JP4753189B2 - Detector for HF band magnetic resonance apparatus - Google Patents

Detector for HF band magnetic resonance apparatus Download PDF

Info

Publication number
JP4753189B2
JP4753189B2 JP2008064884A JP2008064884A JP4753189B2 JP 4753189 B2 JP4753189 B2 JP 4753189B2 JP 2008064884 A JP2008064884 A JP 2008064884A JP 2008064884 A JP2008064884 A JP 2008064884A JP 4753189 B2 JP4753189 B2 JP 4753189B2
Authority
JP
Japan
Prior art keywords
magnetic resonance
detector
oscillation
band magnetic
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008064884A
Other languages
Japanese (ja)
Other versions
JP2009192514A (en
Inventor
悦夫 伴
Original Assignee
悦夫 伴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悦夫 伴 filed Critical 悦夫 伴
Priority to JP2008064884A priority Critical patent/JP4753189B2/en
Publication of JP2009192514A publication Critical patent/JP2009192514A/en
Application granted granted Critical
Publication of JP4753189B2 publication Critical patent/JP4753189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は連続波HF帯磁気共鳴装置用検出器に関わる。  The present invention relates to a detector for a continuous wave HF band magnetic resonance apparatus.

凝縮体の核磁気共鳴、NMRが第二次大戦直後にPurcell、Blochのグループより報告された。数年の間に、基本的な問題が理論、実験両面で解明された。電子スピン共鳴ESRも同様である。技術の進歩は分子構造を決定する化学研究の要求に沿ったものであった。
特願 2007−327998
Nuclear magnetic resonance and NMR of the condensate were reported by the Purcell and Bloch groups immediately after the Second World War. Over the course of several years, basic problems were solved both theoretically and experimentally. The same applies to electron spin resonance ESR. Advances in technology were in line with chemical research requirements to determine molecular structure.
Japanese Patent Application No. 2007-327998

現象発見の初期に開発された上記自励LC発振器は真空管の陰極結合カスコード接続を用いているが、技術の進歩に伴い、バイポーラトランジスタ、電界効果トランジスタ化された回路が開発された。また変調された低周波信号用の増幅器、発振レベル測定用の高周波増幅器には集積回路も使用されるようになった。上記真空管を用いた自励LC発振器を用いた検出器は初期には分光器としても使用されたが、連続波法は測定に長時間を要するので、分光器としては程へずしてパルス法が開発され、その普及により、現在では上記自励LC発振器を用いた検出器は磁場測定器、磁場安定器等の用途に限定されている。上記限定された用途においては、試料の種類、検出器の動作パラメータはこれらの目的に最も適するように選ばれ固定される。また使用される試料は密封される。
R.V.Pound and W.D.Knight,Rev.sci.Instrum.21,219,1950. J.D.Idoine and J.R.Brandenberger,Rev.sci.Instrum.42,715,1971.
The self-excited LC oscillator developed at the beginning of the phenomenon discovery uses a cathode-coupled cascode connection of a vacuum tube, but with the progress of technology, a bipolar transistor and a field effect transistor circuit have been developed. Also, integrated circuits have come to be used for modulated low-frequency signal amplifiers and high-frequency amplifiers for measuring oscillation levels. The detector using a self-excited LC oscillator using the above vacuum tube was also used as a spectroscope at the beginning, but the continuous wave method requires a long time for measurement, so it was not possible for the spectroscope to be completed. Due to its widespread use, detectors using the self-excited LC oscillator are now limited to applications such as magnetic field measuring instruments and magnetic field stabilizers. In the limited applications described above, the sample type and detector operating parameters are selected and fixed to best suit these purposes. The sample used is also sealed.
R. V. Pound and W.C. D. Knight, Rev. sci. Instrum. 21, 219, 1950. J. et al. D. Idine and J.M. R. Brandenberger, Rev. sci. Instrum. 42,715,1971.

しかしながら、磁気共鳴現象観測法としての連続波法は固有の利点を有し、特にHF帯での電子スピン共鳴現象観測には、特殊で高価な電磁石を必要とせず、検出器も高度な技術を必要としないので、性能及び機能は限定されるとしても、安価で汎用性のある機器の構成が容易である(上記特許文献1)。そのためには装置全体は試料の性質を調べることを目的とするように構成、設計されなければならない。このような連続波HF帯磁気共鳴装置用の自励LC発振器は、微少なレベルにおいて安定に作動すること、発振のダイナミックレンジが広いこと、広い範囲で周波数が連続可変なことが求められる。本発明は高性能が実証されている上記非特許文献2の回路に準拠し、上記の要求を満たす連続波HF帯磁気共鳴装置用検出器を提供する。  However, the continuous wave method as a magnetic resonance phenomenon observation method has an inherent advantage. In particular, observation of an electron spin resonance phenomenon in the HF band does not require a special and expensive electromagnet, and the detector has advanced technology. Since it is not necessary, the configuration of an inexpensive and versatile device is easy even if the performance and function are limited (Patent Document 1). For this purpose, the entire apparatus must be constructed and designed to investigate the properties of the sample. Such a self-excited LC oscillator for a continuous wave HF band magnetic resonance apparatus is required to operate stably at a minute level, to have a wide oscillation dynamic range, and to have a continuously variable frequency over a wide range. The present invention provides a detector for a continuous wave HF band magnetic resonance apparatus that conforms to the circuit of Non-Patent Document 2 that has been proven to have high performance and satisfies the above requirements.

本発明の課題は、周波数のみでなく、発振レベルも外部制御電圧によって微少な値より大きな値までスムースに変えられるような発振回路および周辺回路を備えたHF帯磁気共鳴装置用検出器を得ることである。  An object of the present invention is to obtain a detector for an HF band magnetic resonance apparatus having an oscillation circuit and a peripheral circuit in which not only the frequency but also the oscillation level can be smoothly changed to a value larger than a minute value by an external control voltage. It is.

上記のように良好な性能が示されている上記非特許文献2の真空管と同様な特性をもつ高周波用電界効果トランジスタを増幅回路に用い、発振レベルを設定する共通ソース抵抗の可変部分を同様な特性をもつ高周波用電界効果トランジスタに換え、そのドレイン−ソース間抵抗の抵抗値を外部制御電圧によって制御、設定する。本発明の実施により、上記課題を解決する検出器の製作が可能となり、連続波HF帯磁気共鳴装置が実現する。  A high-frequency field effect transistor having the same characteristics as the vacuum tube of Non-Patent Document 2 showing good performance as described above is used for the amplifier circuit, and the variable portion of the common source resistance for setting the oscillation level is the same. Instead of a high-frequency field effect transistor having characteristics, the resistance value of the drain-source resistance is controlled and set by an external control voltage. By implementing the present invention, it is possible to manufacture a detector that solves the above problems, and a continuous wave HF band magnetic resonance apparatus is realized.

本発明による回路の基本図を図1に示す。本図は回路動作のシミュレーションを行うためのもので、電源のデカップリング、外部制御電圧に対するフィルタリング回路は省略してある。図においてJ3が上記の抵抗値をゲート電圧によって外部より設定、制御する高周波用電界効果トランジスタである。高周波発振に関わる回路部分は能動素子J1、J2、J3と、それらに接続される受動素子R1、R2、R3、C2、C3,C4,D1、L1である。周波数を決定する共振回路はQが有限なインダクタL1とキャパシタC4、可変容量ダイオードD1の容量の直列容量との並列共振回路である。  A basic diagram of a circuit according to the invention is shown in FIG. This figure is for simulating circuit operation, and power supply decoupling and filtering circuit for external control voltage are omitted. In the figure, J3 is a high-frequency field effect transistor for setting and controlling the resistance value from the outside by a gate voltage. Circuit portions related to high frequency oscillation are active elements J1, J2, and J3 and passive elements R1, R2, R3, C2, C3, C4, D1, and L1 connected thereto. The resonance circuit that determines the frequency is a parallel resonance circuit of an inductor L1 having a finite Q, a capacitor C4, and a series capacitance of the capacitance of the variable capacitance diode D1.

その他の回路部分は上記自励LC発振器と組み合わせて検出器ユニットを構成する回路で、J6,J7を含む回路部分は発振周波数を計測するカウンタ入力レベルを得るための高周波増幅器である。J4,J5を含む回路部分はキャパシタC3と組み合わせてJ2のドレインで検波される微弱な磁気共鳴信号を増幅する前置低周波増幅器である。V4は可変容量ダイオードD1に印加する外部制御電圧、V2は可変抵抗器J3のゲートに印加する外部制御電圧である。外部への接続のためのコネクタは本図には含まれていない。  The other circuit part is a circuit constituting a detector unit in combination with the self-excited LC oscillator, and the circuit part including J6 and J7 is a high-frequency amplifier for obtaining a counter input level for measuring the oscillation frequency. The circuit portion including J4 and J5 is a pre-low frequency amplifier that amplifies a weak magnetic resonance signal detected at the drain of J2 in combination with the capacitor C3. V4 is an external control voltage applied to the variable capacitance diode D1, and V2 is an external control voltage applied to the gate of the variable resistor J3. The connector for external connection is not included in this figure.

図1のシミュレーション結果の一部を図2aに示す。波形は共振回路端の電圧である。(1)は発振が停止するレベルの直前で発振レベルは15.9mVpp、制御電圧は−1.94Vである。(2)は高周波増幅器の出力が飽和する直前で発振レベルは、1.04Vpp、制御電圧は−1.84Vである。周波数は約17MHzである。L1=4μH、共振回路の直列容量C4=100pFから逆算すると可変容量ダイオードの容量は約27pFである。A part of the simulation result of FIG. 1 is shown in FIG. 2a. The waveform is the voltage at the end of the resonant circuit. (1) is just before the level at which oscillation stops, the oscillation level is 15.9 mV pp , and the control voltage is -1.94 V. (2) is immediately before the output of the high frequency amplifier is saturated, the oscillation level is 1.04 V pp , and the control voltage is −1.84 V. The frequency is about 17 MHz. Back-calculating from L1 = 4 μH and series capacitance C4 = 100 pF of the resonant circuit, the capacitance of the variable capacitance diode is about 27 pF.

なお本図の回路の能動素子、受動素子の品種、定数は性能の最適化を行ったものではないが、概ね妥当な結果であり、検出器に要求される基本的な動作、性能を有していることが確認された。実機の製作においては、入手性の制約から,汎用的なものを使っている。  Note that the active element and passive element types and constants in the circuit in this figure are not optimized performance, but are generally valid results and have the basic operation and performance required for the detector. It was confirmed that In the production of actual machines, general-purpose ones are used due to availability constraints.

以上、シミュレーションの一具体例を説明したが本発明の回路素子の品種、定数などは、それらの機能が上記説明のように有機的に結合されていれば、適宜に選定してよい。又それらの一部を集積回路化してもよい。いずれを択ぶかは要求される仕様による技術的、経済的な理由による。  Although a specific example of the simulation has been described above, the type, constant, and the like of the circuit element of the present invention may be appropriately selected as long as their functions are organically combined as described above. Some of them may be integrated. The choice is based on technical and economic reasons according to the required specifications.

図2bに本発明により設計、製作した実機での実測結果の一部を示す。波形は高周波増幅器の出力端の電圧である。(1)は発振が停止するレベルの直前で高周波増幅器の出力端において高周波レベルは40mVpp、制御電圧は−1.15Vである。(2)は出力が飽和する直前でレベルは417mVpp、制御電圧は−0.5Vである。シミュレーションによる変換率を用いて共振回路端の電圧に換算すると、上記のレベルは、それぞれ4.4mVppと49.4mVppになる。周波数はシミュレーションと同じ約17MHzにセットした。上記のような理由により使用しているデバイスが違うため、シミュレーションとは異なる点があるが、発振動作と高周波レベルのスムースな可変性が確認された。FIG. 2b shows a part of the actual measurement result of an actual machine designed and manufactured according to the present invention. The waveform is the voltage at the output end of the high frequency amplifier. (1) is just before the level at which the oscillation stops, the high frequency level is 40 mV pp, and the control voltage is −1.15 V at the output end of the high frequency amplifier. (2) is just before the output is saturated and the level is 417 mV pp and the control voltage is -0.5V. When using a conversion rate simulated converted to the voltage of the resonant circuit ends, the above level, respectively to 4.4MV pp and 49.4mV pp. The frequency was set to about 17 MHz, the same as in the simulation. Although the device used is different for the reasons described above, there is a difference from the simulation, but the oscillation operation and smooth variability of the high frequency level were confirmed.

本発明による上記自励LC発振器を用いた検出器において周波数安定性、発振レベル安定性、発振レベルのダイナミックレンジ、雑音レベルなど連続波HF帯磁気共鳴装置用検出器として実用し得る機能、性能を有することが確認された。図3aに24MHzでの陽子核磁気共鳴の観測例を示す。試料は大島椿油である。移動平均化は行っていない。図3bに17MHzでの電子スピン共鳴の観測例を示す。試料はDPPHの微粉末である。本例では上記特許文献1に示したスプリアス補正移動平均化を行っている。試料管の内直径はいずれも4mmである。  The detector using the self-excited LC oscillator according to the present invention has functions and performances that can be practically used as a detector for a continuous wave HF band magnetic resonance apparatus such as frequency stability, oscillation level stability, dynamic range of oscillation level, and noise level. It was confirmed to have. FIG. 3a shows an example of observation of proton nuclear magnetic resonance at 24 MHz. The sample is Oshima camellia oil. Moving average is not performed. FIG. 3b shows an example of observation of electron spin resonance at 17 MHz. The sample is a fine powder of DPPH. In this example, the spurious correction moving average shown in Patent Document 1 is performed. The inner diameter of each sample tube is 4 mm.

本発明の回路の基本図である。It is a basic diagram of the circuit of the present invention. 図1の回路のシミュレーション結果である。It is a simulation result of the circuit of FIG. 実機の実測結果である。It is an actual measurement result of the actual machine. 核磁気共鳴の観測例である。It is an example of observation of nuclear magnetic resonance. 電子スピン共鳴の観測例である。It is an example of observation of electron spin resonance.

符号の説明Explanation of symbols

図1において
J 高周波用電界効果トランジスタ
D 可変容量ダイオード
L インダクタ
R 抵抗器
C キャパシタ
In FIG. 1, J field effect transistor for high frequency D variable capacitance diode L inductor R resistor C capacitor

Claims (3)

ドレイン接地増幅器とゲート接地増幅器をカスコード接続し、それらの共通ソース抵抗の可変部分を高周波用電界効果トランジスタに換え、上記高周波用電界効果トランジスタのゲートバイアスを外部制御電圧によって変えることによって、発振レベルを設定する連続波HF帯磁気共鳴装置検出器用自励LC発振器  The grounded drain amplifier and the grounded gate amplifier are connected in cascode, the variable part of their common source resistance is changed to a high frequency field effect transistor, and the gate bias of the high frequency field effect transistor is changed by an external control voltage, thereby changing the oscillation level. Set self-excited LC oscillator for continuous wave HF band magnetic resonance detector 請求項1の上記自励LC発振器に磁気共鳴信号増幅用低周波増幅器、発振周波数の計測のための高周波増幅器を付加した連続波HF帯磁気共鳴装置用検出器  A detector for a continuous wave HF band magnetic resonance apparatus, wherein the self-excited LC oscillator according to claim 1 is added with a low frequency amplifier for amplifying a magnetic resonance signal and a high frequency amplifier for measuring an oscillation frequency. 請求項2の上記連続波HF帯磁気共鳴装置用検出器において発振周波数、発振レベルをCPUによって制御する連続波HF帯磁気共鳴装置用検出器  The detector for continuous wave HF band magnetic resonance apparatus according to claim 2, wherein the oscillation frequency and oscillation level are controlled by a CPU.
JP2008064884A 2008-02-18 2008-02-18 Detector for HF band magnetic resonance apparatus Active JP4753189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064884A JP4753189B2 (en) 2008-02-18 2008-02-18 Detector for HF band magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064884A JP4753189B2 (en) 2008-02-18 2008-02-18 Detector for HF band magnetic resonance apparatus

Publications (2)

Publication Number Publication Date
JP2009192514A JP2009192514A (en) 2009-08-27
JP4753189B2 true JP4753189B2 (en) 2011-08-24

Family

ID=41074644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064884A Active JP4753189B2 (en) 2008-02-18 2008-02-18 Detector for HF band magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JP4753189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362964B2 (en) * 2014-08-20 2018-07-25 国立大学法人金沢大学 Electron spin resonance measuring apparatus, semiconductor device, and electron spin resonance measuring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164601A (en) * 1986-12-26 1988-07-08 Hitachi Ltd Oscillator
JPS63187701A (en) * 1987-01-29 1988-08-03 A T R Koudenpa Tsushin Kenkyusho:Kk Microwave line converter
JPH118515A (en) * 1997-06-18 1999-01-12 Murata Mfg Co Ltd Frequency conversion device
JP3806078B2 (en) * 2002-09-26 2006-08-09 株式会社東芝 Voltage-controlled oscillator and wireless communication apparatus using the same

Also Published As

Publication number Publication date
JP2009192514A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
Seok et al. A low-power wireless multichannel gas sensing system based on a capacitive micromachined ultrasonic transducer (CMUT) array
US20140354261A1 (en) Method, circuit and integrated circuit for detecting resonance frequency
Kar et al. Tunable square-wave generator for integrated sensor applications
JP5889954B2 (en) Transistor-based micrometer or nanometer resonator
Kumar et al. Single active element-based tunable square/triangular wave generator with grounded passive components
De Marcellis et al. A new single-chip analog lock-in amplifier with automatic phase and frequency tuning for physical/chemical noisy phenomena detection
CN107421524B (en) Quartz crystal oscillation drive circuit and monolithic integrated circuit thereof
JP4753189B2 (en) Detector for HF band magnetic resonance apparatus
JP2012105248A5 (en)
Abuelma’ati Identification of a class of two CFOA-based sinusoidal RC oscillators
Yan et al. An energy-efficient reconfigurable readout circuit for resonant sensors based on ring-down measurement
CN103063949B (en) A kind of capacitor mismatch detection circuit and method
CN106767362A (en) A kind of Transform Circuit for Displacement Capacitance Sensor
CN209840953U (en) Leading device of taking care of eddy current sensor that low temperature floats
CN105388315B (en) The drive control circuit of angular-rate sensor
CN106685605A (en) Method for detecting weak signal frequency value in background of strong noise by chaotic synchronization
CN104184415A (en) Voltage controlled oscillator
US20160294324A1 (en) Oscillator for high-frequency signal generation
Enache et al. Voltage Controlled Oscillator for Small-Signal Capacitance Sensing
US20230080817A1 (en) Quantum device
Sotner et al. Tunable oscillator derived from Colpitts structure with simply controllable condition of oscillation and synthetic inductor based on current amplifier and voltage differencing transconductance amplifier
Osadchuk et al. The mathematical model of frequency gas transducer based on transistor structure with NDR for diagnosis of helicobacter pylori strains
Benakaprasad et al. RF and microwave oscillator design using p-HEMT transistor
CN106656046A (en) Capacitor-resistor oscillator circuit with enabling function
Kauth et al. On-chip mass sensing at the physical limits of nanoelectromechanical systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250