JP4747709B2 - Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials - Google Patents

Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials Download PDF

Info

Publication number
JP4747709B2
JP4747709B2 JP2005213908A JP2005213908A JP4747709B2 JP 4747709 B2 JP4747709 B2 JP 4747709B2 JP 2005213908 A JP2005213908 A JP 2005213908A JP 2005213908 A JP2005213908 A JP 2005213908A JP 4747709 B2 JP4747709 B2 JP 4747709B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
coated
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005213908A
Other languages
Japanese (ja)
Other versions
JP2007030065A (en
Inventor
強 大上
裕介 田中
暁裕 近藤
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005213908A priority Critical patent/JP4747709B2/en
Publication of JP2007030065A publication Critical patent/JP2007030065A/en
Application granted granted Critical
Publication of JP4747709B2 publication Critical patent/JP4747709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 This invention is a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, especially when machining difficult-to-cut materials such as stainless steel, high manganese steel, and even mild steel. It is about.

一般に、被覆サーメット工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated cermet tools, throwaway inserts that are detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron work materials, and drilling of the work material. Drills and miniature drills used in, etc., as well as solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, and the solid type by attaching the throwaway tip detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.

また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体(以下、単に基体という)の表面に、
組成式:(Ti1-XAl)N(ただし、原子比で、Xは0.30〜0.70を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆サーメット工具が知られており、かつ前記被覆サーメット工具の硬質被覆層である(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備するようになるとから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated cermet tool, on the surface of a cermet base (hereinafter simply referred to as a base) composed of a tungsten carbide (hereinafter referred to as WC) base cemented carbide or a titanium carbonitride (hereinafter referred to as TiCN) base cermet,
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.30 to 0.70),
There is known a coated cermet tool obtained by physically vapor-depositing a hard coating layer composed of a composite nitride of Ti and Al satisfying the following conditions (hereinafter referred to as (Ti, Al) N) with an average layer thickness of 1 to 15 μm. In addition, the (Ti, Al) N layer, which is a hard coating layer of the coated cermet tool, has high temperature hardness and heat resistance due to Al as a constituent component, and high temperature strength due to the Ti. It is also known to exhibit excellent cutting performance when used for continuous cutting and interrupted cutting of general steel and ordinary cast iron.

さらに、上記の被覆サーメット工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−100Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2644710号明細書
Further, the above-mentioned coated cermet tool is charged with the above-mentioned substrate in an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. An arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) on which a Ti—Al alloy having a predetermined composition is set, for example, at a current of 90 A while being heated to a temperature of Nitrogen gas is introduced as a reaction gas to form a reaction atmosphere of 2 Pa, for example, while the (Ti, Al) N layer is formed on the surface of the substrate under the condition that a bias voltage of, for example, −100 V is applied to the substrate. It is also known that it is produced by vapor-depositing a hard coating layer made of
Japanese Patent No. 2644710

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆サーメット工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を行った場合には、切削時の発熱によって難削材からなる被削材およびその切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. As a result, cutting tools are affected as much as possible by the material type of the work material. There is a tendency not to have versatility, that is, a cutting tool capable of cutting as many grades as possible, but in the above-described conventional coated cermet tools, this is a general steel such as low alloy steel or carbon steel, There is no problem when it is used for cutting ordinary cast iron such as ductile cast iron and gray cast iron. When cutting a cutting material, the work material made of difficult-to-cut material and its chips are heated to a high temperature due to the heat generated during cutting, and the viscosity further increases. The adhesiveness and reactivity to the surface are further increased, and as a result, the occurrence of chipping (slight chipping) in the cutting edge part increases rapidly, and this causes the service life in a relatively short time. .

そこで、本発明者等は、上述のような観点から、特に難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具に着目し、研究を行った結果、
(a)上記従来被覆サーメット工具の硬質被覆層である(Ti,Al)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(以下、VOで示す。ただし、Mは酸素のバナジウム(V)に対する相対含有割合の変化値を示し、原子比で、VO、V、V、およびVOなどを示す)層を同じく1〜5μmの平均層厚で形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減し、前記下部層である(Ti,Al)N層を十分に保護することから、(Ti,Al)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the present inventors have developed the above-described conventional coated cermet tool in order to develop a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer, particularly in cutting difficult-to-cut materials. As a result of conducting research with a focus on
(A) A (Ti, Al) N layer, which is a hard coating layer of the above-mentioned conventional coated cermet tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and a vanadium oxide (hereinafter referred to as VO M) as an upper layer thereon. Where M represents a change value of the relative content ratio of oxygen to vanadium (V), and the atomic ratio indicates VO, V 2 O 3 , V 2 O 5 , VO 2, etc.) by forming an average layer thickness of 5 .mu.m, the VO M layer is excellent surface slipperiness, cutting edge even when the result workpiece by heat generated during cutting (difficult-to-cut materials) and its cutting scraps is high temperature heating Excellent slidability is always ensured between the rake face and the flank face and the cutting edge ridge line where both the surfaces intersect, and the work material and chips, and the surface of the work material and the cutting edges of the chips. The lower layer is significantly less adhesive and reactive to (Ti, Al) N-layer because it sufficiently protect, (Ti, Al) having excellent characteristics N layer may become to be sufficiently exhibited for a long time.

(b)一方、上部層であるVO層と下部層である(Ti,Al)N層との密着性は十分でなく、特に断続切削を行った場合に前記の層間の密着性不足が原因でチッピングが発生し易いが、前記VO層と(Ti,Al)N層との間に窒化バナジウム(以下、VNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記VN層は前記VO層および(Ti,Al)N層のいずれとも強固に密着することから、これら両層間にはすぐれた密着性が確保されるようになること。 (B) On the other hand, a VO M layer and the lower layer is an upper layer (Ti, Al) adhesion to the N layer is not sufficient, because the insufficient adhesion between layers, particularly when subjected to intermittent cutting Although in chipping occurs easily, the VO M layer and (Ti, Al) vanadium nitride between the N layer (hereinafter, indicated by VN) when interposing the layer with an average layer thickness of 0.1~1.5μm , wherein the the VN layer VO M layer and (Ti, Al) since it also firmly adhered to one of the N layer, it comes to be ensured good adhesion to both of these layers.

(c)上記(a)および(b)で構成される硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として所定の組成を有するTi−Al合金、他方側に同じくカソード電極(蒸発源)として金属V(バナジウム)を配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で基体自体も自転させながら、基本的に、まず前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記基体の表面に、下部層として(Ti,Al)N層を1〜5μmの平均層厚で蒸着し、ついで前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、層間密着層としてVN層を0.1〜1.5μmの平均層厚で蒸着した後、前記金属Vとアノード電極との間のアーク放電を停止し、前記蒸着装置内の雰囲気を酸素雰囲気に切り替えた時点で、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VN層に重ねて上部層として1〜5μmの平均層厚でVO層を蒸着することにより形成することができること。 (C) The hard coating layer constituted by the above (a) and (b) is, for example, an arc ion plating apparatus having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. In other words, a substrate mounting rotary table is provided in the center of the apparatus, and a Ti—Al alloy having a predetermined composition as a cathode electrode (evaporation source) is provided on one side with the rotary table interposed therebetween, and a cathode electrode (evaporation source) is also provided on the other side. ) Using an arc ion plating apparatus in which metal V (vanadium) is arranged, and a plurality of substrates are formed in a ring shape along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. In this state, the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere, and the substrate itself is rotated for the purpose of uniforming the thickness of the hard coating layer to be deposited. Basically, first, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al alloy, and a (Ti, Al) N layer is formed as a lower layer on the surface of the substrate. Evaporation was performed with an average layer thickness of 1 to 5 μm, and then the arc discharge between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al alloy was stopped, and the atmosphere in the apparatus was also maintained in a nitrogen atmosphere. Arc discharge is generated between the metal V as the cathode electrode (evaporation source) and the anode electrode, and a VN layer is deposited as an interlayer adhesion layer with an average layer thickness of 0.1 to 1.5 μm. When the arc discharge between the anode electrode and the anode electrode is stopped and the atmosphere in the vapor deposition apparatus is switched to the oxygen atmosphere, an arc discharge is generated again between the metal V as the cathode electrode (evaporation source) and the anode electrode. Let the V It can be formed by depositing VO M layer with an average layer thickness 1~5μm as the upper layer overlaid on the layer.

(d)上記の下部層、層間密着層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工で、下部層である(Ti,Al)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層の介在によって前記下部層との間にすぐれた密着接合性が確保されたVO層の作用で、前記難削材および切粉との間にすぐれた表面滑り性が確保され、前記難削材および切粉の切刃部表面に対する粘着性および反応性は著しく低減された状態で切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The coated cermet tool formed by vapor-depositing the hard coating layer composed of the lower layer, the interlayer adhesion layer, and the upper layer is stainless steel, high-manganese steel, soft steel, etc. having high viscosity and adhesion. In the cutting of difficult-to-cut materials, the (Ti, Al) N layer as the lower layer has excellent high-temperature hardness and heat resistance, excellent high-temperature strength, and the above-described intervening VN layer as an interlayer adhesion layer. by the action of VO M layer adhesion bonding property is secured with excellent between the lower layer, excellent surface slipperiness between the flame cut materials and chips is ensured, the flame-cut materials and chips Since cutting is performed with the adhesiveness and reactivity to the surface of the cutting edge being significantly reduced, no chipping occurs at the cutting edge, and excellent wear resistance is demonstrated over a long period of time. To be like that.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、基体の表面に、アークイオンプレーティング装置にて
(a)カソード電極として所定組成を有するTi−Al合金を用いて蒸着形成された、1〜5μmの平均層厚を有し、かつ、
組成式:(Ti1-XAlX)N(ただし、原子比で、Xは0.30〜0.70を示す)、
を満足する(Ti,Al)N層からなる下部層、
(b)カソード電極として金属Vを用いて蒸着形成された、0.1〜1.5μmの平均層厚を有するVN層からなる層間密着層、
(c)同じくカソード電極として金属Vを用いて蒸着形成された、1〜5μmの平均層厚を有するVO層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the substrate, using an arc ion plating apparatus ,
(A) an average layer thickness of 1 to 5 μm formed by vapor deposition using a Ti—Al alloy having a predetermined composition as a cathode electrode ; and
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.30 to 0.70),
A lower layer composed of a (Ti, Al) N layer satisfying
(B) an interlayer adhesion layer comprising a VN layer having an average layer thickness of 0.1 to 1.5 μm, formed by vapor deposition using metal V as a cathode electrode ;
(C) also deposited formed of a metal V as a cathode electrode, an upper layer composed of VO M layer having an average layer thickness of 1 to 5 [mu] m,
It is characterized by a coated cermet tool that forms a hard coating layer composed of the above (a) to (c) and exhibits excellent chipping resistance in cutting of difficult-to-cut materials. .

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成および平均層厚
下部層を構成する(Ti,Al)N層におけるAl成分には高温硬さと耐熱性、同Ti成分には高温強度を向上させる作用があるが、Alの割合を示すX値がTiとの合量に占める割合(原子比、以下同じ)で0.30未満になると、相対的にTiの割合が多くなり過ぎて、所定の高温硬さと耐熱性を確保することができなくなり、この結果摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピングなどが発生し易くなることから、X値を0.30〜0.70と定めた。
また、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の粘性の高い難削材の切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described.
(A) Lower layer composition and average layer thickness The Al component in the (Ti, Al) N layer constituting the lower layer has the effect of improving the high temperature hardness and heat resistance, and the Ti component improves the high temperature strength. When the X value indicating the proportion of Ti is less than 0.30 in terms of the total amount with Ti (atomic ratio, the same shall apply hereinafter), the proportion of Ti becomes relatively large, resulting in a predetermined high temperature hardness and heat resistance. As a result, the progress of wear is accelerated rapidly. On the other hand, when the X value indicating the Al ratio exceeds 0.70, the Ti ratio is relatively decreased, and the high temperature is increased. Since the strength rapidly decreases and as a result, chipping or the like is likely to occur at the cutting edge portion, the X value was determined to be 0.30 to 0.70.
Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 5 μm, the above-mentioned high viscosity is difficult. Since the chipping is likely to occur at the cutting edge in the cutting of the cutting material, the average layer thickness is set to 1 to 5 μm.

(c)層間密着層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が層間密着層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(C) Average layer thickness of interlayer adhesion layer When the average layer thickness is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases in the interlayer adhesion layer portion, which causes the occurrence of chipping. Therefore, the average layer thickness was determined to be 0.1 to 1.5 μm.

(d)上部層の平均層厚
上部層を構成するVO層は、すぐれた表面滑り性を有し、上記の通り被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Ti,Al)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) VO M layer constituting the average layer thickness top layer of the upper layer is excellent has surface slip characteristics were, as described above workpiece tack and reactivity to (difficult-to-cut materials) and chips are very Since this is maintained without change even when the work material is heated at high temperature during cutting, the lower layer (Ti, Al) N layer is removed from the work material and chips heated at high temperature. Protects and suppresses the occurrence of chipping, but if the average layer thickness is less than 1 μm, the desired effect cannot be obtained when the average layer thickness is less than 1 μm, whereas if the average layer thickness exceeds 5 μm, it becomes too thick. Since the chipping is likely to occur, the average layer thickness is set to 1 to 5 μm.

この発明の被覆サーメット工具は、硬質被覆層を構成する下部層の(Ti,Al)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同層間密着層としてのVN層によって強固に密着接合した上部層としてのVO層によって、被削材(難削材)および切粉との間にすぐれた表面滑り性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated cermet tool of the present invention, the lower layer (Ti, Al) N layer constituting the hard coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength. by VO M layer as an upper layer was firmly adhered joined by VN layer, since the superior surface slipperiness between the workpiece (difficult-to-cut materials) and chips is ensured, in particular the viscosity and stickiness Even when machining difficult-to-cut materials such as high stainless steel, high manganese steel, and even mild steel, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの範囲内の所定の平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, all having a predetermined average particle diameter in the range of 1 to 3 μm, And Co powder, these raw material powders are blended in the composition shown in Table 1, wet mixed for 72 hours by a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. The body was sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to have a chip shape of ISO standard / CNMG120408. Then, bases A-1 to A-10 made of WC-based cemented carbide were formed.

また、原料粉末として、いずれも0.5〜2μmの範囲内の所定の平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder each having a predetermined average particle size in the range of 0.5 to 2 μm. , TaC powder, WC powder, Co powder, and Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed at a pressure of 100 MPa. The powder compact is press-molded, and this green compact is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion is subjected to a honing process of R: 0.03. Then, bases B-1 to B-6 made of TiCN-based cermet having a chip shape of ISO standard / CNMG120408 were formed.

(a)ついで、上記の基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al合金、他方側に同じくカソード電極(蒸発源)として層間密着層および上部層形成用金属Vを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって基体表面を前記Ti−Al合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって前記基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3に示される目標層厚のVN層を硬質被覆層の層間密着層として蒸着形成し、
(e)上記金属Vとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.2Paの酸素雰囲気に切り替えた時点で、再びカソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、同じく表3に示される目標層厚のVO層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the substrates A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. A lower layer having a predetermined composition as a cathode electrode (evaporation source) on one side of the rotary table is mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table. A Ti-Al alloy for forming, and an interlayer adhesion layer and an upper layer forming metal V as the cathode electrode (evaporation source) are arranged on the other side,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the direct current of −1000 V is applied to the base that rotates while rotating on the rotary table A bias voltage is applied, and an arc discharge is generated by passing a current of 100 A between the Ti—Al alloy for forming the lower layer of the cathode electrode and the anode electrode, whereby the substrate surface is bombarded with the Ti—Al alloy. And
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a 4 Pa reaction atmosphere, a DC bias voltage of −100 V is applied to the substrate rotating while rotating on the rotary table, and the cathode electrode An arc discharge is generated by flowing a current of 120 A between the Ti—Al alloy and the anode electrode, so that a (Ti, Al) N layer having a target composition and a target layer thickness shown in Table 3 is formed on the surface of the substrate. Vapor deposition as the lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy for forming the lower layer is stopped, and the atmosphere in the apparatus is similarly maintained in a 4 Pa nitrogen atmosphere, and the DC bias voltage applied to the substrate Similarly, under the condition of −100 V, a current of 120 A is passed between the metal V of the cathode electrode and the anode electrode to generate an arc discharge, so that the VN layer having the target layer thickness shown in Table 3 is hard-coated. Vapor deposition as an interlayer adhesion layer of layers,
(E) When the arc discharge between the metal V and the anode electrode is stopped and the atmosphere in the vapor deposition apparatus is switched to an oxygen atmosphere of 0.2 Pa, it is again between the metal V and the anode electrode of the cathode electrode. by flowing a 120A current to generate arc discharge, also by the VO M layer of the target layer thicknesses shown in Table 3 is deposited formed as an upper layer of the hard coating layer, the present invention a surface coating of the present invention coated cermet tool Cermet throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 were produced.

また、比較の目的で、これら基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって基体表面を前記Ti−Al合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層として蒸着形成することにより、従来被覆サーメット工具としての従来表面被覆サーメット製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating apparatus shown in FIG. The Ti-Al alloy having various component compositions was mounted as a cathode electrode (evaporation source), and the inside of the apparatus was first evacuated and kept at a vacuum of 0.1 Pa or less with a heater. Is heated to 500 ° C., a DC bias voltage of −1000 V is applied to the substrate, and a current of 100 A is passed between the Ti—Al alloy of the cathode electrode and the anode electrode to generate an arc discharge. The substrate surface is bombarded with the Ti—Al alloy, then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa, and a bias voltage applied to the substrate is −1. The voltage is lowered to 0 V, and an arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al alloy, so that the surfaces of the substrates A-1 to A-10 and B-1 to B-6 are respectively A conventional surface-coated cermet throwaway tip (hereinafter referred to as a conventional coated tip) as a conventional coated cermet tool is formed by vapor-depositing a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 4 as a hard coating layer. 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:180m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件A)でのステンレス鋼の乾式断続切削加工試験、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:2mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件(切削条件B)での軟鋼の乾式断続切削加工試験、
被削材:JIS・SCMnH1の丸棒、
切削速度:150m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件C)での高マンガン鋼の乾式連続切削加工試験、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 180 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry interrupted cutting test of stainless steel under the above conditions (cutting condition A),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted cutting test of mild steel under the above conditions (cutting condition B),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 150 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous cutting test of high manganese steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 0004747709
Figure 0004747709

Figure 0004747709
Figure 0004747709

Figure 0004747709
Figure 0004747709

Figure 0004747709
Figure 0004747709

Figure 0004747709
Figure 0004747709

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle size of 5.5 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended into the blending composition shown in Table 6, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then in a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions, the diameter is 8 m, 13 mm, and 26 mm of three kinds of round bar sintered bodies for forming a substrate were formed, and further, the above three kinds of round bar sintered bodies were ground and combined with the combinations shown in Table 6 to obtain cutting edges. WC-base cemented carbide base body (end mill) having a 4-blade square shape with dimensions of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, and a twist angle of 30 degrees. C-1 to C-8 were produced respectively.

ついで、これらの基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表7に示される目標層厚のVN層からなる層間密着層およびVO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1 under the same conditions, the lower layer composed of the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 7, and the interlayer adhesion layer composed of the VN layer having the target layer thickness also shown in Table 7. by depositing form a hard coating layer composed of a top layer made of VO M layer, the present invention present invention surface coating cermet end mill as coated cermet tool (hereinafter, referred to as the present invention coated end mills) 1-8 respectively Manufactured.

また、比較の目的で、上記の基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, a hard coating layer comprising a (Ti, Al) N layer having the target composition and target layer thickness also shown in Table 7 is deposited, so that the conventional coated cermet tool is conventionally used. Surface coated cermet end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:50m/min.、
溝深さ(切り込み):5mm、
テーブル送り:180mm/分、
の条件での軟鋼の乾式溝切削加工試験、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:60m/min.、
溝深さ(切り込み):7mm、
テーブル送り:160mm/分、
の条件でのステンレス鋼の湿式(水溶性切削油使用)溝切削加工試験、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:40m/min.、
溝深さ(切り込み):12mm、
テーブル送り:120mm/分、
の条件での高マンガン鋼の乾式溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 50 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 180mm / min,
About the dry groove cutting test of mild steel under the conditions of the present invention, the present invention coated end mills 4-6 and the conventional coated end mills 4-6,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 7 mm,
Table feed: 160 mm / min,
For the stainless steel wet (using water-soluble cutting oil) grooving test, the present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 40 m / min. ,
Groove depth (cut): 12 mm,
Table feed: 120 mm / min,
The dry grooving test of high manganese steel under the above conditions was conducted, and in each grooving test, the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is the standard for the service life. The cutting groove length was measured. The measurement results are shown in Table 7, respectively.

Figure 0004747709
Figure 0004747709

Figure 0004747709
Figure 0004747709

上記の実施例2で製造した直径が8mm(基体C−1〜C−3形成用)、13mm(基体C−4〜C−6形成用)、および26mm(基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(基体D−1〜D−3)、8mm×22mm(基体D−4〜D−6)、および16mm×45mm(基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming bases C-1 to C-3), 13 mm (for forming bases C-4 to C-6), and 26 mm (for forming bases C-7 and C-8). 3 types of round bar sintered bodies were used, and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion was 4 mm x 13 mm (bases D-1 to D) by grinding. -3), 8 mm × 22 mm (bases D-4 to D-6), and 16 mm × 45 mm (bases D-7, D-8), and each has a two-blade shape with a twist angle of 30 degrees. Substrates (drills) D-1 to D-8 made of WC-base cemented carbide were produced.

ついで、これらの基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表8に示される目標層厚のVN層からなる層間密着層およびVO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8, and the VN layer having the target layer thickness also shown in Table 8 by depositing form a hard coating layer composed of a top layer made of interlayer adhesion layer and VO M layer consisting of the present invention the surface coating cermet drill as the present invention coated cermet tool (hereinafter, referred to as the present invention coated drills ) 1-8 were produced respectively.

また、比較の目的で、上記の基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al)N層からなる硬質被覆層を蒸着形成することにより、従来被覆サーメット工具としての従来表面被覆サーメット製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plate shown in FIG. And by depositing a hard coating layer composed of a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above, Conventional surface-coated cermet drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated cermet tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:100m/min.、
送り:0.25mm/rev、
穴深さ:8mm、
の条件でのステンレス鋼の湿式穴あけ切削加工試験、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:80m/min.、
送り:0.3mm/rev、
穴深さ:18mm、
の条件での高マンガン鋼の湿式穴あけ切削加工試験、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:75m/min.、
送り:0.25mm/rev、
穴深さ:30mm、
の条件での軟鋼の湿式穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 8mm,
For the wet drilling cutting test of stainless steel under the conditions of the present invention, the present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 18mm,
About the wet drilling machining test of high manganese steel under the conditions of the present invention, the coated drills 7 and 8 of the present invention and the conventional coated drills 7 and 8,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 75 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 30mm,
Welding drilling test of mild steel under the above conditions, and drilling until the flank wear width of the cutting edge surface reaches 0.3mm in any wet high-speed drilling test (using water-soluble cutting oil) The number of processes was measured. The measurement results are shown in Table 8, respectively.

Figure 0004747709
Figure 0004747709

この結果得られた本発明被覆サーメット工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al)N層(下部層)の組成、並びに従来被覆サーメット工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
さらに、本発明被覆サーメット工具の硬質被覆層を構成するVO層(上部層)の組成を同じく測定したところ、原子比で、VOを主体とし、これにVO、V、V、およびVOなどが含有する混合組織を示した。
(Ti, Al) N layer constituting the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated cermet tool obtained as a result Composition of (lower layer) and composition of hard coating layer comprising (Ti, Al) N layer of conventional coated chips 1-16, conventional coated end mills 1-8, and conventional coated drills 1-8 as a conventional coated cermet tool Were measured by energy dispersive X-ray analysis using a transmission electron microscope, and each showed substantially the same composition as the target composition.
Furthermore, when VO M layer constituting the hard layer of the present invention coated cermet tool of the composition of the (upper layer) was also measured, by atomic ratio, mainly the VO, this VO, V 2 O 3, V 2 O 5, and the like VO 2 showed mixed structure containing.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the constituent layers of the hard coating layer was measured by a cross-section using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜8に示される結果から、本発明被覆サーメット工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工でも、硬質被覆層の下部層である(Ti,Al)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層によって前記下部層に強固に密着したVO層によって、前記被削材および切粉との間にすぐれた表面滑り性が確保されることから、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Ti,Al)N層で構成された従来被覆サーメット工具においては、いずれも前記難削材の切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, all of the coated cermet tools of the present invention have a lower part of the hard coating layer even when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. a layer (Ti, Al) N layer has excellent high-temperature hardness and heat resistance, further has excellent high-temperature strength, and by VO M layer firmly adhered to the lower layer by VN layer as an interlayer adhesion layer In addition, since excellent surface slippage is ensured between the work material and the chip, the chipping does not occur, and excellent wear resistance is exhibited over a long period of time. In the conventional coated cermet tool composed of a (Ti, Al) N layer, in any cutting of the difficult-to-cut material, the adhesiveness and reaction between the work material (hard-to-cut material) and chips and the hard coating layer. The sex becomes much higher As a result, it is apparent that chipping occurs at the cutting edge and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention exhibits excellent chipping resistance not only for cutting of general steel and ordinary cast iron, but particularly for cutting of the above difficult-to-cut materials. Since it shows excellent cutting performance, it can fully satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

本発明被覆サーメット工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated cermet tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の表面に、アークイオンプレーティング装置にて
(a)カソード電極として所定組成を有するTi−Al合金を用いて蒸着形成された、1〜5μmの平均層厚を有し、かつ、
組成式:(Ti1-XAlX)N(ただし、原子比で、Xは0.30〜0.70を示す)、
を満足するTiとAlの複合窒化物層からなる下部層、
(b)カソード電極として金属バナジウムを用いて蒸着形成された、0.1〜1.5μmの平均層厚を有する窒化バナジウム層からなる層間密着層、
(c)同じくカソード電極として金属バナジウムを用いて蒸着形成された、1〜5μmの平均層厚を有する酸化バナジウム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the cermet substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet, with an arc ion plating device ,
(A) an average layer thickness of 1 to 5 μm formed by vapor deposition using a Ti—Al alloy having a predetermined composition as a cathode electrode ; and
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.30 to 0.70),
A lower layer composed of a composite nitride layer of Ti and Al satisfying
(B) an interlayer adhesion layer comprising a vanadium nitride layer having an average layer thickness of 0.1 to 1.5 μm, formed by vapor deposition using metal vanadium as a cathode electrode ;
(C) an upper layer composed of a vanadium oxide layer having an average layer thickness of 1 to 5 μm, which is also deposited using metal vanadium as a cathode electrode ;
A surface-covered cermet cutting tool that exhibits excellent chipping resistance when a difficult-to-cut material is cut by forming a hard coating layer constituted of (a) to (c) above.
JP2005213908A 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials Expired - Fee Related JP4747709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213908A JP4747709B2 (en) 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213908A JP4747709B2 (en) 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2007030065A JP2007030065A (en) 2007-02-08
JP4747709B2 true JP4747709B2 (en) 2011-08-17

Family

ID=37789937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213908A Expired - Fee Related JP4747709B2 (en) 2005-07-25 2005-07-25 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP4747709B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250966B2 (en) * 1996-12-04 2002-01-28 住友電気工業株式会社 Coated cutting tool and manufacturing method thereof
JP2000061708A (en) * 1998-08-18 2000-02-29 Hitachi Tool Engineering Ltd Coated hard tool

Also Published As

Publication number Publication date
JP2007030065A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4900874B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4747709B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4849221B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP4682825B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038374A (en) Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material
JP4789069B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material
JP2008188735A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material
JP2007038383A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees