JP4749554B2 - Wear resistant high toughness alloy, composite material using the same, and mechanical member - Google Patents

Wear resistant high toughness alloy, composite material using the same, and mechanical member Download PDF

Info

Publication number
JP4749554B2
JP4749554B2 JP2001012149A JP2001012149A JP4749554B2 JP 4749554 B2 JP4749554 B2 JP 4749554B2 JP 2001012149 A JP2001012149 A JP 2001012149A JP 2001012149 A JP2001012149 A JP 2001012149A JP 4749554 B2 JP4749554 B2 JP 4749554B2
Authority
JP
Japan
Prior art keywords
alloy
present
toughness
high toughness
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001012149A
Other languages
Japanese (ja)
Other versions
JP2002212659A5 (en
JP2002212659A (en
Inventor
間 周 平 本
代 貴 晴 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2001012149A priority Critical patent/JP4749554B2/en
Publication of JP2002212659A publication Critical patent/JP2002212659A/en
Publication of JP2002212659A5 publication Critical patent/JP2002212659A5/ja
Application granted granted Critical
Publication of JP4749554B2 publication Critical patent/JP4749554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は耐摩耗性および靭性に優れた耐摩耗性高靭性合金、並びに当該合金を用いた複合材料および機械部材に関する。
【0002】
【従来の技術】
射出成形機や押出成形機において樹脂を混練するシリンダ、バレル、スクリュなどの機械部材は高圧、高速で樹脂と接触するため、耐摩耗性、高強度が必要とされる。その一方で、これらの機械部材の製造工程における加工性を確保するため、硬度が高すぎないことおよび靱性が要求される。
【0003】
このため、これら機械部材としては、▲1▼Ni若しくはCo基の自溶合金、▲2▼Ni基複硼化物合金、▲3▼これら自溶合金およびNi基複硼化物合金にWCを分散させた合金を鉄鋼材料と複合化したものが最も一般的に使用されている。
【0004】
上記の▲1▼はNi−Cr−B−Si合金であり、溶射、肉盛りなど鋼材との複合化に多彩な方法を取ることができ、耐食、耐摩耗合金として鋼材表面の硬化材料に広く用いられている。
【0005】
上記の▲2▼はNi基金属結合相中にMoNiBなどの硬質相を分散させた合金であり、優れた強度、耐摩耗性を有し、機械部材として高い性能を示す。
【0006】
▲3▼は▲1▼、▲2▼に非常に高い硬度を示すWCを分散させた耐摩耗性に優れた合金であり、実際に使用されている。
【0007】
しかし、これらの合金は、耐摩耗性があるものについては、硬度が高く難削性であるため加工時間が長くなり、また、靭性が低いため加工中にエッジが欠ける等の問題が生じることもある。その一方で、靭性が高いものについては、比較的硬度が低く耐摩耗性が劣るものが多い。このように、靭性と耐摩耗性を併せ持った材料は得られていないのが現状である。
【0008】
上記▲2▼のNi基複硼化物合金の一例としては、本件出願人による特開平8−134569に開示されたものがある。ここでは、耐摩耗性に優れたNi−0.6〜3.2%B−0.5〜8%Si−5〜37%Mo合金を鋼材にライニングしたバレルが開示されており、このバレルはNi−B−Si−Mo合金が有する優れた耐摩耗性のため、相手摺動部材とのかじりもほとんど生じずに安定した射出を行えうことが可能である。しかし、ここに開示された合金は、例えばエッジ部が欠けたりして早期に使用不可能になり本来の高耐摩耗性を発揮できない場合もあり、靱性においてさらなる改良の余地がある。
【0009】
また、上記▲2▼のNi基複硼化物合金の他の例として、本件出願人による同時係属出願(本件出願時には未公開)である特願2000−224209に記載されたものがある。ここには、組成をNi−1.1〜2.5%B−4〜6.5%Si−8〜17%Moとして靱性を向上させたものが記載されているが、この合金は靭性向上の代償として硬度および耐摩耗性が若干劣るため、時として大きく摩耗する場合もあり、この点においてさらなる改善の余地がある。
【0010】
【発明が解決しようとする課題】
本発明は上記の課題を解決するために成されたものであり、耐摩耗性と靱性をさらに高い次元で両立させた合金を提供することを目的としている。本発明は、この合金を用いた複合材料並びに機械部材を提供することを更なる目的としている。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明では、B,Si,Moの含有量の最適化およびTa,Nb添加により耐摩耗性と靭性の両立を図った。
【0012】
本発明合金は、B,Si,Moの含有量を、重量%で、B:1.1〜2.5%、Si:4〜6.5%、Mo:8〜17%とするとともに、TaおよびNbの少なくともいずれか一方を添加し、残部Niおよび不可避的不純物からなる組成とした。TaおよびNbの含有量の合計は(Ta、Nbいずれか一方の単独添加の場合は、単独で)合金全体の1重量%以上10重量%以下とした。また、必要に応じて0.01〜0.5重量%のCを添加している。
【0013】
以下に、本発明合金の各成分元素の役割およびその適正範囲について述べる。なお、以下、本明細書において、含有量を示すパーセンテージは特に断らない限りすべて重量%を意味する。
【0014】
Bは合金の焼結温度を低下させるとともにNiおよびMoと硼化物を形成し、合金の強度および硬度を高める。硼化物が多くなるについて耐摩耗性および耐食性が向上する傾向があるが、硼化物が多くなり過ぎた場合には、合金の強度が低下する。このため、B量は1.1〜2.5%とした。
【0015】
Siは、Bと同様に、焼結温度を低下させる効果がある。焼結温度を低くできるということは、経済的に有利であるだけでなく、本発明合金を焼結すると同時に鉄鋼材料を複合化させる際に、鉄鋼の劣化を防止することができるという点においても有利である。また、Siには、Niに固溶して合金の強度を向上させる効果がある。Si量が少ない場合には上記の効果は得られない。Si量の増加とともに焼結温度は低下するが、Si量が多すぎても強度、靭性は低下する。このためSi量は4〜6.5%とした。
【0016】
MoはNiおよびBと硼化物を形成し、合金の強度および硬度を高める。Mo量の増加に伴い、硼化物量も増加し、合金の耐摩耗性および耐食性が向上する。Mo量が8%以下のときには、硼化物量が少なすぎるため、充分な耐食性および耐摩耗性を得ることができない。また、Mo量が17%以上のときには、耐摩耗性および耐食性が高くなるが、靭性が不足する。このため、Mo量は8〜17%とした。
【0017】
Cは粉末表面の酸素を還元し、特に噴霧粉の焼結温度を下げる性質がある。Cが0.01%以下の場合、粉末表面の酸化膜を還元させる効果が不足する。Cが0.5%以上の場合、炭化物が多く析出し強度、高温耐食性を劣化させてしまう。このため、Cを添加する場合には、添加量は0.01〜0.5%とする。なお、Cは添加した方が好ましいが、粉砕法により合金粉末を製造する等、表面酸化があまり問題にならない場合には必ずしも添加する必要はない。
【0018】
TaおよびNbは金属結合相中に固溶し、固溶強化によって合金の強度や硬度などを向上させる。しかし、TaおよびNbの含有量があわせて1%より少ないと効果が現れず、10%を超えた場合には硼化物が過剰に析出し強度および靭性が低下する傾向がある。このため、TaおよびNb量の含有量は合計で1%以上10%以下とした。なお、TaおよびNbは、単独添加(いずれか一方のみを添加)してもよく、複合添加(両方を添加)してもよい。
【0019】
Niは合金の主成分たる元素であり、Siを固溶して合金中の金属結合相を形成するとともに、MoおよびBと硼化物を形成して合金中の硬質相を形成する。Niの含有量は残部とする。
【0020】
本発明合金は、靱性および耐摩耗性に特に優れているため、プラスチック成形機(射出成形機および押出成形機)の溶融樹脂と接触する機械部品、例えばシリンダ、バレルおよびスクリュ等の部品に好適に用いることができる。
【0021】
また、本発明合金は、さらに耐熱衝撃性にも優れているため、ダイカストマシンの溶湯と接触する機械部品、例えばプランジャスリーブ、プランジャチップおよび金型等の部品に好適に適用することができる。
【0022】
なお、本発明合金のようなNi基サーメットは一般的に高価であるため、機械部品として使用する場合には、性能が要求される部分のみ本発明合金により形成し、残余の部位は鉄鋼材料により形成することが好適である、このような複合材料は、本発明合金と鉄鋼材料とを本発明合金の焼結時に拡散接合したり、或いは本発明合金の粉末を鉄鋼材料上に溶射することにより形成することができる。なお、溶射法を適用する場合には、溶射後に再溶融処理を行うことにより、溶射層の緻密性を向上させることができ、かつ溶射層と鉄鋼材料との金属結合を強固にすることができる。
【0023】
【実施例】
次に、実施例により本発明を更に詳細に説明する。
【0024】
[実施例1]
原料粉末を表1に示す各組成に配合し、遊星ミルで湿式粉砕した。これを乾燥した後、各試験用の試験片形状に成形し、真空中で焼結した。なお、従来合金としての比較例1は耐摩耗性を重視した組成とし、比較例2は靭性を重視した組成としている。
【0025】
【表1】

Figure 0004749554
各組成の試験片に対して、三点曲げ抗折試験を行った。なお、破断に至るまでの試験片中央部(荷重を負荷するポイント)の変位量を併せて測定した。また、各組成の試験片に対して、大越式迅速摩耗試験機により耐摩耗性を測定した。なお、大越式迅速摩耗試験の条件は次の通りである。
【0026】
摩擦速度 2m/sec
最終荷重 182.3N
摩擦距離 600m/sec
相手材料 SKD11(HC58)
試験結果を下表2に示す。
【0027】
【表2】
Figure 0004749554
表2より、本発明合金(実施例1a〜1d)は、抗折力および変位に関して、従来品である比較例2と同等の値を示し、高い強度および靭性が確保されていることがわかる。また、本発明合金(実施例1a〜1d)は、硬度は従来品である比較例2より高く、また摩耗試験における比摩耗量も大幅に低く、高い硬度および耐摩耗性が確保されていることがわかる。
【0028】
また、本発明合金(実施例1a〜1d)は、抗折力および変位に関して、従来品である比較例1より大幅に高い値を示し、高い強度および靭性が確保されていることがわかる。
【0029】
[実施例2]
拡散接合を用いて、射出成形機用のスクリュを作成した実施例について説明する。本例においては、本発明合金を丸棒鋼材外径部に焼結、複合化してスクリュを作成している。
【0030】
図1に示すように、基材としての丸棒鋼材S48C(φ34×45L)を、内径に離型剤を塗布したS25C製の金枠(φ40.2×42L)に固定した。その隙間に本発明合金でB:1.6%、Si:5.6%、Mo:10.0%、Nb:3.0%、残部をNiとして噴霧法により製造された合金粉末を充填率63%で25g充填した。これを真空炉内において無加圧焼結して基材と本発明合金との複合化を行った。焼結温度は1030℃、真空度は1.3〜3.9Paとした。
【0031】
焼結過程において、粉末には液相が生じ、これにより液相焼結により焼結体が形成されると同時にこの焼結体は基材の外径部に接合され、複合化材料の外径寸法はφ38となった。金属顕微鏡での観察によれば、粉末からの液相生成により、丸棒鋼材と粉末は強固に金属結合されていることが確認された。すなわち、本発明合金は1030℃の焼結温度で良好に鋼材と拡散接合できることがわかった。この複合化材料を機械加工により所定の寸法(φ37×40)に仕上げ、スクリュ(図示せず)を得た。なお、焼結は無加圧焼結に限らずHIPによってもよい。また、本発明合金の破砕粉を加圧成形後に丸棒鋼材に装着し、その後真空焼結することにより鋼材と本発明合金とを結合してもよい。
【0032】
なお、バレルの内径部に本発明合金のライニングを施す場合には、溶射により本発明合金を内径面にライニングし、その後、再溶融処理を行った後、仕上げ加工を行えばよい。
【0033】
【発明の効果】
本発明によれば、靭性と耐摩耗性を高い次元で両立させた合金を得ることができる。
【図面の簡単な説明】
【図1】実施例1について説明する図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wear-resistant high toughness alloy excellent in wear resistance and toughness, and a composite material and a machine member using the alloy.
[0002]
[Prior art]
Machine members such as cylinders, barrels, and screws that knead the resin in an injection molding machine or an extrusion molding machine come into contact with the resin at high pressure and high speed, and therefore wear resistance and high strength are required. On the other hand, in order to ensure the workability in the manufacturing process of these mechanical members, the hardness is not too high and toughness is required.
[0003]
Therefore, as these mechanical members, (1) Ni or Co-based self-fluxing alloy, (2) Ni-based double boride alloy, (3) WC is dispersed in these self-fluxing alloy and Ni-based double boride alloy. Most commonly used is a composite of an alloy with a steel material.
[0004]
The above (1) is a Ni-Cr-B-Si alloy, which can be used in various ways for compounding with steel materials such as thermal spraying and build-up. It is used.
[0005]
The above {circle around (2)} is an alloy in which a hard phase such as Mo 2 NiB 2 is dispersed in a Ni-based metal binder phase, has excellent strength and wear resistance, and exhibits high performance as a mechanical member.
[0006]
(3) is an alloy with excellent wear resistance in which WC showing very high hardness is dispersed in (1) and (2), and is actually used.
[0007]
However, these alloys have wear resistance and are hard and difficult to machine, so the processing time is long, and the toughness is low, so problems such as chipping of edges may occur during processing. is there. On the other hand, those with high toughness often have relatively low hardness and poor wear resistance. Thus, the present condition is that the material which has toughness and abrasion resistance was not obtained.
[0008]
An example of the Ni-based double boride alloy (2) is disclosed in Japanese Patent Application Laid-Open No. 8-13469 by the applicant. Here, a barrel obtained by lining steel material with Ni-0.6 to 3.2% B-0.5 to 8% Si-5 to 37% Mo alloy having excellent wear resistance is disclosed. Because of the excellent wear resistance of the Ni-B-Si-Mo alloy, stable injection can be performed with little galling with the mating sliding member. However, the alloy disclosed here may not be able to be used at an early stage due to, for example, a lack of an edge portion and cannot exhibit the original high wear resistance, and there is room for further improvement in toughness.
[0009]
Another example of the Ni-based double boride alloy (2) is described in Japanese Patent Application No. 2000-224209, which is a co-pending application (not disclosed at the time of the application) of the present applicant. Here, the composition is Ni-1.1 to 2.5% B-4 to 6.5% Si-8 to 17% Mo and the toughness is improved, but this alloy has improved toughness. As a price, the hardness and wear resistance are slightly inferior, and sometimes wears greatly. There is room for further improvement in this respect.
[0010]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an alloy having both wear resistance and toughness at a higher level. Another object of the present invention is to provide a composite material and a mechanical member using this alloy.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, both wear resistance and toughness are achieved by optimizing the contents of B, Si, and Mo and adding Ta and Nb.
[0012]
In the alloy of the present invention, the content of B, Si, and Mo is, by weight, B: 1.1 to 2.5%, Si: 4 to 6.5%, Mo: 8 to 17%, and Ta At least one of Nb and Nb was added to obtain a composition comprising the remaining Ni and inevitable impurities. The total content of Ta and Nb was 1% by weight or more and 10% by weight or less of the entire alloy (in the case of adding either Ta or Nb alone). Moreover, 0.01 to 0.5 weight% of C is added as needed.
[0013]
The role of each component element of the alloy of the present invention and its appropriate range will be described below. Hereinafter, in the present specification, the percentage indicating the content means% by weight unless otherwise specified.
[0014]
B lowers the sintering temperature of the alloy and forms borides with Ni and Mo, increasing the strength and hardness of the alloy. As the amount of borides increases, the wear resistance and corrosion resistance tend to improve. However, if the amount of borides increases, the strength of the alloy decreases. Therefore, the B content is set to 1.1 to 2.5%.
[0015]
Si, like B, has the effect of lowering the sintering temperature. The fact that the sintering temperature can be lowered is not only economically advantageous, but also in that the alloy of the present invention is sintered and at the same time the steel material can be combined to prevent deterioration of the steel. It is advantageous. Si also has the effect of improving the strength of the alloy by dissolving in Ni. When the amount of Si is small, the above effect cannot be obtained. Although the sintering temperature decreases as the Si amount increases, the strength and toughness decrease even if the Si amount is too large. For this reason, Si amount was made into 4 to 6.5%.
[0016]
Mo forms borides with Ni and B, increasing the strength and hardness of the alloy. As the amount of Mo increases, the amount of boride also increases, improving the wear resistance and corrosion resistance of the alloy. When the amount of Mo is 8% or less, the amount of boride is too small, so that sufficient corrosion resistance and wear resistance cannot be obtained. Further, when the amount of Mo is 17% or more, wear resistance and corrosion resistance increase, but toughness is insufficient. For this reason, Mo amount was 8 to 17%.
[0017]
C has the property of reducing oxygen on the powder surface and lowering the sintering temperature of the spray powder. When C is 0.01% or less, the effect of reducing the oxide film on the powder surface is insufficient. When C is 0.5% or more, a large amount of carbides are precipitated and the strength and high-temperature corrosion resistance are deteriorated. For this reason, when adding C, the addition amount is set to 0.01 to 0.5%. C is preferably added. However, it is not always necessary to add C when surface oxidation is not a problem, for example, when an alloy powder is produced by a pulverization method.
[0018]
Ta and Nb are dissolved in the metal binder phase, and the strength and hardness of the alloy are improved by solid solution strengthening. However, if the combined contents of Ta and Nb are less than 1%, the effect does not appear, and if it exceeds 10%, the boride precipitates excessively and the strength and toughness tend to decrease. For this reason, the total content of Ta and Nb is set to 1% or more and 10% or less. In addition, Ta and Nb may be added alone (only one of them is added) or may be added in a composite manner (both are added).
[0019]
Ni is an element which is the main component of the alloy, and forms a metal bonded phase in the alloy by solid solution of Si, and forms a hard phase in the alloy by forming borides with Mo and B. The Ni content is the balance.
[0020]
Since the alloy of the present invention is particularly excellent in toughness and wear resistance, it is suitable for mechanical parts such as cylinders, barrels and screws that come into contact with the molten resin of plastic molding machines (injection molding machines and extrusion molding machines). Can be used.
[0021]
Further, since the alloy of the present invention is further excellent in thermal shock resistance, it can be suitably applied to machine parts that come into contact with the molten metal of a die casting machine, for example, parts such as a plunger sleeve, a plunger chip, and a mold.
[0022]
In addition, since Ni-based cermets such as the alloy of the present invention are generally expensive, when used as a machine part, only a portion that requires performance is formed of the alloy of the present invention, and the remaining portion is made of a steel material. Such a composite material, which is preferably formed, is formed by diffusion bonding of the alloy of the present invention and a steel material during sintering of the alloy of the present invention, or by spraying a powder of the alloy of the present invention on the steel material. Can be formed. In addition, when applying the thermal spraying method, by performing remelting treatment after thermal spraying, the denseness of the thermal spray layer can be improved, and the metal bond between the thermal spray layer and the steel material can be strengthened. .
[0023]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0024]
[Example 1]
The raw material powder was blended in each composition shown in Table 1, and wet pulverized with a planetary mill. After drying, it was formed into a test piece shape for each test and sintered in vacuum. Note that Comparative Example 1 as a conventional alloy has a composition that emphasizes wear resistance, and Comparative Example 2 has a composition that emphasizes toughness.
[0025]
[Table 1]
Figure 0004749554
A three-point bending bending test was performed on the test piece having each composition. In addition, the displacement amount of the test piece center part (point which loads a load) until it fractures was also measured. Further, the wear resistance of the test pieces of each composition was measured by an Ogoshi type rapid wear tester. The conditions for the Ogoshi-type quick wear test are as follows.
[0026]
Friction speed 2m / sec
Final load 182.3N
Friction distance 600m / sec
Partner material SKD11 (H R C58)
The test results are shown in Table 2 below.
[0027]
[Table 2]
Figure 0004749554
From Table 2, it can be seen that the alloys of the present invention (Examples 1a to 1d) show values equivalent to those of Comparative Example 2 as a conventional product with respect to bending strength and displacement, and high strength and toughness are ensured. In addition, the alloys of the present invention (Examples 1a to 1d) have a hardness higher than that of Comparative Example 2, which is a conventional product, and the specific wear amount in the wear test is also significantly lower, ensuring high hardness and wear resistance. I understand.
[0028]
Moreover, this invention alloy (Example 1a-1d) shows a significantly higher value regarding the bending strength and displacement than the comparative example 1 which is a conventional product, and it turns out that high intensity | strength and toughness are ensured.
[0029]
[Example 2]
An example in which a screw for an injection molding machine was created using diffusion bonding will be described. In this example, the present invention alloy is sintered and compounded to the outer diameter part of a round bar steel material to produce a screw.
[0030]
As shown in FIG. 1, a round steel bar S48C (φ34 × 45L) as a base material was fixed to an S25C metal frame (φ40.2 × 42L) having a release agent applied to the inner diameter. In this gap, the alloy powder of the present invention was filled with B: 1.6%, Si: 5.6%, Mo: 10.0%, Nb: 3.0%, and the balance being Ni. Filled with 25 g at 63%. This was sintered without pressure in a vacuum furnace to form a composite of the substrate and the alloy of the present invention. The sintering temperature was 1030 ° C., and the degree of vacuum was 1.3 to 3.9 Pa.
[0031]
In the sintering process, a liquid phase is generated in the powder, and as a result, a sintered body is formed by liquid phase sintering. At the same time, this sintered body is joined to the outer diameter portion of the base material, and the outer diameter of the composite material The dimension was φ38. According to observation with a metallographic microscope, it was confirmed that the steel rod and the powder were firmly metal-bonded by liquid phase generation from the powder. That is, it has been found that the alloy of the present invention can be diffusion-bonded to a steel material well at a sintering temperature of 1030 ° C. This composite material was finished to a predetermined size (φ37 × 40) by machining to obtain a screw (not shown). Note that the sintering is not limited to pressureless sintering but may be HIP. Further, the crushed powder of the alloy of the present invention may be attached to a round bar steel after pressure forming and then vacuum sintered to bond the steel and the alloy of the present invention.
[0032]
In the case where the inner diameter part of the barrel is lined with the alloy of the present invention, the alloy of the present invention is lined on the inner diameter surface by thermal spraying, and then a remelting process is performed, followed by finishing.
[0033]
【The invention's effect】
According to the present invention, an alloy having both toughness and wear resistance at a high level can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating Example 1. FIG.

Claims (6)

重量%で、B:1.1〜2.5%、Si:4〜6.5%、Mo:8〜17%を含有し、さらにTaおよびNbの少なくともいずれか一方を含有し、残部Niおよび不可避的不純物からなり、TaおよびNbの合計含有量が合金全体の1重量%以上10重量%以下である、耐摩耗性高靭性合金。B: 1.1 to 2.5%, Si: 4 to 6.5%, Mo: 8 to 17%, and further containing at least one of Ta and Nb, the balance Ni and A wear-resistant, high toughness alloy comprising inevitable impurities and having a total content of Ta and Nb of 1% by weight or more and 10% by weight or less of the whole alloy. 重量%で、B:1.1〜2.5%、Si:4〜6.5%、Mo:8〜17%、C:0.01〜0.5%を含有し、さらにTaおよびNbの少なくともいずれか一方を含有し、残部Niおよび不可避的不純物からなり、TaおよびNbの合計含有量が合金全体の1重量%以上10重量%以下である、耐摩耗性高靭性合金。B: 1.1 to 2.5%, Si: 4 to 6.5%, Mo: 8 to 17%, C: 0.01 to 0.5%, and Ta and Nb. A wear-resistant, high toughness alloy comprising at least one of them, the balance being Ni and inevitable impurities, and a total content of Ta and Nb being 1 wt% or more and 10 wt% or less of the entire alloy. 重量%で、B:1.1〜2.5%、Si:4〜6.5%、Mo:8〜17%、を含有し、さらにTaおよびNbの少なくともいずれか一方を含有し、残部Niおよび不可避的不純物からなり、TaおよびNbの合計含有量が合金粉末全体の1重量%以上10重量%以下である、噴霧法により製造された合金粉末。B: 1.1 to 2.5%, Si: 4 to 6.5%, Mo: 8 to 17%, and at least one of Ta and Nb , and the balance Ni And an alloy powder produced by a spraying method, wherein the total content of Ta and Nb is 1 wt% or more and 10 wt% or less of the entire alloy powder. 重量%で、B:1.1〜2.5%、Si:4〜6.5%、Mo:8〜17%、C:0.01〜0.5%を含有し、さらにTaおよびNbの少なくともいずれか一方を含有し、残部Niおよび不可避的不純物からなり、TaおよびNbの合計含有量が合金粉末全体の1重量%以上10重量%以下である、噴霧法により製造された合金粉末。B: 1.1 to 2.5%, Si: 4 to 6.5%, Mo: 8 to 17%, C: 0.01 to 0.5%, and Ta and Nb. An alloy powder produced by a spray method, containing at least one of them, consisting of the balance Ni and inevitable impurities, wherein the total content of Ta and Nb is 1% by weight or more and 10% by weight or less of the whole alloy powder. 鉄鋼材料からなる基材と、
請求項1若しくは2に記載の合金または請求項3若しくは4に記載の合金粉末を原料とした焼結体により形成され、前記基材と金属結合により複合化された合金部分と、
を備えた複合材料。
A base material made of a steel material;
An alloy part formed of a sintered body using the alloy according to claim 1 or 2 or the alloy powder according to claim 3 or 4 as a raw material and combined with the base material by metal bonding,
With composite material.
請求項1若しくは2に記載の合金または請求項3若しくは4に記載の合金粉末を原料とした焼結体により形成された合金部分を少なくともその一部に含む、射出成形機または押出成形機用の機械部材。An injection molding machine or an extrusion molding machine comprising at least a part of an alloy part formed of a sintered body using the alloy according to claim 1 or 2 or the alloy powder according to claim 3 or 4 as a raw material. Mechanical member.
JP2001012149A 2001-01-19 2001-01-19 Wear resistant high toughness alloy, composite material using the same, and mechanical member Expired - Fee Related JP4749554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012149A JP4749554B2 (en) 2001-01-19 2001-01-19 Wear resistant high toughness alloy, composite material using the same, and mechanical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012149A JP4749554B2 (en) 2001-01-19 2001-01-19 Wear resistant high toughness alloy, composite material using the same, and mechanical member

Publications (3)

Publication Number Publication Date
JP2002212659A JP2002212659A (en) 2002-07-31
JP2002212659A5 JP2002212659A5 (en) 2008-03-06
JP4749554B2 true JP4749554B2 (en) 2011-08-17

Family

ID=18879198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012149A Expired - Fee Related JP4749554B2 (en) 2001-01-19 2001-01-19 Wear resistant high toughness alloy, composite material using the same, and mechanical member

Country Status (1)

Country Link
JP (1) JP4749554B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531752B2 (en) * 1993-09-28 2004-05-31 日立金属株式会社 Molding machine cylinder and method of manufacturing the same
JP3229140B2 (en) * 1994-11-11 2001-11-12 東芝機械株式会社 Corrosion-resistant wear-resistant high-strength Ni-base alloy and its composite material
JPH1030139A (en) * 1996-07-17 1998-02-03 Daido Steel Co Ltd Alloy excellent in resistance to corrosion, wear, and cracking, production of the alloy, and material for production of the alloy

Also Published As

Publication number Publication date
JP2002212659A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US5482670A (en) Cemented carbide
CN102703790B (en) Cemented tungsten carbide alloy material with gradient cobalt content
JP2015078435A (en) Super hard alloy-metal alloy composite body
KR100935816B1 (en) Cr-free fe-based hardfacing alloy with excellent abrasion resistance
JPH07290186A (en) Tungsten carbide composite lining material and layer for centrifugal casting
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
JP4749554B2 (en) Wear resistant high toughness alloy, composite material using the same, and mechanical member
WO2019065543A1 (en) Method for producing hot-forging material
JP2800076B2 (en) Corrosion and wear resistant cobalt based alloy
WO2013058074A1 (en) Ni-based corrosion-resistant wear-resistant alloy
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP2001279369A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JP4121694B2 (en) Sintered body Ni-based cermet and parts for plastic molding machine and die casting machine using the same
JP6813364B2 (en) Lining material with excellent wear resistance and corrosion resistance
AU2018256667B2 (en) Jaw crusher
JP3487935B2 (en) High corrosion and wear resistant composite material
JP2562445B2 (en) Abrasion resistant composite roll
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JPS5831061A (en) Superhard tungsten carbide alloy with high strength and high oxidation resistance
JP5826138B2 (en) Tough cemented carbide and coated cemented carbide
JP2003155527A (en) Ni BASED CORROSION RESISTANT AND WEAR RESISTANT ALLOY, AND COMPOSITE AND MEMBER FOR DIE CASTING MACHINE OBTAINED BY USING THE SAME
JPH05132734A (en) Composite material having wear resistance and corrosion resistance
JP2001342530A (en) Corrosion and abrasion resistive ni alloy, its raw material powder and injection, extrusion molding machine or die casting machine using it
CN116657014A (en) High-wear-resistance hard alloy composite material and preparation method thereof
JP3373372B2 (en) Si-added NiW2B base alloy and mechanical structural member

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4749554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees