JP4753603B2 - Heated gas supply device - Google Patents

Heated gas supply device Download PDF

Info

Publication number
JP4753603B2
JP4753603B2 JP2005095050A JP2005095050A JP4753603B2 JP 4753603 B2 JP4753603 B2 JP 4753603B2 JP 2005095050 A JP2005095050 A JP 2005095050A JP 2005095050 A JP2005095050 A JP 2005095050A JP 4753603 B2 JP4753603 B2 JP 4753603B2
Authority
JP
Japan
Prior art keywords
supply
gas
temperature
pipe
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005095050A
Other languages
Japanese (ja)
Other versions
JP2006272164A (en
Inventor
茂 武井
渡辺  誠
祐次 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Nissan Motor Co Ltd
Original Assignee
Taikisha Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd, Nissan Motor Co Ltd filed Critical Taikisha Ltd
Priority to JP2005095050A priority Critical patent/JP4753603B2/en
Publication of JP2006272164A publication Critical patent/JP2006272164A/en
Application granted granted Critical
Publication of JP4753603B2 publication Critical patent/JP4753603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Nozzles (AREA)

Description

本発明は加熱気体供給装置に関し、詳しくは、
気体供給源から供給される気体を加熱する加熱器、及び、その加熱器により加熱された気体を気体消費部に導く延設給気管を設け、
前記延設給気管と前記気体消費部とを接続する接続管に、前記気体消費部に対する加熱気体の供給を断続する給気弁、又は、前記気体消費部に対する加熱気体の供給流量を調整する給気弁を設け、
前記延設給気管を通じて前記気体消費部へ供給する加熱気体の温度を検出する給気温センサ、及び、その給気温センサによる検出温度に基づき前記加熱器の出力を調整して前記気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御手段を設けてある加熱気体供給装置に関する。
The present invention relates to a heated gas supply device.
A heater that heats the gas supplied from the gas supply source, and an extended air supply pipe that guides the gas heated by the heater to the gas consumption unit,
A connecting pipe that connects the extended air supply pipe and the gas consuming part is an air supply valve that intermittently supplies the heated gas to the gas consuming part, or a supply that adjusts the supply flow rate of the heated gas to the gas consuming part. Set up a air valve,
A supply air temperature sensor that detects the temperature of the heated gas supplied to the gas consumption unit through the extended supply air pipe, and a supply to the gas consumption unit by adjusting the output of the heater based on the temperature detected by the supply air temperature sensor The present invention relates to a heated gas supply device provided with temperature control means for adjusting the temperature of heated gas to a set supply temperature.

図5は、塗装ガン4に装備の補助空気ノズル5(特許文献1参照)を気体消費部として、この補助空気ノズル5への加熱空気供給に用いた従来の加熱気体供給装置を示し、この従来装置では、気体供給源としての圧縮機9から供給される圧縮空気A1をクーラ10により冷却減湿して、その冷却減湿した圧縮空気A2を加熱器11で加熱し、この加熱圧縮空気A3(以下、単に加熱空気と称する場合がある)を延設給気管12を通じて複数の塗装ガン4夫々の補助空気ノズル5に導く。   FIG. 5 shows a conventional heated gas supply apparatus used for supplying heated air to the auxiliary air nozzle 5 using the auxiliary air nozzle 5 (see Patent Document 1) provided in the coating gun 4 as a gas consuming part. In the apparatus, the compressed air A1 supplied from the compressor 9 as a gas supply source is cooled and dehumidified by the cooler 10, and the compressed and dehumidified air A2 is heated by the heater 11, and this heated compressed air A3 ( Hereinafter, the heated air may be referred to simply as heated air) through the extended air supply pipe 12 and led to the auxiliary air nozzles 5 of the plurality of coating guns 4.

また、延設給気管12と各塗装ガン4の補助空気ノズル5とを接続する接続管13には、補助空気ノズル5に対する加熱空気供給の断続及びその供給流量の調整を行う給気弁14を設けてあり、複数の被塗物2の順次塗装において、各塗装ガン4からの塗料噴出を頻繁に発停するのに応じ、また、噴出塗料種を種々変更するのに応じ、これら給気弁14の操作により塗装ガン4の各々について補助空気ノズル5からの加熱空気噴出の発停及び噴出流量の調整を行う。   The connecting pipe 13 connecting the extended air supply pipe 12 and the auxiliary air nozzle 5 of each painting gun 4 is provided with an air supply valve 14 for intermittently supplying heated air to the auxiliary air nozzle 5 and adjusting its supply flow rate. These air supply valves are provided in accordance with the frequent spraying of paints from the coating guns 4 and various changes in the sprayed paint types in the sequential painting of a plurality of objects to be coated 2. By the operation of 14, the heating air ejection from the auxiliary air nozzle 5 and the ejection flow rate are adjusted for each of the coating guns 4.

そして、延設給気管12が施設条件等によりかなりの長尺(例えば,20〜30m)になる状況下において、補助空気ノズル5に対する供給加熱空気A3の温度(換言すれば、補助空気ノズル5からの噴出加熱空気の温度)を所定の温度に精度良く保つことが良好な塗装品質を得る上で要求されるのに対し、この従来装置では、延設給気管12をその全長にわたって断熱材21′により被覆するとともに、延設給気管12を通じて補助空気ノズル5へ供給する加熱空気A3の温度ta′を延設給気管12の先端部(すなわち、各接続管13の分岐部に近い箇所)において検出する給気温センサ16、及び、この給気温センサ16による検出温度ta′に基づき加熱器11の出力を調整して補助空気ノズル5に対する供給加熱空気A3の温度ta′(具体的には給気温センサ16により検出される温度)を設定供給温度tasに調整する温度制御器17を設けていた。   Then, in a situation where the extended supply air pipe 12 becomes considerably long (for example, 20 to 30 m) due to facility conditions and the like, the temperature of the supply heated air A3 to the auxiliary air nozzle 5 (in other words, from the auxiliary air nozzle 5) On the other hand, in order to obtain good coating quality, it is required to keep the temperature of the jet heated air) at a predetermined temperature with high accuracy. And the temperature ta ′ of the heated air A3 supplied to the auxiliary air nozzle 5 through the extended air supply pipe 12 is detected at the tip of the extended air supply pipe 12 (that is, at a location near the branch portion of each connecting pipe 13). The temperature t of the supply air A3 to the auxiliary air nozzle 5 by adjusting the output of the heater 11 based on the air temperature sensor 16 to be detected and the temperature ta 'detected by the air temperature sensor 16 'Has been provided a temperature controller 17 to adjust the set feed temperature tas a (specifically the temperature detected by the supply air temperature sensor 16).

なお、この従来装置では、器内温センサ18により検出される加熱器11の器内温度tbが設定上限温度tbsに達したとき加熱器11を強制停止する安全制御器19を設けてあり、また、全ての給気弁14が閉じられた状態にあるときには、空気通過が無い状態での加熱器運転による異常昇温を確実に防止するため、給気温センサ16による検出温度ta′にかかわらず加熱器11を停止するようにしている。
特開平11−300266号公報
In this conventional apparatus, a safety controller 19 is provided to forcibly stop the heater 11 when the internal temperature tb of the heater 11 detected by the internal temperature sensor 18 reaches the set upper limit temperature tbs. When all the air supply valves 14 are in the closed state, heating is performed regardless of the detected temperature ta ′ detected by the air temperature sensor 16 in order to reliably prevent abnormal temperature rise due to heater operation without air passing. The vessel 11 is stopped.
JP-A-11-300266

しかし、上記の従来装置では、全ての給気弁14が閉じられて加熱器11からの加熱空気A3の送出が停止された状態が続くと、断熱材21′の被覆があるとは言え、延設給気管12の全体について管内の停滞加熱空気A3が放熱により温度低下してしまい、この為、次に給気弁14が開かれた際、加熱器11の運転は即時に再開されるものの、延設給気管12の管内で温度低下した低温の空気が補助空気ノズル5から噴出される状態が暫く続いて、補助空気ノズル5に対し設定供給温度tasの加熱空気A3が供給される状態に復帰するまでに長い時間(例えば、数十分〜1時間)を要する問題があった。   However, in the above-described conventional apparatus, if all the air supply valves 14 are closed and the delivery of the heated air A3 from the heater 11 is stopped, it can be said that there is a coating of the heat insulating material 21 '. The stagnation heating air A3 in the entire supply air pipe 12 is lowered in temperature due to heat radiation, and therefore, when the air supply valve 14 is opened next time, the operation of the heater 11 is immediately resumed. The state where the low-temperature air whose temperature has decreased in the pipe of the extended supply pipe 12 is ejected from the auxiliary air nozzle 5 continues for a while, and then returns to the state where the heating air A3 at the set supply temperature tas is supplied to the auxiliary air nozzle 5. There is a problem that it takes a long time (for example, several tens of minutes to 1 hour) to complete.

そして、このように加熱空気供給の再開の際に低温の空気が補助空気ノズル5から噴出されることで塗装品質の低下を招き、また、設定供給温度tasに回復するまでの低温の噴出空気は塗装に供さず捨てるようにして、設定供給温度tasの加熱空気A3が供給されるまで塗装の開始を待つようにした場合には、塗装品生産効率の大幅な低下を招く。   The low-temperature air is ejected from the auxiliary air nozzle 5 when the heated air supply is restarted in this way, resulting in a decrease in coating quality, and the low-temperature jet air until the set supply temperature tas is restored is If the start of painting is waited until the heated air A3 having the set supply temperature tas is supplied without being used for painting, the production efficiency of the coated product is greatly reduced.

また、従来装置では、給気温センサ16の検出温度ta′に基づき加熱器11の出力を調整して補助空気ノズル5に対する供給加熱空気A3の温度を設定供給温度tasに調整する温度制御を行うのに、長尺な延設給気管12の先端部における管内空気温度ta′を給気温センサ16により検出する為、何らかの要因により加熱器11において生じた送出加熱空気A3の温度変化が給気温センサ16によって検知されるまでの時間遅れが大きくて、温度制御の応答性が低くなるとともに温度制御においてハンチング現象などの不安定動作を生じ易い問題もあり、この為、補助空気ノズル5に対する供給加熱空気A3の温度がブレ易くて、この温度ブレが塗装品質の低下要因になる。   Further, in the conventional apparatus, temperature control is performed in which the output of the heater 11 is adjusted based on the detected temperature ta ′ of the air temperature sensor 16 to adjust the temperature of the supply heating air A3 to the auxiliary air nozzle 5 to the set supply temperature tas. In addition, since the air temperature sensor ta in the pipe at the distal end of the long extended air supply pipe 12 is detected by the air temperature sensor 16, the temperature change of the delivery heated air A3 generated in the heater 11 due to some factor is detected. Therefore, there is a problem in that the time delay until the detection is detected and the responsiveness of the temperature control is lowered, and an unstable operation such as a hunting phenomenon is likely to occur in the temperature control. This temperature fluctuation is a factor that degrades the coating quality.

そしてまた、温度制御の応答性が低いことで、加熱空気供給流量の急激な減少時に加熱器11の器内温度tbが設定上限温度tbsを超え易く、安全制御器19による加熱器11の強制停止が生じ易い問題もあった。   Further, since the temperature control responsiveness is low, the internal temperature tb of the heater 11 is likely to exceed the set upper limit temperature tbs when the heating air supply flow rate is rapidly decreased, and the safety controller 19 forcibly stops the heater 11. There was also a problem that was likely to occur.

この実情に鑑み、本発明の主たる課題は、合理的な改良により上記の如き問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problems by rational improvements.

〔1〕本発明の第1特徴構成は加熱気体供給装置に係り、その特徴は、
気体供給源から供給される気体を加熱する加熱器、及び、その加熱器により加熱された気体を気体消費部に導く延設給気管を設け、
前記延設給気管と前記気体消費部とを接続する接続管に、前記気体消費部に対する加熱気体の供給を断続する給気弁、又は、前記気体消費部に対する加熱気体の供給流量を調整する給気弁を設け、
前記延設給気管を通じて前記気体消費部へ供給する加熱気体の温度を検出する給気温センサ、及び、その給気温センサによる検出温度に基づき前記加熱器の出力を調整して前記気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御手段を設ける構成において、
管内に保温用液体を通過させる通液管を、その通液管内の保温用液体と前記延設給気管の管内気体との熱交換が可能な相対配置で前記延設給気管に沿わせて延設し、
この通液管に対して循環させる保温用液体を設定循環温度に加熱する循環液加熱手段を設けてある点にある。
[1] A first characteristic configuration of the present invention relates to a heated gas supply device,
A heater that heats the gas supplied from the gas supply source, and an extended air supply pipe that guides the gas heated by the heater to the gas consumption unit,
A connecting pipe that connects the extended air supply pipe and the gas consuming part is an air supply valve that intermittently supplies the heated gas to the gas consuming part, or a supply that adjusts the supply flow rate of the heated gas to the gas consuming part. Set up a air valve,
A supply air temperature sensor that detects the temperature of the heated gas supplied to the gas consumption unit through the extended supply air pipe, and a supply to the gas consumption unit by adjusting the output of the heater based on the temperature detected by the supply air temperature sensor In the configuration provided with temperature control means for adjusting the temperature of the heated gas to the set supply temperature,
A fluid passage tube for allowing the heat retaining liquid to pass through the tube extends along the extended air supply tube in a relative arrangement capable of heat exchange between the heat retaining liquid in the fluid passage tube and the gas in the extended air supply tube. Set up
A circulating liquid heating means for heating the heat retaining liquid to be circulated with respect to the liquid flow pipe to the set circulation temperature is provided.

この第1特徴構成によれば、延設給気管に沿わせた通液管に対し設定循環温度に加熱した保温用液体を延設給気管の管内気体との熱交換が可能な状態で通過させるから、温度制御手段による加熱器の出力調整により加熱器から設定供給温度の加熱気体を延設給気管に対し送出させるとともに、保温用液体の設定循環温度として加熱気体の設定供給温度と等しい温度(ないしは若干高い温度)を設定しておけば、加熱器から延設給気管に送出される加熱気体を設定循環温度の保温用液体との熱交換により設定供給温度に保った状態で延設給気管の管内を通過させて、気体消費部に送給することができる。   According to the first characteristic configuration, the heat retaining liquid heated to the set circulation temperature is passed through the liquid passing pipe along the extended supply pipe in a state where heat exchange with the gas in the extended supply pipe is possible. From the heater, the heating gas at the set supply temperature is sent from the heater to the extended supply pipe by adjusting the output of the heater by the temperature control means, and the set circulation temperature of the heat retaining liquid is equal to the set supply temperature of the heating gas ( (Or slightly higher temperature), the extended air supply pipe is maintained in the state where the heated gas sent from the heater to the extended air supply pipe is maintained at the set supply temperature by heat exchange with the heat retaining liquid at the set circulation temperature. The gas can be fed to the gas consuming section through the pipe.

そしてまた、全ての給気弁が閉じられて延設給気管内に加熱気体が停滞する状態が続いたとしても、その停滞加熱気体(すなわち、加熱器から送出された設定供給温度の加熱気体)を通液管内における設定循環温度の保温用液体との熱交換により設定供給温度に保っておくことができ、これにより、次に給気弁が開かれた際には直ちに設定供給温度の加熱気体を気体消費部に供給することができる。   And even if all the air supply valves are closed and the state where the heated gas stays in the extended supply pipe continues, the stagnant heated gas (that is, the heated gas at the set supply temperature sent from the heater) The set supply temperature can be maintained by exchanging heat with the heat-retaining liquid at the set circulation temperature in the liquid passage, so that the next time the supply valve is opened, the heated gas at the set supply temperature is immediately opened. Can be supplied to the gas consuming part.

しかも、加熱器から延設給気管に送出される加熱気体の温度が何らかの要因で設定供給温度から多少ブレるとしても、設定循環温度の保温用液体との熱交換による気体温度の均平化により延設給気管の管内通過過程で加熱気体の温度を設定供給温度に収束させることができ、これにより、気体消費部に対し設定供給温度の加熱気体を一層温度精度の高い状態で安定的に供給することができる。   Moreover, even if the temperature of the heated gas sent from the heater to the extended supply pipe slightly fluctuates from the set supply temperature for some reason, the gas temperature is leveled by heat exchange with the heat retention liquid at the set circulation temperature. The temperature of the heated gas can be converged to the set supply temperature in the process of passing through the extended supply pipe, and this allows the heated gas at the set supply temperature to be stably supplied to the gas consuming unit with higher temperature accuracy. can do.

また、第1特徴構成によれば、装置の運転立ち上げ時に、加熱器から送出される加熱気体と通液管に対し循環させる加熱保温用液体との両方により延設給気管を加熱し得るから、加熱器から送出される加熱気体(加熱空気)のみにより延設給気管を加熱する先述の従来装置に比べ、長尺な延設給気管の管温度を運転温度まで上昇させるのに要する立ち上げ時間を短くし得る利点もある。   Further, according to the first characteristic configuration, the extended air supply pipe can be heated by both the heated gas sent from the heater and the heating and heat retaining liquid circulated with respect to the liquid passing pipe when the apparatus is started up. The startup required to raise the tube temperature of the long extended air supply pipe to the operating temperature as compared with the above-mentioned conventional device that heats the extended air supply pipe only by the heated gas (heated air) delivered from the heater There is also an advantage that time can be shortened.

なお、第1特徴構成の実施においては、延設給気管とそれに沿わせた通液管との管組にに対し断熱材被覆を施しておくのが望ましい。   In the implementation of the first characteristic configuration, it is desirable to cover the tube set of the extended air supply pipe and the liquid passage pipe along the extended supply pipe with a heat insulating material coating.

〔2〕本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記給気温センサを、前記加熱器の出口部における加熱気体の温度を検出する位置に配置してある点にある。
[2] The second characteristic configuration of the present invention specifies an embodiment suitable for the implementation of the first characteristic configuration.
It exists in the point which has arrange | positioned the said air temperature sensor in the position which detects the temperature of the heating gas in the exit part of the said heater.

この第2特徴構成によれば、給気温センサの検出温度に基づき加熱器の出力を調整して気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御を行うのに、加熱器の出口部における加熱気体の温度を給気温センサにより検出するから、何らかの要因により加熱器において生じた送出加熱気体の温度変化を時間遅れの小さい状態で給気温センサに的確に検知させることができて、そのことで、温度制御の応答性を高めるとともに、ハンチング現象などの不安定動作の少ない安定的な温度制御にすることができ、これにより、気体消費部に対し設定供給温度の加熱気体をさらに温度精度の高い状態で安定的に供給することができる。   According to the second feature configuration, the heater is used to adjust the output of the heater based on the temperature detected by the air temperature sensor and adjust the temperature of the supply heating gas to the gas consumption unit to the set supply temperature. Since the temperature of the heated gas at the outlet of the heater is detected by the air temperature sensor, it is possible to cause the air temperature sensor to accurately detect the change in the temperature of the heated gas generated in the heater due to some factor with a small time delay. Therefore, it is possible to increase the responsiveness of the temperature control and to achieve a stable temperature control with less unstable operation such as a hunting phenomenon, thereby further increasing the heating gas at the set supply temperature to the gas consuming part. It can be stably supplied with high temperature accuracy.

なお、給気温センサの検出温度に基づき加熱器の出力を調整して気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御で、上記の如く加熱器の出口部における加熱気体の温度を給気温センサにより検出する装置構成(略言すれば、加熱器の出口部における加熱気体の温度を設定供給温度に調整する装置構成)を採ったとしても、気体消費部に対する供給加熱気体の温度が延設給気管の管内通過過程における放熱により設定供給温度から外れてしまうといったことは、前述の第1特徴構成において実施する保温用液体との熱交換による加熱気体の温度保持により確実に防止される。   The temperature control for adjusting the output of the heater based on the temperature detected by the air temperature sensor to adjust the temperature of the supply heating gas to the gas consuming unit to the set supply temperature. Even if a device configuration for detecting the temperature by the air temperature sensor (in short, a device configuration for adjusting the temperature of the heated gas at the outlet of the heater to the set supply temperature) is used, It is reliably prevented that the temperature deviates from the set supply temperature due to heat radiation in the process of passing through the extended supply air pipe by maintaining the temperature of the heated gas by heat exchange with the heat retaining liquid performed in the first characteristic configuration described above. Is done.

第2特徴構成の実施において、給気温センサにより検出する温度は、厳密に加熱器の出口における加熱気体の温度に限られるものではなく、延設給気管における加熱器に近い部分の管内気体温度であってもよい。   In the implementation of the second characteristic configuration, the temperature detected by the air supply temperature sensor is not strictly limited to the temperature of the heated gas at the outlet of the heater, but is the temperature of the gas in the pipe near the heater in the extended supply pipe. There may be.

〔3〕本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記延設給気管と前記通液管とを、前記延設給気管が前記通液管の管内に位置する二重管構造にしてある点にある。
[3] The third characteristic configuration of the present invention specifies an embodiment suitable for the implementation of the first or second characteristic configuration.
The extended air supply pipe and the liquid flow pipe are in a double pipe structure in which the extended air supply pipe is located in the pipe of the liquid flow pipe.

この第3特徴構成によれば、管横断面視において延設給気管内の加熱気体がその全周にわたり通液管内の保温用液体に囲まれる形態になって、延設給気管内の加熱気体がその全周において保温用液体と熱交換し得る状態になり、これにより、加熱器から送出される加熱気体を設定循環温度の保温用液体との熱交換により設定供給温度に保つという前述第1特徴構成の機能を一層高めることができる。   According to the third characteristic configuration, the heated gas in the extended air supply pipe is surrounded by the heat retaining liquid in the liquid flow pipe over the entire circumference in the cross-sectional view of the pipe. Is in a state in which heat can be exchanged with the heat retaining liquid in the entire circumference thereof, whereby the heated gas delivered from the heater is maintained at the set supply temperature by heat exchange with the heat retaining liquid at the set circulation temperature. The function of the feature configuration can be further enhanced.

〔4〕本発明の第4特徴構成は、第1〜第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記通液管に対して保温用液体を前記延設給気管における加熱気体の通過向きとは逆向きに通過させる構成にしてある点にある。
[4] The fourth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third characteristic configurations,
The heat retaining liquid is configured to pass through the liquid supply pipe in a direction opposite to the direction of passage of the heated gas in the extended air supply pipe.

この第4特徴構成によれば、加熱器から送出された加熱空気を延設給気管の管内通過において管先端側へ向うほど、通液管上流側の保温用液体(すなわち、設定循環温度に加熱されてからの温度変化が未だ少ない保温用液体)と熱交換させることができ、これにより、気体消費部に対し設定供給温度の加熱用気体を一層温度精度の高い状態で安定的に供給することができ、特に、加熱器から延設給気管に送出する加熱気体の温度が設定供給温度からブレ易い場合に有効となる。   According to the fourth characteristic configuration, the heated air sent from the heater is heated to the heat retaining liquid upstream of the liquid passing pipe (that is, heated to the set circulation temperature as it goes toward the pipe tip side in the passage of the extended supply pipe. Heat can be exchanged with the liquid for maintaining the temperature after it has been changed), thereby stably supplying the gas for heating at the set supply temperature to the gas consuming part with higher temperature accuracy. In particular, this is effective when the temperature of the heated gas sent from the heater to the extended supply pipe is likely to fluctuate from the set supply temperature.

〔5〕本発明の第5特徴構成は、第1〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記循環液加熱手段として、槽内に貯留した保温用液体を前記通液管との間で循環させる液槽と、この液槽における保温用液体を加熱する液加熱器と、前記液槽における保温用液体の温度を検出する液温センサと、この液温センサによる検出液温に基づき前記液加熱器の出力を調整して前記液槽における保温用液体の温度を設定循環温度に調整する液温制御手段とを設けてある点にある。
[5] The fifth characteristic configuration of the present invention specifies an embodiment suitable for any one of the first to fourth characteristic configurations.
As the circulating liquid heating means, a liquid tank that circulates the heat retaining liquid stored in the tank with the liquid passing pipe, a liquid heater that heats the heat retaining liquid in the liquid tank, and a heat retaining temperature in the liquid tank A liquid temperature sensor for detecting the temperature of the liquid for use, and a liquid temperature for adjusting the output of the liquid heater based on the liquid temperature detected by the liquid temperature sensor to adjust the temperature of the heat retaining liquid in the liquid tank to the set circulating temperature. The control means is provided.

この第5特徴構成によれば、通液管に対する液循環系において保温用液体の保有量を大きく確保し得る液槽で槽内の保温用液体を設定循環温度に加熱調整して、その液槽から通液管に対し設定循環温度の保温用液体を循環供給するから、通液管に対し設定循環温度の保温用液体を温度変動の少ない状態で安定的に供給することができて、加熱器から送出される加熱気体を設定循環温度の保温用液体との熱交換により設定供給温度に保つという前述第1特徴構成の機能を一層確実に得ることができ、これにより、気体消費部に対し設定供給温度の加熱気体を一層温度精度の高い状態で安定的に供給することができる。   According to this fifth characteristic configuration, the temperature of the heat-retaining liquid in the tank is adjusted by heating to the set circulation temperature in the liquid tank capable of ensuring a large amount of the heat-retaining liquid in the liquid circulation system with respect to the liquid flow pipe, and the liquid tank Since the heat retaining liquid with the set circulation temperature is circulated and supplied from the liquid to the liquid flow pipe, the heat retaining liquid with the set circulation temperature can be stably supplied to the liquid flow pipe with little temperature fluctuation. The function of the first characteristic configuration that the heated gas delivered from the gas is maintained at the set supply temperature by heat exchange with the heat retaining liquid at the set circulation temperature can be obtained more reliably, thereby setting the gas consumption unit. The heated gas at the supply temperature can be stably supplied with higher temperature accuracy.

〔6〕本発明の第6特徴構成は加熱気体供給装置に係り、その特徴は、
気体供給源から供給される気体を加熱する加熱器、及び、その加熱器により加熱された気体を気体消費部に導く延設給気管を設け、
前記延設給気管と前記気体消費部とを接続する接続管に、前記気体消費部に対する加熱気体の供給を断続する給気弁、又は、前記気体消費部に対する加熱気体の供給流量を調整する給気弁を設け、
前記延設給気管を通じて前記気体消費部へ供給する加熱気体の温度を検出する給気温センサ、及び、その給気温センサによる検出温度に基づき前記加熱器の出力を調整して前記気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御手段を設ける構成において、
前記延設給気管の先端部と前記加熱器とを接続する還気管を設け、
前記延設給気管の管内気体を前記還気管を通じて前記加熱器に戻す形態で、加熱気体を前記延設給気管、前記還気管、前記加熱器の間で循環させる循環手段を設けてある点にある。
[6] A sixth characteristic configuration of the present invention relates to a heated gas supply device,
A heater that heats the gas supplied from the gas supply source, and an extended air supply pipe that guides the gas heated by the heater to the gas consumption unit,
A connecting pipe that connects the extended air supply pipe and the gas consuming part is an air supply valve that intermittently supplies the heated gas to the gas consuming part, or a supply that adjusts the supply flow rate of the heated gas to the gas consuming part. Set up a air valve,
A supply air temperature sensor that detects the temperature of the heated gas supplied to the gas consumption unit through the extended supply air pipe, and a supply to the gas consumption unit by adjusting the output of the heater based on the temperature detected by the supply air temperature sensor In the configuration provided with temperature control means for adjusting the temperature of the heated gas to the set supply temperature,
Providing a return air pipe connecting the tip of the extended air supply pipe and the heater;
Circulation means for circulating the heated gas between the extended supply pipe, the return air pipe, and the heater in a form in which the gas in the extended supply pipe is returned to the heater through the return air pipe is provided. is there.

この第6特徴構成によれば、全ての給気弁が閉じられた状態が続いたとしても、循環手段により延設給気管、還気管、加熱器の間で加熱気体を循環させるとともに、その循環において温度制御手段による加熱器の出力調整により循環加熱気体の温度を設定供給温度に調整することで、延設給気管の管内における加熱気体の温度を設定給気温度に保っておくことができ、これにより、次に給気弁が開かれた際には直ちに設定供給温度の加熱気体を気体消費部に供給することができる。   According to this sixth feature, even if all the air supply valves continue to be closed, the circulating gas circulates the heated gas between the extended air supply pipe, the return air pipe, and the heater, and the circulation. By adjusting the temperature of the circulating heating gas to the set supply temperature by adjusting the output of the heater by the temperature control means, the temperature of the heating gas in the pipe of the extended supply pipe can be kept at the set supply temperature, Thereby, when the air supply valve is opened next time, the heated gas at the set supply temperature can be immediately supplied to the gas consuming part.

ちなみに、全ての給気弁が閉じられた状態が暫く続いた後、給気弁が開かれたとき、延設給気管において放熱により温度低下した低温の気体が気体消費部に供給されるのを防止するには、図5において破線で示す如く、排気弁35を装備した排気管36を延設給気管12の先端部に接続した装置構成にして、全ての給気弁14が閉じられた状態にあるときには排気弁35を開くことで、加熱器11から延設給気管12を通じて送給される加熱気体A3を排気管36を通じ外部に排出する方式も考えられるが、この場合、加熱器11で生成した加熱気体A3を使用することなく連続して外部に排出してしまう為、大きなエネルギ損失を生じる。   By the way, when the air supply valve is opened after all the air supply valves are closed for a while, the low temperature gas whose temperature is reduced due to heat dissipation in the extended supply pipe is supplied to the gas consuming part. In order to prevent this, as shown by the broken line in FIG. 5, the exhaust pipe 36 equipped with the exhaust valve 35 is connected to the tip of the extended air supply pipe 12, and all the air supply valves 14 are closed. In this case, a method of discharging the heated gas A3 fed from the heater 11 through the extended supply pipe 12 to the outside through the exhaust pipe 36 by opening the exhaust valve 35 is also conceivable. Since the generated heated gas A3 is continuously discharged to the outside without using it, a large energy loss occurs.

これに対し、第6特徴構成、及び、前述の第1特徴構成によれば、加熱器で生成した加熱気体を無駄に外部に排出することがなく、上記の如きエネルギ損失の発生を回避しながら給気弁の再開弁時における低温気体供給を防止することができる。   On the other hand, according to the sixth feature configuration and the first feature configuration described above, the heated gas generated by the heater is not exhausted to the outside while avoiding the generation of energy loss as described above. It is possible to prevent the low temperature gas from being supplied when the supply valve is restarted.

なお、第6特徴構成の実施においては、延設給気管及び還気管に対し断熱材被覆を施しておくのが望ましい。   In the implementation of the sixth characteristic configuration, it is desirable to cover the extended supply air pipe and the return air pipe with a heat insulating material.

〔7〕本発明の第7特徴構成は、第6特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記給気温センサを、前記加熱器の出口部における加熱気体の温度を検出する位置に配置してある点にある。
[7] The seventh characteristic configuration of the present invention specifies an embodiment suitable for the implementation of the sixth characteristic configuration.
It exists in the point which has arrange | positioned the said air temperature sensor in the position which detects the temperature of the heating gas in the exit part of the said heater.

この第7特徴構成によれば、前述の第2特徴構成と同様、給気温センサの検出温度に基づき加熱器の出力を調整して気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御を行うのに、加熱器の出口部における加熱気体の温度を給気温センサにより検出するから、何らかの要因により加熱器において生じた送出加熱気体の温度変化を時間遅れの小さい状態で給気温センサに的確に検知させることができて、そのことで、温度制御の応答性を高めるとともに、ハンチング現象などの不安定動作の少ない安定的な温度制御にすることができ、これにより、気体消費部に対し設定供給温度の加熱気体を温度精度の高い状態で安定的に供給することができる。   According to the seventh feature configuration, similarly to the second feature configuration described above, the output of the heater is adjusted based on the temperature detected by the air temperature sensor to adjust the temperature of the supply heating gas to the gas consumption unit to the set supply temperature. In order to control the temperature, the temperature of the heated gas at the outlet of the heater is detected by the air temperature sensor, so that the temperature change of the heated gas generated in the heater due to some factor in a state where the time delay is small Therefore, the temperature control response can be improved and stable temperature control with less unstable operation such as hunting phenomenon can be achieved. On the other hand, the heated gas having the set supply temperature can be stably supplied with high temperature accuracy.

なお、給気温センサの検出温度に基づき加熱器の出力を調整して気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御を行うのに、上記の如く加熱器の出口部における加熱気体の温度を給気温センサにより検出する装置構成(略言すれば、加熱器の出口部における加熱気体の温度を設定供給温度に調整する装置構成)を採ったとしても、気体消費部に対する供給加熱気体の温度が延設給気管の管内通過過程における放熱により設定供給温度から外れてしまうといったことは、前述の第6特徴構成による加熱気体の循環を給気弁の開弁時においても実施することで効果的に抑止することができる。   In addition, in order to perform temperature control which adjusts the output of a heater based on the detection temperature of an air temperature sensor and adjusts the temperature of the supply heating gas with respect to a gas consumption part to setting supply temperature, it is in the exit part of a heater as mentioned above. Even if it adopts a device configuration for detecting the temperature of the heated gas by the air temperature sensor (in short, a device configuration for adjusting the temperature of the heated gas at the outlet of the heater to the set supply temperature), the supply to the gas consumption unit The fact that the temperature of the heated gas deviates from the set supply temperature due to heat dissipation in the process of passing through the extended supply pipe is implemented by circulating the heated gas according to the aforementioned sixth characteristic configuration even when the supply valve is opened. Can be effectively suppressed.

第7特徴構成の実施において、給気温センサにより検出する温度は、厳密に加熱器の出口における加熱気体の温度に限られるものではなく、延設給気管における加熱器に近い部分の管内気体温度であってもよい。   In the implementation of the seventh characteristic configuration, the temperature detected by the air supply temperature sensor is not strictly limited to the temperature of the heated gas at the outlet of the heater, but is the temperature of the gas in the pipe near the heater in the extended supply pipe. There may be.

〔8〕本発明の第8特徴構成は、第6又は第7特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記延設給気管と前記還気管とを、前記延設給気管が前記還気管の管内に位置する二重管構造にしてある点にある。
[8] The eighth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of the sixth or seventh characteristic configuration.
The extended supply air pipe and the return air pipe have a double pipe structure in which the extended supply air pipe is located in the return air pipe.

この第8特徴構成によれば、管横断面視において延設給気管内の加熱気体(すなわち、加熱器から送出された加熱気体)がその全周にわたり還気管内の加熱気体(すなわち、加熱器に戻る加熱気体)に囲まれる形態になることで、延設給気管の管内を通過する過程における加熱気体の放熱による温度降下を効果的に防止でき、これにより、気体消費部に対して設定供給温度の加熱気体を一層温度精度の高い状態で供給することができ、この点で、特に給気温センサを加熱器の出口部における加熱気体の温度を検出する位置に配置する場合に好適な構成となる。   According to the eighth characteristic configuration, the heated gas in the extended supply pipe (that is, the heated gas sent from the heater) in the cross-sectional view of the pipe is heated in the return air pipe (that is, the heater) over the entire circumference. In this way, it is possible to effectively prevent the temperature drop due to the heat radiation of the heated gas in the process of passing through the extended air supply pipe. The temperature of the heated gas can be supplied in a state with higher temperature accuracy, and in this respect, particularly when the air temperature sensor is arranged at a position for detecting the temperature of the heated gas at the outlet of the heater, Become.

〔9〕本発明の第9特徴構成は、第6〜第8特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記給気弁を開いて前記気体消費部へ加熱気体を供給している状態において前記還気管の管内気体が逆流するのを阻止する逆止手段を設けてある点にある。
[9] The ninth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the sixth to eighth characteristic configurations,
In the state where the supply valve is opened and the heated gas is supplied to the gas consuming part, a check means for preventing the gas in the return air pipe from flowing backward is provided.

この第9特徴構成によれば、給気弁を開いて気体消費部へ加熱気体を供給している状態において、還気管における管内気体の逆流(すなわち、気体消費部に向かう流れ)を逆止手段により阻止することで、気体消費部に対する供給加熱気体に還気管からの逆流加熱気体が混入するのを防止することができて、加熱器から延設給気管に送出された加熱気体(すなわち、加熱器の出力調整により温度調整された加熱気体)のみを気体消費部に対し適切に供給することができ、これにより、気体消費部に対し設定供給温度の加熱気体を一層温度精度の高い状態で安定的に供給することができる。   According to the ninth characteristic configuration, in the state where the supply valve is opened and the heated gas is supplied to the gas consuming part, the reverse flow of the gas in the pipe in the return air pipe (that is, the flow toward the gas consuming part) is checked. This prevents the heated gas supplied from the return air pipe from being mixed with the heated heating gas supplied to the gas consuming section. Only the heating gas whose temperature has been adjusted by adjusting the output of the vessel) can be appropriately supplied to the gas consuming part, so that the heating gas at the set supply temperature can be stably supplied to the gas consuming part in a more accurate state. Can be supplied automatically.

〔第1実施形態〕
図1は塗装設備を示し、1はトンネル状の塗装ブース(平面視)、2は被塗物(本実施形態では自動車ボディ)であり、塗装ブース1内には、搬送手段により所定間隔でタクト搬送される被塗物2を順次に自動塗装する複数の塗装ロボット3を設置してある。
[First Embodiment]
FIG. 1 shows a painting facility, 1 is a tunnel-like painting booth (plan view), 2 is an object to be coated (in this embodiment, an automobile body), and inside the painting booth 1 is tacted at predetermined intervals by a conveying means. A plurality of painting robots 3 for automatically painting the objects to be conveyed 2 in sequence are installed.

塗装ロボット3の作業アーム3aには、被塗物2に対し塗料Tを霧状にして噴出する塗装ガン4を取り付けてあり、また、塗装ガン4には、ガン正面視で塗料噴出部4aを囲む図2に示す如き環状配置の補助空気ノズル5を装備し、この補助空気ノズル5から補助空気A3を塗料噴出に併行して噴出させる。   The painting arm 4 of the painting robot 3 is provided with a painting gun 4 for spraying the paint T in the form of a mist on the article 2 to be coated. An auxiliary air nozzle 5 having an annular arrangement as shown in FIG. 2 is provided, and auxiliary air A3 is ejected from the auxiliary air nozzle 5 in parallel with the paint ejection.

6は塗装ガン4に接続した塗料供給管であり、この塗料供給管6を通じ塗装ガン4に供給する塗料Tを切り換えることで、有機溶剤を溶媒とする塗料を被塗物2に塗布する溶剤系塗装と水を溶媒とする塗料を被塗物2に塗布する水系塗装との切り換え、及び、それら溶剤系塗装及び水系塗装の夫々での塗色、光沢等についての塗料種の切り換えを、生産スケジュールにしたがって被塗物2ごとに行う。   Reference numeral 6 denotes a paint supply pipe connected to the paint gun 4. By switching the paint T supplied to the paint gun 4 through the paint supply pipe 6, a solvent system for applying a paint using an organic solvent as a solvent to the workpiece 2. Production schedules for switching between painting and water-based coatings that apply water-based paints to the object to be coated 2, as well as for paint colors and glosses in the solvent-based and water-based coatings. This is performed for each article 2 to be coated.

補助空気ノズル5から噴出させる補助空気A3については、複数の給気ヘッダ7を塗装ブース1の近傍に配置して、塗装ガン4ごとに各給気ヘッダ7から環状配置の複数の補助空気ノズル5に対し給気ホース8を通じて補助空気A3を供給する構造にしてあり、これら給気ヘッダ7に対し圧縮機9により圧縮空気を供給することで、その圧縮空気を補助空気A3として補助空気ノズル5から噴出させる。   For the auxiliary air A3 ejected from the auxiliary air nozzle 5, a plurality of air supply headers 7 are arranged in the vicinity of the painting booth 1, and a plurality of auxiliary air nozzles 5 are arranged annularly from each air supply header 7 for each painting gun 4. The auxiliary air A3 is supplied to the air supply hose 8 from the auxiliary air nozzle 5 by supplying the compressed air to the air supply header 7 by the compressor 9 as the auxiliary air A3. Erupt.

更に詳述すれば、圧縮機9、その圧縮機9から吐出される圧縮空気A1を冷却減湿するクーラ10、及び、クーラ10により冷却減湿した圧縮空気A2を加熱する加熱器11を塗装ブース1から離れた箇所に設置し、この加熱器11から送出される低湿の加熱圧縮空気A3を延設給気管12を通じ各給気ヘッダ7に供給することで、その低湿の加熱圧縮空気A3を補助空気として補助空気ノズル5から噴出させる。   More specifically, a paint booth includes a compressor 9, a cooler 10 that cools and dehumidifies the compressed air A1 discharged from the compressor 9, and a heater 11 that heats the compressed air A2 that is cooled and dehumidified by the cooler 10. By installing the low-humidity heated compressed air A3 sent from the heater 11 to each supply header 7 through the extended supply pipe 12, the low-humidity heated compressed air A3 is assisted. The air is ejected from the auxiliary air nozzle 5 as air.

塗装ブース1の近傍(すなわち、延設給気管12の先端側)において延設給気管12と各給気ヘッダ7とを接続する接続管13には給気弁14を介装してあり、これら給気弁14の操作により塗装ガン4の各々について、補助空気ノズル5に対する補助空気供給の断続及び補助空気供給流量の調整を行うことで、塗装ガン4ごとに補助空気ノズル5からの補助空気噴出の発停及び噴出流量の調整を行う。   In the vicinity of the painting booth 1 (that is, at the front end side of the extended air supply pipe 12), the connection pipe 13 connecting the extended air supply pipe 12 and each air supply header 7 is provided with an air supply valve 14. By operating the air supply valve 14 for each of the painting guns 4, the auxiliary air supply to the auxiliary air nozzle 5 is intermittently adjusted and the auxiliary air supply flow rate is adjusted, whereby the auxiliary air jets from the auxiliary air nozzle 5 for each painting gun 4. Start / stop and adjust the flow rate.

15は各塗装ガン4に対する供給塗料Tの切り換えに連係して給気弁14を自動操作する弁制御器であり、この弁制御器15による給気弁操作により、溶剤系塗装を実施している塗装ガン4については補助空気ノズル5からの補助空気噴出を停止し、一方、水系塗装を実施している塗装ガン4については補助空気ノズル5から補助空気A3を噴出させるとともに、噴出塗料種に応じて補助空気A3の噴出流量を変更する。   Reference numeral 15 denotes a valve controller that automatically operates the air supply valve 14 in conjunction with the switching of the supply paint T to each coating gun 4. Solvent-based coating is carried out by operating the air supply valve by the valve controller 15. For the coating gun 4, the auxiliary air ejection from the auxiliary air nozzle 5 is stopped, while for the coating gun 4 performing the aqueous coating, the auxiliary air A 3 is ejected from the auxiliary air nozzle 5, and depending on the type of paint to be ejected. Then, the ejection flow rate of the auxiliary air A3 is changed.

つまり、水系塗装においては塗料溶媒である水の蒸発が遅いことから、塗料噴出とともに補助空気A3を噴出することで、塗料溶媒である水の蒸発を促し、また、その水系塗装においても噴出塗料種によって水の最適蒸発速度が異なることから、噴出塗料種に応じて補助空気A3の噴出流量を変更するようにしてある。   That is, since the evaporation of water, which is a paint solvent, is slow in water-based coating, the auxiliary air A3 is ejected together with the spray of paint, thereby promoting the evaporation of water, which is a paint solvent. Since the optimum evaporation rate of water differs depending on the type of spray, the ejection flow rate of the auxiliary air A3 is changed in accordance with the type of ejection paint.

16は延設給気管12の基端において加熱器11の出口部における加熱空気A3の温度taを検出する給気温センサ、17は給気温センサ16による検出温度taに基づき加熱器17の出力を調整して補助空気ノズル5に対する供給加熱空気A3の温度(本実施形態では加熱器11の出口部における加熱空気A3の温度ta)を設定給気温度tasに調整する温度制御器であり、具体的には、この温度制御器17は給気温センサ16による検出温度taと設定給気温度tasとの偏差Δtaが設定許容範囲内になるように加熱器11の出力を自動調整する。   Reference numeral 16 denotes an air temperature sensor for detecting the temperature ta of the heated air A3 at the outlet of the heater 11 at the proximal end of the extended air supply pipe 12, and reference numeral 17 denotes an output of the heater 17 based on the temperature ta detected by the air temperature sensor 16. And a temperature controller that adjusts the temperature of the supply heating air A3 to the auxiliary air nozzle 5 (in this embodiment, the temperature ta of the heating air A3 at the outlet of the heater 11) to the set supply air temperature tas. The temperature controller 17 automatically adjusts the output of the heater 11 so that the deviation Δta between the detected temperature ta detected by the air supply temperature sensor 16 and the set supply air temperature tas falls within the set allowable range.

また、18は加熱器11の器内温度tbを検出する器内温センサ、19は器内温センサ18による検出温度tbが設定上限温度tbs以上になったとき加熱器11の運転を強制停止する安全制御器である。   Reference numeral 18 denotes an internal temperature sensor for detecting the internal temperature tb of the heater 11, and 19 forcibly stops the operation of the heater 11 when the temperature tb detected by the internal temperature sensor 18 is equal to or higher than the set upper limit temperature tbs. It is a safety controller.

なお、図示は省略するが、本第1実施形態において弁制御器15と加熱器11との間には、全ての給気弁14が閉じられた状態にあるとき加熱器11の運転を強制停止するインターロック回路を組んである。   Although illustration is omitted, in the first embodiment, between the valve controller 15 and the heater 11, the operation of the heater 11 is forcibly stopped when all the supply valves 14 are closed. An interlock circuit is built.

図1及び図3に示す如く、延設給気管12はそれのほぼ全長を二重管構造における内管により形成してあり、この二重管構造における外管は、その管内(具体的には内管と外管との間の流路)に保温用液体W(本実施形態では温水)を通過させる通液管20にし、これにより、内管である延設給気管12の管壁を伝熱壁として、延設給気管12の管内における加熱気体A3と通液管20の管内における保温用液体Wとを熱交換させる構造にしてある。   As shown in FIGS. 1 and 3, the extended supply pipe 12 is formed by the inner pipe in the double pipe structure almost the entire length thereof, and the outer pipe in this double pipe structure is inside the pipe (specifically, The liquid-passing pipe 20 that allows the warming liquid W (hot water in this embodiment) to pass through the flow path between the inner pipe and the outer pipe) is transmitted to the pipe wall of the extended supply pipe 12 that is the inner pipe. As the heating wall, the heating gas A3 in the pipe of the extended supply pipe 12 and the heat retaining liquid W in the pipe of the liquid passing pipe 20 are configured to exchange heat.

また、外管である通液管20の外周面には、保温用液体W及び加熱気体A3の外部への放熱を防止する断熱材被覆21を施してある。   Further, a heat insulating material coating 21 is provided on the outer peripheral surface of the liquid passing pipe 20 which is an outer pipe to prevent the heat retaining liquid W and the heated gas A3 from radiating heat to the outside.

22は保温用液体Wを貯留する液槽、23は液槽22から取り出した保温用液体Wを延設給気管12の先端相当箇所において通液管20に供給する給液管、24は延設給気管12の基端相当箇所において通液管20から取り出した保温用液体Wを液槽22に戻す還液管であり、これら給液管23及び還液管24を通じて液槽22と通液管20との間で保温用液体Wを循環ポンプ25により循環させ、また、この循環において通液管20に対し保温用液体Wを延設給気管12における加熱気体A3の通過向きとは逆向きに通過させるようにしてある。   22 is a liquid tank for storing the heat retaining liquid W, 23 is a liquid supply pipe for supplying the heat retaining liquid W taken out from the liquid tank 22 to the liquid passing pipe 20 at a position corresponding to the tip of the extended air supply pipe 12, and 24 is extended. This is a return liquid pipe for returning the heat retaining liquid W taken out from the liquid flow pipe 20 to the liquid tank 22 at a location corresponding to the proximal end of the air supply pipe 12, and the liquid tank 22 and the liquid flow pipe through the liquid supply pipe 23 and the return liquid pipe 24. In this circulation, the heat retaining liquid W is circulated by the circulation pump 25, and in the circulation, the heat retaining liquid W extends in the direction opposite to the passing direction of the heated gas A3 in the extended air supply pipe 12. It is made to pass.

また、液槽22には、その槽内の保温用液体Wを加熱する液加熱器26と、液槽22における保温用液体Wの温度twを検出する液温センサ27と、この液温センサ27による検出温度twに基づき液加熱器26の出力を調整して液槽22における保温用液体Wの温度twを設定循環温度twsに調整する液温制御器28とを装備してあり、これにより、通液管20に対し液槽22から設定循環温度twsの保温用液体Wを循環供給する。   The liquid tank 22 includes a liquid heater 26 that heats the heat retaining liquid W in the liquid tank, a liquid temperature sensor 27 that detects the temperature tw of the heat retaining liquid W in the liquid tank 22, and the liquid temperature sensor 27. And a liquid temperature controller 28 for adjusting the temperature tw of the heat retaining liquid W in the liquid tank 22 to the set circulation temperature tws by adjusting the output of the liquid heater 26 based on the detected temperature tw by A heat retaining liquid W having a set circulating temperature tws is circulated and supplied from the liquid tank 22 to the liquid flow pipe 20.

そして、保温用液体Wの設定循環温度twsとしては、補助空気ノズル5に対する供給加熱空気A3の設定供給温度tasと等しい温度(又は、それよりも若干高い温度)を設定してある。   As the set circulation temperature tws of the heat retaining liquid W, a temperature (or a slightly higher temperature) equal to the set supply temperature tas of the supply heating air A3 for the auxiliary air nozzle 5 is set.

つまり、温度制御器17による加熱器11の出力調整により加熱器11からの送出加熱空気A3の温度taを設定供給温度tasに調整するのに対し、設定循環温度tws(≒設定供給温度tas)に加熱した保温用液体Wを通液管20に通過させることで、加熱器11からの送出加熱空気A3を保温用液体Wとの熱交換により設定供給温度tasに保った状態で延設給気管12の管内を通過させて補助空気ノズル5に送給するようにしてあり、これにより、補助空気ノズル5に対し設定供給温度tas(例えば80℃)の加熱空気A3を温度精度の高い状態で安定的に供給する。   That is, the temperature ta of the heated air A3 sent from the heater 11 is adjusted to the set supply temperature tas by adjusting the output of the heater 11 by the temperature controller 17, whereas the set circulation temperature tws (≈set supply temperature tas). By passing the heated heat retaining liquid W through the liquid pipe 20, the extended air supply pipe 12 in a state where the heated heated air A <b> 3 from the heater 11 is maintained at the set supply temperature tas by heat exchange with the heat retaining liquid W. The air A3 having a set supply temperature tas (for example, 80 ° C.) is stably supplied to the auxiliary air nozzle 5 with high temperature accuracy. To supply.

また、全ての給気弁14が閉じられて延設給気管12の管内に加熱空気A3が停滞する状態が続く場合も、その停滞加熱空気A3を通液管20における設定循環温度twsの保温用液体Wとの熱交換により設定供給温度tsaに保ち、これにより、次にいずれかの給気弁14が開かれた際には直ちに設定供給温度tsaの加熱空気A3を補助空気ノズル5に供給し得るようにしてある。   Even when all the air supply valves 14 are closed and the state where the heated air A3 stagnates in the pipe of the extended supply pipe 12 continues, the stagnation heated air A3 passes through the set circulation temperature tws in the liquid pipe 20 for heat retention. The set supply temperature tsa is maintained by heat exchange with the liquid W, so that the heated air A3 at the set supply temperature tsa is immediately supplied to the auxiliary air nozzle 5 when any one of the supply valves 14 is opened next time. To get.

なお、図示は省略するが、給液管23及び還液管24には断熱材被覆を施してある。   Although not shown, the liquid supply pipe 23 and the return liquid pipe 24 are provided with a heat insulating material coating.

29は各接続管13において管内加熱空気A3の温度ta′(≒tas)を検出する端末温度センサであり、これら端末温度センサ29による検出温度ta′は、実際に補助空気ノズル5に供給された加熱空気A3の温度データとして記録器により記録し、また、これら端末温度センサ29による検出温度ta′の少なくとも一つが異常値を示した場合にには警報を発するようにしてある。   Reference numeral 29 denotes a terminal temperature sensor for detecting the temperature ta ′ (≈tas) of the heated air A3 in each connecting pipe 13, and the detected temperature ta ′ by the terminal temperature sensor 29 is actually supplied to the auxiliary air nozzle 5. The temperature data of the heated air A3 is recorded by a recorder, and an alarm is issued when at least one of the detected temperatures ta ′ detected by the terminal temperature sensor 29 shows an abnormal value.

以上、本第1実施形態においては、気体供給源(圧縮機9)から供給される気体A1を加熱する加熱器11、及び、その加熱器11により加熱された気体A3を気体消費部(補助空気ノズル5)に導く延設給気管12を設け、
延設給気管12と気体消費部5とを接続する接続管13に、気体消費部5に対する加熱気体A3の供給を断続する、又は、気体消費部5に対する加熱気体A3の供給流量を調整する給気弁14を設け、
延設給気管12を通じて気体消費部5へ供給する加熱気体A3の温度taを検出する給気温センサ16、及び、その給気温センサ16による検出温度taに基づき加熱器11の出力を調整して気体消費部5に対する供給加熱気体A3の温度taを設定供給温度tasに調整する温度制御手段(温度制御器17)を設ける加熱気体供給装置を構成するのに、
管内に保温用液体Wを通過させる通液管20を、その通液管20内の保温用液体Wと延設給気管12の管内気体A3との熱交換が可能な相対配置で延設給気管20に沿わせて延設し、
この通液管20に対して循環させる保温用液体Wを設定循環温度twsに加熱する循環液加熱手段(液槽22,液加熱器26,液温センサ27,液温制御器28)を設けた装置構成にしてある。
As described above, in the first embodiment, the heater 11 that heats the gas A1 supplied from the gas supply source (compressor 9), and the gas A3 heated by the heater 11 are used as the gas consumption unit (auxiliary air). An extended air supply pipe 12 leading to the nozzle 5) is provided;
Supply to the connecting pipe 13 connecting the extended air supply pipe 12 and the gas consuming section 5 is intermittently supplied with the heating gas A3 to the gas consuming section 5 or the supply flow rate of the heating gas A3 to the gas consuming section 5 is adjusted. A gas valve 14 is provided;
A temperature sensor 16 for detecting the temperature ta of the heated gas A3 supplied to the gas consuming unit 5 through the extended supply pipe 12 and a gas by adjusting the output of the heater 11 based on the temperature ta detected by the temperature sensor 16. To configure a heating gas supply device provided with temperature control means (temperature controller 17) for adjusting the temperature ta of the supply heating gas A3 to the consumption unit 5 to the set supply temperature tas,
The air supply pipe 20 through which the heat retaining liquid W is passed through the pipe is an extended air supply pipe having a relative arrangement capable of heat exchange between the heat retaining liquid W in the liquid passing pipe 20 and the gas A3 in the extended air supply pipe 12. 20 along the line,
Circulating liquid heating means (a liquid tank 22, a liquid heater 26, a liquid temperature sensor 27, and a liquid temperature controller 28) for heating the heat retaining liquid W to be circulated through the liquid flow pipe 20 to the set circulation temperature tws is provided. It has a device configuration.

〔第2実施形態〕
本第2実施形態においては、第1実施形態で示した通液管20を設けるに代え、図4に示す如く、延設給気管12の先端部と加熱器11とを接続する還気管30を設けてある。
[Second Embodiment]
In the second embodiment, instead of providing the liquid flow pipe 20 shown in the first embodiment, as shown in FIG. 4, a return air pipe 30 that connects the distal end portion of the extended air supply pipe 12 and the heater 11 is provided. It is provided.

具体的には、延設給気管12のほぼ全長を二重管構造における内管により形成し、この二重管構造における外管を還気管30として、延設給気管12の先端部と加熱器11とを還気管30の管内(内管と外管との間の流路)を通じて連通させてあり、還気管30の外周面には、還気管30及び延設給気管12の夫々における管内加熱空気A3の外部への放熱を防止する断熱材被覆31を施してある。   Specifically, almost the entire length of the extended air supply pipe 12 is formed by an inner pipe in a double pipe structure, and the outer pipe in the double pipe structure is used as a return air pipe 30, and the tip of the extended air supply pipe 12 and a heater 11 is communicated with the inside of the return air pipe 30 (the flow path between the inner pipe and the outer pipe). In the outer peripheral surface of the return air pipe 30, in-tube heating in each of the return air pipe 30 and the extended air supply pipe 12 is performed. A heat insulating material coating 31 is provided to prevent heat radiation to the outside of the air A3.

そして、延設給気管12の管内における加熱空気A3を還気管30を通じて加熱器11に戻す循環用ブロア32を設け、この循環用ブロア32を運転することにより、延設給気管12、還気管30、加熱器11の間で加熱空気A3を循環させる。   Then, a circulating blower 32 is provided for returning the heated air A3 in the extended supply air pipe 12 to the heater 11 through the return air pipe 30, and by operating the circulation blower 32, the extended supply air pipe 12 and the return air pipe 30 are provided. The heated air A3 is circulated between the heaters 11.

また、還気管30の基端部(延設給気管12の先端部に対する接続部分)には、還気管30の管内空気A3が補助空気ノズル5の側に逆流するのを阻止する逆止弁33を設けてある。   Further, a check valve 33 that prevents the in-pipe air A3 of the return air pipe 30 from flowing back to the auxiliary air nozzle 5 side at the proximal end portion of the return air pipe 30 (the connection portion to the distal end portion of the extended supply air pipe 12). Is provided.

つまり、この第2実施形態では、第1実施形態と同様、給気温センサ16による検出温度ta(加熱器11の出口部における加熱空気A3の温度)に基づき加熱器11の出力を調整して加熱器11からの送出加熱空気A3の温度taを設定給気温度tasに調整する温度制御器17による温度制御下で、循環用ブロア32の運転により、延設給気管12、還気管30、加熱器11の間で加熱空気A3を常時循環させるとともに、その循環流量を大きく設定しておくことにより、加熱器11の出口部における加熱空気温度taを給気温センサ16により検出する方式を採りながらも、補助空気ノズル5に対して設定供給温度tasの加熱空気A3を温度精度の高い状態で供給し得るようにしてある。   That is, in the second embodiment, similarly to the first embodiment, heating is performed by adjusting the output of the heater 11 based on the temperature ta detected by the air temperature sensor 16 (the temperature of the heated air A3 at the outlet of the heater 11). Under the temperature control by the temperature controller 17 that adjusts the temperature ta of the supply heated air A3 from the vessel 11 to the set supply air temperature tas, the extended air supply pipe 12, the return air pipe 30, and the heater are operated by the operation of the circulation blower 32. 11, while constantly circulating the heating air A3 and setting the circulation flow rate large, while adopting a method of detecting the heating air temperature ta at the outlet of the heater 11 by the air temperature sensor 16, Heated air A3 having a set supply temperature tas can be supplied to the auxiliary air nozzle 5 with high temperature accuracy.

また、全ての給気弁14が閉じられた場合も、上記の加熱空気循環により延設給気管12の管内における加熱空気A3を設定給気温度tasに保ち、これにより、次にいずれかの給気弁14が開かれた際には直ちに設定供給温度tsaの加熱空気Aを補助空気ノズル5に供給し得るようにしてある。   Further, even when all the air supply valves 14 are closed, the heated air A3 in the pipe of the extended supply pipe 12 is maintained at the set supply air temperature tas by the above-described heating air circulation. When the air valve 14 is opened, the heated air A at the set supply temperature tsa can be supplied to the auxiliary air nozzle 5 immediately.

なお、本第2実施形態の装置では、全ての給気弁14が閉じられた状態にあるとき加熱器11の運転を強制停止するインターロック回路は設けない。   In the device of the second embodiment, no interlock circuit is provided to forcibly stop the operation of the heater 11 when all the air supply valves 14 are closed.

以上、本第2実施形態においては、気体供給源(圧縮機9)から供給される気体A1を加熱する加熱器11、及び、その加熱器11により加熱された気体A3を気体消費部(補助空気ノズル5)に導く延設給気管12を設け、
延設給気管12と気体消費部5とを接続する接続管13に、気体消費部5に対する加熱気体A3の供給を断続する、又は、気体消費部5に対する加熱気体A3の供給流量を調整する給気弁14を設け、
延設給気管12を通じて気体消費部5へ供給する加熱気体A3の温度taを検出する給気温センサ16、及び、その給気温センサ16による検出温度taに基づき加熱器11の出力を調整して気体消費部5に対する供給加熱気体A3の温度taを設定供給温度tasに調整する温度制御手段(温度制御器17)を設ける加熱気体供給装置を構成するのに、
延設給気管12の先端部と加熱器11とを接続する還気管30を設け、
延設給気管12の管内気体A3を還気管30を通じて加熱器11に戻す形態で、加熱気体A3を延設給気管12、還気管30、加熱器11の間で循環させる循環手段(循環用ブロア32)を設けた装置構成にしてある。
As described above, in the second embodiment, the heater 11 that heats the gas A1 supplied from the gas supply source (compressor 9), and the gas A3 heated by the heater 11 are used as the gas consumption unit (auxiliary air). An extended air supply pipe 12 leading to the nozzle 5) is provided;
Supply to the connecting pipe 13 connecting the extended air supply pipe 12 and the gas consuming section 5 is intermittently supplied with the heating gas A3 to the gas consuming section 5 or the supply flow rate of the heating gas A3 to the gas consuming section 5 is adjusted. A gas valve 14 is provided;
A temperature sensor 16 for detecting the temperature ta of the heated gas A3 supplied to the gas consuming unit 5 through the extended supply pipe 12 and a gas by adjusting the output of the heater 11 based on the temperature ta detected by the temperature sensor 16. To configure a heating gas supply device provided with temperature control means (temperature controller 17) for adjusting the temperature ta of the supply heating gas A3 to the consumption unit 5 to the set supply temperature tas,
A return air pipe 30 is provided for connecting the tip of the extended air supply pipe 12 and the heater 11;
Circulation means (circulation blower) for circulating the heated gas A3 between the extended air supply pipe 12, the return air pipe 30, and the heater 11 in such a manner that the gas A3 in the extended air supply pipe 12 is returned to the heater 11 through the return air pipe 30. 32).

〔別の実施形態〕
次に本発明の別実施形態を列記する。
第1実施形態では保温用液体Wとして温水を用いる例を示したが、本発明の第1特徴構成の実施において、保温用液体Wは温水に限られるものではなく、その他の液体であってもよい。
[Another embodiment]
Next, other embodiments of the present invention will be listed.
In the first embodiment, an example in which warm water is used as the warming liquid W has been described. However, in the implementation of the first characteristic configuration of the present invention, the warming liquid W is not limited to warm water, and other liquids may be used. Good.

第1実施形態では延設給気管12と通液管20とを二重管構造にする例を示したが、本発明の第1特徴構成の実施において、通気管20内の保温用液体Wと延設給気管12の管内気体A3との熱交換が可能な相対配置で通液管20を延設給気管12に沿わせて延設するのに、管外面どうしを接触させた状態で延設給気管12と通液管20とを平行に延設する構造にしてもよい。   In the first embodiment, an example in which the extended air supply pipe 12 and the liquid passing pipe 20 have a double pipe structure is shown. However, in the implementation of the first characteristic configuration of the present invention, the heat retaining liquid W in the vent pipe 20 and The liquid supply pipe 20 is extended along the extended air supply pipe 12 in a relative arrangement capable of heat exchange with the gas A3 in the extended air supply pipe 12, but is extended with the pipe outer surfaces in contact with each other. The supply pipe 12 and the liquid passage pipe 20 may be configured to extend in parallel.

第1実施形態では、通液管20に対して循環させる保温用液体Wを設定循環温度twsに加熱する循環液加熱手段を、液槽22と液加熱器26と液温センサ27と液温制御器28とで構成する例を示したが、本発明の第1特徴構成の実施において、循環液加熱手段の具体的構成は第1実施形態で示した構成に限らず種々の変更が可能であり、液槽22を省略して、保温用液体Wの循環管路中に液加熱器を介装する構成を採用してもよい。   In the first embodiment, the circulating liquid heating means for heating the heat retaining liquid W to be circulated through the liquid flow pipe 20 to the set circulating temperature tws includes the liquid tank 22, the liquid heater 26, the liquid temperature sensor 27, and the liquid temperature control. In the implementation of the first characteristic configuration of the present invention, the specific configuration of the circulating fluid heating means is not limited to the configuration shown in the first embodiment, and various modifications are possible. Alternatively, a configuration in which the liquid tank 22 is omitted and a liquid heater is interposed in the circulation line of the heat retaining liquid W may be employed.

第2実施形態では、延設給気管12と還気管30とを二重管構造にする例を示したが、これに限らず、本発明の第2特徴構成の実施において還気管30の配管形態は種々の変更が可能であり、還気管30を延設給気管12と平行に配管したり、延設給気管12とは別経路で配管してもよい。   In the second embodiment, an example in which the extended supply air pipe 12 and the return air pipe 30 have a double pipe structure has been shown. However, the present invention is not limited thereto, and the piping configuration of the return air pipe 30 in the implementation of the second characteristic configuration of the present invention. Various modifications are possible, and the return air pipe 30 may be piped in parallel with the extended air supply pipe 12, or may be piped in a different path from the extended air supply pipe 12.

第2実施形態では、延設給気管12、還気管30、加熱器11の間で加熱気体A3を循環させる循環手段としての循環用ブロア32を還気管30に介装する例を示したが、これに限らず、本発明の第2特徴構成の実施においては、循環手段としてのブロアやファンを加熱器11の出口部や延設給気管12の途中箇所に介装する構成を採用してもよい。   In the second embodiment, an example in which a circulation blower 32 as a circulation means for circulating the heating gas A3 between the extended supply pipe 12, the return air pipe 30, and the heater 11 is provided in the return air pipe 30 is shown. In addition to this, in the implementation of the second characteristic configuration of the present invention, a configuration may be adopted in which a blower or a fan as a circulation means is interposed in the outlet portion of the heater 11 or in the middle of the extended supply pipe 12. Good.

本発明の第1又は第2特徴構成の実施において、給気温センサ16の配設位置は必ずしも加熱器11の出口部における加熱気体A3の温度を検出する位置に限られるものではなく、場合によっては、延設給気管12の中間部分や先端側部分における管内加熱気体A3の温度を検出する位置に給気温センサ16を配置する構成を採用してもよい。   In the implementation of the first or second characteristic configuration of the present invention, the arrangement position of the air temperature sensor 16 is not necessarily limited to the position where the temperature of the heated gas A3 is detected at the outlet of the heater 11, and depending on the case. A configuration may be adopted in which the air temperature sensor 16 is disposed at a position where the temperature of the in-pipe heated gas A3 is detected at the intermediate portion or the distal end portion of the extended air supply tube 12.

第1及び第2実施形態では、塗装ガン4に装備の補助空気ノズル5を気体消費部として、その補助空気ノズル5への加熱空気供給に本発明の第1又は第2特徴構成を適用した例を示したが、本発明の第1又は第2特徴構成は、加熱空気に限らず種々の加熱気体の供給に適用でき、また、加熱気体の供給先である気体消費部も、どのような目的で加熱気体を消費するものであってもよい。   In the first and second embodiments, the auxiliary air nozzle 5 provided in the coating gun 4 is used as a gas consuming section, and the first or second characteristic configuration of the present invention is applied to the heating air supply to the auxiliary air nozzle 5. However, the first or second characteristic configuration of the present invention can be applied not only to heated air but also to supply of various types of heated gas, and the gas consuming unit to which the heated gas is supplied has any purpose. The heating gas may be consumed.

また、塗装用加熱空気の供給に本発明の第1又は第2特徴構成を適用する場合、その加熱空気は、水系塗装において塗料溶媒である水の蒸発を促進することを目的とする加熱空気に限られるものではなく、ベル型塗装ガンにおいてベル回転用タービンを駆動するための加熱空気や、塗装ガンから噴霧した塗料の噴霧パターンを整形するための加熱空気(いわゆるシェービングエア)などであってもよい。   In addition, when the first or second characteristic configuration of the present invention is applied to the supply of heating air for coating, the heating air is heated air for the purpose of promoting the evaporation of water which is a paint solvent in water-based coating. Even if it is heating air for driving a bell rotation turbine in a bell type paint gun or heating air (so-called shaving air) for shaping a spray pattern of paint sprayed from a paint gun Good.

第1及び第2実施形態では、1本の延設給気管12に対して複数の気体消費部5(補助空気ノズル)を並列に接続する例を示したが、本発明の第1又は第2特徴構成の実施において、1本の延設給気管12に接続する気体消費部5は単数ないし複数のいずれであってもよい。   In the first and second embodiments, an example in which a plurality of gas consuming parts 5 (auxiliary air nozzles) are connected in parallel to one extended supply pipe 12 has been described. In the implementation of the characteristic configuration, the gas consuming unit 5 connected to one extended supply pipe 12 may be one or more.

本発明による加熱気体供給装置は、各種分野において種々の用途の加熱気体の供給に利用できる。   The heated gas supply device according to the present invention can be used for supplying heated gas for various purposes in various fields.

第1実施形態に係る装置構成図Device configuration diagram according to the first embodiment 第1実施形態に係る塗装ガンの概略正面図Schematic front view of a paint gun according to the first embodiment 第1実施形態に係る延設給気管及び通液管の横断面図Cross-sectional view of extended air supply pipe and liquid flow pipe according to the first embodiment 第2実施形態に係る装置構成図Device configuration diagram according to the second embodiment 従来の装置構成を示す図Diagram showing conventional device configuration

符号の説明Explanation of symbols

9 気体供給源
11 加熱器
A3 加熱気体
5 気体消費部
12 延設給気管
13 接続管
14 給気弁
ta 加熱気体の温度
16 給気温センサ
tas 設定供給温度
17 温度制御手段
W 保温用液体
20 通液管
tws 設定循環温度
22 循環液加熱手段(液槽)
26 循環液加熱手段(液加熱器)
27 循環液加熱手段(液温センサ)
28 循環液加熱手段(液温制御器)
30 還気管
32 循環手段
33 逆止手段

DESCRIPTION OF SYMBOLS 9 Gas supply source 11 Heater A3 Heated gas 5 Gas consumption part 12 Extended supply pipe 13 Connection pipe 14 Supply valve ta Heated gas temperature 16 Air supply temperature sensor tas Set supply temperature 17 Temperature control means W Warming liquid 20 Liquid supply Tube tws Circulation temperature 22 Circulating fluid heating means (liquid tank)
26 Circulating fluid heating means (liquid heater)
27 Circulating fluid heating means (liquid temperature sensor)
28 Circulating fluid heating means (liquid temperature controller)
30 Return air pipe 32 Circulating means 33 Checking means

Claims (9)

気体供給源から供給される気体を加熱する加熱器、及び、その加熱器により加熱された気体を気体消費部に導く延設給気管を設け、
前記延設給気管と前記気体消費部とを接続する接続管に、前記気体消費部に対する加熱気体の供給を断続する給気弁、又は、前記気体消費部に対する加熱気体の供給流量を調整する給気弁を設け、
前記延設給気管を通じて前記気体消費部へ供給する加熱気体の温度を検出する給気温センサ、及び、その給気温センサによる検出温度に基づき前記加熱器の出力を調整して前記気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御手段を設けてある加熱気体供給装置であって、
管内に保温用液体を通過させる通液管を、その通液管内の保温用液体と前記延設給気管の管内気体との熱交換が可能な相対配置で前記延設給気管に沿わせて延設し、
この通液管に対して循環させる保温用液体を設定循環温度に加熱する循環液加熱手段を設けてある加熱気体供給装置。
A heater that heats the gas supplied from the gas supply source, and an extended air supply pipe that guides the gas heated by the heater to the gas consumption unit,
A connecting pipe that connects the extended air supply pipe and the gas consuming part is an air supply valve that intermittently supplies the heated gas to the gas consuming part, or a supply that adjusts the supply flow rate of the heated gas to the gas consuming part. Set up a air valve,
A supply air temperature sensor that detects the temperature of the heated gas supplied to the gas consumption unit through the extended supply air pipe, and a supply to the gas consumption unit by adjusting the output of the heater based on the temperature detected by the supply air temperature sensor A heating gas supply device provided with temperature control means for adjusting the temperature of the heating gas to a set supply temperature,
A fluid passage tube for allowing the heat retaining liquid to pass through the tube extends along the extended air supply tube in a relative arrangement capable of heat exchange between the heat retaining liquid in the fluid passage tube and the gas in the extended air supply tube. Set up
A heated gas supply device provided with circulating fluid heating means for heating the temperature-retaining liquid to be circulated to the liquid flow pipe to a set circulating temperature.
前記給気温センサを、前記加熱器の出口部における加熱気体の温度を検出する位置に配置してある請求項1記載の加熱気体供給装置。   The heating gas supply device according to claim 1, wherein the air temperature sensor is disposed at a position where the temperature of the heating gas is detected at the outlet of the heater. 前記延設給気管と前記通液管とを、前記延設給気管が前記通液管の管内に位置する二重管構造にしてある請求項1又は2記載の加熱気体供給装置。   The heated gas supply device according to claim 1 or 2, wherein the extended air supply pipe and the liquid flow pipe are formed into a double pipe structure in which the extended air supply pipe is positioned in the pipe of the liquid flow pipe. 前記通液管に対して保温用液体を前記延設給気管における加熱気体の通過向きとは逆向きに通過させる構成にしてある請求項1〜3のいずれか1項に記載の加熱気体供給装置。   The heated gas supply device according to any one of claims 1 to 3, wherein a heat retaining liquid is passed through the liquid supply pipe in a direction opposite to a direction in which the heated gas passes through the extended supply pipe. . 前記循環液加熱手段として、槽内に貯留した保温用液体を前記通液管との間で循環させる液槽と、この液槽における保温用液体を加熱する液加熱器と、前記液槽における保温用液体の温度を検出する液温センサと、この液温センサによる検出液温に基づき前記液加熱器の出力を調整して前記液槽における保温用液体の温度を設定循環温度に調整する液温制御手段とを設けてある請求項1〜4のいずれか1項に記載の加熱気体供給装置。   As the circulating liquid heating means, a liquid tank that circulates the heat retaining liquid stored in the tank with the liquid passing pipe, a liquid heater that heats the heat retaining liquid in the liquid tank, and a heat retaining temperature in the liquid tank A liquid temperature sensor for detecting the temperature of the liquid for use, and a liquid temperature for adjusting the output of the liquid heater based on the liquid temperature detected by the liquid temperature sensor to adjust the temperature of the heat retaining liquid in the liquid tank to the set circulating temperature. The heated gas supply apparatus according to claim 1, further comprising a control unit. 気体供給源から供給される気体を加熱する加熱器、及び、その加熱器により加熱された気体を気体消費部に導く延設給気管を設け、
前記延設給気管と前記気体消費部とを接続する接続管に、前記気体消費部に対する加熱気体の供給を断続する給気弁、又は、前記気体消費部に対する加熱気体の供給流量を調整する給気弁を設け、
前記延設給気管を通じて前記気体消費部へ供給する加熱気体の温度を検出する給気温センサ、及び、その給気温センサによる検出温度に基づき前記加熱器の出力を調整して前記気体消費部に対する供給加熱気体の温度を設定供給温度に調整する温度制御手段を設けてある加熱気体供給装置であって、
前記延設給気管の先端部と前記加熱器とを接続する還気管を設け、
前記延設給気管の管内気体を前記還気管を通じて前記加熱器に戻す形態で、加熱気体を前記延設給気管、前記還気管、前記加熱器の間で循環させる循環手段を設けてある加熱気体供給装置。
A heater that heats the gas supplied from the gas supply source, and an extended air supply pipe that guides the gas heated by the heater to the gas consumption unit,
A connecting pipe that connects the extended air supply pipe and the gas consuming part is an air supply valve that intermittently supplies the heated gas to the gas consuming part, or a supply that adjusts the supply flow rate of the heated gas to the gas consuming part. Set up a air valve,
A supply air temperature sensor that detects the temperature of the heated gas supplied to the gas consumption unit through the extended supply air pipe, and a supply to the gas consumption unit by adjusting the output of the heater based on the temperature detected by the supply air temperature sensor A heating gas supply device provided with temperature control means for adjusting the temperature of the heating gas to a set supply temperature,
Providing a return air pipe connecting the tip of the extended air supply pipe and the heater;
A heating gas provided with a circulation means for circulating the heating gas between the extended supply pipe, the return air pipe, and the heater in a form in which the gas in the extended supply pipe is returned to the heater through the return air pipe. Feeding device.
前記給気温センサを、前記加熱器の出口部における加熱気体の温度を検出する位置に配置してある請求項6記載の加熱気体供給装置。   The heated gas supply device according to claim 6, wherein the air temperature sensor is arranged at a position for detecting the temperature of the heated gas at the outlet of the heater. 前記延設給気管と前記還気管とを、前記延設給気管が前記還気管の管内に位置する二重管構造にしてある請求項6又は7記載の加熱気体供給装置。   The heated gas supply device according to claim 6 or 7, wherein the extended supply air pipe and the return air pipe are formed into a double pipe structure in which the extended supply air pipe is located in a pipe of the return air pipe. 前記給気弁を開いて前記気体消費部へ加熱気体を供給している状態において前記還気管の管内気体が逆流するのを阻止する逆止手段を設けてある請求項6〜8のいずれか1項に記載の加熱気体供給装置。

9. A non-return device for preventing backflow of the gas in the return air pipe in a state in which the supply valve is opened and heated gas is supplied to the gas consuming unit. The heated gas supply device according to item.

JP2005095050A 2005-03-29 2005-03-29 Heated gas supply device Active JP4753603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095050A JP4753603B2 (en) 2005-03-29 2005-03-29 Heated gas supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095050A JP4753603B2 (en) 2005-03-29 2005-03-29 Heated gas supply device

Publications (2)

Publication Number Publication Date
JP2006272164A JP2006272164A (en) 2006-10-12
JP4753603B2 true JP4753603B2 (en) 2011-08-24

Family

ID=37207419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095050A Active JP4753603B2 (en) 2005-03-29 2005-03-29 Heated gas supply device

Country Status (1)

Country Link
JP (1) JP4753603B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589357B2 (en) * 2009-11-11 2014-09-17 村田機械株式会社 Resin dispenser
JP6422716B2 (en) * 2014-09-26 2018-11-14 株式会社パウレック Fluidized bed equipment
CN112384305A (en) * 2018-05-10 2021-02-19 达尔科雷都技术有限公司 Automatic spray gun coating device and processing method using same
CN108915788B (en) * 2018-09-11 2024-01-09 山东国电发电工程有限公司 Low-pressure shaft seal optimization control system and method for condensing steam turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161870A (en) * 1980-05-14 1981-12-12 Sumitomo Light Metal Ind Ltd Method and apparatus for coating long pipe having small diameter
JPS6035787U (en) * 1983-08-20 1985-03-12 ナショナル住宅産業株式会社 paint supply device
JP2661444B2 (en) * 1991-12-19 1997-10-08 三菱電機株式会社 Air conditioner
JPH09225350A (en) * 1996-02-28 1997-09-02 Mazda Motor Corp Method for rotary atomization coating and apparatus therefor
JPH1128393A (en) * 1997-07-09 1999-02-02 Kasai Kogyo Co Ltd Method and device for coating paint

Also Published As

Publication number Publication date
JP2006272164A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4753603B2 (en) Heated gas supply device
US8313042B2 (en) Gas dynamic cold spray unit
JP5642893B2 (en) Rotary atomizing head type coating machine
JP4922348B2 (en) Skid structure for power augmentation system
WO2006129407A1 (en) Rotary atomizing-head type coating machine
US6972052B2 (en) Rotational atomizer with external heating system
US20080128530A1 (en) Heated Spray Painting System
CN105080750A (en) Coating system for coating objects
JP2000318123A (en) Drier for flexographic and gravure printing
US20050058571A1 (en) Method and apparatus for steam sterilization of articles
KR20170074430A (en) Circular type polymer coating device for pipe
JP2020507531A5 (en)
US6752323B1 (en) Hot melt material application system with high temperature pressure monitoring and heated recirculating manifolds
TW201703865A (en) Jet cartridges for jetting fluid material, and related methods
KR101435131B1 (en) Hot Air Generator using Superheated Steam
US20180169689A1 (en) Preservation installations for vehicle bodies, method for the preservation of a vehicle body and vehicle body
EP3620302A1 (en) Printing apparatus
TW201446331A (en) Apparatus for thermally stabilizing an atomization device for air-painting systems
JP4388499B2 (en) Pipe cooling equipment and cooling method
JP3587893B2 (en) Hot spray system
JP2019130449A (en) Coating applicator and application method
US20200269262A1 (en) Exhaust air temperature control system
KR100716873B1 (en) Apparatus for transferring the highly viscous fuel by using a heat transfer oil
US9733654B2 (en) Dual functional temperature control system applicator system
KR20180018979A (en) Compressed Heat Air Nozzle and Hose, Pipe System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250