JP4752759B2 - 光学活性フルオロ化合物の製造方法 - Google Patents

光学活性フルオロ化合物の製造方法 Download PDF

Info

Publication number
JP4752759B2
JP4752759B2 JP2006510684A JP2006510684A JP4752759B2 JP 4752759 B2 JP4752759 B2 JP 4752759B2 JP 2006510684 A JP2006510684 A JP 2006510684A JP 2006510684 A JP2006510684 A JP 2006510684A JP 4752759 B2 JP4752759 B2 JP 4752759B2
Authority
JP
Japan
Prior art keywords
optically active
general formula
fluoro compound
diol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006510684A
Other languages
English (en)
Other versions
JPWO2005085171A1 (ja
Inventor
正治 原
彊 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006510684A priority Critical patent/JP4752759B2/ja
Publication of JPWO2005085171A1 publication Critical patent/JPWO2005085171A1/ja
Application granted granted Critical
Publication of JP4752759B2 publication Critical patent/JP4752759B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • C07C29/124Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids of halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/18Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/18Radicals substituted by singly bound oxygen or sulfur atoms
    • C07D317/22Radicals substituted by singly bound oxygen or sulfur atoms etherified
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/18Radicals substituted by singly bound oxygen or sulfur atoms
    • C07D317/24Radicals substituted by singly bound oxygen or sulfur atoms esterified
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

本発明は光学活性フルオロ化合物の製造方法に関し、詳しくは、光学活性ジオール類への保護基の導入による選択的モノフルオロ化合物の製造方法、及び該モノフルオロ化合物から得られる光学活性フルオロアルコールの製造方法に関する。光学活性フルオロ化合物、例えば、光学活性フルオロアルコール(即ち、フルオロヒドリン)は、医薬、農薬の他、機能化学品の原料として有用な化合物である。
フルオロアルコールは、エポキシ化合物にHF、HF/ピリジン、KHF2等を作用させることにより容易に合成できることが知られている(非特許文献1,2)。しかし、フッ素原子が不斉炭素原子に結合している光学活性フルオアロアルコールを得ようとした場合、上記方法では特定の光学異性体を選択的に合成することは難しく、異性体混合物となる。その中から目的とする光学異性体を分離するには、光学分割等の繁雑な精製操作を必要とし、最終的に光学純度の高い製品を高収率で得ることは難しい。
有機化合物の特定部位にフッ素原子を導入する方法として、フッ素化剤を利用する方法が知られている。フッ素化剤としては、形式上フッ素カチオンを発生する求電子的フッ素化剤とフッ素アニオンを発生する求核的フッ素化剤の二つに大別される。これらの内、求核的フッ素化剤としてはHFをはじめとして様々な化合物が知られているが、中でもジエチルアミノ三フッ化硫黄(DAST)、2,2−ジフルオロ−1,3−ジメチルイミダゾリジン(DFI)等はアルコールと反応させた場合、緩和な条件で酸素原子をフッ素原子で求核置換できることが知られている(非特許文献3、4、5)。
そこで、光学活性ジオール類を原料として、これらのフッ素化剤を作用させることにより光学活性フルオロアルコールを合成する方法が考えられるが、ジオールの水酸基を一つだけ選択的にフッ素化するのは難しく、水酸基が全てフッ素化されたジフルオロ化物等の目的物以外のものが生成しやすいため適当な方法とは言えない(非特許文献6、特許文献1)。
従って、光学活性フルオロアルコールを得るために、ジオール類を選択的にフッ素化する場合は一方の水酸基の反応のみを促進する必要がある。しかし、選択的な保護基の導入も困難な場合が多いのが現状である。この様に従来はジオール類の水酸基に対し、保護基の導入と一方の水酸基のみを選択的にフッ素化する技術は知られておらず、光学活性フルオロアルコールを光学的に高純度、且つ高収率で得ることは極めて困難であった。
Tetrahedron Letters,vol.31,No.49,1990, pp7209−7212 Journal of Fluorine Chemistry, vol.16, 1980, pp540−541 Journal of Organic Chemistry, vol.40, No.5, 1975, pp574−578 ファインケミカル,vol.31, No.10(2002)pp5−12 化学と工業,第55巻,第3号(2002)pp259−262 Journal of the Chemical Society Perkin Transactions 2, 4, 1995, pp861−866. 特開平11-181022号公報
本発明の目的は、光学活性ジオール類から選択的に光学活性フルオロアルコールを製造できる光学活性フルオロ化合物を、光学的に高純度かつ高収率で、しかも簡便に製造する方法を提供することにある。
本発明者らは上記課題を解決するため鋭意検討を重ねた結果、光学活性ジオール類を原料とし、特定のフルオロアミンを用いて、熱的に、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下で反応させることにより、目的とする光学活性フルオロ化合物が高選択的に生成し、上記目的が達成されることを見出し、本発明を完成するに到った。
本発明の方法によれば、フルオロアミンと光学活性ジオール類がSN2機構で反応することにより、原料の光学活性ジオール類の一方の水酸基のみが選択的にフッ素置換され、かつ立体配置が反転した構造の光学活性フルオロ化合物を得ることができる。光学活性ジオール類のもう一方の水酸基はフルオロアミンとの反応によりエステル結合を形成するので、保護基を導入する目的に適っている。さらに必要に応じて得られた光学活性フルオロ化合物に対し、加水分解やエステル交換等の公知の方法を施すことにより、容易に光学活性フルオロアルコールを得ることが出来る。
即ち、本発明は以下の光学活性フルオロ化合物及び光学活性フルオロアルコールの製造方法を提供する。
1.一般式(1)で表されるフルオロアミンと一般式(2)で表される光学活性ジオールを反応させることを特徴とする、一般式(3)で表される光学活性フルオロ化合物の製造方法。
Figure 0004752759
Figure 0004752759
Figure 0004752759
(式中、一般式(1)におけるR0、R1及びR2は、水素原子、若しくは置換基を有することのあるアルキル基又はアリール基であり、互いに同一でも異なっていてもよい。また、R0、R1、R2の二つ以上が結合して環を形成していてもよい。一般式(2)及び(3)におけるR3、R4、R5、及びR6は水素原子、若しくは置換基を有することのあるアルキル基又はアリール基であり、R3とR4及びR5とR6は互いに異なり、R3とR4が結合している炭素原子及び、R3とR4とが結合している炭素原子は何れも不斉炭素となっている。nは0〜3の整数である。)
2.一般式(1)で表されるフルオロアミンのR0が3−メチルフェニル基又は2−メトキシフェニル基であり、R1及びR2がエチル基である、上記1に記載の光学活性フルオロ化合物の製造方法。
3.反応を、熱的に、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下で行う、上記1又は2に記載の光学活性フルオロ化合物の製造方法。
4.上記1〜3の何れかに記載した方法によって製造された光学活性フルオロ化合物を加水分解することを特徴とする、一般式(4)で表される光学活性フルオロアルコールの製造方法。
Figure 0004752759
(式中、一般式(4)におけるR0、R3、R4、R5及びR6は水素原子、若しくは置換基を有することのあるアルキル基又はアリール基であり、R3とR4及びR5とR6は互いに異なり、R3とR4が結合している炭素原子及び、R3とR4とが結合している炭素原子は何れも不斉炭素となっている。nは0〜3の整数である。)
本発明では、一般式(3)で表される光学活性フルオロ化合物は、一般式(1)で示されるフルオロアミンと一般式(2)で表される光学活性ジオール類を反応させることによって得られ、一般式(4)の光学活性フルオロアルコールは、得られた光学活性フルオロ化合物を加水分解することにより得られる。
本発明の一般式(1)〜(4)におけるR0、R1、R2、R3、R4、R5及びR6は、水素原子、若しくは置換基を有することのあるアルキル基又はアリール基である。このアルキル基としては、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。アリール基の置換基としては、アルキル基やアルコキシ基などが挙げられ、アリール基としては、フェニル基、メチルフェニル基、メトキシフェニル基などが挙げられる。
本発明の光学活性フルオロ化合物の原料として用いられる光学活性ジオール類は、一般式(2)で示される。
Figure 0004752759
一般式(2)において、R3とR4及びR5とR6は互いに異なり、R3とR4が結合する炭素及び、R5とR6が結合する炭素は不斉炭素となっている。
一般式(2)で表される光学活性ジオール類の具体例としては、(2R,3R)−ブタン−2,3−ジオール、(2S,3S)−ブタン−2,3−ジオール、(2R,4R)−ペンタン−2,4−ジオール、(2S,4S)−ペンタン−2,4−ジオール、(1R,2R)−ジフェニルエタン−1,2−ジオール、(1S,2S)−ジフェニルエタン−1,2−ジオールが挙げられる。また、糖類の水酸基に保護基を付けてジオール構造にした化合物、例えば1,2;5,6−O−ジシクロヘキシリデン−D−マンニトールなども用いることができる。
一般式(1)で示されるフルオロアミンとしては、N,N−ジメチル−α,α−ジフルオロメチルアミン、N,N−ジエチル−α,α−ジフルオロメチルアミン、N,N−ジ(n-プロピル)−α,α−ジフルオロメチルアミン、N,N−ジ(イソプロピル)−α,α−ジフルオロメチルアミン、N,N−ジ(n−ブチル)−α,α−ジフルオロメチルアミン、N,N−ジメチル−α,α−ジフルオロエチルアミン、N,N−ジメチル−α,α−ジフルオロプロピルアミン、N,N−ジメチルペンタフルオロエチルアミン、N,N−ジメチルシアノ−α,α−ジフルオロエチルアミン、N,N−ジメチル−α,α−ジフルオロ−α−シクロプロピルアミン、N,N−ジエチル−α,α−ジフルオロ(3−メチル)ベンジルアミン、及びN,N−ジエチル−α,α−ジフルオロ(2−メトキシ)ベンジルアミン等を挙げることができる。これらの化合物は、例えば特開2003−64034号公報に記載の方法で合成することができる。
一般式(1)で示されるフルオロアミンと一般式(2)で示される光学活性ジオール類との反応は、回分式、半回分式、或いは連続方式での実施が可能であり、通常の熱反応、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下に反応を行うことが出来る。反応温度は、通常200℃以下で実施することが好ましく、室温から150℃の温度範囲が特に好ましい。また振動数が0.3から300GHzの範囲のマイクロ波、或いは1GHz以下又は30から300GHzのマイクロ波近傍の電磁波を照射して反応を行うことができる。該電磁波は、連続的、或いは断続的に温度を制御しながら行うなどして照射することができる。
フルオロアミンの使用量は、対象となる基質(光学活性ジオール類)の水酸基1モルに対して1モル以上を用いることが好ましいが、過剰、或いは化学量論的に不足のまま反応させても良い。
反応時間は、熱反応では10分から360分の範囲が好ましい。マイクロ波及び/又はマイクロ波近傍の電磁波の照射下に反応を行う場合は、0.1分から180分の範囲が好ましいが、更に長時間照射することも出来る。
該フッ素化反応を進行させる上で溶媒を用いる必要は無いが、撹拌を充分行うためや温度上昇を防ぐために溶媒を用いても良い。好ましい溶媒は、基質、フルオロアミンや生成物に対して不活性な脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、芳香族ハロゲン化炭化水素、ニトリル類、エーテル類等であり、適宜これらから選択し、必要に応じてこれらを組み合わせて用いることも出来る。
上記の方法によって得られる光学活性フルオロ化合物には、一般式(3)に示すようなエステル結合を含んでいる。従って、該光学活性フルオロ化合物を加水分解反応によって容易に前述の一般式(4)で示される光学活性フルオロアルコールを得ることができる。一般式(3)に示される光学活性フルオロ化合物を加水分解反応する方法としては、公知の方法、例えばエステル交換反応や酸、アルカリ又は生体触媒等を用いて反応を行うことができる。
以下、実施例によって本発明を更に詳細に説明する。尚、本発明はこれらの例によって限定されるものではない。
なお、実施例に先立って行った、一般式(1)で表されるフルオロアミンの製造例を参考例として示す。
参考例1(N,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミンの合成)
a)N,N−ジエチル−α−クロロメタトルイルアミジウムクロリドの合成
三つ口フラスコ(300mL)に、窒素雰囲気下、オキサリルクロリド25g(0.197mol)を含む四塩化炭素溶液125gを仕込んだ。フラスコを氷冷し、撹拌しながらN,N−ジメチルメタトルアミド45g(0.236mol)を20分かけて滴下した。滴下終了後、同温度で10分保持し、内容物温度を50℃とした後、一時間反応を行った。反応時にガス発生が観察され、その後白色の固体が析出した。得られた析出物を濾別し四塩化炭素、n−ヘキサンで洗浄後乾燥し、N,N−ジエチル−α−クロロメチトルイルアミジウムクロリド47.5gを得た(収率98%)。
b)N,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミンの合成
三つ口フラスコ(500mL)に、先に合成したN,N−ジエチル−α−クロロメタトルイルアミジウムクロリド25g(0.1mol)とスプレードライしたフッ化カリウム23.5g(0.4mol:森田化学品)、アセトニトリル250gを仕込み、窒素雰囲気下にアセトニトリルの還流温度で18時間反応を行った。反応終了後、室温まで冷却して濾過を行った。この濾液をエバポレーターで濃縮後蒸留によりN,N−ジエチル−α,α−ジフルオロ−(3−メチル)ベンジルアミン(「フッ素化剤A」と称す)13gを得た(収率60%)。
参考例2(N,N−ジエチル−α,α−ジフルオロ−(2−メトキシ)ベンジルアミンの合成)
a)2−メトキシ−N,N−ジエチルベンズアミドの合成
200mLの4つ口フラスコにジエチルアミン25.8g(0.352mol)のトルエン溶液(トルエン30.8g)を入れ、氷冷下で急激な発熱が起きないように2−メトキシ安息香酸クロリド20g(0.117mol)のトルエン溶液(トルエン10.0g)をゆっくり滴下した。全液加えた後、水でアミンの塩酸塩を抽出、除去した。得られたトルエン層をMgSO4で乾燥し、溶媒留去により2−メトキシ−N,N−ジエチルベンズアミド22.8gを得た(収率94%)。
b)N,N−ジエチル−α−クロロ−(2−メトキシ)フェニルアミジウムクロリドの合成
200mLの4つ口フラスコを窒素で置換し、オキサリルクロリドの45%四塩化炭素溶液(オキサリルクロリド:24.5g,0.193mol)を加え、室温、窒素雰囲気下、先に合成した2−メトキシ−N,N−ジエチルベンズアミド20.1g(0.0965mol)を滴下した(内温が5℃上昇)。滴下終了後53℃で5時間加熱撹拌すると、反応液は2層分離した。反応停止後溶媒を留去し、粘性液体を得た。グローブボックス中放置すると茶色固体が析出した(収量26.6g)。ヘキサンおよび四塩化炭素で洗浄後乾燥し、N,N−ジエチル−α−クロロ−(2−メトキシ)フェニルアミジウムクロリド21.4gを得た(収率80%)。
c)N,N−ジエチル−α,α−ジフルオロ−(2−メトキシ)ベンジルアミンの合成
グローブボックス中、100mLの三つ口フラスコに先に合成したN,N−ジエチル−α−クロロ−(2−メトキシ)フェニルアミジウムクロリド5.0g(0.018mol)、アセトニトリル50g、スプレードライしたフッ化カリウム4.4g(0.076mol:森田化学品)を仕込み、窒素雰囲気下、80℃で20時間反応させた。反応停止後、室温に戻し、グローブボックス中で濾過、洗浄した。得られた溶液をエバポレーターで濃縮後、蒸留によりN,N−ジエチル−α,α−ジフルオロ(2−メトキシ)ベンジルアミン(「フッ素化剤B」と称す)3.51gを得た(収率67%)。
以上、参考例で得られたフルオロアミンの熱安定性を、示差走査熱量計(DSC)及び暴走反応測定試験(ARC)により評価した。
フッ素化剤A及びフッ素化剤Bの測定結果とジエチルアミノ三フッ化硫黄(DAST)及び2,2,−ジフルオロ−1,3−ジメチルイミダゾリジン(DFI)の文献値(非特許文献4,5)を併せて第1表に記載した。
Figure 0004752759
第1表より、参考例で得られたフルオロアミン(フッ素化剤A,B)は従来のフッ素化剤と比較してDSC測定での発熱量が低く、ARC測定での発熱開始温度が高い等、熱的に格段に安定であることが分かる。
実施例1〔(2S,4S)−ペンタン−2,4−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(2S,4S)−ペンタン−2,4−ジオール(1mmol)、ジオキサン(1mL)、フッ素化剤A(1mmol)を入れ、良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ10分間マイクロ波を照射した。冷却後、更にフッ素化剤A(1mmol)を加え、再度マイクロ波を10分間照射した。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(2S,4R)−2−(3−メチルベンゾイルオキシ)−4−フルオロペンタンが収率78%、光学純度100%で得られた。
比較例1〔(2S,4S)−ペンタン−2,4−ジオールのフッ素化〕
実施例1においてフッ素化剤Aの代わりに2,2−ジフルオロ−1,3−ジメチルイミダゾリジン(DFI;1mmol)を加えてマイクロ波照射器(シャープ製、2.45GHz、500W)に入れマイクロ波の照射を始めたところ、暴走反応が起り、反応液が容器外に飛散したため反応を完結することは出来なかった。
実施例2〔(2R,4R)−ペンタン−2,4−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(2R,4R)−ペンタン−2,4−ジオール(1mmol)、ジグライム(1mL)、フッ素化剤A(2mmol)を入れ、100℃、1時間反応させた。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(2R,4S)−2−(3−メチルベンゾイルオキシ)−4−フルオロペンタンが収率65%、光学純度100%で得られた。
比較例2〔(2R,4R)−ペンタン−2,4−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(2R,4R)−ペンタン−2,4−ジオール(1mmol)、ジクロロメタン(1mL)を入れたものを氷冷し、窒素雰囲気下に撹拌しながら、フッ素化剤であるN,N−ジエチルアミノ三フッ化硫黄(DAST;1mmol)を滴下した。滴下終了後15分間反応を行った。反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的とする光学活性フルオロヒドリンは生成しておらず、2,4−ジフルオロペンタンのラセミ化合物が収率34%で得られた。
実施例3〔(1R,2R)−1,2−ジフェニルエタン−1,2−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(1R,2R)−1,2−ジフェニルエタン−1,2−ジオール(1mmol)、フッ素化剤A(2mmol)を入れ、140℃、1時間反応させた。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(1R,2S)−1,2−ジフェニル−1−(3−メチルベンゾイルオキシ)−2−フルオロエタンが収率83%、光学純度100%で得られた。
実施例4〔(1S,2S)−1,2−ジフェニルエタン−1,2−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(1S,2S)−1,2−ジフェニルエタン−1,2−ジオール(1mmol)、フッ素化剤B(2mmol)を入れ、140℃、1時間反応させた。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(1S,2R)−1,2−ジフェニル−1−(2−メトキシベンゾイルオキシ)−2−フルオロエタンが収率87%、光学純度100%で得られた。
実施例5〔(2R,3R)−ブタン−2,3−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(2R,3R)−ブタン−2,3−ジオール(1mmol)、ジグライム(1mL)、フッ素化剤A(2mmol)を入れ、100℃、3時間反応させた。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(2R,3S)−2−(3−メチルベンゾイルオキシ)−3−フルオロブタンが収率83%、光学純度100%で得られた。
実施例6〔(2S,3S)−ブタン−2,3−ジオールのフッ素化〕
テフロン(登録商標)PFA容器に(2S,3S)−ブタン−2,3−ジオール(1mmol)、ジグライム(1mL)、フッ素化剤B(2mmol)を入れ、100℃、3時間反応させた。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(2S,3R)−2−(2−メトキシベンゾイルオキシ)−3−フルオロブタンが収率78%、光学純度100%で得られた。
実施例7〔1,2;5,6−O−ジシクロヘキシリデン−D−マンニトールのフッ素化〕
テフロン(登録商標)PFA容器に1,2;5,6−O−ジシクロヘキシリデン−D−マンニトール(1mmol)、ノナン(1mL)、フッ素化剤A(2mmol)を入れ、良くかき混ぜた後、マイクロ波照射器(シャープ製、2.45GHz、500W)に入れ10分間マイクロ波を照射した。室温まで冷却した後、反応混合物を飽和炭酸水素ナトリウム水溶液にあけ、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である1,2;5,6−ジシクロヘキシリデン−3−デオキシ−3−フルオロ−4−(3−メチルベンゾイルオキシ)マンニトールが収率53%、光学純度100%で得られた。
実施例8〔(2S,4R)−2−(3−メチルベンゾイルオキシ)−4−フルオロペンタンの加水分解〕
実施例1の方法で得られた(2S,4R)−2−(3−メチルベンゾイルオキシ)−4−フルオロペンタン(1mmol)を35%塩酸(1mL)と混合し一晩撹拌した。反応生成液に水を加えた後、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である(2S,4R)−4−フルオロペンタン−2−オールが収率95%で得られた。
実施例9〔1,2;5,6−ジシクロヘキシリデン−3−デオキシ−3−フルオロ−4−(3−メチルベンゾイルオキシ)マンニトールの加水分解〕
実施例7の方法で得られた1,2;5,6−ジシクロヘキシリデン−3−デオキシ−3−フルオロ−4−(3−メチルベンゾイルオキシ)マンニトール(1mmol)を35%塩酸(1mL)と混合し一晩撹拌した。反応生成液に水を加えた後、エーテルで抽出した(40mL、3回)。硫酸マグネシウムで乾燥した後、濃縮、シリカゲルカラムクロマトで分離精製した。目的物である3−デオキシ−3−フルオロマンニトール[(2R,3R,4S,5R)−4−フルオロヘキサン−1,2,3,5,6−ペンタノール]が収率92%で得られた。
産業上の利用の可能性
本発明による、光学活性ジオール類と特定のフルオロアミンとを反応させる方法により、該ジオール類に保護基を選択的に導入した光学活性フルオロ化合物を、光学的に高純度で、かつ高収率でしかも簡便に製造することができる。
また、本発明によれば、該光学活性フルオロ化合物を加水分解することにより、医薬、農薬の他、機能化学品の原料として有用な光学活性フルオロアルコールを、光学的に高純度で、かつ高収率でしかも簡便に製造することができる。

Claims (4)

  1. 一般式(1)で表されるフルオロアミンと一般式(2)で表される光学活性ジオールを反応させることを特徴とする、一般式(3)で表される光学活性フルオロ化合物の製造方法。
    Figure 0004752759
    Figure 0004752759
    Figure 0004752759
    (式中、一般式(1)及び(3)におけるR0 は2位又は3位に置換基を有することのあるベンゼン環であり、1及びR2炭素数が2のアルキル基であ
    一般式(2)及び(3)におけるR3、R4、R5、及びR6は水素原子、若しくは置換基を有することのあるアルキル基又はアリール基であり、R3とR4及びR5とR6は互いに異なり、R3とR4が結合している炭素原子及び、R3とR4とが結合している炭素原子は何れも不斉炭素となっている。nは0〜3の整数である。)
  2. 一般式(1)及び(3)における0が3−メチルフェニル基又は2−メトキシフェニル基であり、R1及びR2がエチル基である、請求項1に記載の光学活性フルオロ化合物の製造方法。
  3. 反応を、熱的に、若しくはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下で行う、請求項1又は2に記載の光学活性フルオロ化合物の製造方法。
  4. 請求項1〜3の何れかに記載した方法によって製造された光学活性フルオロ化合物を加水分解することを特徴とする、一般式(4)で表される光学活性フルオロアルコールの製造方法。
    Figure 0004752759
    (式中、一般式(4)におけるR3、R4、R5及びR6は水素原子、又は置換基を有することのあるアルキル基又はアリール基であり、R3とR4及びR5とR6は互いに異なり、R3とR4が結合している炭素原子及び、R3とR4とが結合している炭素原子は何れも不斉炭素となっている。nは0〜3の整数である。)
JP2006510684A 2004-03-04 2005-03-02 光学活性フルオロ化合物の製造方法 Expired - Fee Related JP4752759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510684A JP4752759B2 (ja) 2004-03-04 2005-03-02 光学活性フルオロ化合物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004061202 2004-03-04
JP2004061202 2004-03-04
JP2006510684A JP4752759B2 (ja) 2004-03-04 2005-03-02 光学活性フルオロ化合物の製造方法
PCT/JP2005/003480 WO2005085171A1 (ja) 2004-03-04 2005-03-02 光学活性フルオロ化合物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2005085171A1 JPWO2005085171A1 (ja) 2007-12-06
JP4752759B2 true JP4752759B2 (ja) 2011-08-17

Family

ID=34918047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510684A Expired - Fee Related JP4752759B2 (ja) 2004-03-04 2005-03-02 光学活性フルオロ化合物の製造方法

Country Status (5)

Country Link
US (1) US7307185B2 (ja)
EP (1) EP1721885A4 (ja)
JP (1) JP4752759B2 (ja)
CN (1) CN100473638C (ja)
WO (1) WO2005085171A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189467A3 (en) * 2002-12-04 2010-09-08 Mitsubishi Gas Chemical Company, Inc. Method of fluorination by microwaves
CN114539020B (zh) * 2022-01-17 2023-12-08 南京迈诺威医药科技有限公司 一种1,5-二溴-3,3-二氟戊烷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228927A (ja) * 1988-03-10 1989-09-12 Rikagaku Kenkyusho γ−フルオロアルコールおよびその製造法
JPH03184929A (ja) * 1989-12-15 1991-08-12 Kanto Chem Co Inc 光学活性フルオロアルコールおよびその製造方法
JPH04234333A (ja) * 1990-07-25 1992-08-24 Bayer Ag β−フルオロアルコールの製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181022A (ja) 1997-12-22 1999-07-06 Mitsui Chem Inc 含フルオロエチレン樹脂の製造方法
JP4894110B2 (ja) 2001-08-28 2012-03-14 三菱瓦斯化学株式会社 フッ素化合物及び該フッ素化合物からなるフッ素化剤
EP2189467A3 (en) * 2002-12-04 2010-09-08 Mitsubishi Gas Chemical Company, Inc. Method of fluorination by microwaves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228927A (ja) * 1988-03-10 1989-09-12 Rikagaku Kenkyusho γ−フルオロアルコールおよびその製造法
JPH03184929A (ja) * 1989-12-15 1991-08-12 Kanto Chem Co Inc 光学活性フルオロアルコールおよびその製造方法
JPH04234333A (ja) * 1990-07-25 1992-08-24 Bayer Ag β−フルオロアルコールの製造法

Also Published As

Publication number Publication date
JPWO2005085171A1 (ja) 2007-12-06
EP1721885A1 (en) 2006-11-15
EP1721885A4 (en) 2008-02-27
US20070191631A1 (en) 2007-08-16
US7307185B2 (en) 2007-12-11
CN1930109A (zh) 2007-03-14
CN100473638C (zh) 2009-04-01
WO2005085171A1 (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4752759B2 (ja) 光学活性フルオロ化合物の製造方法
Singh et al. Nucleophilic trifluoromethylation and difluorination of substituted aromatic aldehydes with Ruppert’s and Deoxofluor™ reagents
Nihei et al. Highly Stereoselective Synthesis of Fluoroalkene Dipeptides via the Novel Chromium (II)-Mediated Carbon–Fluorine Bond Cleavage/New Carbon–Carbon Bond Formation
JP2017530998A (ja) 1−(3,5−ジクロロフェニル)−2,2,2−トリフルオロ−エタノン及びその誘導体の製造方法
JP6675875B2 (ja) 含フッ素化合物の製造方法
JP4540197B2 (ja) (e)−3−メチル−2−シクロペンタデセノンの製造法
Fokina et al. Towards optically pure mono-and difluorinated amino acids: common methodology based on (R)-2, 3-O-isopropylideneglyceraldehyde
JP4518247B2 (ja) α,α−ジフルオロメチル化合物の製造方法
JP6488638B2 (ja) α−フルオロアルデヒド類等価体の製造方法
JP2867847B2 (ja) 5−メチレン−1,3−ジオキソラン−4−オン類の製造方法
JP3271887B2 (ja) アリルパーフルオロアルキルエーテルの製造法
JP2863175B2 (ja) trans又はcis構造のカロン酸セミアルデヒド誘導体のエナンチオ選択的製造方法
JP2791694B2 (ja) 分子中にフッ素原子を有する光学活性化合物
Kvı́cala et al. Synthesis of fluorinated amphiphiles by the reaction of protected hydroxy carbaldehyde with perfluorinated organomagnesium compounds
JPH0662872A (ja) 光学活性アルコールの製造法
JP4516831B2 (ja) シス−ジャスモンの製造方法
JP2771678B2 (ja) 含フッ素化合物およびその製造法
JP3777407B2 (ja) カルボン酸誘導体の製造法
JPS6222733A (ja) ω,ω′−ジクロロアルカンの製造法
JP2000026403A (ja) 硫化ペルフルオロアルキルアリ―ルの製造法および新規な硫化ペルフルオロアルキルアリ―ル
JPH0672987A (ja) メタンスルホニルフルオライド誘導体の製造方法
SU740784A1 (ru) Способ получени 2-галогенвинилоксиорганосиланов
JPS6251637A (ja) 2−メチレン−6,6−ジメチル又は5,6,6−トリメチルシクロヘキシルカルバルデヒドの製法
JPH06128247A (ja) 含フッ素ジオキソラン化合物の製造方法
KR100778032B1 (ko) 함불소알콕시실란 유도체의 제조방법

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees