JP4753345B2 - Polarization inversion formation method - Google Patents

Polarization inversion formation method Download PDF

Info

Publication number
JP4753345B2
JP4753345B2 JP2004079224A JP2004079224A JP4753345B2 JP 4753345 B2 JP4753345 B2 JP 4753345B2 JP 2004079224 A JP2004079224 A JP 2004079224A JP 2004079224 A JP2004079224 A JP 2004079224A JP 4753345 B2 JP4753345 B2 JP 4753345B2
Authority
JP
Japan
Prior art keywords
substrate
region
domain
polarization inversion
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004079224A
Other languages
Japanese (ja)
Other versions
JP2005266363A (en
Inventor
太 山本
潤一郎 市川
哲 及川
直 栗村
健二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
National Institute for Materials Science
Original Assignee
Sumitomo Osaka Cement Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, National Institute for Materials Science filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2004079224A priority Critical patent/JP4753345B2/en
Priority to US11/083,735 priority patent/US8193004B2/en
Publication of JP2005266363A publication Critical patent/JP2005266363A/en
Priority to US13/066,744 priority patent/US8293543B2/en
Priority to US13/066,737 priority patent/US8669121B2/en
Priority to US13/066,730 priority patent/US8524509B2/en
Application granted granted Critical
Publication of JP4753345B2 publication Critical patent/JP4753345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、強誘電体基板の所望領域を分極反転させる分極反転形成方法に関し、特に光学素子に用いられる電気光学効果を有する基板に分極反転領域を形成する分極反転形成方法に関する。   The present invention relates to a polarization inversion forming method for inversion of a desired region of a ferroelectric substrate, and more particularly to a polarization inversion formation method for forming a polarization inversion region on a substrate having an electrooptic effect used for an optical element.

光通信や光計測の分野において、波長変換素子や光変調器などの光学素子が利用されている。
波長変換素子の例としては、以下の特許文献1に示すように、強誘電体LiNbOなどの電気光学効果を有する基板上に周期的な分極反転構造を形成しているものがある。
また、光変調器の例としては、以下の特許文献2に示すように、電気光学効果を有する基板上に光導波路を形成すると共に、該光導波路に係る基板の一部を分極反転させ、チャープ発生の抑制や変調強度の消光比の向上を図るものが提案されている。
特開2000−147584 特開2003−202530
Optical elements such as wavelength conversion elements and optical modulators are used in the fields of optical communication and optical measurement.
As an example of the wavelength conversion element, there is one in which a periodic domain-inverted structure is formed on a substrate having an electro-optic effect such as ferroelectric LiNbO 3 as shown in Patent Document 1 below.
Further, as an example of an optical modulator, as shown in Patent Document 2 below, an optical waveguide is formed on a substrate having an electro-optic effect, and a part of the substrate related to the optical waveguide is polarized and inverted to obtain a chirp. Proposals have been made to suppress generation and improve the extinction ratio of modulation intensity.
JP 2000-147484 A JP 2003-202530 A

このような強誘電体基板上に分極反転領域を形成する方法としては、Ti熱拡散による方法、SiOを装荷した後に熱処理する方法、プロトン交換処理と熱処理とを行う方法などがある。また、強誘電体の自発分極が電界により反転することを利用して、約20kV/mm以上の電界を印加することにより、分極反転領域を形成する方法が知られている。
特に、電界の印加による分極反転は、分極反転領域を正確に形成できると共に、形成方法が簡便であることなどの理由から、分極反転形成方法として良く利用されている。
As a method for forming such a domain-inverted region on a ferroelectric substrate, there are a method using Ti thermal diffusion, a method in which heat treatment is performed after loading SiO 2 , a method in which proton exchange treatment and heat treatment are performed, and the like. In addition, a method is known in which a polarization inversion region is formed by applying an electric field of about 20 kV / mm or more by utilizing the fact that the spontaneous polarization of a ferroelectric substance is inverted by an electric field.
In particular, polarization reversal by application of an electric field is often used as a polarization reversal formation method because the polarization reversal region can be accurately formed and the formation method is simple.

電界を用いた分極反転形成方法としては、図1に示すように、基板1の上面及び下面に電極2,3を形成し、両電極間に電圧4を印加することにより形成する方法や、図2に示すように、基板1の上面に絶縁性のマスクパターン5を施し、電極6及び7により、シール部材8,9を介して該基板を狭持すると共に、基板1と各電極6,7との間に導電性液体を充填し、電極6,7に電圧4を印加する方法などが知られている。なお、電極6及び7の代わりにアクリル板などの絶縁材料を利用する場合には、電圧4からの給電用に、電線を導電性液体に直接接触させるよう構成される。
これらの方法により、図1の場合には、電極2のパターンに応じた分極反転領域が、また、図2の場合には、マスクパターン5が形成されていない領域に対応した分極反転領域が、各々形成される。
As a method for forming domain inversion using an electric field, as shown in FIG. 1, the electrodes 2 and 3 are formed on the upper and lower surfaces of the substrate 1 and a voltage 4 is applied between the electrodes. 2, an insulating mask pattern 5 is applied to the upper surface of the substrate 1, and the substrate 6 is held between the electrodes 6 and 7 via the seal members 8 and 9. A method in which a conductive liquid is filled between the electrodes 6 and 7 and voltage 4 is applied to the electrodes 6 and 7 is known. When an insulating material such as an acrylic plate is used instead of the electrodes 6 and 7, the electric wire is configured to directly contact the conductive liquid for power supply from the voltage 4.
By these methods, in the case of FIG. 1, the domain-inverted region corresponding to the pattern of the electrode 2, and in the case of FIG. 2, the domain-inverted region corresponding to the region where the mask pattern 5 is not formed, Each is formed.

上記のような電界を用いた分極反転形成方法においては、分極反転領域の幅、例えば、図3の基板1に形成された分極反転領域10の幅Lが、20μm以下の場合には、分極反転を形成する領域全体に均一な電圧が印加されるため、比較的均一な分極反転領域を形成することが可能となる。
これに対し、幅Lが50μm以上となるような大面積な分極反転領域を形成する場合には、分極反転を形成する領域の周辺部が優先的に分極反転され、領域全体としては不均一な分極反転状態を有する結果となる。また、基板となるウエハ自体の不均一性、電界を印加する電極の抵抗のバラツキによる電圧効果の差などの要因により、均一な分極反転が難しくなっている。このため、大口径のウエハを用いた場合には、ウエハ内の場所による分極反転状態の差が顕著となる。
In the polarization inversion forming method using the electric field as described above, when the width of the domain inversion region, for example, the width L of the domain inversion region 10 formed on the substrate 1 in FIG. Since a uniform voltage is applied to the entire region for forming, a relatively uniform domain-inverted region can be formed.
On the other hand, when a large-area domain-inverted region having a width L of 50 μm or more is formed, the periphery of the region where the domain-inverted region is formed is preferentially domain-inverted, and the entire region is not uniform. This results in having a polarization reversal state. Further, uniform polarization inversion is difficult due to factors such as non-uniformity of the wafer itself serving as a substrate and a difference in voltage effect due to variations in resistance of electrodes to which an electric field is applied. For this reason, when a large-diameter wafer is used, the difference in the polarization inversion state depending on the location in the wafer becomes significant.

他方、以下の非特許文献1〜6では、分極反転の形成プロセスは、電極端の電界集中領域での核発生、静電エネルギーの増加を嫌いながら深さ方向にマイクロドメインが伸長、横方向に分域壁が移動、分極反転領域が安定化という過程を経て分極反転構造が形成されること、並びに、分極反転の均一性には、核成長密度の高さが重要であることが開示されている。
また、分極反転を形成する領域の幅Lが50μm以上となる大面積の場合では、周辺部が優先的に分極反転されること、幅Lが広い場合は、該幅が狭い場合と比較し、核成長密度が低く、均一な分極反転の形成が難しいことなどが、容易に理解できる。
このため、非特許文献1〜6においては、低い電界パルスを基板に印加することにより、分極反転の核となる核成長を行い、次に高い電界パルスを印加することにより、該核から分域壁を進行させ分極反転を実現する方法が提案されている。
しかも、この方法により、均一な分極反転領域が得られることが報告されている。
栗村直、他9名,「LiNbO3の分極反転における選択的核成長方法I〜動機とその背景〜」,第49回応用物理学関連連合講演会講演予稿集,2002年3月 阿久津剛史、他7名,「LiNbO3の分極反転における選択的核成長方法II〜選択的核成長法による周期分極反転〜」,第49回応用物理学関連連合講演会講演予稿集,2002年3月 丸山真幸、他5名,「LiNbO3の分極反転における選択的核成長方法III〜核成長密度の粒子解析による定量化〜」,第49回応用物理学関連連合講演会講演予稿集,2002年3月 野村善行、他7名,「LiNbO3の分極反転における選択的核成長方法IV〜核成長密度のパルス数依存性〜」,第63回応用物理学会学術講演会講演予稿集,2002年9月 丸山真幸、他7名,「LiNbO3の分極反転における選択的核成長方法V〜短周期分極反転における核成長条件〜」,第63回応用物理学会学術講演会講演予稿集,2002年9月 丸山真幸、他7名,「LiNbO3の分極反転における選択的核成長方法VII〜高アスペクト比短周期分極反転による第2高調波発生〜」,第50回応用物理学関連連合講演会講演予稿集,2003年3月
On the other hand, in the following Non-Patent Documents 1 to 6, the domain inversion formation process is such that the microdomain expands in the depth direction while disabling the generation of nuclei and the increase in electrostatic energy in the electric field concentration region at the electrode end, It is disclosed that a domain-inverted structure is formed through the process of domain wall movement and domain-inverted region stabilization, and that high nuclear growth density is important for the uniformity of domain-inversion. Yes.
Further, in the case of a large area where the width L of the region where polarization inversion is formed is 50 μm or more, the peripheral portion is preferentially reversed in polarity, and when the width L is wide, compared to the case where the width is narrow, It can be easily understood that the nuclear growth density is low and it is difficult to form uniform polarization inversion.
For this reason, in Non-Patent Documents 1 to 6, by applying a low electric field pulse to the substrate, the nucleus grows as a core of polarization reversal, and by applying the next high electric field pulse, a domain is generated from the nucleus. A method has been proposed for realizing polarization reversal by advancing the wall.
Moreover, it has been reported that a uniform domain inversion region can be obtained by this method.
Nao Kurimura and 9 others, “Selective Nuclear Growth Method I in Motivation and Background in LiNbO3 Polarization Inversion”, Proceedings of the 49th Joint Conference on Applied Physics, March 2002 Takeshi Akutsu and 7 others, "Selective nuclear growth method II in polarization reversal of LiNbO3-Periodic polarization reversal by selective nuclear growth method", Proceedings of the 49th Joint Physics Related Lecture, March 2002 Masayuki Maruyama and five others, “Selective Nucleation Method III in LiNbO3 Polarization Inversion III-Quantification of Particle Growth Density by Particle Analysis”, Proceedings of the 49th Joint Conference on Applied Physics, March 2002 Yoshiyuki Nomura and 7 others, "Selective nucleation method IV in polarization reversal of LiNbO3-Dependence on pulse number of nuclear growth density", Proceedings of the 63rd Japan Society of Applied Physics, September 2002 Masayuki Maruyama and 7 others, “Selective Nuclear Growth Method V in LiNbO3 Polarization Inversion V—Nuclear Growth Conditions in Short Period Polarization Inversion”, Proceedings of the 63rd Annual Conference of the Japan Society of Applied Physics, September 2002 Masayuki Maruyama and 7 others, "Selective nuclear growth method VII in polarization reversal of LiNbO3-Second harmonic generation by high aspect ratio short period polarization reversal-", Proceedings of the 50th Applied Physics Related Conference March 2003

本発明の目的は、上述した問題を解決し、分極反転を形成する領域の幅が、50μm以上となる大面積であっても、分極反転領域内の分極反転状態を均質に形成することが可能であり、さらに、分極反転時に印加される電圧の強度を低減することを可能な分極反転形成方法を提供することである。   The object of the present invention is to solve the above-mentioned problems, and even if the width of the region for forming polarization inversion is a large area of 50 μm or more, the polarization inversion state in the domain inversion region can be formed uniformly. Furthermore, it is to provide a polarization inversion forming method capable of reducing the strength of the voltage applied at the time of polarization inversion.

上記課題を解決するために、請求項1に係る発明では、強誘電体基板の所望領域を分極反転させる分極反転形成方法において、該強誘電体基板の表面の該所望領域に対し、基板表面への微小硬質材料の噴射または微小先端径を有する打撃部材による衝撃、あるいは、基板表面上に分散配置された微小硬質材料を擦過し、その後、該所望領域に所定の電圧を印加することにより、該強誘電体基板の該所望領域を分極反転させることを特徴とする。   In order to solve the above problems, in the invention according to claim 1, in a polarization inversion formation method for reversing the polarization of a desired region of a ferroelectric substrate, the surface of the ferroelectric substrate is moved to the substrate surface with respect to the desired region. By applying a predetermined voltage to the desired region, the fine hard material is sprayed or impacted by a striking member having a fine tip diameter, or the fine hard material dispersed on the substrate surface is scraped. The desired region of the ferroelectric substrate is inverted in polarity.

また、本発明に関連する参考例(1)としては、強誘電体基板の所望領域を分極反転させる分極反転形成方法において、該強誘電体基板の表面の該所望領域に対し、電極パターン又はマスクパターンを微細なパターンの集合体として形成し、該所望領域に所定の電圧を印加することを特徴とする。 Further, as a reference example (1) related to the present invention, in a polarization inversion forming method for reversing a desired region of a ferroelectric substrate, an electrode pattern or a mask is applied to the desired region on the surface of the ferroelectric substrate. A pattern is formed as an aggregate of fine patterns, and a predetermined voltage is applied to the desired region.

また、本発明に関連する参考例(2)としては、強誘電体基板の所望領域を分極反転させる分極反転形成方法において、該強誘電体基板の該所望領域における基板の厚みを、該所望領域以外の基板の厚みより薄く形成し、該所望領域に所定の電圧を印加することにより、該強誘電体基板の該所望領域を分極反転させることを特徴とする。 Further, as a reference example (2) related to the present invention, in a polarization inversion formation method for reversing the polarization of a desired region of a ferroelectric substrate, the thickness of the substrate in the desired region of the ferroelectric substrate is set to the desired region. The desired region of the ferroelectric substrate is inverted by applying a predetermined voltage to the desired region.

また、本発明に関連する参考例(3)としては、上記参考例(2)に記載の分極反転形成方法において、該強誘電体基板の厚みを薄く形成するため、基板表面のエッチングを行うことを特徴とする。 Further, as a reference example (3) related to the present invention, in the polarization inversion forming method described in the above reference example (2) , the substrate surface is etched to reduce the thickness of the ferroelectric substrate. It is characterized by.

また、本発明に関連する参考例(4)としては、上記参考例(2)又は(3)に記載の分極反転形成方法において、該強誘電体基板の厚みを薄く形成する面と、該強誘電体基板に導波路を形成する面とは、異なる面であることを特徴とする。 Further, as a reference example (4) related to the present invention, in the method of forming a domain inversion described in the reference example (2) or (3) , the surface on which the ferroelectric substrate is formed thin, The surface is different from the surface on which the waveguide is formed on the dielectric substrate.

請求項1に係る発明により、分極反転を形成する際に、まず、強誘電体基板の表面の所望領域に対し、基板表面への微小硬質材料の噴射または微小先端径を有する打撃部材による衝撃、あるいは、基板表面上に分散配置された微小硬質材料を擦過を行うなどの方法により、基板表面に機械的応力を付加し、基板表面に核成長を起こす。
そして、その後、該所望領域に所定の電圧を印加することにより、核を中心に分極反転が形成される。
これにより、周辺部のみならず、領域内部にも核成長を起こし核成長密度を高めることが可能であり、大面積の分極反転領域を形成する場合でも、均一な分極反転を実現することが可能となる。
しかも、LiNbOやLiTaO結晶の場合、基板表面への核成長は、微小な応力や衝撃により起こすことが可能であるため、大規模な装置を必要とせず、容易に形成することが可能である。さらに、基板表面に形成するのは微小な核であるため、基板全体に掛かる機械的負荷が少なく、基板自体の機械的特性を劣化させることもない。
According to the first aspect of the present invention, when forming polarization inversion, first, a desired area on the surface of the ferroelectric substrate is sprayed with a micro hard material onto the substrate surface or an impact by a striking member having a micro tip diameter, Alternatively, mechanical stress is applied to the substrate surface by a method such as rubbing fine hard materials dispersedly arranged on the substrate surface to cause nucleus growth on the substrate surface.
Then, after applying a predetermined voltage to the desired region, polarization inversion is formed around the nucleus.
As a result, it is possible to raise the nucleus growth density not only in the peripheral part but also in the inside of the region, and even when forming a domain-inverted region having a large area, it is possible to realize uniform polarization inversion. It becomes.
Moreover, in the case of LiNbO 3 or LiTaO 3 crystal, the nucleus growth on the substrate surface can be caused by minute stress or impact, so that it can be easily formed without requiring a large-scale apparatus. is there. Further, since the micro nuclei are formed on the substrate surface, the mechanical load applied to the entire substrate is small, and the mechanical characteristics of the substrate itself are not deteriorated.

上記参考例(1)により、微細なパターンを利用することにより、各パターンの周囲に核成長が起こり、分極反転領域全体としてみた場合には、領域の内部に多数の核成長を発生させることが可能となり、大面積の分極反転領域を形成する場合でも、均一な分極反転を実現することが可能となる。 According to the reference example (1), by using a fine pattern, nucleus growth occurs around each pattern, and when viewed as the entire domain-inverted region, a large number of nucleus growths can be generated inside the region. Thus, even when a large-area domain-inverted region is formed, uniform domain-inversion can be realized.

上記参考例(2)により、分極反転を形成する領域の基板の厚みを薄くすることにより、分極反転を形成する際の印加電圧を減少させることが可能となる。これは絶縁破壊などのトラブルを防ぐ点でも有効であり、治具や電源に対する要求を緩和して生産にかかるコストを低減することができる。 According to the reference example (2), by reducing the thickness of the substrate in the region where the polarization inversion is formed, it is possible to reduce the applied voltage when forming the polarization inversion. This is also effective in preventing problems such as dielectric breakdown, and can reduce the cost of production by relaxing the requirements for jigs and power supplies.

上記参考例(3)により、該強誘電体基板の厚みを薄く形成する際には、基板表面のエッチングにより行うため、基板全体に与える機械的負荷がなく、基板自体の機械的特性の劣化を生じることがない。また、導波路素子を作製する場合には、分極反転後の段差が光学損失となるため、研磨などによって除去するのが望ましい。 According to the above reference example (3) , when the thickness of the ferroelectric substrate is reduced, etching is performed on the surface of the substrate, so that there is no mechanical load applied to the entire substrate and the mechanical characteristics of the substrate itself are deteriorated. It does not occur. Further, when a waveguide element is manufactured, the step after polarization inversion becomes an optical loss, so it is desirable to remove it by polishing or the like.

上記参考例(4)により、基板の一方の面を、分極反転領域の形状に合わせて、切削または侵食などにより薄く形成し、基板の他方の面に光導波路を形成するため、基板の厚みの変化が光導波路に影響を与えず、光学損失などの特性の劣化の無い、導波路素子を提供することが可能となる。なお、この場合には上述のような研磨による基板上の段差を除去する工程を省くことができる。 According to the reference example (4) , one surface of the substrate is thinly formed by cutting or erosion in accordance with the shape of the domain-inverted region, and an optical waveguide is formed on the other surface of the substrate. It is possible to provide a waveguide element in which the change does not affect the optical waveguide and the characteristics such as optical loss are not deteriorated. In this case, the step of removing the step on the substrate by polishing as described above can be omitted.

以下、本発明を好適例を用いて詳細に説明する。
図4は、強誘電体基板1の表面に、分極反転領域2に核成長を多数起こした状態を示す図である。
このような核成長がある場合、強誘電体基板に電界を印加すると、この核を中心に分極反転が進行する。このため、この核が所望の反転領域内に適度に存在していれば、例えば直径2インチを超えるような大口径強誘電体ウエハ内において、分極反転領域幅が25μmを超えるような大面積の領域を複数箇所、同時に分極反転させる際においても、大口径ウエハ内に一括して均一な分極反転状態を実現することが可能となる。
Hereinafter, the present invention will be described in detail using preferred examples.
FIG. 4 is a view showing a state in which a large number of nuclei grow in the domain-inverted region 2 on the surface of the ferroelectric substrate 1.
In the case where there is such a nucleus growth, when an electric field is applied to the ferroelectric substrate, the polarization inversion proceeds around the nucleus. For this reason, if this nucleus is present appropriately in the desired inversion region, for example, in a large-diameter ferroelectric wafer having a diameter exceeding 2 inches, the domain inversion region has a large area exceeding 25 μm. Even when a plurality of regions are simultaneously reversed in polarity, a uniform polarization reversal state can be realized in a large-diameter wafer all at once.

核成長の発生方法としては、機械的な衝撃などによる方法や、化学的な方法が利用可能である。特に、機械的な力を利用して微小欠陥等を形成する際には、基板の温度を高くすることで、より効果的に核成長を起こすことが可能となる。
以下、具体的な方法を列挙する。
As a method for generating nuclear growth, a method using mechanical impact or a chemical method can be used. In particular, when a micro defect or the like is formed using a mechanical force, it is possible to cause more effective nuclear growth by increasing the temperature of the substrate.
Hereinafter, specific methods are listed.

(1)マイクロサンドブラスト法
基板表面上の分極反転領域以外をゴム系レジスト膜等で被覆し、微小硬質材料である研磨剤、ドライアイスなどを該基板表面に高速噴射し、その衝撃で核成長を起こす。
(1) Micro sand blasting The area other than the domain-inverted region on the substrate surface is covered with a rubber-based resist film, etc., and a fine hard material abrasive, dry ice, etc. are sprayed onto the substrate surface at high speed, and the nuclear growth is caused by the impact Wake up.

(2)ワイヤブラシ法
マイクロサンドブラスト法と同様に、基板表面上をゴム系レジスト膜等で被覆し、ワイヤブラシなど微小先端径を有する打撃部材で、該基板表面に衝撃を与え、核成長を起こす。
(2) Wire brush method Similar to the micro sand blast method, the substrate surface is coated with a rubber resist film or the like, and a striking member having a minute tip diameter such as a wire brush is applied to the substrate surface to cause nuclear growth. .

(3)ドットインパクトプリンタの利用
ワイヤドットインパクトプリンタのプリンタヘッドにて、基板表面の分極反転領域に対し選択的に衝撃を与え、核成長を起こす。
(3) Use of a dot impact printer A printer head of a wire dot impact printer selectively impacts the domain-inverted region on the substrate surface to cause nuclear growth.

(4)印刷方法の利用
スクリーン印刷法やインクジェットプリンタなどにより、硬質樹脂や研磨材を含有した樹脂インクを用いて、基板表面に分極反転領域の形状パターンの印刷を行い、印刷乾燥後、布または紙などの緩衝材を介して、バレンなどにより印刷部を擦過し、核成長を起こす。
(4) Use of printing method Using a screen printing method, an ink jet printer, or the like, a resin ink containing a hard resin or an abrasive is used to print a polarization inversion region shape pattern on the substrate surface, and after printing and drying, a cloth or Nucleation is caused by rubbing the printing part with valene or the like through a buffer material such as paper.

(5)研磨シート等の利用
基板表面上の分極反転領域以外をゴム系レジスト膜等で被覆し、研磨シートを基板表面に押圧又は擦過する。あるいは、該被覆後、研磨材を基板表面に散布し、研磨材を基板表面に押し当てるように擦過する。さらには、予め分極反転領域の形状にパターニングした研磨シートを作製し、該シートを基板に張り合わせて、研磨シートを基板に押し当てるようにプレスする。
(5) Use of polishing sheet or the like A region other than the domain-inverted region on the substrate surface is covered with a rubber resist film or the like, and the polishing sheet is pressed or rubbed against the substrate surface. Alternatively, after the coating, the abrasive is spread on the substrate surface and rubbed so as to press the abrasive against the substrate surface. Further, a polishing sheet patterned in advance in the shape of the domain-inverted region is prepared, the sheet is attached to the substrate, and pressed so as to press the polishing sheet against the substrate.

以上のように核成長を起こした後は、図1又は図2のような分極反転の形成方法を利用し、基板に分極反転領域を形成することが可能である。
具体的には、基板表面に分極反転領域に対応した電極パターンを形成し、該基板の裏面には、一様な電極を形成する。両電極間にパルス電圧を印加すると、核を中心に分極反転が進行し、該電極パターンに対応した均一な分極反転を形成することが可能となる。
After the nucleus growth as described above, the domain-inverted region can be formed on the substrate by using the domain-inverted formation method as shown in FIG. 1 or FIG.
Specifically, an electrode pattern corresponding to the domain-inverted region is formed on the substrate surface, and a uniform electrode is formed on the back surface of the substrate. When a pulse voltage is applied between both electrodes, the polarization inversion proceeds centering on the nucleus, and it becomes possible to form a uniform polarization inversion corresponding to the electrode pattern.

導電性液体を用いた方法においては、基板表面に絶縁性のマスクパターンを施した後、導電性液体を該基板の両面に配置させ、該導電性液体にパルス電圧を印加することにより、核を中心に分極反転が進行させることが可能となる。
なお、上記核成長を起こす際に利用したゴム系レジスト膜などを、上記の絶縁性マスクパターンの代わりに代用することも可能である。
In the method using a conductive liquid, after applying an insulating mask pattern to the substrate surface, the conductive liquid is arranged on both surfaces of the substrate, and a pulse voltage is applied to the conductive liquid to thereby remove the nucleus. It becomes possible to cause polarization inversion to proceed in the center.
Note that a rubber-based resist film or the like used for causing the nucleus growth can be substituted for the insulating mask pattern.

大面積の分極反転領域を形成する他の方法としては、図1における分極反転領域の電極パターン又は図2におけるマスクパターンを微細なパターンの集合体として構成する方法がある。以下、マスクパターンを例に説明する。
具体的には、図5(a)に示すような幅20μm以上の分極反転領域を形成する場合、まず、図5(b)のように、幅4μmの微細なストライプ状のマスクパターン(絶縁性マスクのストライプ状の部分に開口が形成されているもの)の集合体として、所定の形状の分極反転領域を形成し、次に、図2に示すように該ストライプ状の開口を介して導電性液体を強誘電体基板に接触させ、電界を該基板に印加する。
As another method for forming a domain-inverted region having a large area, there is a method in which the electrode pattern in the domain-inverted region in FIG. 1 or the mask pattern in FIG. 2 is configured as an aggregate of fine patterns. Hereinafter, a mask pattern will be described as an example.
Specifically, when forming a domain-inverted region having a width of 20 μm or more as shown in FIG. 5A, first, as shown in FIG. 5B, a fine stripe-shaped mask pattern (insulating property) having a width of 4 μm. A domain-inverted region having a predetermined shape is formed as an aggregate of the mask in which an opening is formed in the stripe-shaped portion, and then the conductive property is passed through the stripe-shaped opening as shown in FIG. A liquid is brought into contact with the ferroelectric substrate, and an electric field is applied to the substrate.

このような微細なパターンを利用することにより、各パターンの周囲に核成長が起こり、分極反転領域全体としてみた場合には、領域の内部に多数の核成長を発生させることが可能となる。各パターンの線幅は、実施例のものに限らず、10μm以下の場合には、安定的に核成長が可能となる。
また、微細なパターンの形状としては、図5(b)のようなストライプ状のもに限らず、図5(c)のように長円状のもの、図5(d)のように6角形状のもの、図5(e)のように網目状のもの、さらには、図5(f)のように井桁状(あるいは「ひし形状」)のものなど、各種の応用が可能である。なお、各パターンに付してある数字は、mm単位の幅を示すものである。
さらに、微細なパターンに直線部分を設ける場合には、強誘電体基板の結晶方位との関係で、分極反転領域の結合が起き難い場合があり、直線部分と結晶方位との角度を考慮する必要がある。
また、上記のような微細パターンにより分極反転を形成する領域全体を分極反転させるだけでなく、最初に、微細パターンにより核成長を行い、その後、通常の電極パターン又はマスクパターンで、電界を印加することで、核を中心に分極反転を発生させることも可能である。
By using such a fine pattern, nucleus growth occurs around each pattern, and when viewed as the entire domain-inverted region, a large number of nucleus growths can be generated inside the region. The line width of each pattern is not limited to that of the embodiment, and when it is 10 μm or less, stable nuclear growth is possible.
Further, the shape of the fine pattern is not limited to the stripe shape as shown in FIG. 5B, but is an oval shape as shown in FIG. 5C, and six corners as shown in FIG. Various applications such as a shape, a mesh shape as shown in FIG. 5 (e), and a cross-like shape (or “diamond shape”) as shown in FIG. 5 (f) are possible. In addition, the number attached | subjected to each pattern shows the width | variety of mm unit.
In addition, when a linear part is provided in a fine pattern, the domain-inverted region may not be easily coupled due to the crystal orientation of the ferroelectric substrate, and it is necessary to consider the angle between the linear part and the crystal orientation. There is.
Moreover, not only the entire region where the polarization inversion is formed by the fine pattern as described above but also the polarization inversion, first, the nucleus is grown by the fine pattern, and then the electric field is applied by the normal electrode pattern or mask pattern. Thus, it is also possible to generate polarization inversion around the nucleus.

また、他の分極反転領域の形成方法について説明する。
具体的には、分極反転を所望する領域の厚さを薄くすることにより、該所望領域の電界を該所望領域以外の領域の電界より高くすることが可能となり、マスク等を用いることなく該所望領域のみの分極反転が可能となる。
特に、分極反転領域の基板の厚みを肉薄加工することにより、印加電圧の低減を達成することができる。好ましくは、分極反転領域に対応したパターンで、基板の裏面から肉薄化し、導電性液体を用いて電圧を印加する。
肉薄化の方法としては、基板の裏面上に分極反転領域外をゴム系レジスト膜などで被覆し、砂目が#600程度の微小硬質材料を噴射して、サブミクロンから25μm程度掘り込む。その後、図6のような液体電極法により、基板に電圧を印加し、分極反転領域を形成する。
この際、分極反転を所望する肉薄部A部と分極反転を所望しないB部とには同電圧が印加されるが、A部の実効電界aは、B部の電界bに比べ強くなる。よって、A部を分極反転が促進される電界以上にし、B部を分極反転が促進される電界未満となるように、該電圧、ならびに肉薄部Aの厚さを制御すれば、該所望部のみの分極反転が可能となる。
また、この場合、仮に過剰な時間にわたって電界を印加したとしても、B部は分極反転が生じ得ないことから、反転電流等を監視することによる電界印加時間の厳密な制御を用いることなしに、所望の反転領域が得られる。しかも、分極反転に必要な電圧は、肉薄化を行わない場合の電圧よりも、低いものとなる。
Further, another method for forming a domain-inverted region will be described.
Specifically, by reducing the thickness of a region where polarization inversion is desired, the electric field in the desired region can be made higher than the electric field in a region other than the desired region, and the desired region can be obtained without using a mask or the like. Only the region can be inverted.
In particular, the applied voltage can be reduced by thinning the substrate in the domain-inverted region. Preferably, a pattern corresponding to the domain-inverted region is thinned from the back surface of the substrate, and a voltage is applied using a conductive liquid.
As a thinning method, the outside of the domain-inverted region is coated on the back surface of the substrate with a rubber-based resist film or the like, and a fine hard material having a grain size of about # 600 is jetted to dig about 25 μm from submicron. Thereafter, a voltage is applied to the substrate by a liquid electrode method as shown in FIG. 6 to form a domain-inverted region.
At this time, the same voltage is applied to the thin portion A portion where polarization inversion is desired and the B portion where polarization inversion is not desired, but the effective electric field a of the A portion is stronger than the electric field b of the B portion. Therefore, if the voltage and the thickness of the thin portion A are controlled so that the portion A is higher than the electric field that promotes polarization reversal and the B portion is less than the electric field that promotes polarization reversal, only the desired portion is obtained. Can be reversed.
Further, in this case, even if an electric field is applied for an excessive period of time, polarization inversion cannot occur in the B part, so that without using strict control of the electric field application time by monitoring the reversal current or the like, A desired inversion region is obtained. Moreover, the voltage required for polarization reversal is lower than the voltage when thinning is not performed.

基板の肉薄化の他の方法としては、弗酸系ケミカルエッチングや、ECR,ISM,NLDなどのドライエッチングなどを利用することができる。
例えば、弗酸系ケミカルエッチングにおいては、基板裏面上の分極反転領域外をポリイミド系レジストなどで被覆し、弗酸エッチングを行う。エッチングの深さはサブミクロンから数μm程度であり、その後、液体電極法により、基板に電圧を印加する。
電圧の印加方法としては、上記の微小硬質材料で肉薄化した場合と同様に電圧の印加を行う。ただし、基板の肉薄化前に、基板全体に通常の分極反転より高い電圧を印加し、基板全体の極性を一度反転させ、その後、上記の肉薄化処理を行い、基板の分極反転領域に先に印加した電圧とは逆極性の電圧を印加することで、分極反転領域を形成することも可能である。この場合には、より均一な分極反転領域を形成することが可能となる。
As other methods for thinning the substrate, hydrofluoric acid chemical etching, dry etching such as ECR, ISM, and NLD can be used.
For example, in hydrofluoric acid chemical etching, the outside of the domain-inverted region on the back surface of the substrate is covered with a polyimide resist or the like, and hydrofluoric acid etching is performed. The etching depth is about submicron to several μm, and then a voltage is applied to the substrate by the liquid electrode method.
As a method for applying a voltage, a voltage is applied in the same manner as in the case of thinning with the fine hard material. However, before thinning the substrate, a voltage higher than the normal polarization inversion is applied to the entire substrate, the polarity of the entire substrate is reversed once, and then the above thinning process is performed, and the polarization inversion region of the substrate is preceded. It is also possible to form a domain-inverted region by applying a voltage having a polarity opposite to the applied voltage. In this case, a more uniform domain-inverted region can be formed.

強誘電体基板に光導波路を形成し、光変調器などの導波路素子を製造する際にも、本発明の分極反転形成方法を利用することが可能である。
上述の基板の肉薄化を利用して分極反転領域を形成し、更に、該肉薄化した基板面に導波路を作製する場合には、肉薄化による基板表面の段差が光学損失の原因となるため、研磨などによって、該段差を除去するのが望ましい。
また、強誘電体基板の一方の面を、分極反転領域の形状に合わせて、切削または侵食などにより薄く形成し、基板の他方の面に光導波路を形成する場合には、基板の厚みの変化が光導波路に影響を与えず、光学損失などの特性の劣化の無い導波路素子を提供することが可能となる。なお、この場合には、分極反転領域の形成と光導波路の形成とは、順序がが前後しても、共に導波路素子を製造することができる。
The polarization inversion forming method of the present invention can also be used when an optical waveguide is formed on a ferroelectric substrate and a waveguide element such as an optical modulator is manufactured.
When a domain-inverted region is formed by utilizing the above-described thinning of the substrate, and a waveguide is formed on the thinned substrate surface, a step on the substrate surface due to the thinning causes optical loss. It is desirable to remove the step by polishing or the like.
In addition, when one surface of the ferroelectric substrate is thinly formed by cutting or erosion in accordance with the shape of the domain-inverted region and an optical waveguide is formed on the other surface of the substrate, the thickness of the substrate changes. Therefore, it is possible to provide a waveguide element that does not affect the optical waveguide and does not deteriorate characteristics such as optical loss. In this case, the waveguide element can be manufactured even if the order of the domain-inverted region and the formation of the optical waveguide are reversed.

本発明は、以上説明したものに限られるものではなく、例えば、核成長と基板の肉薄化とを、マイクロサンドブラスト法で兼用するなど、各種の組み合わせが可能である。
また、分極反転における印加電圧を下げる方法として、電圧印加時に紫外線を基板に照射する方法や、基板上の分極反転領域に対応する領域に予め不純物をドープする方法などを、必要に応じて組み合わせることも可能である。
The present invention is not limited to what has been described above, and various combinations are possible, such as, for example, the combination of nucleus growth and substrate thinning by the micro-sandblast method.
In addition, as a method of lowering the applied voltage in polarization reversal, a method of irradiating the substrate with ultraviolet rays at the time of voltage application, a method of doping impurities in a region corresponding to the polarization reversal region on the substrate in advance, and the like are combined as necessary. Is also possible.

以上、説明したように、本発明によれば、分極反転を形成する領域の幅が、50μm以上となる大面積であっても、分極反転領域内の分極反転状態を均質に形成することが可能であり、さらに、分極反転時に印加される電圧の強度を低減することを可能な分極反転形成方法を提供することができる。   As described above, according to the present invention, even if the width of the region for forming polarization inversion is a large area of 50 μm or more, the polarization inversion state in the polarization inversion region can be formed uniformly. Furthermore, it is possible to provide a polarization inversion forming method capable of reducing the strength of the voltage applied at the time of polarization inversion.

従来の電極パターンを用いた分極反転方法を示す図である。It is a figure which shows the polarization inversion method using the conventional electrode pattern. 従来の液体電極法を示す図である。It is a figure which shows the conventional liquid electrode method. 基板に形成された分極反転領域を示す図である。It is a figure which shows the polarization inversion area | region formed in the board | substrate. 基板表面に微小欠陥等を形成した状態を示す図である。It is a figure which shows the state which formed the micro defect etc. in the substrate surface. マスクパターンを微細パターンの集合体で構成する場合を示す図である。It is a figure which shows the case where a mask pattern is comprised with the aggregate | assembly of a fine pattern. 肉薄化した基板を液体電極法で分極反転する状態を示す図である。It is a figure which shows the state which carries out polarization inversion of the thinned board | substrate by the liquid electrode method.

符号の説明Explanation of symbols

1 強誘電体基板
2 パターン電極
3 裏面電極
4 印加電圧
5 絶縁性マスクパターン
6,7 電極
8,9 シール部材
10 分極反転領域
20 微小欠陥又は微小残留応力領域
DESCRIPTION OF SYMBOLS 1 Ferroelectric substrate 2 Pattern electrode 3 Back surface electrode 4 Applied voltage 5 Insulating mask pattern 6,7 Electrode 8,9 Seal member 10 Polarization inversion area | region 20 Minute defect or minute residual stress area | region

Claims (1)

強誘電体基板の所望領域を分極反転させる分極反転形成方法において、
該強誘電体基板の表面の該所望領域に対し、基板表面への微小硬質材料の噴射または微小先端径を有する打撃部材による衝撃、あるいは、基板表面上に分散配置された微小硬質材料を擦過し、
その後、該所望領域に所定の電圧を印加することにより、該強誘電体基板の該所望領域を分極反転させることを特徴とする分極反転形成方法。
In a domain inversion formation method for domain inversion of a desired region of a ferroelectric substrate,
The desired region of the surface of the ferroelectric substrate is sprayed with a micro hard material onto the surface of the substrate or is impacted by a striking member having a micro tip diameter, or the micro hard material dispersed on the substrate surface is abraded. ,
Then, the polarization inversion forming method characterized in that the desired region of the ferroelectric substrate is inverted by applying a predetermined voltage to the desired region.
JP2004079224A 2004-03-18 2004-03-18 Polarization inversion formation method Expired - Lifetime JP4753345B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004079224A JP4753345B2 (en) 2004-03-18 2004-03-18 Polarization inversion formation method
US11/083,735 US8193004B2 (en) 2004-03-18 2005-03-18 Method for forming ferroelectric spontaneous polarization reversal
US13/066,744 US8293543B2 (en) 2004-03-18 2011-04-22 Method for forming polarization reversal
US13/066,737 US8669121B2 (en) 2004-03-18 2011-04-22 Method for forming polarization reversal
US13/066,730 US8524509B2 (en) 2004-03-18 2011-04-22 Method for forming polarization reversal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079224A JP4753345B2 (en) 2004-03-18 2004-03-18 Polarization inversion formation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010081377A Division JP4827108B2 (en) 2010-03-31 2010-03-31 Polarization inversion formation method

Publications (2)

Publication Number Publication Date
JP2005266363A JP2005266363A (en) 2005-09-29
JP4753345B2 true JP4753345B2 (en) 2011-08-24

Family

ID=35090967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079224A Expired - Lifetime JP4753345B2 (en) 2004-03-18 2004-03-18 Polarization inversion formation method

Country Status (1)

Country Link
JP (1) JP4753345B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553873B2 (en) * 2006-06-28 2010-09-29 日本電信電話株式会社 Method for producing periodically poled structure
JP2008185892A (en) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd Polarization inversion method and device of ferroelectric substrate
JP4709864B2 (en) * 2008-02-15 2011-06-29 Nttエレクトロニクス株式会社 Thin film substrate for wavelength conversion element and waveguide for wavelength conversion element
JP2010019994A (en) * 2008-07-09 2010-01-28 Fuji Electric Holdings Co Ltd Method of forming polarization reversal area, method of manufacturing pseudo phase matching element and pseudo phase matching element
JP5300664B2 (en) * 2008-10-30 2013-09-25 日本碍子株式会社 Method for manufacturing polarization reversal part
JP2010107731A (en) * 2008-10-30 2010-05-13 Ngk Insulators Ltd Ferroelectric bulk element
CN115116829B (en) * 2022-08-29 2022-11-22 中北大学 Method for preparing lithium niobate single crystal film domain wall enhanced force electric coupling response device

Also Published As

Publication number Publication date
JP2005266363A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US8293543B2 (en) Method for forming polarization reversal
Mizuuchi et al. Harmonic blue light generation in bulk periodically poled LiTaO3
US7373065B2 (en) Optical waveguide substrate and harmonics generating device
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
JP3109109B2 (en) Method of manufacturing optical device having periodic domain inversion structure
EP1566689B1 (en) Polarization reversal structure constructing method
JP4753345B2 (en) Polarization inversion formation method
US20100288983A1 (en) Process for poling a ferroelectric material doped with a metal
JP4827108B2 (en) Polarization inversion formation method
US7864409B2 (en) Fabrication method for quasi-phase-matched waveguides
JP3277515B2 (en) Polarization reversal control method
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
JPH05210132A (en) Polarization control method for lithium niobate and lithium tantalate and production of optical waveguide device by this method and optical waveguide device
US7261778B2 (en) Method of producing quasi phase-matching crystal and quasi phase-matching crystal
JP2004246332A (en) Method of forming polarity inversion structure and optical element having polarity inversion structure
JP4587366B2 (en) Polarization inversion formation method
JP2001330866A (en) Method for manufacturing optical wavelength conversion element
JP4764964B2 (en) Method for forming minute periodic polarization reversal structure and minute periodic polarization reversal structure
CN107219646A (en) A kind of high-performance straight wave guide type electro-optic phase modulator and preparation method thereof
JP2007308344A (en) Method for etching area having negatively polarized face in fluoride ferroelectric single crystal, and method for judging polarized state of fluoride ferroelectric single crystal using it
JP3991107B2 (en) Polarization reversal method and optical wavelength conversion device by controlling the order of lattice points
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
Grilli et al. Investigation on overpoled lithium niobate patterned crystal
Minakata et al. The Nonlinear Optical Devices by Using Nano-domain Engineering
Yamamoto et al. Novel polarization reversal technique using liquid electrodes and LiNbO3 substrates with patterned grooves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term