure having an outer cylinder 22 arranged with a gap d outside the inner cylinder 21. Top plates 23 and 24 are provided at the upper end of the adsorption tower 11, while bottom plates 25 and 26 are provided at the lower end of the adsorption tower 11, and both the inner cylinder 21 and the outer cylinder 22 are closed. Since the sheath heater 32 is set with the top plate 24, an electrode cover 27 is attached to the top of the top plate 23.

内筒21の内部には,例えばシリカゲル,ゼオライト,活性アルミナ等,ガス精製の際に使用される吸着剤31が収納されている。そして内筒21内には,この吸着剤31を直接加熱するためのヒータとして,シースヒータ32が内設されている。このシースヒータ32は,図5,図6に示したように棒状(コイル状でもよい)であり,天板24に支持され,同心円状にかつ等間隔で内筒21と平行になるように,複数本,内筒21内に配置されている。なお吸着剤を直接加熱する手段は,電気ヒータに限らず,例えば吸着剤31中にコイルを埋め込み,当該コイルに,圧縮されたCO冷媒を導入してもよい。 Inside the inner cylinder 21, an adsorbent 31 used for gas purification such as silica gel, zeolite, activated alumina, or the like is accommodated. A sheath heater 32 is provided in the inner cylinder 21 as a heater for directly heating the adsorbent 31. The sheath heater 32 has a rod shape (may be a coil shape) as shown in FIGS. 5 and 6, and is supported by the top plate 24. The sheath heater 32 is concentrically arranged and is parallel to the inner cylinder 21 at equal intervals. This is arranged in the inner cylinder 21. The means for directly heating the adsorbent is not limited to an electric heater. For example, a coil may be embedded in the adsorbent 31 and a compressed CO 2 refrigerant may be introduced into the coil.

外筒22の材質には,例えばセラミック筒に鋼板などを重ねたラッギング材が使用されている。そしてこの外筒22の上端部側の外周には,同一周面上に丸穴で形成された上部通気孔22aが等間隔で複数,環状に形成されている。また外筒22の下端部側の外周には,丸穴で形成された下部通気孔22bが同一周面上に等間隔で複数,環状に形成されている。これら上部通気孔22a,下部通気孔22bは,前記空隙dに通じている。上部通気孔22a,下部通気孔22bの形状自体は丸穴の他に,スリットなど任意の形状を選択することができる。   As the material of the outer cylinder 22, for example, a lagging material in which a steel plate is stacked on a ceramic cylinder is used. On the outer periphery of the outer cylinder 22 on the upper end side, a plurality of upper ventilation holes 22a formed as round holes on the same peripheral surface are formed in an annular shape at equal intervals. Further, a plurality of lower vent holes 22b formed in a round hole are formed in a ring shape at equal intervals on the outer periphery of the outer cylinder 22 on the lower end side. The upper vent hole 22a and the lower vent hole 22b communicate with the gap d. As the shapes of the upper vent hole 22a and the lower vent hole 22b, an arbitrary shape such as a slit can be selected in addition to a round hole.

さらには外筒22の上端の天板と下端の底板の一方を省略し,内筒21の上下端は閉塞されるが,外筒22は上端天板と下端天板の一方で支持され,他方の端部で内筒21と同じ曲率の仮想円が開口して開放されるように構成されていてもよい。外筒22の上下の通気孔には,接続管等は連結されず,後述するように送風手段なしに自然対流による冷却空気の内筒21の外壁への連続流通を可能にしている。   Further, one of the top plate at the upper end and the bottom plate at the lower end of the outer cylinder 22 is omitted, and the upper and lower ends of the inner cylinder 21 are closed, but the outer cylinder 22 is supported by one of the upper end top plate and the lower end top plate. An imaginary circle having the same curvature as that of the inner cylinder 21 may be opened and opened at the end. The upper and lower ventilation holes of the outer cylinder 22 are not connected with connecting pipes or the like, so that the cooling air can be continuously distributed to the outer wall of the inner cylinder 21 by natural convection without air blowing means, as will be described later.

内筒21の上端側外周には,原料ガス流通口21aが形成され,この原料ガス流通口21aに接続されたガス管33が,前記上部通気孔22aから,吸着塔11の外部へと引き出されている。吸着塔11の底部には,内筒21内に通ずるガス管34の接続口が設けられている。そして原料ガスの精製時には,内筒21と連通し,かつ底板25,26に設けられた貫通孔に接続口を有するガス管34から内筒21内に原料ガスが導入され,吸着剤31によって精製された後の精製ガスは,ガス管33から排出される。つまり原料ガスは下から上に流れる。また吸着塔11の再生時には,ガス管33から内筒21内に再生ガスが導入され,吸着剤31を再生した後,ガス管34から排出されるようになっている。つまり原料ガスは上から下に流れる。このように本実施の形態では,精製時の原料ガスの導入管と再生時の再生ガスの排出管がガス管34で共用されており,また精製時の精製ガスの排出管と再生時の再生ガスの導入管がガス管33共用されている。もちろんこれに限らず,各々独立して設けてもよい。   A raw material gas circulation port 21a is formed in the outer periphery on the upper end side of the inner cylinder 21, and a gas pipe 33 connected to the raw material gas circulation port 21a is drawn out of the adsorption tower 11 from the upper vent hole 22a. ing. At the bottom of the adsorption tower 11, a connection port for a gas pipe 34 communicating with the inner cylinder 21 is provided. At the time of refining the raw material gas, the raw material gas is introduced into the inner tube 21 from the gas pipe 34 that communicates with the inner tube 21 and has a connection port in a through hole provided in the bottom plates 25 and 26, and is purified by the adsorbent 31. The purified gas after being discharged is discharged from the gas pipe 33. That is, the source gas flows from the bottom to the top. Further, at the time of regeneration of the adsorption tower 11, regeneration gas is introduced from the gas pipe 33 into the inner cylinder 21, and after the adsorbent 31 is regenerated, it is discharged from the gas pipe 34. That is, the source gas flows from top to bottom. As described above, in this embodiment, the gas pipe 34 shares the source gas introduction pipe at the time of purification and the regeneration gas discharge pipe at the time of regeneration, and the regeneration gas exhaust pipe at the time of purification and the regeneration gas at the time of regeneration. The gas introduction pipe is shared with the gas pipe 33. Of course, the present invention is not limited to this, and each may be provided independently.

次にガス精製装置1の系統について説明する。図7に示したように,2本の吸着塔11,12の各ガス管33,33は合流して,精製ガス排出管41となって,ガス精製装置1から外部へと通じる。なお精製ガス排出管41には,ガスフィルタ42,バルブ43が設けられている。   Next, the system of the gas purification apparatus 1 will be described. As shown in FIG. 7, the gas pipes 33, 33 of the two adsorption towers 11, 12 merge to form a purified gas discharge pipe 41, which leads from the gas purification apparatus 1 to the outside. The purified gas discharge pipe 41 is provided with a gas filter 42 and a valve 43.

2本の吸着塔11,12の下部に接続されるガス管34,34は,各々途中で分岐し,分岐した一方はヘッダ管51によって連結されている。そしてヘッダ管51には,原料ガス導入管52の一端部が接続されている。原料ガス導入管52の他端部は,ガス精製装置1の外部にて原料ガス供給源(図示せず。例えばエアコンプレッサやボンベ等の高圧送風手段)に通じている。原料ガス導入管52には,バルブ53が設けられている。またヘッダ管51における原料ガス導入管52との接続部から吸着塔11側には,電磁バルブ54が設けられ,当該接続部から吸着塔12側には,電磁バルブ55が設けられている。   The gas pipes 34, 34 connected to the lower portions of the two adsorption towers 11, 12 are branched in the middle, and one of the branched pipes is connected by a header pipe 51. The header pipe 51 is connected to one end of a source gas introduction pipe 52. The other end of the source gas introduction pipe 52 communicates with a source gas supply source (not shown, for example, a high-pressure air blower such as an air compressor or a cylinder) outside the gas purification apparatus 1. The raw material gas introduction pipe 52 is provided with a valve 53. In addition, an electromagnetic valve 54 is provided on the adsorption tower 11 side from the connection portion of the header pipe 51 with the source gas introduction pipe 52, and an electromagnetic valve 55 is provided on the adsorption tower 12 side from the connection portion.

2本の吸着塔11,12の下部から出ているガス管34,34が分岐した他方の系統は,各々対応するフィンチューブ61,62を経由し,ヘッダ管63によって連結されている。フィンチューブ61,62は,外周に多数のフィンが設けられて放熱効果を高めるためのものであり,例えば上部通気孔22aより低い位置に設けられる。ヘッダ管63には,再生ガス排出管64の一端部が接続され,再生ガス排出管64の一端部は,ガス精製装置1外部の再生ガス処理系(図示せず)に通じている。またヘッダ管63における再生ガス排出管64との接続部から吸着塔11側には,電磁バルブ65が設けられ,当該接続部から吸着塔12側には,電磁バルブ66が設けられている。   The other system into which the gas pipes 34, 34 coming out from the lower portions of the two adsorption towers 11, 12 are branched is connected by a header pipe 63 via corresponding fin tubes 61, 62. The fin tubes 61 and 62 are provided with a large number of fins on the outer periphery to enhance the heat dissipation effect, and are provided, for example, at a position lower than the upper ventilation hole 22a. One end of a regeneration gas discharge pipe 64 is connected to the header pipe 63, and one end of the regeneration gas discharge pipe 64 leads to a regeneration gas processing system (not shown) outside the gas purification apparatus 1. An electromagnetic valve 65 is provided on the adsorption tower 11 side from the connection portion of the header pipe 63 with the regeneration gas discharge pipe 64, and an electromagnetic valve 66 is provided on the adsorption tower 12 side from the connection portion.

再生ガス排出管64には,上流側から順にガスフィルタ67,流量計68が設けられている。ガスフィルタ67からは,フィルタでトラップした再生ガス中の水分を排出するためのドレン管69が引き出されている。   The regeneration gas discharge pipe 64 is provided with a gas filter 67 and a flow meter 68 in order from the upstream side. A drain pipe 69 for discharging moisture in the regeneration gas trapped by the filter is drawn out from the gas filter 67.

ガス精製装置1は以上の構成を有しており,次にその運転例について説明する。このガス精製装置1においては,2本の吸着塔11,12を装備しているので,例えば,吸着塔12がガス精製運転を実施する際には,他の吸着塔11が再生を実施するという運転がなされる。すなわち,電磁バルブ54,66が閉鎖され,電磁バルブ55,65が開放された状態で,原料ガス導入管52から常温の原料ガスがガス精製装置1内に導入されると,ヘッダ管51,ガス管34から吸着塔12の内筒21内にその下部から導入され,内筒21内の吸着剤31によって精製処理される。そして精製された後の乾燥した精製ガスは,内筒21上部に接続されているガス管33から精製ガス排出管41を流れていき,ガス精製装置1の外部,例えば電子部品や電子材料の生産装置へと供給される。このとき吸着塔12のシースヒータ32はOFFとなっている。   The gas purification apparatus 1 has the above configuration, and an example of its operation will be described next. Since the gas purification apparatus 1 is equipped with two adsorption towers 11 and 12, for example, when the adsorption tower 12 performs a gas purification operation, the other adsorption tower 11 performs regeneration. Driving is done. That is, when the raw material gas at normal temperature is introduced from the raw material gas introduction pipe 52 into the gas purifier 1 with the electromagnetic valves 54 and 66 closed and the electromagnetic valves 55 and 65 opened, the header pipe 51, gas The pipe 34 is introduced into the inner cylinder 21 of the adsorption tower 12 from below, and is purified by the adsorbent 31 in the inner cylinder 21. Then, the purified purified gas after purification flows from the gas pipe 33 connected to the upper part of the inner cylinder 21 through the purified gas discharge pipe 41 to the outside of the gas purification apparatus 1, for example, production of electronic parts and electronic materials. Supplied to the device. At this time, the sheath heater 32 of the adsorption tower 12 is OFF.

そしてガス管33を流れる精製ガスの一部は,吸着塔11側のガス管33を経由して,吸着塔11の内筒21内に再生ガスとして導入される。このとき吸着塔11では,再生運転を行うので,吸着塔11の内筒21内に設けられているシースヒータ32はONとなっており,図5に示したように,吸着剤31を直接加熱する。したがって吸着剤31が所定の再生温度に達するまでの時間は短いものである。そして内筒21の上端側から乾燥した再生ガスが導入されるので,吸着剤31は加熱再生されると共に,再生時に発生した水分等は,この再生ガスによって搬送され,吸着塔11下部のガス管34から排出される。つまり再生ガスの入り口側を上方,出口側を下方としたことで,吸着塔内で発生したドレンを同じ方向の気流で同伴させている。そして吸着塔11から出た高温の再生ガスは,フィンチューブ61を経由して降温され,再生ガス排出管64からガス精製装置1の外部に排出される。   A part of the purified gas flowing through the gas pipe 33 is introduced as a regeneration gas into the inner cylinder 21 of the adsorption tower 11 via the gas pipe 33 on the adsorption tower 11 side. At this time, since the regeneration operation is performed in the adsorption tower 11, the sheath heater 32 provided in the inner cylinder 21 of the adsorption tower 11 is ON, and the adsorbent 31 is directly heated as shown in FIG. . Therefore, the time until the adsorbent 31 reaches a predetermined regeneration temperature is short. Since the dried regeneration gas is introduced from the upper end side of the inner cylinder 21, the adsorbent 31 is heated and regenerated, and moisture generated during the regeneration is transported by the regeneration gas, and the gas pipe below the adsorption tower 11. 34 is discharged. In other words, the regeneration gas inlet side is set to the upper side and the outlet side is set to the lower side, so that the drain generated in the adsorption tower is entrained by the airflow in the same direction. Then, the high-temperature regeneration gas that has come out of the adsorption tower 11 is lowered through the fin tube 61 and is discharged from the regeneration gas discharge pipe 64 to the outside of the gas purification apparatus 1.

ところで,上記運転中,吸着塔11において内筒21内の吸着剤31が再生ガスによって再生されている際,上部から導入される再生ガスによって,内筒21内の熱が,内筒21の上部から下部へと搬送されるので,そのままでは内筒21内の上部より下部の方が高温となってしまい,内筒21の上下で温度,つまり吸着剤31の上下方向での温度が不均一になってしまう。   By the way, during the above operation, when the adsorbent 31 in the inner cylinder 21 is regenerated by the regeneration gas in the adsorption tower 11, the heat in the inner cylinder 21 is heated by the regeneration gas introduced from the upper part. Therefore, the temperature in the lower part of the inner cylinder 21 is higher than that in the upper part of the inner cylinder 21 as it is, and the temperature above and below the inner cylinder 21, that is, the temperature in the vertical direction of the adsorbent 31 is not uniform. turn into.

しかしながら本実施の形態における吸着塔11においては,内筒21の外周に空隙dをおいて外筒22が配置され,さらにこの外筒22の上部と下部の外周には,各々上部通気孔22a,下部通気孔22bが形成されているので,図5に示したように,下部通気孔22b周囲の雰囲気が,下部通気孔22bを通じて空隙d内に入り込み,内筒21の表面に沿って空隙d内を上昇し,上部通気孔22aから周囲に放出される。すなわち空隙dが通気空間となって,いわゆる煙突効果による上昇気流によって内筒21下部から上部への熱搬送が行なわれる。その結果,前記した内筒21内部での再生ガスによる「下方向」への熱搬送と,内筒21外部での上昇気流による「上方向」への熱搬送によって,両者の影響が相殺され,内筒21内に収納されている加熱中の吸着剤31の温度分布を均一に保つことができるのである。   However, in the adsorption tower 11 in the present embodiment, the outer cylinder 22 is disposed with a gap d on the outer periphery of the inner cylinder 21, and the upper air holes 22 a, Since the lower ventilation hole 22b is formed, as shown in FIG. 5, the atmosphere around the lower ventilation hole 22b enters the gap d through the lower ventilation hole 22b, and enters the gap d along the surface of the inner cylinder 21. And is discharged from the upper ventilation hole 22a to the surroundings. In other words, the gap d becomes a ventilation space, and heat is transferred from the lower portion to the upper portion of the inner cylinder 21 by the rising air flow due to the so-called chimney effect. As a result, the influence of both is offset by the above-described heat transfer in the “downward direction” by the regenerated gas inside the inner cylinder 21 and the “upward” heat transfer by the upward air flow outside the inner cylinder 21, The temperature distribution of the adsorbent 31 being heated that is accommodated in the inner cylinder 21 can be kept uniform.

またガス精製装置1全体からみると,再生時の気流の流れは図3に示したようになる。すなわち前面板2aの下部の開口部3から装置周辺の空気が本体2内に入り込み,吸着塔11の下部へと導かれ,外筒22下部の下部通気孔22b内へと導入される。そして外筒22上部の上部通気孔22aから放出される昇温した空気は,フィンチューブ61から放出される高温の空気と相俟って,背面板2eの開口部4から本体2の外へと排出される。したがって,ガス精製装置1全体としてもいわゆる煙突効果により,装置周辺空気の前面板2aの下部の開口部3から本体2内下部への流入,すなわち外筒22下部への流入が促進され,外筒22の下部に形成されている下部通気孔22bには,常に新鮮な常温空気が供給される。   Further, when viewed from the whole gas purification apparatus 1, the flow of the air flow at the time of regeneration is as shown in FIG. That is, the air around the apparatus enters the main body 2 through the opening 3 at the lower part of the front plate 2a, is guided to the lower part of the adsorption tower 11, and is introduced into the lower vent hole 22b at the lower part of the outer cylinder 22. The heated air discharged from the upper vent 22a at the upper part of the outer cylinder 22 is combined with the high-temperature air discharged from the fin tube 61 from the opening 4 of the back plate 2e to the outside of the main body 2. Discharged. Therefore, the gas purifier 1 as a whole also promotes the inflow of the air around the apparatus from the lower opening 3 of the front plate 2a into the lower part in the main body 2, that is, the lower part of the outer cylinder 22, by the so-called chimney effect. Fresh, normal temperature air is always supplied to the lower ventilation hole 22b formed in the lower part of the air.

吸着塔内部にヒータを有する従来技術において,吸着塔の外周にロックウールを50mmの厚さで巻いて断熱養生した場合(ロックウールを吸着塔の外周に巻きつけるのは,従来よく採られる手法である)と,本実施の形態の場合とで,吸着塔,内筒21内の高さ方向の位置と,当該位置における吸着塔,内筒21内の温度との関係を実際に発明者らが検証したところ,図8のグラフに示したような結果になった。なおヒータは,同一のシースヒータ32を使用している。   In the conventional technology with a heater inside the adsorption tower, when rock wool is wound around the outer circumference of the adsorption tower to a thickness of 50 mm and heat-cured (the rock wool is wrapped around the outer circumference of the adsorption tower is a well-known technique) In the case of the present embodiment, the inventors actually relate the relationship between the position in the height direction in the adsorption tower / inner cylinder 21 and the temperature in the adsorption tower / inner cylinder 21 at the position. When verified, the results shown in the graph of FIG. 8 were obtained. The same sheath heater 32 is used as the heater.

この結果によれば,ロックウールを50mm巻いて断熱養生した場合には,再生ガスの上部からの熱搬送によって,吸着塔の下部に行くほど温度が高くなっており,下部近傍では300℃を超えてしまっている。これに対し,本実施の形態では,それよりも大幅に温度の均一性が改善され,かつどの位置においても300℃を超えることはない。   According to this result, when rock wool is wound 50 mm and heat-cured, the temperature increases toward the lower part of the adsorption tower due to heat transfer from the upper part of the regeneration gas, and exceeds 300 ° C near the lower part. It has been. On the other hand, in this embodiment, the temperature uniformity is significantly improved, and the temperature does not exceed 300 ° C. at any position.

また本実施の形態では,既述したように,内筒21内にシースヒータ32を配置して,吸着剤31を直接加熱するようにしているので,本実施の形態によれば,内筒21内の吸着剤31の加熱再生を均一に,かつ短時間で行えるものである。   In the present embodiment, as described above, the sheath heater 32 is arranged in the inner cylinder 21 so as to heat the adsorbent 31 directly. The adsorbent 31 can be heated and regenerated uniformly and in a short time.

このようにして加熱再生が終了すると,シースヒータ32をOFFにして,常温の再生ガスをそのまま内筒21内に流し続けることによって,再生後の冷却処理が行われる。かかる場合も,本実施の形態によれば,下部通気孔22b周囲の雰囲気が,下部通気孔22bを通じて空隙d内に入り込み,内筒21の表面に沿って空隙d内を上昇し,上部通気孔22aから周囲に放出されるので,さらに内筒21の熱の放出が促進され,再生ガスの投入にのみよる冷却の場合よりも,吸着剤31が所定の温度にまで冷却されるまでの時間が,従来より短縮される。また吸着塔11,12を収納しているガス精製装置1全体においても,前記した加熱再生時と同様な煙突効果が得られるので,かかる点からも加熱再生後の冷却処理が促進される。   When the heat regeneration is completed in this way, the sheath heater 32 is turned off, and the regeneration gas at normal temperature is kept flowing in the inner cylinder 21 as it is, thereby performing a cooling process after regeneration. Even in such a case, according to the present embodiment, the atmosphere around the lower ventilation hole 22b enters the gap d through the lower ventilation hole 22b, and rises in the gap d along the surface of the inner cylinder 21, so that the upper ventilation hole Since the heat is released from 22a to the surroundings, the release of heat from the inner cylinder 21 is further promoted, and the time until the adsorbent 31 is cooled to a predetermined temperature, compared with the case of cooling only by supplying the regeneration gas. , Shorter than before. In addition, since the chimney effect similar to that at the time of the above-described heating regeneration can be obtained also in the entire gas purification apparatus 1 housing the adsorption towers 11 and 12, the cooling process after the heating regeneration is promoted from this point.

図9は,本実施の形態と,前記した吸着塔の外周にロックウールを50mmの厚さで巻いて断熱養生した場合とにおける,常温(25℃)の再生ガスを各々吸着塔内部,内筒21内部に12L/minの流量で供給した場合の,吸着塔内部,内筒21内部の平均温度の経時変化を示している。この結果からもわかるように,本実施の形態の方が,はるかに短時間で所定の温度(25℃)にまで冷却することができ,加熱再生後の冷却時間の短縮が実現されている。   FIG. 9 shows normal temperature (25 ° C.) regeneration gas in the adsorption tower and inner cylinder in this embodiment and in the case where rock wool is wound around the outer periphery of the adsorption tower at a thickness of 50 mm and heat-cured. The time-dependent change of the average temperature inside the adsorption tower and inside the inner cylinder 21 when the flow rate is supplied to the inside of the flow rate at 12 L / min is shown. As can be seen from this result, the present embodiment can be cooled to a predetermined temperature (25 ° C.) in a much shorter time, and the cooling time after heating regeneration is shortened.

そして本実施の形態にかかるガス精製装置1においては,再生時に使用する再生ガスとして,他の吸着塔12からの精製ガスを用いているので,別途専用の乾燥した再生ガスを用意する必要が無い。かかる場合,既述したように,加熱再生時間,加熱再生後の冷却時間がいずれも従来より短縮されているので,精製ガスの再生に用いる量は少ないものである。他の吸着塔12からの精製ガスを用いている場合,プレクーラ等によって冷却した後に再生ガスとして用いれば,冷却時間をさらに短縮することができる。このようなプレクーラは,ガス精製装置1内に設けてもよく,ガス精製装置1の外に設置してもよい。ガス精製装置1内に設ける場合には,精製出口と再生入口との間に介在するように設置してもよい。   In the gas purification apparatus 1 according to the present embodiment, since the purified gas from the other adsorption tower 12 is used as the regeneration gas used at the time of regeneration, it is not necessary to prepare a separate dry regeneration gas. . In such a case, as described above, since the heating regeneration time and the cooling time after the heating regeneration are both shorter than before, the amount used for regenerating the purified gas is small. When the purified gas from another adsorption tower 12 is used, the cooling time can be further shortened if it is used as a regeneration gas after being cooled by a precooler or the like. Such a precooler may be provided in the gas purification apparatus 1 or may be installed outside the gas purification apparatus 1. When provided in the gas purification apparatus 1, it may be installed so as to be interposed between the purification outlet and the regeneration inlet.

なお加熱再生後の冷却工程では,再生ガスによる冷却を行なわず,空隙d内の気流のみで冷却を行なうこともでき,この場合にはさらに再生ガスの消費量を減らすことができ,運転コストを下げることが可能である。なお本発明においては,より一般的な吸着塔なる名称を用いたが,「吸着筒」,「吸着器」,「吸着装置」など,名称に限らず,実質的に吸着剤を収納してガスの精製,浄化に使用される装置は,本発明でいうところの吸着塔である。   In the cooling process after heating regeneration, cooling with regeneration gas can be performed without using regeneration gas, and in this case, the consumption of regeneration gas can be further reduced and the operating cost can be reduced. It is possible to lower. In the present invention, a more general name of the adsorption tower is used. However, the name is not limited to “adsorption cylinder”, “adsorber”, “adsorption device”, etc., and the adsorbent is substantially stored in the gas. The apparatus used for the purification and purification is an adsorption tower as referred to in the present invention.

本発明は,ガスを精製する吸着剤を筒内に収納した吸着塔や,触媒筒の加熱に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for heating an adsorption tower or a catalyst cylinder in which an adsorbent for purifying gas is stored in the cylinder.

本実施の形態にかかる吸着塔を有するガス精製装置の正面図である。It is a front view of the gas purification apparatus which has the adsorption tower concerning this Embodiment. 本実施の形態にかかる吸着塔を有するガス精製装置の一部破断背面図である。It is a partially broken rear view of the gas purification apparatus which has the adsorption tower concerning this Embodiment. 本実施の形態にかかる吸着塔を有するガス精製装置の側面断面図である。It is side surface sectional drawing of the gas purification apparatus which has the adsorption tower concerning this Embodiment. 本実施の形態にかかる吸着塔の側面図である。It is a side view of the adsorption tower concerning this Embodiment. 本実施の形態にかかる吸着塔の側面断面図である。It is side surface sectional drawing of the adsorption tower concerning this Embodiment. 図5のA−A線断面図である。It is the sectional view on the AA line of FIG. 本実施の形態にかかる吸着塔を有するガス精製装置の系統を示す説明図である。It is explanatory drawing which shows the system | strain of the gas purification apparatus which has the adsorption tower concerning this Embodiment. 本実施の形態にかかる吸着塔と従来技術とにおける吸着塔高さ方向の塔内温度を示す説明図である。It is explanatory drawing which shows the temperature in the tower of the adsorption tower height direction in the adsorption tower concerning this Embodiment and a prior art. 本実施の形態にかかる吸着塔と従来技術とにおける冷却時間の経過に伴う筒内平均温度の変化を示すグラフである。It is a graph which shows the change of the in-cylinder average temperature with progress of the cooling time in the adsorption tower concerning this Embodiment, and a prior art.

符号の説明Explanation of symbols

1 ガス精製装置
11,12 吸着塔
21 内筒
22 外筒
22a 上部通気孔
22b 下部通気孔
31 吸着剤
32 シースヒータ
33,34 ガス管
DESCRIPTION OF SYMBOLS 1 Gas purification apparatus 11,12 Adsorption tower 21 Inner cylinder 22 Outer cylinder 22a Upper ventilation hole 22b Lower ventilation hole 31 Adsorbent 32 Sheath heater 33,34 Gas pipe

Claims (5)

吸着剤を収納した筒内に原料ガスを導入し,前記吸着剤によって当該原料ガスを精製する吸着塔であって,
前記吸着剤を収納した内筒の外側に空隙をおいて設けられた外筒と,
内筒の内部に設けられて前記吸着剤を加熱するヒータと,
内筒の上端側に再生ガスを導入する再生ガス導入部と,
内筒に導入された前記再生ガスを内筒の下端側から排出するための再生ガス排出口と,
外筒の上端側に設けられ,前記空隙内に通ずる上部通気孔と,
外筒の下端側に設けられ,前記空隙内に通ずる下部通気孔と,
を有することを特徴とする,ガス精製用の吸着塔。
An adsorption tower for introducing a raw material gas into a cylinder containing an adsorbent and purifying the raw material gas with the adsorbent,
An outer cylinder provided with a gap outside the inner cylinder containing the adsorbent;
A heater provided inside the inner cylinder for heating the adsorbent;
A regenerative gas introduction section for introducing a regenerative gas into the upper end side of the inner cylinder;
A regeneration gas discharge port for discharging the regeneration gas introduced into the inner cylinder from the lower end side of the inner cylinder;
An upper vent hole provided on the upper end side of the outer cylinder and leading into the gap;
A lower vent hole provided on the lower end side of the outer cylinder and leading into the gap;
An adsorption tower for gas purification, characterized by comprising:
前記上部通気孔は,外筒の周面において,筒の周面を連続的に巡るように環状に形成され,又は筒の周面を断続的に巡るように環状に並んで複数形成されていることを特徴とする,請求項1に記載のガス精製用の吸着塔。 The upper vent in the peripheral surface of the outer cylinder, are formed into an annular shape so as around the peripheral surface of the cylindrical continuously, or formed with a plurality arranged in an annular shape so as around the intermittent circumferential surface of the cylindrical The adsorption tower for gas purification according to claim 1, characterized in that: 前記下部通気孔は,外筒の周面において,筒の周面を連続的に巡るように環状に形成され,又は筒の周面を断続的に巡るように環状に並んで複数形成されていることを特徴とする,請求項1又は2に記載のガス精製用の吸着塔。 The lower vent in the peripheral surface of the outer cylinder, are formed into an annular shape so as around the peripheral surface of the cylindrical continuously, or formed with a plurality arranged in an annular shape so as around the intermittent circumferential surface of the cylindrical The adsorption tower for gas purification according to claim 1 or 2, characterized by the above-mentioned. 請求項1〜3のいずれかに記載のガス精製用の吸着塔を用いて,吸着塔内の吸着剤を再生処理する方法であって,
再生時には,前記ヒータを作動させると共に,常温の再生ガスを再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させ,
再生後の冷却時には前記ヒータを停止させると共に,常温の再生ガスを再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させることを特徴とする,吸着塔内の吸着剤の再生処理方法。
A method for regenerating an adsorbent in an adsorption tower using the gas purification adsorption tower according to any one of claims 1 to 3,
At the time of regeneration, the heater is operated and a normal temperature regeneration gas is introduced into the inner cylinder from the regeneration gas introduction part, and is discharged from the regeneration gas discharge port.
During cooling after regeneration, the heater is stopped, and at room temperature, the regeneration gas is introduced into the inner cylinder from the regeneration gas introduction part and discharged from the regeneration gas discharge port. Playback processing method.
請求項1〜3のいずれかに記載のガス精製用の吸着塔を2以上用いて,吸着塔内の吸着剤を再生処理する方法であって,
再生時には,一の吸着塔における前記ヒータを作動させると共に,再生ガスを再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させ,
再生後の冷却時には当該一の吸着塔における前記ヒータを停止させると共に,他の吸着塔で精製された精製ガスを,再生ガスとして当該一の吸着塔の再生ガス導入部から内筒内に導入して,再生ガス排出口から排出させることを特徴とする,吸着塔内の吸着剤の再生処理方法。
A method for regenerating an adsorbent in an adsorption tower using two or more adsorption towers for gas purification according to any one of claims 1 to 3,
At the time of regeneration, the heater in one adsorption tower is operated, the regeneration gas is introduced into the inner cylinder from the regeneration gas introduction part, and is discharged from the regeneration gas discharge port.
At the time of cooling after regeneration, the heater in the one adsorption tower is stopped, and the purified gas purified in the other adsorption tower is introduced into the inner cylinder as a regeneration gas from the regeneration gas introduction part of the one adsorption tower. A method for regenerating the adsorbent in the adsorption tower, wherein the regeneration gas is discharged from a regeneration gas outlet.
JP2006006316A 2006-01-13 2006-01-13 Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower Active JP4754358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006316A JP4754358B2 (en) 2006-01-13 2006-01-13 Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006316A JP4754358B2 (en) 2006-01-13 2006-01-13 Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower

Publications (2)

Publication Number Publication Date
JP2007185617A JP2007185617A (en) 2007-07-26
JP4754358B2 true JP4754358B2 (en) 2011-08-24

Family

ID=38341151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006316A Active JP4754358B2 (en) 2006-01-13 2006-01-13 Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower

Country Status (1)

Country Link
JP (1) JP4754358B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314737B2 (en) 2011-08-24 2016-04-19 Kobelco Eco-Solutions Co., Ltd. Dehumidifier and method for producing dehumidifier
JP5825929B2 (en) * 2011-08-24 2015-12-02 株式会社神鋼環境ソリューション Dehumidifying device and method of manufacturing dehumidifying device
JP5825928B2 (en) * 2011-08-24 2015-12-02 株式会社神鋼環境ソリューション Dehumidifier
EP3687660A2 (en) 2017-09-27 2020-08-05 Johnson Controls Technology Company Emission canister system for a hvac&r system
JP2020065984A (en) * 2018-10-25 2020-04-30 大陽日酸株式会社 Gas purifier and gas purification method
US11052347B2 (en) * 2018-12-21 2021-07-06 Entegris, Inc. Bulk process gas purification systems
CN117085458B (en) * 2023-10-20 2024-02-13 中国华能集团清洁能源技术研究院有限公司 Combined purifying tower for flue gas cooling and adsorption

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346811A (en) * 1991-05-27 1992-12-02 Matsushita Electric Works Ltd Adsorption separater
JPH09215908A (en) * 1995-12-06 1997-08-19 Kawai Gijutsu Kenkyusho:Kk Method for recovering hydrocarbon from waste gas containing gaseous hydrocarbon
JPH09310886A (en) * 1996-05-23 1997-12-02 Matsushita Electric Ind Co Ltd Adsorptive material desorber and adsorber and desorber
JPH10249142A (en) * 1997-03-18 1998-09-22 Fujitsu Ltd Exhaust gas treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346811A (en) * 1991-05-27 1992-12-02 Matsushita Electric Works Ltd Adsorption separater
JPH09215908A (en) * 1995-12-06 1997-08-19 Kawai Gijutsu Kenkyusho:Kk Method for recovering hydrocarbon from waste gas containing gaseous hydrocarbon
JPH09310886A (en) * 1996-05-23 1997-12-02 Matsushita Electric Ind Co Ltd Adsorptive material desorber and adsorber and desorber
JPH10249142A (en) * 1997-03-18 1998-09-22 Fujitsu Ltd Exhaust gas treatment device

Also Published As

Publication number Publication date
JP2007185617A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4754358B2 (en) Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower
JPH07265649A (en) Dry dehumidifier
CN105879567A (en) Adsorption tower, adsorption purifying system and purifying method
CN116351207B (en) Low-temperature flue gas adsorption tower with flue gas cooling function and adsorption method
CN102612400B (en) Compressor installation with a dryer and method for drying of compressed gasses
JP2012166128A5 (en)
JP2012166128A (en) Dehumidifier
JP2016043349A (en) Moisture removing monomer, separate-layer temperature controlling moisture removing element, drier, and temperature control method therefor
US3432995A (en) Adsorption tower
WO2013027821A1 (en) Dehumidifying device, and manufacturing method for same
US9687778B1 (en) Systems and methods for drying a compressed gas
JP2013043131A (en) Dehumidifier
CN214287468U (en) Waste heat regeneration adsorption drying system
JP3199875U (en) Dehumidifying monomer, layered temperature control dehumidifying element and drying device
CN210448618U (en) Zero gas consumption deoiling adsorption drying system of gas
JP5825928B2 (en) Dehumidifier
JPH0783816B2 (en) Adsorber
JP2013188693A (en) Glove box
JP2014198279A (en) Dehumidifier
JP2009078239A (en) Low dew point air manufacturing apparatus
JP2015039647A (en) Dehumidification system
WO2018104986A1 (en) Deodorizing device
JP2001157809A (en) Ozone adsorbing/desorbing cylinder
JP3054062B2 (en) Purifier
JPS6231969B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4754358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150