JP4746987B2 - 散乱計測を用いてオーバレイ誤差を検出する装置および方法 - Google Patents

散乱計測を用いてオーバレイ誤差を検出する装置および方法 Download PDF

Info

Publication number
JP4746987B2
JP4746987B2 JP2005508481A JP2005508481A JP4746987B2 JP 4746987 B2 JP4746987 B2 JP 4746987B2 JP 2005508481 A JP2005508481 A JP 2005508481A JP 2005508481 A JP2005508481 A JP 2005508481A JP 4746987 B2 JP4746987 B2 JP 4746987B2
Authority
JP
Japan
Prior art keywords
target
optical device
targets
overlay
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005508481A
Other languages
English (en)
Other versions
JP2006509219A5 (ja
JP2006509219A (ja
Inventor
ミーハー・ウォルター・ディ.
レビー・アディ
ゴロヴァネブスキイ・ボリス
フリードマン・マイケル
スミス・イアン
アデル・マイケル
ファブリカント・アナトリー
ベヴィス・クリストファー・エフ.
フィールデン・ジョン
ベアケット・ノア
グロス・ケン
ザリッキ・ピオトル
ワック・ダン
デセッコ・パオラ
ジュラ・サディアス・ジー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Corp filed Critical KLA Corp
Publication of JP2006509219A publication Critical patent/JP2006509219A/ja
Publication of JP2006509219A5 publication Critical patent/JP2006509219A5/ja
Application granted granted Critical
Publication of JP4746987B2 publication Critical patent/JP4746987B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、単一または複数のレイヤ内に形成された構造間のオーバレイの決定に関する。より具体的にはそのような構造と相互作用する放射の回折に基づいてオーバレイを決定することに関する。
さまざまな製造および生産環境において、試料のさまざまなレイヤ間の、またはそのような試料の特定のレイヤ内でのアライメントを制御する要求がある。例えば半導体製造産業において、電子デバイスは、一連のレイヤを基板上に作ることによって生産されえ、このレイヤの一部または全てはさまざまな構造を含む。特定のレイヤ内における、および他のレイヤ内の構造に対しての、両方について、そのような構造の相対位置は、完成後の電子デバイスのパフォーマンスに関連するか、または重要ですらある。
そのような試料内の構造の相対位置は、オーバレイと呼ばれることもある。オーバレイを計測するさまざまな技術およびプロセスが開発され、成功の程度の差はあれ採用されてきた。最近では、オーバレイ計測のための基礎として放射散乱計測を利用することに対してさまざまな努力がなされている。
散乱計測測定値からオーバレイを決定するある既存のアプローチは、モデル形状プロファイル、オーバレイ、およびフィルムスタック、および材料光学特性(n,k分散曲線)に基づいて計測されたスペクトルを計算された理論的なスペクトルと比較すること、または較正ウェーハからのレファレンス信号と比較することに集中する。
既存のアプローチにはいくつかの付随する欠点がある。例えば、正確にオーバレイを決定するためには、比較的多くのパラメータがプロファイル、オーバレイ、およびフィルムモデリングに含まれなければならない。例えば、上部および下部レイヤプロファイルの両方に簡単な台形モデルを用いるいくつかのアプローチにおいては、含まれなければならないパターンパラメータの最小個数は、オーバレイを含んで7個である。もしフィルムの厚さのバラツキがモデル中に含まれるなら、パラメータの個数は対応して増える。多くのパラメータは、多くの処理リソースを要求しえ、対応するエラーを招きえ、結果を遅らせることによってスループットを減少させたり非効率さおよびコストを押し上げたりするかもしれない。例えば計測されたスペクトルを計算されたレファレンススペクトルと比較することは、ライブラリベースのアプローチが用いられようが、回帰アプローチが用いられようが、パラメータが多いほど時間が長くかかる。
散乱計測に基づくオーバレイの決定へのある種の既存のアプローチの他の欠点は、正確な理論上のスペクトルを決定し、計測されたスペクトルと比較するためには、フィルムスタック、フィルム材料、およびパターンエレメントプロファイルの詳細な知識が必要となりえることである。
散乱計測に基づくオーバレイの決定へのある種の既存のアプローチの他の欠点は、正確な理論上のスペクトルを決定し、計測されたスペクトルと比較するためには、散乱計測光学系の詳細な知識が必要となりえることである。
したがって散乱計測に基づくオーバレイの決定への既存のアプローチの欠点を鑑みて、散乱計測に基づくオーバレイの決定のための改良されたシステムおよび方法に対するニーズが存在する。
したがって、試料の2つのレイヤ間のオーバレイ誤差を決定するためのメカニズムが提供される。ある実施形態において、試料の第1レイヤ内の複数の第1構造群、および前記試料の第2レイヤ内の複数の第2構造群の間のオーバレイを決定する方法が開示される。前記第1および第2構造群の一部を含むターゲットA、B、CおよびDが提供される。前記ターゲットAは、その第1および第2構造部分の間にオフセットXaを有するよう設計され、前記ターゲットBは、その第1および第2構造部分の間にオフセットXbを有するよう設計され、前記ターゲットCは、その第1および第2構造部分の間にオフセットXcを有するよう設計され、前記ターゲットDは、その第1および第2構造部分の間にオフセットXdを有するよう設計される。前記オフセットXa、Xb、XcおよびXdのそれぞれは好ましくはゼロとは異なる。XaはXbとは反対の符号で異なり、XcはXdとは反対の符号で異なる。ターゲットA、B、CおよびDを電磁放射で照射されることによって、ターゲットA、B、CおよびDからそれぞれスペクトルSA、SB、SC、およびSDを得る。前記得られたスペクトルSA、SB、SC、およびSDに基づいて線形近似を用いて前記第1および第2構造群の間の任意のオーバレイ誤差が決定される。
一般に、誤差オフセットEは、少なくとも、それぞれが2つのパターン付きレイヤ間にオフセットXaからXdのようなオフセットを有する、4つ以上のターゲットA、B、C、およびDからの計測されたスペクトルを分析することによって決定されえる。この分析は、スペクトルを既知またはレファレンスのスペクトルと比較することなく実行されえる。換言すれば、本発明の誤差決定技術は、較正操作を必要としない。
具体的な実現例において、任意のオーバレイ誤差を決定することは、(i)スペクトルSAおよびSBから差分スペクトルD1を決定すること、(ii)スペクトルSCおよびSDから差分スペクトルD2を決定すること、および(iii)前記差分スペクトルD1およびD2に基づいて線形近似を実行することによって任意のオーバレイ誤差を決定することによって達成される。さらなる局面において、前記線形近似は、前記差分スペクトルD1の特性P1および前記差分スペクトルD2の特性P2に基づく。
あるターゲット構成において、前記ターゲットA、B、C、およびDのそれぞれは、少なくとも一部が前記第1レイヤ内に配置された周期Ta1を持つ周期的構造を有する格子構造Ga1、および少なくとも一部が前記第2レイヤ内に配置された周期Ta2を持つ周期的構造を有する格子構造Ga2を備える。前記第1周期Ta1および前記第2周期Ta2は実質的に同一であり、前記オフセットXa、Xb、Xc、およびXdは、前記構造群に対して前記格子構造Ga1の前記周期Ta1で、前記格子構造Ga2の前記周期Ta2で、第1距離Fおよび第2距離f0の和によって、前記構造群をオフセットすることによってそれぞれ作られ、ここで前記第2距離f0は、前記第1距離Fよりも小さい絶対値を有する。
他の局面において、本発明は、試料の2つのレイヤ間のオーバレイ誤差を決定するよう動作可能である光学システムに関する。このシステムは、上述の方法操作の1つ以上を実行するよう構成される1つ以上のプロセッサを一般に含む。
本発明のこれらおよび他の特徴および利点は、本発明の以下の明細書および添付の図においてより詳細に示され、これらは本発明の原理を例示的に示す。
本発明の具体的な実施形態が詳細に参照される。この実施形態の例は添付の図面に示される。本発明はこの具体的な実施形態について説明されるが、本発明を一つの実施形態に限定されるよう意図されてはいないことが理解されよう。むしろ添付の特許請求の範囲によって規定される本発明の精神および範囲内に含まれる代替物、改変物、および等価物をカバーするよう意図されている。以下の記載では多くの具体的な詳細が述べられているが、これは本発明の完全な理解を促すためである。本発明は、これら特定の詳細の一部または全てがなくても実施されえる。他の場合には、よく知られたプロセス操作は詳細には記載されていないが、これは本発明の趣旨を不必要にぼかさないためである。
本発明のある局面は、半導体デバイスのような試料上に形成された4つ以上の散乱計測オーバレイターゲットのセットを提供する。パターンは、「パターンまたは層間パターン」としても記述され、これら二つの語はたいていの場合は同義である。特定の実現例において、この試料は半導体デバイスの2つ以上のレイヤを有し、このターゲットは、デバイス中に設けられたさまざまな構造の位置付けの正確さの測定値を提供するのに利用される。一般に位置付け正確性は、半導体デバイスの2つの異なるレイヤ間のオーバレイ誤差の計測値によって特徴付けられる。
具体的な実施形態において、4つのターゲットのセットが提供され、それぞれのターゲットは、2セットの構造を、互いにオフセットされている2つの異なるレイヤ上に含む。具体的な実現例において、オフセットは、2つの別個の距離の和または差として定義されえる。すなわち、第1距離Fおよび第2距離f0で、Fがf0より大きい。4つのターゲットを「ターゲットA」、「ターゲットB」、「ターゲットC」および「ターゲットD」と記述すると、これらターゲットのそれぞれについての対応する所定のオフセットは特定のターゲット設計について以下のように定義されえる。
Xa=+F+f0(ターゲットAについて)、
Xb=−F+f0(ターゲットBについて)、
Xc=+F−f0(ターゲットCについて)、および
Xd=−F−f0(ターゲットDについて)。
XaからXdについてのこれらオフセットは、本発明の技術を実施してオーバレイを決定するための任意の適切な値でありえる。例えばXaおよびXbは、XcおよびXdとは異なるf0の値を持ちえる。
図1は、本発明の特定の実現例におけるx軸に沿ったオフセットXa、Xb、XcおよびXdの分布を示す。示されるようにオフセットXaおよびXcは共に正で、XaはXcより大きい。対照的にオフセットXbおよびXdは共に負で、XdはXbよりもより負である。
ターゲットの個数およびそれらの対応するオフセットの大きさと符号は、任意の適切なやり方で選ばれることによって、本発明の技術がオーバレイ誤差を決定するために実施されえる。ターゲットの特定のセットおよびそれらの対応するオフセットは、図2(a)から2(f)に関連して以下に説明される。この技術を実施し、本発明のシステムを利用するのに用いられえるターゲットおよびオフセット値の多くの組み合わせが存在することが容易にわかるだろう。
図2(a)は、本発明のある実施形態による、パターン付きボトムレイヤL1から量Fだけオフセットされているパターン付きトップレイヤL2の側面図である。それぞれのレイヤL1およびL2は、構造群のセット(a set of structures)中にパターン付け(patterned)されている。構造は、ライン、トレンチ、またはコンタクトのような任意の適切なフィーチャを含みえる。構造は、半導体デバイスフィーチャと同様になるよう設計されえる。構造は、異なるフィーチャの組み合わせからも形成されえる。さらに構造は、例えば、試料のトップレイヤの上に、または試料の任意のレイヤの中に、または試料のレイヤの部分的に中にまたは完全に中に、のように、試料の任意のレイヤ上に位置付けられえる。図2(a)の示される実施形態において、レイヤL1は、完全な構造204a〜cを含み、一方、レイヤL2は完全な構造202a〜cを含む。散乱計測オーバレイターゲット構造の構築およびそれらの作製方法は、Abdulhalimらによる「PERIODIC PATTERNS AND TECHNIQUE TO CONTROL MISALIGNMENT」と題された2001年4月10日出願の米国特許出願第09/833,084号に記載されており、この出願はその全体がここで参照によって援用される。
示されるようにトップレイヤL2の構造は、量FだけボトムレイヤL1からオフセットされる。2つのオフセットレイヤの構造は、隣接するレイヤ内に位置しえ、2つのオフセットレイヤ間に配置された任意の適切な個数およびタイプのレイヤを有しえる。図2(a)はまた、パターン付きレイヤL1およびL2間の3つのフィルムT1、T2、およびT3およびそれらの対応する構造を示す。任意の他のレイヤが、この構造を有する2つのレイヤ間に存在する限り、これらの他のレイヤは、構造を有するレイヤ間で放射の伝搬を許すために、電磁放射について少なくとも最低限の透過の程度を示す。
図2(b)は、本発明のある実施形態による、パターン付きボトムレイヤL1から量−Fだけオフセットされているパターン付きトップレイヤL2の側面図である。図2(c)は、本発明のある実施形態による、パターン付きボトムレイヤL1から量+F+f0だけオフセットされているパターン付きトップレイヤL2の側面図である。図2(d)は、本発明のある実施形態による、パターン付きボトムレイヤL1から量−F+f0だけオフセットされているパターン付きトップレイヤL2の側面図である。図2(e)は、本発明のある実施形態による、パターン付きボトムレイヤL1から量+F+f0+Eだけオフセットされているパターン付きトップレイヤL2の側面図である。図2(f)は、本発明のある実施形態による、パターン付きボトムレイヤL1から量−F+f0+Eだけオフセットされているパターン付きトップレイヤL2の側面図である。
一般に、誤差オフセットEは、オフセットXaからXdのような2つのパターン付きレイヤ間でオフセットをそれぞれ有する少なくとも4つ以上のターゲットA、B、C、およびDから計測されたスペクトルを分析することによって決定されえる。この分析は、スペクトルのどれも既知またはレファレンススペクトルと比較することなく実行される。換言すれば本発明の誤差決定技術は、較正操作を必要としない。
図3(a)は、本発明のある実施形態によってオーバレイを決定するプロシージャ300を示すフロー図である。この例では、上述のようにオフセットXaからXdを有するように設計される4つのターゲットA、B、C、およびDが用いられる。すなわち、ターゲットAはオフセット+F+f0を持つように設計され、ターゲットBはオフセット−F+f0を持つように設計され、ターゲットCはオフセット+F−f0を持つように設計され、およびターゲットDはオフセット−F−f0を持つように設計される。
まず操作302aから302dにおいて、入射放射ビームが4つのターゲットA、B、C、およびDのそれぞれに向けて導かれ、4つのターゲットから4つのスペクトルSA、SB、SC、およびSDが計測される。操作302aから302dは、計測システムの能力に応じて順次に、または同時に実行されえる。入射ビームは、レーザまたは広帯域放射のような電磁放射の任意の適切な形態でありえる。オーバレイを決定するために散乱計測信号を計測する光学システムおよび方法の例は、(1)Lakkapragada, Sureshらによる「METHOD AND SYSTEMS FOR LITHOGRAPHY PROCESS CONTROL」と題された2001年5月4日出願の米国特許出願第09/849,622号、および(2)Abdulhalimらによる「PERIODIC PATTERNS AND TECHNIQUE TO CONTROL MISALIGNMENT」と題された2001年4月10日出願の米国特許出願第09/833,084号に見られる。これら出願はそれらの全体がここで参照によって援用される。
適切な計測システムのさらなる実施形態およびオーバレイ誤差を決定するためのそれらの使用は、さらに以下に説明される。本発明のさまざまな実施形態において、スペクトルSA、SB、SC、およびSD(および存在しえる任意の追加のスペクトル)は、任意のタイプの分光学的偏光計測または反射光計測信号を含み、これらはtan(Ψ)、cos(Δ)、Rs、Rp、R、α(分光学的偏光計測「アルファ」信号)、β(分光学的偏光計測「ベータ」信号)、((Rs−Rp)/(Rs+Rp))などを含む。
スペクトルSB(−F+f0)はそれからスペクトルSA(+F+f0)から引かれ、スペクトルSD(−F−f0)はそれからスペクトルSC(+F−f0)から引かれて2つの差分スペクトルD1およびD2をそれぞれ操作304aおよび304bで形成する。次に操作306aおよび306bにおいてそれぞれ、差分スペクトル特性P1が差分スペクトルD1から得られ、差分スペクトル特性P2が差分スペクトルD2から得られる。差分スペクトル特性P1およびP2は、得られた差分スペクトルD1およびD2の任意の適切な特性から一般に得られる。差分スペクトル特性P1およびP2はまた、それぞれ、特定の波長におけるそれぞれの差分スペクトルD1またはD2上の単に点でありえる。他の例としては、差分スペクトル特性P1およびP2は、差分信号の平均の積分の結果でありえ、SEアルファ信号の平均と等しく、オーバレイに対する器具感度、ノイズまたは信号感度を表す重み付け平均に等しくありえる。
異なるスペクトル特性P1およびP2が得られた後で、操作308において直接、差分スペクトル特性P1およびP2からオーバレイ誤差Eがそれから計算されえる。ある実施形態において、異なるスペクトル特性P1およびP2に基づいて線形近似が実行されて、オーバレイ誤差Eが決定され、一方、他の技術においては異なるスペクトル特性P1およびP2は、オーバレイ誤差Eを決定するのにそれから用いられる、正弦波関数または他の周期関数を近似するのに用いられる。ある線形回帰技術が図3(b)について以下に示される。ある例では、オーバレイ結果は、複数の波長または複数の波長範囲の特性から得られるオーバレイ結果の統計的計算(例えば平均化または重み付け平均)によって得られうる。
この実現例の変化型において、もし全ての4つのターゲットが、オフセットを除いて、同じピッチP、薄膜特性、構造サイズおよび組成のような特性を有するなら、またXaおよびXbの符号が反対で、同じオーダーの大きさを有する(0.1<Xa/Xb<10)と仮定し、かつもし0.05<|Xa/P|<0.45および0.05<|Xb/P|<0.45、かつもしXaがXcと同じ符号で、XbがXdと同じ符号であるなら、層間ターゲット(interlayer targets)内の構造間に存在するオーバレイ誤差Eの推定値は、異なるスペクトル特性P1およびP2に基づく直線近似を用いて以下のように計算されえる。
Figure 0004746987
または
Figure 0004746987
であり、ここでオーバレイ誤差E<f0については、差分スペクトル特性P1およびP2は一般に符号が逆である。もし(Xa−Xb)=(Xc−Xd)およびE=0なら、P1=−1*P2である。
代替として、それぞれのターゲットオフセットXa、Xb、Xc、およびXdを設計するのに、もし同じ値がFおよびf0について用いられるなら、
Figure 0004746987
となる。
ターゲットは、少なくとも部分的に1つより多いレイヤ内に位置する構造のオーバレイを決定するために用いられえるが、実質的に単一のレイヤ内に位置する構造のオーバレイを決定ためにも用いられえる。
図3(b)は、本発明のある実施形態によってオーバレイ誤差Eを決定する直線的アプローチの図解表現である。示されるように、y軸の正の部分は、f0+Eの関数としての差分スペクトル特性P1における変化を示し、y軸の負の部分は、−f0+Eの関数としての差分スペクトルにおける変化を示す。上述のように、差分スペクトル特性P1およびP2は、差分スペクトルD1およびD2から得られる。
オーバレイ誤差Eは、2つの点(+f0+E,P1)および(−f0+E,P2)を分析することによって得られうる。オーバレイ誤差Eは、あるアプローチにおいては2つの得られた差分スペクトル特性P1およびP2について直線近似を実行することによって決定されえる。グラフ上にはEがゼロである2つの点があり、一方、グラフの他の部分はオーバレイ誤差Eおよびf0の関数であることに注意されたい。もしオフセットが直線領域にあるように注意深く選ばれるなら、グラフ(P1/(+f0+E))のグラフの正の部分の傾きは、グラフ(P2/(−f0+E))のグラフの負の部分の傾きと等しくならなければならない。よってオーバレイ誤差は、E=f0*(P1+P2)/(P1−P2)によって得られる。
本発明のある実現例によれば、もし大きさが同じで符号が反対のオフセット+Fおよび−Fを持ち、他のオーバレイ誤差を持たない2つのターゲットが存在するなら、0次の回折散乱計測SEまたは反射計測スペクトルは、これら2つのターゲットから実質的に同一(良好な近似)であり、+Fおよび−Fに対応するスペクトル間の差分信号はゼロである。もちろん差分信号の任意の特性もゼロである。もし追加のオフセット+f0を設計することによって意図的に対称性を破る(人工的にオーバレイ誤差を導く)なら、差分信号D1はもはやゼロではなく、任意の適切な差分スペクトル特性は、オーバレイ誤差Eと同じ関係に従う。同様にオーバレイターゲットの他のセットが追加オフセット−f0を持つように設計することもできる。よって、オーバレイ誤差は、差分信号D1(+F+f0,−F+f0)およびD2(+F−f0,−F−f0)の特性を用いて決定されえ、したがって別個の較正ステップは必要とされない。
オーバレイ誤差Eがスペクトル信号から計算されるとき、それは実際のオーバレイ誤差の推定値でありえることが理解されよう。この計算されたオーバレイ誤差Eは、オーバレイ誤差(E)、またはオーバレイ誤差の推定値(E’)と記される。
もし構造間のピッチが比較的大きいなら、上述の直線近似技術は一般にうまく機能する。しかしピッチが比較的小さいなら、オーバレイ計測の正確性を改善するために追加のターゲットが試料上に作製されえる。用いられるターゲットの個数および対応する散乱計測技術は、ターゲットの特定の材料、実現される散乱計測信号のタイプに他のファクタの中でも依存する。4つ以上のターゲットを用いるかどうかは実験的に、またはよく知られたモデリング方法によって決定されえる。ある実施形態において、2つの追加の層間ターゲット(ターゲット「H」および「J」と記される)が試料上に作製され、これらは対応するオフセットXhおよびXjを持つ。入射放射によって照射されると、ターゲットHおよびJは、対応する回折された要素を作り、これらは追加の差分信号D3および差分スペクトル特性P3の決定の基礎として機能しえる。この特性P3は、オーバレイEの決定を洗練させて、直線近似を用いることによって導入される誤差の非線形補正または計測を含ませるように、異なるスペクトル特性P1およびP2と関連して分析されえる。
上述の直線近似方法に対するある代替実施形態は、散乱計測オーバレイ信号を周期関数として扱い、位相検出方法を用いてオーバレイ誤差を決定することである。この実施形態は、散乱計測オーバレイターゲットピッチ、散乱計測オーバレイターゲット設計、散乱計測オーバレイ(SCOL)ターゲット材料、計測された散乱計測信号などを含みえる変数に依存して、ある条件下では好ましいかもしれない。
オーバレイ誤差は、プリプログラムされた追加ビルトインオーバレイオフセット(pre-programmed additional built-in overlay offsets)を持つ複数のSCOLターゲットを計測することから抽出されえる。(プリプログラムされたオフセットのある例は、図1において上述のXa、Xb、Xc、およびXdでありえる)。計測されるターゲットの個数は、2個、3個、4個、または4個より多くてもよく、または異なるオーバレイ計測位置間で変わりえる。散乱計測信号(例えば波長または入射角度の関数として)は、要求されるSCOLターゲットから得られる。任意のオーバレイそれぞれについて、この信号は、オーバレイ誤差の周期的な偶関数である。位相検出(または位相回復、位相抽出、または位相決定)アルゴリズムは、信号のこれら特性を利用する。計測された信号は、対応する個数の自由パラメータ(これら自由パラメータのうちの一つはオーバレイ誤差そのものである)を持つ偶周期関数のセットによって表される。異なるセットのこのような関数は、例えば、計測されるターゲットの個数、散乱計測信号特性、ターゲット特性、および要求される情報に依存して用いられえる。計測されるターゲットの個数は、自由未知パラメータの累積個数より大きいかまたはそれに等しくなる。いくつかの(2つ以上の)散乱計測オーバレイ(SCOL)ターゲット(異なるプリプログラムされたオフセットを持つ)が、互いの直近(例えば250ミクロン内に)に置かれるとき、オーバレイ誤差は、全てのこれらターゲットについて同じであると推定されえる。他の自由パラメータのそれぞれは、あるSCOLターゲット位置から別のものへと変わるとき(フィールド内で、および/またはウェーハにわたって)変わってもよく、変わらなくてもよい。(オーバレイは、異なるオーバレイ計測位置間で変わると推定される)。代替として、これら自由パラメータ(またはそれらの一部)は、X−およびY−SCOLターゲット方向間で変わってもよく、変わらなくてもよい。要求される情報、要求される計測正確性、およびいくつかの自由パラメータが位置ごとに、および/またはX−およびY−方向間で変わらないかに基づいて、オーバレイ計測位置あたりのSCOLターゲットの総個数、およびフィールドあたり、および/またはウェーハあたりに計測されるべきSCOLターゲットの総個数が決定される。
複数のターゲットからの散乱計測信号からオーバレイ誤差を決定する位相アルゴリズムアプローチの例は、散乱計測信号のオーバレイ誤差に対する従属性を周期関数として扱うことである。この場合、複数のターゲットのプログラムされたオフセットは、初期位相オフセットとして扱われ、オーバレイ誤差は、追加位相として扱われる。オーバレイ誤差は、それからよく知られる位相決定または位相回復方法を用いて決定されえる。直交、3バケット、および4バケット位相回復アルゴリズムを含みえるよく知られる位相回復方法が、オーバレイ誤差を決定するのに用いられえる。これら位相回復方法は、例として挙げられるだけで、本発明の範囲を限定するように意図はされない。位相検出方法は、よく知られており、2、3の例を挙げれば、通信、干渉法、核磁気共鳴、電子回路のようなさまざまな領域で広く用いられる。他の実施形態において、線形、非線型、および位相回復アルゴリズムの組み合わせがオーバレイ誤差を決定するために採用されえる。
上述の技術の実現については、ある種の条件が好ましくは満たされる。計測領域は、オフセット、例えば、+F+f0、−F+f0、+F−f0、および−F−f0である点を除いて、全ての局面において実質的に同一である。これはターゲットを互いの約100ミクロン以下の中に配置し、比較的プロセスにロバストな(すなわちそれらはデバイスフィーチャとしてプロセスのバラツキに対して同様の、またはより敏感ではない)ターゲットを選ぶことによっておそらくは達成される。実際には、製造ウェーハ上では、もし下部パターンレイヤ(群)および上部レイヤからのトポグラフィが、このトポグラフィと相互作用するのに応答して変化するなら、プロファイルは、異なるオフセットについて同一のものから偏位しえる。異なるオフセットを持つ2つのターゲット間の差分または誤差信号は、プロファイルが異なるターゲットに共通である限り、オーバレイターゲットセグメントのプロファイルのバラツキ、およびフィルムのバラツキに比較的、独立である。これは、プロファイルおよびフィルムおよび光学系によって決定される信号の一部のコモンモード除去と実質的に等価である。この技術はまた、典型的な製造プロセスで遭遇する、ある幅のプロセスバラツキに対して好ましくはロバストである。オーバレイ誤差による信号差も、近接した散乱計測オーバレイターゲット間の他のプロセスバラツキ(マスク誤差を含む)の原因による信号差よりも好ましくは大きい。
特定の実現例においてもしターゲットがラインの特性を示すようグループ化された構造を含むなら、ターゲット群の別個のセットがXおよびYオーバレイ計測について必要とされる。もしオーバレイターゲットが2次元構造から構成されるなら(上から下を見た図で見られるように)、XおよびYオーバレイ情報の両方を得るためにターゲット群の1つのセットを用いることが可能かもしれない。斜散乱計測(oblique scatterometry)について、具体的な実現例によれば、異なるXおよびYオーバレイ誤差を計測するために、ウェーハの向きを光学散乱平面について回転させることが有利でありえる。真の直入射については、ウェーハまたは光学系を回転させることなく、異なる偏波からXおよびYオーバレイ情報を得ることが可能でありえる。
デカルト座標系は、試料内でオーバレイを計測するのに便利な座標系を提供し、x−y平面は試料のレイヤ内、または実質的にそれに平行に位置し、z軸が試料のレイヤに実質的に垂直に位置する。デカルト座標系は、試料に対して固定されえ、または計測の複雑さを減らすために回転されえる。例えば、試料にわたって対角に起こるが、単一のレイヤ内で起こるオーバレイは、2次元x−yオーバレイとしてデカルト座標系で記述されえ、x−y軸は実質的に長方形の試料の辺に平行である。しかし、この同じ対角オーバレイは、x−y軸を回転させて、x軸が対角のオーバレイの方向と平行であるようにすることによって、単一の軸に沿って計測されえる。3次元のオーバレイは、レイヤに実質的に平行なx−y平面内の計測値を限定し、z方向内で起こる層間オーバレイを無視することによって2次元オーバレイに減らされえる。
ある実施形態において、ターゲットは、おそらくは2つのレイヤ内に位置する構造の異なるセットの間に、またはおそらくは2つより多いレイヤ内に位置する構造の異なるセット間に、1より多い予め定義されたオフセットを含む。一般の場合、ターゲットは、無限個のレイヤを含みえ、これらレイヤの全てまたは一部は予め定義されたオフセットを作る構造を有する。具体的な実施形態において、ターゲットの1つ以上の下位(underlying)パターン付きレイヤ内の構造は、1つ以上の上部レイヤ(下位パターン付きレイヤ(群)の上に配置される)の形状またはトポグラフィに変化を生む。この実現例において、1つ以上の上部レイヤは、実質的にまたは部分的に不透明または吸収的であり、回折信号の少なくとも一部は、上部レイヤのトポグラフィから起こりえ、このトポグラフィは少なくとも部分的には下位パターン付きレイヤから起こる。
ある実施形態によれば、ターゲット内に含まれる構造は、例えば、ライン、グリッド、長方形、正方形、曲線、曲線のある形状、前述のものの組み合わせを含む、さまざまな構成および形状で整理されえる。構造のこのような構成は、ターゲット内のさまざまな位置に配置されえ、ターゲットに入射する電磁放射入射に対してさまざまな角度を記述しえる。例えば、構造のセットは、ターゲット上に入射する放射線の平行にされたセット、またはビームの伝搬方向に垂直な平行なラインのセットとして整理されえる。他の場合においては、平行なラインのセットとして整理される構造は、入射放射に対して鋭角に、おそらくは45度に、配置されえる。このような構成は、xおよびy方向の両方においてオーバレイの決定を促進し、それによって追加のオーバレイパターンまたは計測値に対する必要を減らすことによって有利となりえる。
1.散乱計測システムの実施形態およびその使用
本発明のいくつかの技術は、ソフトウェアおよび/またはハードウェアシステムの任意の適切な組み合わせを用いて実現されえる。例えばこの技術は、オーバレイ計測ツール内で実現されえる。好ましくはそのような計測ツールは、本発明の操作の多くを実現するコンピュータシステムと統合される。そのような複合システムは好ましくは、オーバレイターゲットの散乱計測信号を得る散乱計測モジュール、および得られた散乱計測信号を分析することによってそのようなターゲット内でのオーバレイ誤差を決定するプロセッサを少なくとも含む。最低限、散乱計測モジュールは、(i)試料の特定された位置上に放射を導くよう方向付けられた照射源、および(ii)その試料によって散乱された散乱計測信号を検出するよう方向付けられた1つ以上の検出器をふつう含む。
本発明の技術の少なくとも一部は、また、オーバレイ計測システムにおいて、従来のボックスインボックスまたはフレームインフレームオーバレイターゲットまたは他の画像化タイプのオーバレイ計測構造について用いられるもののような画像分析に基づくオーバレイ計測システムまたはサブシステムを補足する追加オーバレイ計測機能として実現されえる。画像化ベースのオーバレイ計測および散乱計測ベースのオーバレイを結合する装置の例は、上で参照された仮出願第60/498,524号に記載され、これはここで参照によって援用される。画像化オーバレイ計測および散乱計測オーバレイ計測からのオーバレイデータは、オーバレイ補正値を計算すること、他のオーバレイ補正値を計算すること、オーバレイ誤差をウェーハの他の位置において計算することを含むさまざまな使用のために結合されえる。画像化オーバレイ計測および散乱計測オーバレイ計測の組み合わせのさらなる使用例は上で参照された仮出願第60/498,524号に記載される。
システムの構成に関係なく、データ、汎用検査操作のためのプログラム命令および/またはここで記載の本発明の技術を記憶するよう構成される1つ以上のメモリまたはメモリモジュールを採用しえる。プログラム命令は、オペレーティングシステムおよび/または1つ以上のアプリケーションの動作を制御しえる。またメモリまたはメモリ群は、ターゲットおよびオーバレイ誤差結果から得られる散乱計測データ、およびオプションとして他のオーバレイ計測データを記憶するよう構成されえる。
このような情報およびプログラム命令は、ここで記載されるシステム/方法を実現するために採用されえるので、本発明の実施形態は、ここで記載されるさまざまな操作を実行するプログラム命令、状態情報などを含む機械で読み取り可能な媒体に関する。以下に限定されないが機械で読み取り可能な媒体の例は、ハードディスク、フレキシブルディスク、および磁気テープのような磁気媒体、CD−ROMのような光媒体、フロプティカルディスクのような光磁気媒体、読み出し専用メモリ(ROM)およびランダムアクセスメモリ(RAM)のようなプログラム命令を記憶し実行するために特別に構成されたハードウェアデバイスを含む。また本発明は、空間波、光学ライン、電気ラインなどのような適切な媒体上を伝搬する搬送波中でも実現されえる。プログラム命令の例は、コンパイラによって生成されるような機械語、およびインタープリタを用いてコンピュータによって実行されえるより高いレベルのコードを含むファイルの両方を含む。
以下に記載されるシステム実施形態のいくつかは、4つ以上のターゲットからスペクトルを得る散乱計測モジュールまたは要素について主に記載され図示されるが、プロセッサおよびメモリは示されない。
散乱構造の計測について開口数が最適化される画像化計測システム
図4は、顕微鏡画像化システムの概略図である。示されるように画像化システム400は、電磁放射の入射ビーム403を作るビーム発生器402、入射ビーム405を試料408に導くビームスプリッタ404を含む。典型的には、入射ビームは、対物レンズ406によって試料上にフォーカシングされる。出力ビーム409は、入射ビームに応答してそれから試料から放出され、ビームスプリッタ404を通り、リレーレンズ410を通してイメージャまたはカメラ412に伝わる。カメラ412は、出力ビーム409に基づいて試料の画像を発生する。
システム400はまた、ビーム発生器402、対物レンズ406、およびカメラ412のようなさまざまな要素を制御するよう構成されるプロセッサおよび1つ以上のメモリ414を含む。プロセッサおよびメモリはまた、上述のさまざまな散乱計測技術を用いて検出された出力ビームまたは画像を分析するよう構成される。
従来はこのような画像化システム(オーバレイのために用いられるもののような)は、画像解像度を最適化し、光学収差を最小化するために、選択された開口数(NA)を有する(例えば対物レンズを介して)。NAの選択は、画像の幾何学的特性から単一のターゲット(ボックスインボックスターゲットのような)にわたっての強度の変動からオーバレイ情報を導出するために典型的には実行される。
従来の画像化システムは、0.7から0.9のような高開口数(NA)に頼ってきたが、そうすることは、振動、焦点深度、および光学収差に敏感な高価な光学系システムにつながる。これら問題は、達成可能な正確性を減らし、「ツール誘発シフト」つまりTISとして呼ばれる計測誤差を生じる。
散乱計測システムは、xおよびyオーバレイの両方を計測するために、かつ膜厚のような他の試料パラメータにおけるバラツキによる効果をなくすために、複数のサイトで計測値を順次とりえる。この種の計測プロセスは、従来のオーバレイ技術に比べて散乱計測ツールの動作を大きく遅くすることにつながる。
本発明のある実施形態において、画像化光学システムの照射および画像化NAは、ゼロ次の回折次数だけが集められることを確実にすることによって、散乱構造に対する機械のパフォーマンスを最適化するように選ばれる。ゼロ次の回折だけが検出システムによって集められるときには、周期的構造に関するある種の計測法または検査タスクについてはパフォーマンスの優位性が存在するという事実を利用しえる。この条件下では、鏡面反射だけが集められる。鏡面からはずれて散乱される出力は集められず、非鏡面出力は収差により敏感でありえるので、鏡面出力だけを集めることは、光学収差によって生じる効果を最小化する傾向にある。この条件はまた、以下でさらに詳述される視野内の複数のサイトの相対測光計測のために最適化されるツールにつながる。従来の画像化システムに比較して、非常に低いTISが達成されえる。従来の散乱計測システムによるよりも、より高いスループットも達成されえる。
特定の画像化システムのための照射および画像化NAを選ぶことは、そのようなシステムの特定の構成に基づく。もし照射および集光の開口数NAが同じで、入射ビームが試料表面の法線方向である最も簡単な画像化システムを考えるなら、「ゼロ次の回折だけ」という条件は、
Figure 0004746987
なら満たされえ、ここでdは、画像化されるターゲットの構造のピッチである。これは、画像化システムの照射NAiの開口数および集光NAcの開口数によって以下のように書き直せる。
Figure 0004746987
この方程式は、もし照射システムの開口数を制約できるなら、集光光学系の開口数についての制約を緩和しえることを表し、これはある条件下では有利でありえる。よってスペクトル範囲は、ピッチおよびNAの積の2倍より大きい波長に制限されえる。現実的な条件下では、散乱された放射ビームは、照射ビームよりも広い(より発散している)。しかし現実的な条件下では、無限に周期的な格子は画像化されず、よって上の方程式は近似となり、回折された平面波はいくらか発散したものとなる。よって制約条件に安全マージンを含めるのが好ましく、以下が必要となりえる。
Figure 0004746987
例としてNA0.4の画像化システムについて、波長は、最も大きいピッチの0.8倍より大きい値に制限されえ、これは妥当ではない制約ではないだろう。デザインルール70nm以下のフィーチャを有する周期的構造について、200nmまで低いピッチを持つ最も密な構造は、約200nm以上の動作波長を持つ画像化システムのスペクトル範囲を制約せず、一方、500nmほど大きいピッチを持つより疎らなフィーチャは好ましくは400nmより大きい波長で計測される。
計測および検査の応用例のための画像化分光計を設計するときは、これら制約条件を満たすことが好ましい。画像化システムの空間解像度の限界はシステムの開口数である。計測構造のサイズを最小限まで小さくし、貴重なウェーハの面積を節約できるようにするために最高の空間解像度を達成することが有利である。換言すればこれは、画像化分光計の視野内の隣接フィーチャ間での近接効果つまり「クロストーク」の最小化を可能にする。したがって最高の可能なNAが達成されつつ、一方で、ゼロ次回折が検出システムによって集められるという制約を満たす。
この制約の他の興味深い結果は、最高の可能なオーバレイ空間解像度は、試験下のフィーチャを分解することなく達成されえるということである。これは、問題になるエイリアシング現象が画像化システム内で避けられることを確実にしなければならないので、さらなる優位性を有しえる。好ましい実施形態において、試験下のフィーチャ中の最大ピッチに基づいて計測システムまたはアルゴリズムによってスペクトルバンドパスが容易に変更または選択されえるアーキテクチャが提供される(後で詳述される図5Aから5Dにおけるシステムのような)。代替として、照射または集光のいずれかのNAが、試験下のフィーチャ中の最大ピッチに依存して容易に変更されえる。代替として、これら実施形態の全ては、単一のシステム内で実現されえる。
図5Aから5Eは、散乱特性に最適化された開口数(NA)を有する顕微鏡画像化システムの4つの実施形態を示す。図5Aに示されるように、システム500は、図4のシステムの同じように名前が付けられた要素と同様に動作する要素を有しえる。システム500は、特定の波長を選択する波長選択装置520を含む。波長選択装置520は、照射する放射のうちの一部または部分を選択的に伝達することによって、または選択的に反射することによってスペクトルバンドの変更を可能にする。スペクトルバンドを変更するためによく知られた顕微鏡フィルタリング技術のさまざまなものが採用されえ、これには、いくつか例を挙げると、バンドパス干渉フィルタのセットから選択すること、連続的にバンドパス干渉フィルタを変化させること、格子ベースの分光計、フーリエ変換干渉計、音響光学波長可変フィルタが含まれる。波長選択装置520は、ビーム間の入射ビームパス内に配置される。システム500はまた、入射ビームが特定の偏光状態にあるようにする偏光子制御装置522、および集められたビームの偏光成分を分析または分離する偏光分析器524を含みえる。
図5Bのシステム530は、波長変調デバイス532が波長選択デバイスの代わりに用いられることを除いては図5Aのシステム500と同様である。図5Cのシステム540は、波長選択デバイス542が出力ビームパス内に配置されることを除いては図5Aのシステム500と同様である。図5Dのシステム550は、波長変調デバイス532が波長選択デバイスの代わりに用いられることを除いては図5Cのシステム500と同様である。波長変調デバイス532は、波長変調デバイス532それ自身(例えば、Michelson、 Fabry-Perot、またはSagnac干渉計のような干渉計システム)の中の1つ以上の光路長を変化させることによって制御されえる。スペクトル情報は、例えばフーリエ変換またはアダマール変換のような変換分析を用いて、結果として生じる信号から導き出されえる。
図5Eは、本発明のある実施形態によるマルチサイト視野の例による画像化分光計の上面図である。ある実施形態において、それぞれのドット付きボックス(dotted box)中の画素からのスペクトルは、平均されて4つの計測ターゲットのそれぞれについてのスペクトルを作る。代替としてそれぞれのドット付きボックスの中心領域中に位置する画素からのスペクトルが合わせて平均される。図示されるターゲット中のラインのサイズおよび間隔は強調するために誇張されている。
NAは、適切な方法でゼロ次の回折次数が集められることを確実にするよう選択されえる。ある提案される動作実施形態においては、
1.異なる特性の2つ以上のサイトが画像化システムの視野内に配置される。
2.1つ以上のスペクトル範囲にわたって画像がキャプチャされる。
3.その視野内のそれぞれの計測サイトについて、そのサイト内にあると決定された全てまたは一部の画素が加算され、または結合されて、そのスペクトル範囲における、そのサイトの測光特性を特徴付ける。
4.ステップ3がそれぞれのスペクトル範囲について反復される。
5.その試料の特性を決定するために、それぞれのスペクトル範囲にわたる、それぞれのサイトについての結果が処理される。例えば、上述のスペクトル分析技術(すなわちF+f0)は、それぞれのターゲットについて得られたスペクトルに対して用いられる。
6.ウェーハにわたって所望の複数の計測サイトについて、ステップ1から5が反復される。
この例示的技術は、異なるスペクトル領域にわたって画像群を順次キャプチャすることを記述するが、これは、波長依存のビームスプリッタ、フィルタ、および/またはミラーのシステムを用いて同時に達成されえる。代替として同じことは、異なる光路差において複数の画像をキャプチャするSagnac干渉計のようなデバイスを用いて実現されえ、これら画像は異なるスペクトル範囲にわたって取られた画像群と等価な情報を導き出すのに用いられる。
フィルタを用いる散乱オーバレイ
従来の画像化オーバレイツールは、高倍率および狭視野を有している。総パターニング欠陥(gross patterning defects)のための検査は、顕微鏡で手動で、または別個のマクロ検査ツールで自動でのいずれかでなされる。低倍率オーバレイツールは残念ながら複数のステップまたはツールを必要とし、そのうちのいくつかは手動である。
ある実施形態において、1つ以上の波長範囲を選択するメカニズムを持つ低倍率顕微鏡が提供される。また、このツールは好ましくは、フィルタ群を持つ1つ以上の広帯域光源(broadband sources)を用いるか、複数の光源が異なる波長範囲をカバーするか、可変フィルタを持つなどする。図6は、本発明のある実施形態による1つ以上の波長範囲を選択するシステム600の概略図である。示されるようにシステム600は、試料606に向けて複数波長入射光ビーム604を発生する広帯域光源602を含む。複数波長出力ビーム608は、入射ビーム604に応答して試料606から散乱される。システム600は、波長に基づいて出力ビーム611の一部をカメラ612に選択的に透過させるフィルタ610も含む。ある実現例において、フィルタは、赤、緑、青、または黄のような特定の色を透過するよう構成される。カメラは、フィルタリングされた出力ビーム611に基づいて画像を生成するよう動作可能である。
オーバレイの計測値は、ターゲットセット内の1つ以上のターゲットが顕微鏡の視野内にある、試料上の位置へ移動することによって測られる。画像が獲得され、それぞれの個別のターゲットを含む、画像中の一部または全ての画素からの強度は、平均化または加算されて、フィルタの特定の設定におけるそのターゲットについての強度値を与える。ある実施形態において、フィルタは、ターゲット間で最大の差を与えるように調整される。これは、レファレンス表面について加算された画素の数へと後で正規化されえ、または視野内の照射均一性のマップによって補正されえる。それから試料または光学系は、ターゲットセット内の必要なターゲットの全てが計測されるまで移動されえる。そのようにして決定された強度値を用いてオーバレイ値が上述のようにそれから決定される。例えば以下のようになる。
Figure 0004746987
このプロセスは、正確さ、精度、およびロバスト性を改善するために複数の波長範囲にわたって反復されえ、ここで最もよいコントラストを生む波長が散乱分析のために用いられる。
典型的な画像化オーバレイツールに比較して倍率が低く視野が大きいので、また試料の当該領域の画像が集められるので、従来の反射率計または偏光解析装置とは異なり、画像の分析は、画像を分析することによって処理の問題のうち他のタイプのものを検出するのにも用いられえる。例えばもし誤ったレチクルが1つ以上の処理ステップについて用いられたなら、画像は大きく異なるだろう。もしレジストの厚さが正しくなかったなら、画像の明るさまたはコントラストは影響されるだろう。もしレジストストリーキング(resist streaking)が存在したなら、明るさまたはコントラストのバラツキがその画像にわたって検出されえる。CMP(化学機械研磨)プロセスにおいて、オーバポリッシュ、アンダーポリッシュなどのような処理誤差が同様に検出されえる。
この実施形態において、複数の散乱計測ターゲットが同時に計測されえ、これにより計測速度が増す。加えて、オーバレイ以外の処理条件における処理誤差または変化が、別個の検査ツールの必要なしに検出されえる。
マルチアングル、同時散乱計測
散乱計測の計測値を得る技術は、2シータアプローチを含みえ、ここで格子または他の繰り返し構造からの散乱強度は、複数の順次計測を行うことによって、複数の角度において計測される。散乱計測の計測値を作る他の技術は、分光散乱計測(spectroscopic scatterometry)である。2シータアプローチの使用は非常に遅いが、これは複数の計測値が典型的には作られるからである。分光散乱計測は高度で高価な光学系を必要とする。
本発明の具体的な実施形態において、同時複数角散乱計測(simultaneous, multi-angle scatterometry)のための技術および装置が提供される。2シータアプローチと異なり、計測値は、散乱強度が同時に多くの角度について決定されることを可能にする装置によって作られる。この技術は2シータアプローチよりもずっと速い。
このアプローチを実現するために、Spanierによる米国特許第5,166,752号に示されるようなオプションの装置が用いられえる。この特許は、その全体がここで参照によって援用される。この特許において、マルチアングルの偏光解析装置が、Spanierによる特許の例えば図3および4に示される。図7は、入射偏光解析装置700の同時複数角の概略図である。示されるように偏光解析装置は、偏光された光を試料714の表面上に導くソース発生器(例えば要素702、706、708、710、および712)、試料から放射された出力ビームの取り扱いおよび検出をする検出光学系(例えば要素718から724)、および試料から反射された光の偏光状態を分析する分析器726を含む。ソース発生器は、光源702、偏光器708、可変開口を持つ補償器710、および光源からの光の単一のビームから偏光された光を試料の表面上に異なる入射角度において同時に導くフォーカシングレンズシステム712を含む。ソース発生器は、オプションの光学狭帯域フィルタを含みえる。
レンズシステム712は、少なくとも1つ以上の角度の角度範囲にわたって変化する入射角度で試料714上に光をフォーカシングする有効口径対焦点比を有する。具体的な実施形態において、入射角度の範囲は30度である。光線を試料714に導くのに、より大きい角度も採用されえる。
フォーカシングレンズシステム712は、例えばHe−Neレーザからでありえる偏光された光を、試料714上の単一の小さなスポットまたは点へとフォーカシングする。異なる入射光線は、試料714上の単一の小さなスポット上でフォーカシングされる、大きく変化する入射角度を有しえる。よって、試料714上の小さなスポット上に導かれた光は、フォーカシングレンズを通して中央の光線の入射角度の上および下の多くの入射角度の光線を含む。入ってくる光線群のそれぞれは、その反射によって変えられる光線のそれぞれの偏光状態を持つその入射角度に等しい角度において反射される。検出器アレイ722は、異なる、狭い範囲の入射角度にわたって個別に試料714から反射される複数の光線群を検出することによって、複数の入射角度におけるデータを簡単かつ迅速に得るために採用される。
試料714から放射される出力ビームは、出力レンズ716、交換可能開口718、偏光分析器720、およびオプションの代替フィルタ722を通して検出器アレイ722上に導かれる。レンズ712および716の直径dは、それらの有効直径に対応する。図示された実施形態において、レンズ712および716はそれぞれ18mmの直径dおよび34mmの焦点距離lを有する。好ましくは少なくとも30度の入射角度の範囲が提供される限り、他の有効レンズ直径および焦点距離も採用されえる。レンズ直径および焦点距離は、試料714に当たる光ビームの入射角度の数を最大化するような観点で選ばれる。代替の実施形態において、光は、試料の表面から反射されるのではなく、試料を通して透過される。
再フォーカシングレンズまたはレンズ群712は、反射された(透過された)光を検出器アレイ722に向けて導く。しかし再フォーカシングレンズは採用されなくてもよく、これは反射された(透過された)光が直接に検出器アレイ上に入射するようにされえるからである。レンズ712および716、それら自身は光の偏光状態を変えないことが好ましい。
検出器アレイ722は、直線の複数の要素の検出器でありえ、ここで検出器要素群のそれぞれは、試料を照らす光線群のうち、狭い範囲の入射角度のものを検出できる。開示された実施形態において、アレイ722は、固体感光検出器アレイであり、ここで別個の検出器要素群が全て回路チップ上に集積されている。具体的には、検出器要素群は、フォトダイオードのリニアアレイを備える。単一の回路チップ上に集積されているが、個別のフォトダイオードは、別個の検出器として機能しえる。開示された実施形態のリニアアレイは、一列に配置された128個の検出器要素を備え、アレイ全体が反射された(透過された)光によって照射されるとき、128の異なる入射角度についてのデータを提供する。個別検出器要素の数は、開示された実施形態のそれより多くても少なくてもよく、検出器要素は、単一のチップ上に集積されていなくてもよく、個別の検出器群であってもよい。複数の検出器要素を用いることによって、異なる入射角度のそれぞれについて表面から反射された(または試料を通して透過された)光を同時に検出することが可能である。また本発明では、検出のために反射された(透過された)光線群を機械的にスキャンするよう順次移動される、より少ない数の検出器要素を採用することもできるが、この技術は、より多くの時間を必要とし、位置決め正確性に依存して、より不正確になりえる。
検出器要素のそれぞれの物理的大きさは、それぞれの要素が照射側で入射角度のある狭い範囲だけを検出するように、好ましくは反射された光線の広がりより小さい。検出器のそれぞれの出力は、入射角度のこれら狭い範囲群のそれぞれについてのΔおよびΨについてのデータを生成するために、リアルタイムのコンピュータ技術(例えば分析器724を介して)のような従来のやりかたで用いられる。このデータはそれから従来のやりかたで解釈される。一般にどの方向にリニアアレイが走っているかが重要であり、リニアアレイは好ましくは光学系の平面内で走っている。開示された実施形態において、リニア検出器アレイ722の長軸は、中央光線の入射平面内にあり、入射角度の最大数を検出するために中央光線に直角である。
このような偏光解析装置は、ある範囲の角度にわたって同時に散乱計測ターゲットを照射するのに用いられえ、散乱された光の強度が、アレイ検出器などである範囲の角度にわたって同時に計測される。これらの角度で計測された強度からのデータを集めることによって、格子または他のターゲットのパラメータが決定されえる。例えば、データは、2003年7月8日に発行された「SPECTROSCOPIC SCATTEROMETER SYSTEM」と題されたXuらによる米国特許第6,690,656号によって記載されるもののような技術から導出されたデータの理論的モデルに対して比較されえ、この特許は、その全体がここで参照によって援用される。このデータは、2001年4月10日に出願された「PERIODIC PATTERNS AND TECHNIQUE TO CONTROL MISALIGNMENT」と題されたAbdulhalimらによる米国特許出願第09/833,084号によって記載されるもののような技術から導出された理論的モデルと比較されえ、この出願は、その全体がここで参照によって援用される。
データは、予め生成され、ライブラリに記憶されえ、または分析のあいだにリアルタイムで生成される。散乱計測オーバレイのような技術については、さまざまなターゲットに関連付けられた計測されたスペクトルを直接に比較することも可能である。このような差分計測値は、それからオーバレイ位置ずれを決定するのに用いられえる。
この技術を、1991年3月12日に発行された「METHOD AND APPARATUS FOR MEASURING THICKNESS OF THIN FILMS」と題されたGoldらによる米国特許第4,999,014号に記載されたもののようなビームプロファイル反射率計とともに実行することも可能であり、この特許はその全体がここで参照によって援用される。
同時偏光解析法および反射光解析法
オーバレイの散乱計測の計測値の正確さを改善するために、偏光解析装置および反射率計の組み合わせたものが採用されえる。ある実施形態において、オーバレイを計測するために2つ以上の偏光解析装置が利用される。これら偏光解析装置の1つ以上のものは、分光偏光解析装置でありえる。他の実施形態において、オーバレイを計測するために2つ以上の反射率計が散乱計測装置として利用される。これらの反射率計のうちの1つ以上は偏光反射率計でありえる。代替として、1つ以上の偏光解析装置および1つ以上の反射率計の組み合わせがオーバレイを計測するために利用される。
計測は順次(それぞれのツールが異なる時刻に計測を実行する)に、並行して(全てのツールが計測を実質的に同時に実行する)、または任意の他の構成において(例えばツール群のうちの全てのよりは少ない、少なくとも2つのツールが実質的に同時に計測を実行する)実行されえる。
ここで記載される任意の実現例において、さまざまなツールは、法線方向および斜め方向を含む異なる入射角度において計測を実行しえる。具体的な実施形態において、少なくとも2つのツールは、散乱計測の計測を実質的に同じ入射角度において、異なる方向から実行する。例えば、第1ツールは、x方向における散乱計測(scatterometric measurements)のために用いられ、第2ツールはy方向における散乱計測のために用いられる。そのようなシステムは、ある種の共通した散乱された信号を除去しえ、それに対応して計測の正確さが増し、対称的な構成を提供する。
オーバレイの散乱計測による決定においてこのようなツール群の組み合わせを採用することの優位性は、計測の正確さが増されえることである。1つより多いツールを使用し、1つより多い入射角度(またはポイント)において計測を実行することの他の優位性は、対象となる媒体に影響を与える効果(例えばフィルム効果)をオーバレイから分離するのに役立つことである。さらなる優位性は、偏光解析装置および反射率計の組み合わせが既に現在の検査ツール中に存在することである。散乱計測を実質的に並行に異なるターゲットまたは異なるターゲット部分に対して実行するよう構成される散乱計測装置群の組み合わせを採用する他の優位性は、計測に必要とされる総時間を短くしえることである。並行計測システムの他の優位性は、それぞれの散乱計測オーバレイターゲットについての信号獲得時間が増しえ、計測の正確さが改善しえることである。
FT処理を用いる散乱計測オーバレイ決定
フーリエ変換(FT)処理を用いるオーバレイの散乱計測のためのシステムも利用されえる。ある実施形態において、広帯域ソースの実質的に全ての波長を変調するために干渉計が採用され、散乱された放射はCCDカメラで検出される。変調バンドの実質的に全ての波長は、それぞれの画素について、または画素のグループについて記録される。干渉計が変調バンドにわたって段階的に進むにつれ、散乱された信号のスペクトル画像が作られる。
結果として生じるスペクトル画像は、比較的大きい視野を有しえる。例えば、画像は、いくつかの複数のターゲットを含みえる。スペクトル画像は、オーバレイを正確に決定しつつ、一方で不要な効果(例えばフィルム効果)を除去するために、画素ごとに処理されえる。代替として、処理は、速度を改善し、処理リソースを減らすために画素のグループを用いて実行されえる。例えば、上述の散乱計測プロセスでそれぞれのターゲットからの画素のグループが分析されえる。ある実現例において、それぞれの対応するペアのターゲットについての画像群は、差分画像D1およびD2を得るために差が取られる。平均強度のようなそれぞれの差分信号の特性がそれから得られて、P1およびP2になり、これらはそれからオーバレイ誤差を決定するのに用いられる。
具体的な実現例において、波長変調バンドを通してステップ状にスキャンする(step through)ためにMichelson干渉計が用いられる。代替として、Linnik干渉計、または他の干渉計が採用されえる。ミラーのそれぞれの位置について、CCDカメラは、カメラの視界内においてインターセプトされた散乱された信号を記録する。検出された信号はそれから、ディジタイズされ、画素ごとに、または画素のグループとして記憶されえる。ステップの大きさは、一般にオーバレイ計測の正確さに比例する。カメラの速度(例えばカメラがキャプチャできる秒当たりのフィールド数)は典型的には計測の速度に比例する。いったん変調バンドがカバーされると(spanned)、それぞれの画素(または画素のグループ)について記録された信号は、離散フーリエ変換(つまりDFT)のための基礎として使用されえる。DFTは、それぞれの画素(または画素のグループ)についてスペクトルプロファイルを与える。それぞれのターゲットについてのこのスペクトルプロファイルは、それから前のパラグラフで記述された散乱計測オーバレイ技術で用いられえる。オーバレイ決定は、正確さが向上してそれから実行されえる。
マルチチューナブルレーザ
チューナブルレーザ群の組み合わせを有するシステムは、さまざまな構成の偏光解析装置および反射率計によって実行される計測と組み合わせて、オーバレイの散乱計測の正確さを改善するのに用いられえる。チューナブルレーザは、対象となる表面上に入射する放射を提供する。ある実施形態において、散乱計測オーバレイの測定は、考慮されているデザインの少なくとも1つのレイヤにおいて配置されたターゲットを用いて実行され、チューナブルレーザはそのターゲット上に入射する放射ビームを提供する。
計測された信号は、処理の前または後にそれから合わせて平均されえる。ある実施形態において、計測された放射ビームは、ターゲットA、B、C、およびDから得られる。ターゲットのそれぞれのペアからの2つの差分信号D1およびD2は、それから、複数のチューナブルレーザ設定において得られる。それぞれのチューナブルレーザ設定についてのそれぞれのターゲットから計測される信号は、差分信号D1およびD2を得る前に、合わせて平均されえる。代替として、D1およびD2についての差分信号のそれぞれのセットは、単一の平均差分信号D1およびD2を得るために、合わせて平均されえる。差分信号D1およびD2の特性P1およびP2(例えば積分)がそれから得られる。代替の実施形態において、複数の特性P1およびP2は、チューナブルレーザの異なる構成について得られ(計測された信号または差分信号D1およびD2を平均することなく)、その結果は、それぞれの信号P1およびP2について平均される。オーバレイ誤差は、それから、この信号P1およびP2に基づいて上述のように得られえる。
空間フィルタリングを用いた散乱計測オーバレイ決定
ある実施形態は、FT処理を用いる散乱計測オーバレイ決定についての上述の実施形態へと拡張する。
空間フィルタリングと関連したFT処理を用いたオーバレイの散乱計測のためのシステムが提供される。より具体的には、少なくとも1つの散乱計測ターゲットによって反射された信号は、選択的に空間的にフィルタリングされ、特定の信号要素だけを処理する。
FT処理を用いたオーバレイの散乱計測のための上述の実施形態において、干渉計は、広帯域ソースの実質的に全ての波長を変調するために採用され、散乱された放射は、CCDカメラのような干渉計で検出される。それから実質的に全ての波長は、それぞれの画素について、または画素のグループについて記録されえる。干渉計が変調バンドを通して段階的に進むとき、散乱された信号の分光学的画像が作られる。この例では、完全な画像(または画像の一部)に対応する散乱された信号が集められると、画素群の単一のラインに対応するその信号の一部だけが保持される。代替として、全体の画像よりは小さい、複数の画素ライン群に対応するその信号の一部が集められる。散乱信号のこのような選択的な収集は、検出器またはCCDカメラ内の画素の列に対応する、水平、垂直または斜めのストライプだけを保持するように空間的に信号をフィルタリングすることによって達成されえる。代替として、散乱された信号のより完全な部分がCCDカメラにおいて集められえるが、画素の不要な列に対応する情報(例えばターゲットのエッジ、または2つのターゲット間の境界)は、収集の後に廃棄されえる。
保持された信号に対応する分光画像はそれから、不要な効果(例えばフィルム効果)を除去しつつ、オーバレイを決定するために画素単位で処理されえる。代替として、処理は、速度を改善し、処理リソースを減らすために画素のグループを用いて実行されえる。この実施形態は、従来の処理方法よりも高いSNRを提供する。
本発明のある実施形態において、FT処理を用いた散乱計測オーバレイ決定の実施形態においてオーバレイを決定するための上述の技術が用いられえる。
FT処理を用いた散乱計測オーバレイ決定のための実施形態と比較して、空間フィルタリングを用いた散乱計測オーバレイ決定の実施形態の局面は、速度およびスループットを改善しつつ、一方で、処理リソースを減らしえる。
分光偏光解析装置および分光反射率計の例
図8は、本発明のある実施形態による分光反射率計システム800の概略図である。このシステム800は、分光偏光解析装置802および分光反射率計804の特徴を結びつけ、これらのそれぞれは、基板またはウェーハ808上に配置された格子構造806のオーバレイを計測するのに用いられえる。図にいくらか簡略化された形で示される格子構造806は、大きく変えられえる。格子構造806は、例えば、ここで記載される格子構造の任意のものに対応する。分光偏光解析装置802および分光反射率計804の両方は、水平のxy方向と共に垂直のz方向にも基板808を移動するのに用いられるステージ810を利用しえる。このステージは、基板を回転または傾けることも行ってよい。動作のあいだ、ステージ810は、格子構造806が分光偏光解析装置802および/または分光反射率計804によって計測されるように基板808を移動する。
分光偏光解析装置802および分光反射率計804は、1つ以上の広帯域放射源812も利用する。例として、光源812は、少なくとも230から800nmの範囲の波長を有する電磁波放射を供給しえる。広帯域光源の例には、重水素放電ランプ、キセノンアークランプ、タングステンフィラメントランプ、石英ハロゲンランプが含まれる。代替として、広帯域光源の代わりに、または広帯域光源と組み合わせて1つ以上のレーザ放射源が用いられえる。
分光反射率計804において、レンズ814は、ソース812からの放射をビームスプリッタ816へ集めて導き、ビームスプリッタ816は、入射ビームの一部を反射し、フォーカスレンズ818に向けて反射し、このフォーカスレンズは、放射を格子構造806の近傍にある基板808上にフォーカシングする。基板808によって反射された光は、レンズ818によって集められ、ビームスプリッタ816を通って分光計820へ届く。
スペクトル要素が検出され、そのような要素を表す信号がコンピュータ822に供給され、このコンピュータがオーバレイを上述のように計算する。
分光偏光解析装置802において、光源812は、光を光ファイバーケーブル824を通して供給し、このケーブルは偏光をランダム化し、基板808を照射するための均一光源を作る。ファイバ824から現れると、放射は、スリット開口およびフォーカシングレンズ(不図示)を含みえる光照射器826を通って透過する。照射器826から現れる光は、偏光子828によって偏光され、基板808を照射する偏光されたサンプリングビーム830を作る。サンプリングビーム830から現れる照射は、基板808で反射され、分析器832を通って分光計834へ達する。反射された放射のスペクトル要素が検出され、そのような要素を表す信号は、コンピュータ822に供給され、このコンピュータがオーバレイを上述のように計算する。
分光偏光解析装置802において、偏光子828または分析器832のいずれか、またはそれら両方は、補償板または遅延板(不図示)としても知られる波長板を含みえる。波長板は、2つの偏光間の相対位相を変化させることによって、直線偏光された光を楕円偏光された光に、またはその逆に変える。
入射偏光830の試料との相互作用に関するより多くの情報を集めるために、光の偏光状態を変調すること、または分析器の偏光感度を変調すること、またはそれらの両方が望ましい。典型的にはこれは、光学要素を偏光子および/または分析器内で回転することによってなされる。偏光子または分析器内の偏光要素は回転されえ、またはそれら部品のうちの少なくとも1つは、波長板を含み、その波長板は回転されえる。この回転は、当業者に知られるようにコンピュータ822によって制御されえる。回転要素の使用はうまく機能しえるが、これはシステム802を制限しえる。理解されるように、回転要素の使用は低速でありえ、可動部品があるために信頼性が低くなりがちである。
したがってある実施形態によれば、高速かつ高信頼性の分光偏光解析装置(spectroscopic ellipsometer)を作るために、偏光子828は、光弾性変調器(PEM)のような偏光変調器836を含むように構成される。偏光変調器は、回転する波長板の代わりになる。偏光変調器836は、回転する波長板と同じ機能を実現する光学要素であるが、高くつく速度および信頼性の問題がない。偏光変調器836は、光学要素を機械的に回転することなく、光の位相の電気的変調を可能にする。変調周波数は100kHzに達するほど高いものが容易に得られる。
代替実施形態において、分析器832は、電気的に変調されえるPEM(光弾性変調器)のような偏光変調器を含むように構成される。さらに他の実施形態において、偏光子および分析器は、異なる周波数群において変調されるPEM群のような偏光変調器群を含む。
偏光変調器836は高い周波数において変調しえるので、偏光変調器836は、そうでなければ遅すぎてしまう、さまざまな技術を実行するのに用いられえる。例えば、2つの構造の偏光された反射率間の差が得られうる。これをするには、PEMが音響光学変調器(AOM)と結合されえ、ここでこのAOMは、2つの構造間で高速に移動し、一方で、偏光状態を異なる(ただし倍数または分周のような関連した)周波数において変調する。PEMおよびAOM変調周波数の和および差における信号は有用な情報を含み、同期検波によって高い信号対雑音比で検出されえる。代替として、入射ビームに対してAOMは、PEMと組み合わせて分析器の中で用いられえる。
示されていないが、例えば偏光に敏感な反射率計のような他の散乱計測システムにおいては、回転する波長板は、偏光変調器によって置き換えもされえる。
散乱計測オーバレイデータベース
本発明のある局面は、散乱計測オーバレイ決定のために利用されえる散乱計測オーバレイ情報のデータベースを提供する。
ある実施形態において、オーバレイ情報の1つ以上のライブラリを含む1つ以上のデータベースが提供される。それからこのデータベース情報は、オーバレイ計測において用いられる。
ある実施形態において、ライブラリは、人工的に誘発されたオーバレイを持つ所定のテストパターンを用いて編集される。代替として、ライブラリは、ステッパにプログラミングされたレイヤミスレジストレーションを用いて作られる。他の実施形態において、誘発またはプログラミングされているオーバレイは、特定の範囲内で変化する、漸進的特性を有する。
データベースに記憶される情報は、テストパターンを介して、またはステッパによって誘発されるような、ウェーハ上にプリントされる実際のオーバレイに関するオーバレイデータを含みえる。代替としてこの情報は、試料上で実際に計測されたオーバレイから得られる。データベースは、オーバレイデータに関連付けられた散乱計測記録をさらに記憶しえる。このような散乱計測の記録は、オーバレイデータの実際の散乱計測を実行することによって得られえる。またデータベースは、材料、プロセス条件、光学パラメータ、および他の関係するデータも含みえる。データベース情報は、補間および他の前処理によって、さらに高められえる。
散乱計測データベース情報は、実際の計測のあいだに記録された特定の散乱計測およびプロセス条件に関連付けられた散乱計測データを読み出すことによって、オーバレイ計測の正確さおよび速度を改善するために利用されえる。計測アルゴリズムまたは方法の動的な選択もデータベースルックアップに基づいて提供されえる。さらなる実現例は、生産ラインの計測の前またはそのあいだに、散乱計測オーバレイの計測ツールを較正するためにデータベースを利用する。
散乱計測を実行する代替システム
本発明のある実施形態によれば、スペクトルAからD(およびもし存在すればさらなるスペクトル)の獲得は、以下の任意のもの、または以下の装置の任意の組み合わせを備えうる光学装置を用いて実行される。すなわち、画像化反射率計、画像化分光反射率計、偏光分光画像化反射率計、走査型反射率計システム、パラレルデータ獲得が可能な2つ以上の反射率計を持つシステム、パラレルデータ獲得が可能な2つ以上の分光反射率計を持つシステム、パラレルデータ獲得が可能な2つ以上の偏光分光反射率計を持つシステム、ウェーハステージを移動させることなく、または他の光学要素または反射率計ステージを移動させることなくシリアルデータ獲得が可能な2つ以上の偏光分光反射率計を持つシステム、画像化分光計、波長フィルタを持つ画像化システム、ロングパス波長フィルタを持つ画像化システム、ショートパス波長フィルタを持つ画像化システム、波長フィルタを持たない画像化システム、干渉計測画像化システム(例えばLinnik顕微鏡、例えばカリフォルニア州、サンノゼのKLA−Tencorから入手可能なKLA−Tencorオーバレイ計測ツールモデル5100、5200、5300、Archer10などにおいて実現されるようなLinnik顕微鏡)、画像化偏光解析装置、画像化分光偏光解析装置、走査型偏光解析装置システム、パラレルデータ獲得が可能な2つ以上の偏光解析装置を持つシステム、ウェーハステージを移動させることなく、または他の光学要素または反射率計ステージを移動させることなくシリアルデータ獲得が可能な2つ以上の偏光解析装置を持つシステム、Michelson干渉計、Mach-Zehnder干渉計、またはSagnac干渉計である。
「プッシュブルーム」アプローチに基づくフィルタのような他の画像化分光計のタイプと同様、干渉計ベースのいくつかの実施形態は、Cabibらによる「METHOD AND APPARATUS FOR SPECTRAL ANALYSIS OF IMAGES」と題された1998年11月10日に発行された米国特許第5,835,214号に記載される。スペクトル画像化と共に膜厚マッピングのためのシステムおよび方法は、Cabibらによる「FILM THICKNESS MAPPING USING INTERFEROMETRIC SPECTRAL IMAGING」と題された1999年1月5日に発行された米国特許第5,856,871号に記載される。LED照射に基づくスペクトル画像化のための代替のアーキテクチャは、Adelらによる「SPECTRAL IMAGING USING ILLUMINATION OF PRESELECTED SPECTRAL CONTENT」と題された2000年11月7日に発行された米国特許第6,142,629号に記載される。これらの特許は、その全体が全ての目的のためにここで参照によって援用される。
本発明のある実施形態による4つのターゲットからスペクトルAからD(およびもし存在すればさらなるスペクトル)を獲得するために用いられる画像化分光計または反射率計は、当業者によく理解されるように、フーリエ変換画像化分光計型でありえる。フーリエ変換画像化分光計の画像化システムは、異なるターゲット群(または複雑な散乱計測オーバレイターゲットの部分群)から反射または散乱された光信号を分離(解像)できなければならない。代替として、散乱計測オーバレイ信号の獲得のための画像化分光計または反射率計は、ある軸が異なる散乱計測オーバレイターゲット群(または複雑な散乱計測オーバレイターゲットの部分群)からの空間情報を含み、他の検出器軸が、プリズムシステムまたは回折格子システム、または例えばプリズムおよび格子の組み合わせであるシステムで分光学的に分離された光からスペクトル的に解像される情報を含む2次元検出器を用いえる。照射放射は、ターゲット上に入射する前に選択される波長でありえる。
画像化分光計、画像化反射率計、または本発明のさまざまな実施形態と関連して上述の任意の他の光学システムにおいて検出される4つのターゲットから得られたスペクトルAからD(およびもし存在すればさらなるスペクトル)は、非偏光であってもよく、または選択的に偏光されていてもよい。ターゲットから反射または散乱された光の1つ以上の非偏光光または1つ以上の偏光成分は画像化分光計または画像化反射率計で検出されえる。
さまざまな実施形態において、以下の1つ以上の光信号を別個にまたは同時に記録するために別個の検出システムが用いられえる。すなわち、非偏光の反射された光、散乱計測オーバレイターゲットの一つのレイヤの1つの主対称軸に実質的に平行な電界を持つ偏光された光、散乱計測オーバレイターゲットの一つのレイヤの1つの主対称軸に実質的に垂直な電界を持つ偏光された光、散乱計測オーバレイターゲットの一つのレイヤの1つの主対称軸にある角度をなす電界を持つ偏光された光、右回り円偏波の放射、左回り円偏波の放射、および/または前に挙げられた偏光状態の2つ以上の組み合わせである。光ノイズモニタリング、および/または光レベル制御、および/または光ノイズ減算または正規化の目的のための光源の一部からの信号を同時に記録するために、別個の検出器システムが用いられえる。
本発明のさまざまな実施形態のさまざまな可能な実現例は、Walter D. Mieherらによる「METHOD AND SYSTEM FOR DETERMINING OVERLAY ERROR BASED ON SCATTEROMETRY SIGNALS ACQUIRED FROM MULTIPLE OVERLAY MEASUREMENT PATTERNS」と題された2003年2月22日に出願された同時係属中の米国特許仮出願第60/449,496号に示される。この仮出願はその全体がここで参照によって援用される。
ある実施形態において、4つのターゲットのそれぞれは、光学システムによって作られる放射によって照射される。光学システムは、特に、光源、レンズシステム、フォーカシングシステム、ビーム整形システム、および/または方向付けシステムの形をとりえる。ある実施形態において、ターゲット群のうちの少なくとも1つへの放射照射は、比較的狭いビーム断面を持つ放射ビームとして整形される。具体的な実現例において、ビームはレーザビームである。ターゲットを照射する放射は、ターゲット内に存在する構造と相互作用し、それぞれのターゲットに対応する回折された放射成分を作り、これらはSA、SB、SC、およびSDと記される。ある実施形態において、照射ビームは、分光偏光解析装置でふつうに用いられる広いスペクトル範囲を備える広帯域の偏光されたビームである。
2.散乱計測オーバレイ技術の代替物
いくつかの関連する技術は、上の関連する同時係属米国特許仮出願に記載される。これらの関連する技術は、容易にここで記載される技術と統合されえる。
本発明のある実施形態において、上述のように異なるプログラムされたオフセット+/−Fおよび+/−f0を持つターゲット群(または複合散乱計測ターゲットの部分群)、または他の同様なターゲットの組み合わせは、同時信号獲得を可能にするために一緒にグループ化される。ある実現例において、ターゲットは、散乱計測オーバレイターゲットのアレイに沿う一つの方向内においてウェーハまたは一部または全ての光学系を走査しながらデータ獲得を可能にするために一列に構成される。リニアアレイにおいてターゲットを構成することは、画像化分光計または反射率計の使用も可能にしえ、ここで一つの検出器軸は、異なるターゲット群(ターゲット部分群)から信号を分離し、他の検出器軸は、スペクトル情報を検出する。この場合、画像化システムは、リニアターゲットアレイの直線または円筒画像をプリズムまたは格子システムに画像化する。画像化分光計または画像化反射率計は、異なるターゲット群またはターゲット部分群から反射または散乱された光を分離して方向付けるために、2つ以上のレンズのアレイ(当業者にはレンズレットアレイとして知られる)を含みえる。
ある実施形態において、主オフセットFは、オーバレイ誤差に対するより大きい、または最大感度を提供するよう最適化される。例えば、ターゲットのピッチの1/4に等しいオフセットFは高いオーバレイ感度を提供するが、これは、オーバレイ誤差感度が最小となる2つの対称点の中間だからである。副オフセットf0は、仕様限界と等しいかまたはそれより外のようなf0がオーバレイ計測の対象の領域の外であるように選ばれえるが、仕様外の計測値が仕様内であるかのような誤差を可能にするオーバレイ計測の不確実性を生じてはならない。しかしこれはf0の範囲の制限ではない。大きいf0は、−f0および+f0の間のオーバレイ誤差Eについてのオーバレイ計測の正確さを低減しえる。|f0|より大きいオーバレイ誤差Eについて、領域−f0から+f0を超えた補外のために、オーバレイ計測の正確さは低減されえ、線形近似の正確さも低減されえる。
オーバレイ計測は、半導体製造プロセス中、ウェーハ当たり5から25フィールドにおいて、ステッパフィールドの4つの角またはその近傍において(場合によってはフィールドの中央付近のさらなる計測と共に)最もふつうになされる。本発明のある実施形態によるx方向におけるオーバレイを決定するのに用いられる4つのターゲット、およびy方向におけるオーバレイを決定するのに用いられる4つのターゲットのシステムについて、通常のオーバレイ計測サンプリングプランのためには、散乱計測オーバレイターゲットの合計8×4×5=160の計測値が2次元オーバレイを決定するために用いられえる。より詳細なサンプリングプランのために、より多くの計測が行われえる。
本発明の他の実施形態によれば、試料の2次元オーバレイを決定するために合計で6つのターゲット(例えばxについて3つ、yについて3つ)が用いられえる。これは、オーバレイ計測プロセスのさらなる簡略化、処理リソースの削減、および計測プロセスに用いられる時間の短縮を促進しえる。さらに他の実施形態において、追加のターゲットまたは追加のターゲットペアが試料上に作られえ、散乱計測に基づいてオーバレイの決定をするためにここで記載されたのと実質的に同様に用いられえるが、この場合は増やされたターゲット数および対応する回折放射要素の数について調整されえる。オーバレイ誤差Eの式におけるさらに高次の近似項を例えば表すことによって、このような追加のターゲットまたは追加のペアによって提供される増やされた情報の利用可能性を活用するために、オーバレイ誤差Eの決定のための数学的方法も同様に調整されえる。
制限された再フォーカシングによる散乱計測オーバレイ決定
散乱計測オーバレイ決定の正確さを改善するために、1回より多い計測が好ましくは実行される。ある実現例は、複数の散乱計測オーバレイターゲットを利用し、それぞれのターゲットについてシステムは、オーバレイの1回の散乱計測を行う。他の実現例は、単一の散乱計測ターゲット、または複数のターゲットサブ領域を備える単一の散乱計測ターゲット領域を利用し、1回より多い散乱計測オーバレイ計測がそのターゲットまたはターゲット領域について実行される。さらに他の実施形態において、複数のターゲットまたはターゲット領域が用いられ、ターゲット群またはターゲット領域群の一部または全てについて1回より多い計測が実行される。
従来は、光学系は、それぞれの個別の計測ごとに再フォーカスされる。しかしこれは多くの時間を費やしえ、よってシステムの処理速度を低下する。例えばそれぞれのフォーカスシーケンスは0.1から1秒かかりえて、それぞれのウェーハは30から70サイト含みえて、それぞれのサイトは8ターゲットからなる。これらの数字を用いると、再フォーカシングは、それぞれのウェーハについて560秒もかかりえることになる。典型的にはウェーハが検査されるために100秒から1000秒かかることを考慮すれば、この数字は完全に許容できないレベルにまでさらに増加しえる。
したがって本発明のある実施形態によれば、複数の散乱計測オーバレイ計測は、処理速度およびシステムのスループットを増すために制限された光学再フォーカシングで実行される。制限された光学再フォーカシングとは一般に、少なくともいくつかの新しい計測が光学系の再フォーカシングなしで実行される、すなわち複数の計測が同じフォーカス設定で行われることを意味する。例えば、光学系は、これから実行されるべき複数の散乱計測について最適化されるフォーカス設定で初期化されえ、これら個別の散乱計測のあいだこれ以上の再フォーカシングは実施されない。最適化されたフォーカス設定は、ウェーハ全体について一度見いだされえ、または周期的に見いだされえる。周期的であるとき、フォーカス設定は、ターゲットの特定の特徴(例えば同様のライン幅および間隔)について、ウェーハの特定の位置(例えばウェーハの2×2cm2ごとに)について、検査のあいだ所定の増分(例えば30秒ごと)においてなどのように確立されえる。
ある実施形態において、ウェーハは複数のフォーカスゾーンを含む。フォーカスゾーンのそれぞれは、フォーカスゾーン内で実行されるべき全ての散乱計測について最適化されるフォーカス設定で初期化される。再フォーカシングは、フォーカスゾーン内部での個々の散乱計測のあいだでは起こらない。よってフォーカスゾーン内のそれぞれのターゲットは、同じ最適化されたフォーカス設定で計測される。任意の数のフォーカスゾーンが用いられえる。
フォーカスゾーンの構成は、大きく変えられえる。ある実現例では、フォーカスゾーンはウェーハの一部に対応する。例として、ウェーハは、ウェーハの中心から発して外側に向かう複数の半径方向フォーカスゾーンに、またはウェーハを複数の扇形に分割する複数の中心角方向フォーカスゾーンに分割されえる。他の実施形態において、フォーカスゾーンは、例えばそれぞれの半導体デバイスの角におけるターゲットのような、特定のセットのターゲットに対応する。他の実施形態において、フォーカスゾーンは、複数のターゲットを含む特定のターゲット領域(例えば図9Aを参照)に対応する。他の実現例において、フォーカスゾーンは、ターゲット領域内の特定のターゲットサブ領域に対応する(例えば図9Bに示されるxまたはy方向のグループのターゲットのように)。さらに他の実現例において、フォーカスゾーンは、そのターゲットそのものの中の特定のサブ領域に対応する。
オーバレイを決定する方法がこれから記載される。この方法は一般に第1ゾーンのフォーカス設定を最適化することを含む。この方法は、また、第1ゾーン内の複数のターゲット上で第1セットの計測群を実行することを含む。第1ゾーン内のターゲットのそれぞれは、第1ゾーンの最適化されたフォーカス設定を用いて計測される。すなわち、第1ターゲットが計測され、その後、第2ターゲットは、光学系を再フォーカシングすることなく計測される。任意の個数のターゲットがこのように計測されえる。この方法はさらに、第2ゾーンのフォーカス設定を最適化することを含む。加えてこの方法は、第2ゾーン内の複数のターゲットに対して第2セットの計測群を実行することを含む。第2ゾーン内のターゲットのそれぞれは、第2ゾーンの最適化されたフォーカス設定を用いて計測される。すなわち、第1ターゲットが計測され、その後、第2ターゲットは、光学系を再フォーカシングすることなく計測される。任意の個数のターゲットがこのように計測されえる。
この方法のある例において、第1および第2ゾーンは、複数のターゲットを含む異なるターゲット領域を表しえる(図9A参照)。この例では、ターゲットのそれぞれは、互いにごく近傍に位置し、したがってあるターゲットから次へとフォーカスする変動は最小であると考えられえる。この方法は一般に、ターゲット領域においてフォーカス設定を最適化し、その後、ターゲット領域内のターゲット群のそれぞれを最適化されたフォーカス設定で計測することを含む。例えば、第1ターゲットが計測され、その後、近接するターゲットが計測されるというように光学系を再フォーカシングすることなく続けられる。第1ターゲット領域が計測されるとき、システムは、これらのステップを、例えばそのデバイスの、異なる角に配置されるターゲット領域のような第2ターゲット領域に対して反復しえる。
この方法の他の例において、第1および第2ゾーンは、複数のターゲットを含むターゲット領域を持つサブ領域群を表しえる。このサブ領域群は、例えば、異なるターゲットの方向を表しえる(図9B参照)。この方法は一般に、第1サブ領域群(例えばx軸に沿うターゲット群)におけるフォーカス設定を最適化し、その後、最適化されたフォーカス設定でそのサブ領域内のターゲット群のそれぞれを計測することを含む。例えば、第1ターゲットが計測され、その後、近接ターゲットが計測されるというように光学系を再フォーカシングすることなく続けられる。第1サブ領域が計測されるとき、この方法は、第2サブ領域(例えばy軸に沿うターゲット群)内のフォーカス設定を最適化することによって継続し、その後、最適化されたフォーカス設定でそのサブ領域内のターゲット群のそれぞれを計測する。例えば、第1ターゲットが計測され、その後、近接ターゲットが計測されるというように光学系を再フォーカシングすることなく続けられる。他の例では、xy散乱計測オーバレイターゲットグループ内の第1散乱計測オーバレイターゲットに対する計測の前に、システムは再フォーカスされる。xyオーバレイターゲットグループ内の第1ターゲットについての散乱計測信号が計測された後、ターゲットの残りは再フォーカシングなしで計測されえる。例えば、xyオーバレイターゲットグループは、x方向におけるオーバレイ誤差決定のための4つの散乱計測オーバレイターゲット、およびy方向におけるオーバレイ誤差決定のための4つの散乱計測オーバレイターゲットを備える。
ライン画像を用いた散乱計測オーバレイ決定
ライン画像を用いたオーバレイの散乱計測のためのシステムも実現されえる。
ある実施形態において、散乱計測ターゲットは、単一の入射ラインに沿って照射される。散乱された放射は、プリズムまたは回折格子のような分散システムによってインターセプトされる。散乱された放射はそれによって波長の関数として分散される。分散された放射は、それからCCDカメラのような検出器によってキャプチャされる。もしカメラが適切にアラインされるなら、視野に入る放射は、視野のX軸に沿って分布される入射ラインに沿った点、およびY軸に沿って分散されたさまざまな波長を持つ2次元プロファイルを有する。例示的入射ラインおよび視野は図10に示される。
カメラによってキャプチャされた画像はそれから、例えばここで開示されたFTアプローチを用いて、画素レベルで処理されてオーバレイを決定する。いったんオーバレイが特定の入射ラインに沿って計測されると、異なる方向におけるオーバレイを計測するために、ウェーハは90度(または任意の角度だけ)回転されえる。本発明の優位性は、単一の光学系を用いてオーバレイが1つより多い方向において計測されえることである。
単一の入射ラインを照射する代替法は、より大きな領域を照射しつつ、しかし検出ラインに沿って散乱された放射をキャプチャすることである。適切に変更することで、前述の記載はこの実施形態にもあてはまる。
アルゴリズム
散乱計測に基づいてさらに効率よく、かつ正確にオーバレイを計測するために、さまざまなアルゴリズムおよび方法が採用されえる。
このような計算を実行する古い方法は、モデルベースの方法、またはオーバレイを計算する差分法を用いる。これら従来の方法は、結果を改良しクロスチェックするための複数のアルゴリズムを結合することによって達成されえる正確さに欠ける。またこれらの方法は、既存の情報(例えばCDまたはプロファイルデータ)をうまく利用していない。
ある一般的なアルゴリズム実現例において、オーバレイは、異なる製品パラメータの複数の別個の計算からデータを用いて決定される。
第1実施形態において、第1技術(差分法のような)によってオーバレイの第1計算が実行される。それから第2技術(モデルベースの回帰法のような)によってオーバレイの第2計算が実行される。それからこれら結果は、2つの計算から組み合わされる。これら結果はさまざまなやりかたで結合されえる。例えば、ある計算は、他とクロスチェックするために用いられえる。またはある計算は、他の計算を加速するための初期値を与えるために用いられえる。他の組み合わせも用いられえる。
第2実施形態において、オーバレイ計測の速度および/または正確さは、他の計測されたデータを利用することによって向上される。例えば、ターゲットを構成するレイヤからの膜厚データがアルゴリズムに提供されえる。このような膜厚データは、偏光解析装置または反射率計のような適切なツールを用いて計測されえる。代替として(または加えて)、CDデータがSCD計測(散乱計測微小寸法または散乱計測プロファイル計測)から提供されえ、散乱計測計算を加速または改善するために用いられえる。高さまたは3次元プロファイル情報のような散乱計測プロファイル計測からの他のデータが同様に用いられえる。CD SEMのようなCDデータの他のソースも用いられえる。
結合された散乱計測および画像化ターゲット群
代替の実現例において、ターゲットは、上述の散乱計測分析のためと共に、画像化ベースのオーバレイ計測の応用例のために設計される。換言すれば、散乱計測および画像化ターゲット構造が密接に統合されることによって、散乱計測が画像ベースのオーバレイ計測と併せて実行されえる。好ましくは散乱計測ターゲットペアは、視野の中心について対称的に配置される。もし画像化システムの照射および集光チャネルにおいて対称性が保存されるなら、ツールによって誘導されるシフトは最小化される。例として、XaおよびXa’はx方向において双子(同じ大きさだが符号が反対のオフセット)のターゲットである。(ここでXaおよびXa’は、図1のターゲットXaおよびXdに対応しえる。)同様に、XbおよびXb’は反対である。(ここでXbおよびXb’は、図1のターゲットXbおよびXcに対応しえる。)y方向において、ターゲットYaおよびYa’は反対であり、一方、YbおよびYb’は反対である。
図11aは、第1コンビネーション画像化および散乱計測ターゲット実施形態の上面図である。この例では、ターゲット構成は、散乱計測を用いてオーバレイを決定する4つのx方向ターゲットのセット、および散乱計測を用いてオーバレイを決定する4つのy方向ターゲットのセットを含む。ターゲットは、近接するターゲット(オーバレイ計測方向について)が反対のオフセットを有するようにレイアウトされる。図示される例では、ターゲットXaは、Xa’と反対のオフセットを有し、ターゲットXbはターゲットXb’と反対のオフセットを有する。同様に、ターゲットYaおよびYa’は反対のオフセットを有し、ターゲットYbおよびYb’は反対のオフセットを有する。この例ではターゲットは、画像ベースのオーバレイ決定のための構造として用いられえる構造も含む。
図示された例では、ターゲット構成は、第1レイヤ上にブラックボーダ構造1104を、第2レイヤ上にグレイ十字構造1102を含む。オーバレイ誤差(もしあるなら)を決定するために、画像解析方法を用いて、それからブラック構造1104の中心がグレイ構造1102の中心と比較されえる。
ターゲットのこのセットは、y方向よりx方向においてより長く伸びる全体的な四角形の形状を有するが、もちろんターゲットは他の形状(例えば正方形または任意の対称的な多角形)を有しえ、および/またはx以外の方向により長く伸びてもよい。
他のコンビネーションターゲット構成において、画像化構造は、散乱計測ターゲットの対称的に構成されたセットの中心にレイアウトされる。図11bは、第2コンビネーション画像化および散乱計測ターゲット実施形態の上面図である。示されるように、散乱計測ターゲットは、中央画像タイプターゲット152の周りに対称的に構成される。この例では、画像タイプターゲット1152は、ラインセグメントの象限から形成され、それぞれの象限はxまたはy方向のいずれかである。適切な画像タイプターゲットおよび同ターゲットによるオーバレイを決定する技術は、以下の米国特許および出願に記載される。すなわち、(1)Bareketによる「OVERLAY ALIGNMENT MARK DESIGN」と題された2002年10月8日発行の米国特許第6,462,818号、(2)Bareketによる「OVERLAY ALIGNMENT MEASUREMENT OF WAFER」と題された2000年2月8日発行の米国特許第6,023,338号、(3)Ghinovkerらによる「OVERLAY MARKS, METHODS OF OVERLAY MARK DESIGN AND METHODS OF OVERLAY MEASUREMENTS」と題された2001年6月27日出願の米国特許出願第09/894,987号、および(4)Levyらによる「OVERLAY ALIGNMENT MEASUREMENT MARK」と題された2002年11月26日発行の米国特許第6,486,954号に記載される。これら特許および出願は全て、その全体がここで参照によって援用される。
図11cは、第3コンビネーション画像化および散乱計測ターゲット実施形態の上面図である。このターゲット構成は、ボックスインボックスタイプターゲット1154の周りに対称的に構成された散乱計測ターゲットを有する。ボックスインボックスターゲットは一般に、第2レイヤ内に形成される第2外側ボックスによって囲まれる第1レイヤから形成される第1内側ボックスを含む。オーバレイ誤差(もしあれば)を決定するために、内側ボックス構造の中心が外側ボックス構造の中心と比較されえる。
上記ターゲットは、オーバレイを決定するために任意の適切なやりかたで(例えばBareket、Ghinovkerら、およびLevyらによる前述の特許および出願に記載されるように)画像化されえる。ターゲット構成は、散乱計測技術を用いてオーバレイを決定するために、ここで記載されるような任意の望ましい光学ツールで同時にまたは順次に計測されえる。代替の実施形態において、散乱計測ターゲットは、画像化タイプのターゲット構造と共に同時に画像化されえる。結果として生じる画像は、別個の散乱計測ターゲット群に再分割されえ、それから散乱計測技術がそれぞれのターゲットについて画像信号に適用されえる(例えば強度)。画像は、散乱計測オーバレイ計測と同時に、またはその前後に得られうる。画像化システムは、カリフォルニア州、サンノゼのKLA−Tencorから入手可能なKLA−Tencor5300またはArcherオーバレイ計測システムにおけるシステムのような高解像度顕微鏡でありえる。代替として、画像化システムは、ウェーハアライメントまたはパターン認識を含みえる他の目的のために用いられる、より低解像度の画像化システムでありえる。
インプリントリソグラフィのあいだのマスクアライメント
マスクおよび試料はナノインプリントリソグラフィのあいだ典型的には直近にある(重合されるべき液体によって分離されている)ので、マスクのパターン付けされた表面、液体、およびアラインされるべきパターン付けされた試料は、散乱計測オーバレイターゲットと機能的に等価であると考えられる。よって散乱計測オーバレイのために規定される全ての方法、技術およびターゲットは、アライメントプロシージャに適用可能である。
ある実施形態において、計測器具は、放射(好ましくは光)をマスクを通して、1つ以上の散乱計測オーバレイターゲットを含むマスクおよびウェーハのエリア上に投影する。散乱または回折による反射された光の特性の変化がそれから用いられて、マスク上のパターンおよびウェーハ上のパターン間のオフセットが決定される。ウェーハはそれからマスクに対して移動され(またはその逆)、所望のオフセットを達成する。直接画像化またはモアレ技術のような従来のアライメント技術によるよりも、より正確なアライメントが達成されえる。この器具は、反射率計、偏光反射率計、分光計、画像化反射率計、画像化干渉計、またはここでまたは前述の仮出願内で記載されたような他の器具でありえる。
散乱計測オーバレイターゲットの配置
散乱計測オーバレイシステムの正確さは、対象となる表面にわたって位置する複数のターゲットにおいて計測を行うことによって改善されえる。ある実現例において、散乱計測オーバレイシステムは、対象となる表面にわたるさまざまな位置における複数の散乱計測ターゲットを利用しえ、それぞれのターゲットについてシステムは、オーバレイの1回の散乱計測の測定を行いえる。他の実現例において、散乱計測オーバレイシステムは、対象となる表面にわたるさまざまな位置における複数の散乱計測ターゲット領域を利用しえる。散乱計測ターゲット領域は、複数のターゲットを備え、それらのそれぞれは、散乱計測オーバレイシステムによって計測されえる。例として、散乱計測ターゲット群または散乱計測ターゲット領域群は、ウェーハ上に形成されている1つ以上のデバイスの角に配置されえる。加えて散乱計測ターゲットは一般に、格子構造を含みえ、これは散乱計測オーバレイシステムによって計測可能である。
ターゲットの個数は一般に、対象となる表面上の利用可能なスペースに依存する。たいていの場合、ターゲットは、ウェーハ上のデバイス間のスクライブライン内に配置される。スクライブラインは、ソーイングまたはダイシングを介してウェーハがダイに分割されるウェーハ上の場所であり、回路そのものはそこにパターン化されない。このような場合、ターゲットの数は、少なくとも部分的にはスクライブラインの狭さによって制限されえる。理解されるようにスクライブラインは、ウェーハ上のデバイスの量を最大化するよう、狭くされる傾向にある。
本発明のある実施形態によれば、ターゲットは、スペースの制約を克服しつつターゲットの数を増すために、対象となる表面上に戦略的に配置される。ある実現例において、少なくとも2つのターゲットが第1方向において実質的に同一直線上に配置される。例えば、これらはx方向またはy方向に同一直線上に配置されえる。この構成は、スクライブラインのように狭いスペースと直面するときに有用でありえる。他の実現例において、複数のターゲットが複数の方向において配置される。例えば、複数のターゲットはx方向およびy方向の両方において同一直線上に配置されえる。この構成は、二つのスクライブラインの交点におけるような、デバイスの角において有用でありえる。
ここで挙げられる例は、対象となる表面上で定義されるデカルト座標系において記載されるが、座標系は対象となる表面上で、xおよびy軸が回転されたり、または場合によっては交換されたり恣意的に方向づけられえることに注意されたい。代替として、またはデカルト座標系と組み合わせて、例えば、極座標系のような任意の他の座標系が用いられえる。
図9Aは、本発明のある実施形態による1つ以上のターゲット902を有する散乱計測ターゲット領域900の上面図である。散乱計測ターゲット902は一般に、基板の2つ以上の連続するレイヤ間の、または基板の単一のレイヤ上の2つ以上の別個に生成されたパターン間の相対シフトを決定するために提供される。例として、散乱計測ターゲットは、どの程度正確に第1レイヤがその上または下に配置される第2レイヤに対してアラインするか、またはどの程度正確に第1パターンが同じレイヤ上に配置される先行または後続する第2パターンに対してアラインするかを決定するために用いられえる。
図9Aに示されるように、散乱計測ターゲット領域900は、少なくとも2つの実質的に同一直線上のターゲット902を含む。同一直線上とは、一般に、それぞれのターゲット902のそれぞれについての対称の中心が同じ軸904上に存在することを意味する。例として、軸904は、従来の座標系(デカルト、極など)またはそれらの変化形とアラインしえる。ターゲット902を同一直線上に配置することによって、散乱計測ターゲット領域900は、それほど幅Wを占有せず、したがってウェーハのスクライブライン内のような制約を受ける場所に配置されえる。
ターゲット902は一般に、軸904に沿って互いに並置される。たいていの場合、並置されたターゲット902は、隣接するターゲット902の部分とオーバラップしないように、空間的に互いに離される。したがってターゲット902のそれぞれは別々であり、すなわち基板上の異なる領域を表す。これは典型的には、ターゲット902のそれぞれが適切に計測されることを確実にするためになされる。ターゲット902間の間隔906は、光学信号における歪みを作り、したがってオーバレイ計算からは除外される。間隔906のサイズは、オーバレイの計測のためになるべく多くの情報を提供するように、典型的にはターゲット902のサイズとバランスがとられる。すなわち、一般にはより大きなターゲット902、およびそれらの間のより小さな間隔906を有することが望ましい。ターゲット902間の間隔906は、除外領域(exclusion zone)と呼ばれることもある。
ターゲット902は大きく変更されえ、一般には散乱計測を介して計測されえるオーバレイターゲットの任意のものに対応しえる。例として、ターゲット902は、一般に、平行なセグメント化されたライン(segmented lines)910を有する1つ以上の格子構造908を含みえる。必要条件ではないが、同一直線上のターゲット群902についてのセグメント化されたライン群910は、同じ方向に一般に配置され、これは軸904に平行または軸904を横切る。たいていの場合、xおよびyにおけるオーバレイ計測を可能にするために、セグメント化されたライン910のいくつかは軸904に垂直であり、いくつかは軸904に平行である。さらにターゲット902は同一の構成を有しえ、またはそれらは異なる構成を有しえる。例えば構成は、ターゲット902の全体的な形状およびサイズ、またはおそらくはターゲット902内に含まれる格子構造908に関連付けられたセグメント化されたライン910のライン幅および間隔を含みえる。好ましくは、特定の方向、例えばx方向におけるオーバレイ計測のために用いられるターゲットは、プログラムされた、または設計されたオーバレイオフセットを除いて同じ構成を有するよう設計される。
ターゲットの個数も大きく変更されえる。理解されるように、ターゲットの個数を増すことは、データ収集点の個数を増し、したがって計測の正確さを増す。ターゲット902の個数は、ターゲット902の全体的なサイズおよび軸904の方向における空間的制約に一般に依存する。図示された実施形態において、8個の横に並んだターゲット902が散乱計測ターゲット領域900内に配置される。散乱計測ターゲット領域は、上述のxy散乱計測オーバレイターゲットグループと等価でありえる。
上述のターゲット902を用いて、散乱計測オーバレイ計測は、オーバレイを計測しつつ、一方で、膜厚のような他の試料パラメータにおけるバラツキによる効果を除去するために、一度に一つのターゲットずつ、順次に行われえる。これは、散乱計測ターゲット領域(例えばターゲットおよびそれらの間の間隔を含む)を連続的にスキャンすることを介して、またはターゲットのそれぞれにステップ状に移動することによって達成されえる。代替として計測は、スループットを増すために、2個のターゲット、2個より多いターゲット、または全てのターゲットについて2つ以上の散乱計測信号ビームを用いて実質的に同時に起こりえる。複数の散乱計測信号ビームは、1つより多い実質的に独立な散乱計測光学系から到来しえ、またはそれらビームは、例えば同じ光源、同じビーム方向付け光学系、または同じ検出器システムを共用するように、多くの光学系を共用しえる。
上述の方法は、ターゲットのそれぞれについての対称の中心を実質的に同一直線上に配置することを含むが、ターゲットの計測可能な部分が同じ軸上にある限り、対称の中心は軸からオフセットされえることに注意されたい。
さらに上述の方法は、同様の向きのターゲットを同じ軸に沿って配置することを含むが、ターゲットのいくつかは異なる向きに配置されえることに注意されたい。例えば、ターゲット902の第1グループは、x次元内に配置されたセグメント化されたライン群を有しえ、ターゲット902の第2グループは、y次元内に配置されたセグメント化されたライン群を有しえる。
さらに、ターゲット902は、単一の軸904に沿って配置されるよう示されるだけであるが、ターゲットは複数の軸上に配置されえることに注意されたい。例えば図9Bに示されるように、ターゲット902Aの第1グループは、第1軸904Aに沿って同一直線上に配置されえ、ターゲット902Bの第2グループは、第2軸904Bに沿って同一直線上に配置されえる。この実現例は、少なくとも2つの方向におけるオーバレイの独立した計測を許す。第1および第2軸は、典型的には互いに横切られ、より具体的には互いに直角をなす。図示された実施形態において、第1軸904AはX次元に対応し、一方、第2軸904BはY次元に対応する。さらにそれぞれのグループは、4つのターゲット902からなる。この実現例は、XおよびY方向におけるオーバレイの独立した計測を許す。
さらに、ターゲットは、実質的に一つの方向におけるフィーチャ(例えばセグメント化されたライン)を有するとして記載されてきたが、ターゲットは一つより多い方向におけるフィーチャを含みえることに注意されたい。例えばある実現例において、同一直線上に配置された1つ以上のターゲットは、第1および第2方向における散乱計測のオーバレイ計測を許すフィーチャを含む。例として、セグメント化されたラインのようなフィーチャは、XおよびY次元の両方に配置されえる。この場合、図9Bに示されるように1つより多い軸に沿ってターゲットを配置する必要が減るか、またはなくなる。すなわち、もしそれぞれのターゲットが2次元散乱計測測定を可能にするフィーチャを有するなら、オーバレイは、単一の軸に沿って実質的に同一直線上に配置されたターゲット群の単一セットを用いて、XおよびY軸の両方に沿って決定されえる。代替として1つ以上のターゲットが、1つ以上のサブターゲットを含みえる。もしサブターゲットが、2次元散乱計測の測定を許すフィーチャを有するなら、計測正確性の特定の度合いのために望ましいターゲットの個数は低減されえ、ターゲットは単一のラインに沿って配置されえる。
加えて、1つ以上の軸に沿って配置されるターゲットは、1つ以上のパラメータの計測について用いられえる。例えば、ターゲット群の第1セットは、X軸に沿った波長の散乱計測の測定に用いられえ、ターゲット群の第2セットは、Y軸に沿った空間的解像度の散乱計測の測定に用いられえる。代替実施形態において、空間的解像度の散乱計測の測定は、X軸に沿って実行されえ、一方、スペクトルの測定は、Y軸に沿って実行されえる。
結合されたCDおよびオーバレイマーク
散乱計測測定ターゲットは、CDおよびオーバレイの両方の計測のためにウェーハの大きな面積を消費する。このウェーハ領域は、デザインルールが縮小するにしたがい、非常に貴重になる。現在、散乱計測オーバレイマークは、35×70μmより大きいスペースをウェーハ上のそれぞれのxy散乱計測オーバレイターゲットグループまたはマークのために消費しえる。これらは、オーバレイ計測だけのために用いられ、したがって製造者は、ウェーハスペースのロスを望ましくないと考える。したがって、計測ターゲットまたは計測フィーチャのために必要な総ウェーハ面積を小さくすることが望ましい。より小さいターゲット上の計測を可能にするための光学系設計の変更は、光学系の複雑さを増し、潜在的には計測パフォーマンスを妥協することになりえる。ここで記載される散乱計測オーバレイ測定において、ターゲット領域は、それぞれの軸(XおよびY)について典型的には4つの格子からなる。これら格子のそれぞれは典型的には15×15μmより大きく、従来の技術を用いるならさらに縮小する可能性は限られている。それぞれの格子は、第1レイヤ格子(例えばSTI)および上部レイヤ格子(例えばゲート)で構成される。2つのレイヤのそれぞれは、プログラムされたオフセットを有し、これは典型的には上部格子のピッチよりも小さい。多くの場合、上部レイヤは、フォトレジストである。オーバレイ計測は、これら格子のそれぞれからの反射された光のスペクトルを分析することによって達成される。
散乱計測微小寸法(CD)測定において、ターゲット領域は、典型的には単一の格子からなり、これはいずれかの軸(XまたはY)に沿って配置されえる。場合によっては、ターゲット領域は、複数の格子の軸(XまたはY)についてそれぞれ含みえる。これらの格子のそれぞれは典型的には50×50μmである。計測は典型的には、その下にパターンがない、単一のプロセスレイヤターゲット上で実行される。この計測は典型的には、リソグラフィパターニングプロセス中のレジスト現像ステップに続いて、または製造の他のモジュールにおけるエッチングまたはCMPプロセスに続いてフォトレジストパターン上でなされる。CD計測は、上述のXuらによる米国特許第6,590,656号で記載されるように格子(群)から反射された光を分析することによって達成される。
本発明のある実施形態によれば、散乱計測CDマークおよび散乱計測オーバレイマークは、製造でウェーハスペースを節約できるように、またウェーハスクライブラインに影響を与えることなく、より大きな散乱計測オーバレイマークをプリントできるように結合される。結合されたマークは、第1レイヤとして散乱計測CDターゲットを、上部レイヤとして散乱計測オーバレイターゲットパターンを持つように構成される。この結果、散乱計測オーバレイに割り当てられるゼロまたは最小の追加スクライブラインスペースが実現できる。
図12は、本発明のある実施形態による結合されたマーク1200の図である。結合されたマーク1200は、散乱計測CD計測および散乱計測オーバレイ測定(scatterometry overlay measurement)をウェーハ製造プロセスの異なるステップにおいて提供する。結合されたマーク1200は、ウェーハの少なくとも2つのレイヤ上で形成され、特に第1レイヤL1および上部レイヤ(top layer)L2上で形成される。第1レイヤL1は、散乱計測CD/プロファイルターゲット1202を含み、上部レイヤL2は散乱計測オーバレイターゲット1204を含む。別個のレイヤとして図では示されるが、散乱計測オーバレイターゲット1204は散乱計測CDプロファイルターゲット1202上に(を覆うように)作られることに注意されたい。散乱計測CD/プロファイルターゲット1202は、L1散乱計測CDマークを形成し、これは、L1パターンの形成またはプロセスの後にCDを決定するのに計測されえる。散乱計測オーバレイターゲット1204は、散乱計測CD/プロファイルターゲット1202と協働して、L2−L1散乱計測オーバレイマークを形成し、これらはL2パターンの形成(これはL1パターン形成の後に来る)の後にレイヤ間のオーバレイを決定するために計測されえる。明らかなように、この方法は、レイヤ2L2散乱計測CD/プロファイルターゲット(群)を作ってから、L3−L2散乱計測オーバレイマークまたはターゲット領域を作るために、レイヤ3L3パターンに続くよう、反復されえる。
散乱計測CD/プロファイルターゲット1202および散乱計測オーバレイターゲット1204の構成は、大きく変更されえる。図示された実施形態において、L1上に配置された散乱計測CD/プロファイルターゲット1202は、第1方向に向けられた第1格子1206、および第2方向に向けられた第2格子1208を含む。第1方向は第2方向に直交しえる。例として、第1格子1206は、垂直ラインを含みえ、一方、第2格子1208は、水平ラインを含みえる。加えて、L2上に配置された散乱計測オーバレイターゲット1204は、格子1210の第1グループおよび格子1212の第2グループを含む。格子1210、1212の第1および第2グループの両方は、1つ以上の格子1214を含む。格子1214の個数は大きく変更されえる。ある実現例においては、第1および第2グループ1210および1212の両方は、4つの格子1214を含む。第1グループ1210中の格子1214Aは、第1方向に向けられ、第2グループ1212中の格子1214Bは、第2方向に向けられる。例として、第1グループ1210内の格子1214Aは、垂直ラインを含みえ、一方、第2グループ1212内の格子1214Bは、水平ラインを含みえる。
L2−L1オーバレイマークを作るために、格子1210の第1グループは、CD/プロファイルターゲット1202の第1格子1206上に配置され、格子1212の第2グループは、CD/プロファイルターゲット1202の第2格子1208上に配置される。これは格子を、同じように向けられたライン群を併せるように配置する。すなわち垂直ラインは垂直ライン同士で、水平ラインは水平ライン同士で配置する。格子1210の第1グループは、CD/プロファイルターゲット1202の第1格子1206と協働し、格子1212の第2グループは、CD/プロファイルターゲット1202の第2格子1208と協働する。レイヤ間のアライメントは、これら協働する構造の対応するライン間で作られたシフトによって決定される。垂直ラインは、例えばXオーバレイを決定するのに用いられえ、水平ラインは、例えばYオーバレイを決定するのに用いられえる。
CDマークの第1および第2格子1206および1208は一緒に示されるが、これらは離れて配置されえることに注意されたい。離れて実現されるとき、格子1210の第1グループおよび格子1212の第2グループも離れて配置され、すなわち、格子1210の第1グループは第1格子1206と一致し、格子1212の第2グループは、第2格子1208と一致する。
オーバレイおよびCDマークを組み合わせる利点は多い。異なる実施形態または実現例は、以下の利点の1つ以上を有しえる。マークを組み合わせることの一つの利点は、散乱計測オーバレイターゲットのための追加のウェーハスペースの必要を減らすことができることにある。他の利点は、もしそれらがそれほど大きな追加のスクライブラインスペースを必要としないなら、より大きな散乱計測オーバレイターゲットが許されえることである。大きな散乱計測オーバレイターゲットは、小さな散乱計測オーバレイターゲットよりも、光学設計または光学製造をより簡単にしえ、より良いオーバレイ計測パフォーマンスを提供しえる。
散乱計測オーバレイおよびCDSEM
この実施形態の目的は、半導体ウェーハ上における電子顕微鏡(CD−SEM)による微小寸法の計測、および同じ計測システム上で散乱計測を用いた、またはロボットウェーハハンドリングシステムの少なくとも一部を共用するリンクされた計測システムを用いたオーバレイの計測を可能にすることである。微小寸法およびオーバレイを計測する確立された方法は、別個の計測システム群のスケジューリングおよび操作を一般に必要とする。別個の計測システム群上で微小寸法計測値およびオーバレイを測定する確立された方法の一つの欠点は、別個の計測ツール上で別個の操作をスケジューリングし走らせるためにさらなる時間が必要とされることである。他の欠点は、共通部分の冗長性であり、それに関連付けられたコストである。
これら欠点を克服するために、散乱計測オーバレイおよびCDSEMを結合する計測システムが提供されえる。ある実施形態において、散乱計測オーバレイ測定(scatterometry overlay measurement、SCOL)システムは、CDSEMおよびSCOLシステムがロボットウェーハハンドリングシステムおよび/またはデータシステムの少なくとも一部を共用するように、CDSEMシステムと統合される。代替として、CDSEMおよび散乱計測オーバレイシステムは、独立した操作が可能な別個のシステムでありえるが、それらがロボットウェーハハンドリングシステムの少なくとも一部を共用するようにリンクされえる。
動作において、ウェーハ、ウェーハ群のグループ、または複数のウェーハのバッチは、この結合された計測システム専用のロボットウェーハハンドリングシステム上にウェーハコンテナをロードすることによって、結合された計測システム中に導入されえる。計測レシピは、ウェーハの一部または全てについてのCDSEM計測値を、およびウェーハの一部または全てについてのオーバレイ計測値を特定することによって選択されえる。CDSEM計測値およびSCOL計測値は、1つ以上のレシピにおいて一緒に特定されえるか、あるいは別個のレシピにおいて特定されえる。CDSEMおよびSCOL計測は、同じウェーハ上で、または異なるウェーハ上で、または一部は同じウェーハで一部は異なるウェーハ上でなされえる。CDSEMおよびSCOLシステムは、並列に、または直列に動作しえる。
結合された計測システムの一例は、散乱計測オーバレイ測定(scatterometry overlay measurements)が可能な散乱計測システム(分光偏光解析装置、分光偏光反射率計、または+/−1次回折散乱計のような)を、カリフォルニア州、サンノゼのKLA−Tencorによって製造される任意のCD−SEMのようなCD−SEMの中に統合することである。結合された計測システムの他の例は、散乱計測オーバレイシステム、カリフォルニア州、サンノゼのKLA−Tencorによって製造される任意のCD−SEMのようなCD−SEM、ロボットハンドラ、およびウェーハスケジューリングシステムを備えるリンクされたシステムである。工場オートメーションおよび/または工場情報への通信、および/または工場プロセス制御システムは、別個の通信またはオートメーションシステムを通じてなされえ、または少なくとも一部または完全に共用されえる。
結合されたCDSEMおよびSCOL計測システムの一つの利点は、CDSEMおよび散乱計測オーバレイ測定をスケジューリングおよび/または実行することを完了するために必要な全体的な時間の削減である。少なくとも1つのキュー遅延時間は、除去されえる。CDSEMおよびオーバレイ測定を並列に実行することは、別個の計測動作のために必要とされる少なくとも一部の時間を節約できる。
図13A〜13Dは、本発明のある実施形態による結合された計測ツール1300のバリエーションを示す。全ての図において、結合された計測ツール1300は、ロボットウェーハハンドリングシステム1302、微小寸法スキャニング電子顕微鏡(CD−SEM)1304、散乱計測オーバレイ(SCOL)測定器具1306、ウェーハロード位置A1308およびウェーハロード位置Bおよび1310をそれぞれ含む。ロボットウェーハハンドリングシステム1302は、ウェーハをCD−SEM1304およびSCOL計測器具1306へ、およびそれらから、またウェーハロード位置AおよびB1308および1310へ、およびそれらから搬送するよう構成される。微小寸法走査顕微鏡1304は、例えば線幅、上部線幅、ビア直径、側壁角、およびプロファイルを含みえる微小寸法を計測するよう構成される。散乱計測オーバレイ測定器具1306は、例えばウェーハ上に配置された2つのレイヤ間のオーバレイを計測するよう構成される。ウェーハロード位置Aおよびウェーハロード位置Bは、1つ以上のウェーハを保持するよう構成される。たいていの場合、これらは複数のウェーハを保持する。ウェーハは、同じロットからでもよく、異なるロットからでもよい。
図13AおよびDにおいて、CD−SEM1304およびSCOL計測器具1306は、ロボットウェーハハンドリングシステム1302を介して統合される別個のシステムである。図13Bにおいて、SCOL計測器具1306は、CDSEM1304に統合される。図13Cにおいて、SCOL計測器具1306は、ロボットウェーハハンドリングシステム1302に統合される。
ある動作において、ウェーハロード位置Aおよび/またはBからのウェーハの一部は、CD−SEMにおいて微小寸法が計測され、その後、オーバレイが散乱計測オーバレイ測定器具において計測される。ウェーハは、システムから取り除かれることなく両方のプロセスによって計測されえる。すなわち、ウェーハハンドリングやそれに関連するスループットの問題が少なくされる。他の動作において、ウェーハロード位置Aおよび/またはBからのウェーハの一部は、CD−SEMにおいて微小寸法が計測され、ウェーハロード位置Aおよび/またはBからのウェーハのその他は、SCOL計測器具においてオーバレイが計測される。これら動作のいずれにおいても、CDSEMおよびSCOL計測器具は、独立して同時に進みえる。
図14は、本発明のある実施形態による結合された計測ツールを用いたフロー図1400である。この方法は一般に、ステップ1402を含み、ここでウェーハのグループが計測ツールによって受け取られる。例としてウェーハは、図13の位置Aにおいてロードされるウェーハロットでありえる。ステップ1402に続いて、プロセスフロー1400は、ステップ1404に進み、ここでウェーハのグループからのウェーハの微小寸法が計測される。例として、微小寸法計測は、例えば図13に示されるCDSEMのようなCDSEMによって実行されえる。プロセスフロー1400は、またステップ1406に進み、ここでウェーハのグループからのウェーハのオーバレイが、例えば図13に示される器具のようなSCOL計測器具によって実行される。ステップ1404および1406は、同時に異なるウェーハに対して実行されえる。ステップ1404および1406は、例えばCDからオーバレイへ、またはオーバレイからCDへと一連の動作において実行されえる。ウェーハの搬送は、図13に示されるロボットシステムによって例えば実行されえる。全ての計測が実行されるとき、プロセスフローは、ステップ1408に進み、ここでウェーハのグループは、計測ツールから解放される。
散乱計測オーバレイおよび他の計測または検査方法の組み合わせ
散乱計測オーバレイは、散乱計測プロファイルまたは散乱計測微小寸法システム、または他の半導体計測または検査システムと組み合わせされえる。散乱計測オーバレイは、例えばリソグラフィレジストプロセスツール(レジストトラックとしても知られる)のような半導体プロセスツールと統合されえる。計測システムのプロセスシステムとの統合、および計測システム群の組み合わせは、(1)Lakkapragada, Sureshらによる「METHOD AND SYSTEMS FOR LITHOGRAPHY PROCESS CONTROL」と題された2001年5月4日出願の米国特許出願第09/849,622号、および(2)Nikoonahadらによる「METHODS AND SYSTEMS FOR DETERMINING CRITICAL DIMENSION AND A THIN FILM CHARACTERISTIC OF A SPECIMAN」と題された2003年10月14日に発行された米国特許第6,633,831号に記載され、これら出願はそれらの全体がここで参照によって援用される。
前述の本発明は、理解の明瞭さのためにある程度、詳細に記載されてきたが、添付の特許請求の範囲の範囲内である種の変更および改変が実施されえることは明らかだろう。したがって記載された実施形態は例示的であると考えられなければならず、限定的ではなく、本発明はここに与えられた詳細には限定されず、以下の特許請求の範囲およびその等価物の範囲全体によって規定されるべきである。
対応するレイヤ間パターン群(オーバレイターゲット)A、B、C、およびDのための本発明のある実施形態による設計されたオーバレイオフセットXa、Xb、Xc、およびXdの相対分布を示す図である。 本発明のある実施形態による、パターン付き下部レイヤL1から量+Fだけオフセットされているパターン付き上部レイヤL2の側面図である。 本発明のある実施形態による、パターン付き下部レイヤL1から量−Fだけオフセットされているパターン付き上部レイヤL2の側面図である。 本発明のある実施形態による、パターン付き下部レイヤL1から量+F+f0だけオフセットされているパターン付き上部レイヤL2の側面図である。 本発明のある実施形態による、パターン付き下部レイヤL1から量−F+f0だけオフセットされているパターン付き上部レイヤL2の側面図である。 本発明のある実施形態による、パターン付き下部レイヤL1から量+F+f0+Eだけオフセットされているパターン付き上部レイヤL2の側面図である。 本発明のある実施形態による、パターン付き下部レイヤL1から量−F+f0+Eだけオフセットされているパターン付き上部レイヤL2の側面図である。 本発明のある実施形態によるオーバレイを決定するプロシージャを示すフロー図である。 本発明の実施形態によるオーバレイを決定するアプローチの図式表現の図である。 従来顕微鏡画像化システムの概略図である。 本発明の第1実施形態による散乱特性のために最適化された開口数(NA)を有する顕微鏡画像化システムの概略図である。 本発明の第2実施形態による散乱特性のために最適化された開口数(NA)を有する顕微鏡画像化システムの概略図である。 本発明の第3実施形態による散乱特性のために最適化された開口数(NA)を有する顕微鏡画像化システムの概略図である。 本発明の第4実施形態による散乱特性のために最適化された開口数(NA)を有する顕微鏡画像化システムの概略図である。 本発明のある実施形態による画像化分光計、複数サイトの視野の例の上面図である。 本発明のある実施形態による1つ以上の波長範囲を選択するシステムの概略図である。 同時複数入射角偏光解析装置の概略図である。 本発明のある実施形態による分光散乱計システムの概略図である。 本発明の第1実施形態による、X方向またはY方向のいずれかに沿って実質的に同一直線上に配置された複数のターゲットを示す図である。 本発明の第2実施形態による、X方向に沿って同一直線上に配置された4つのターゲット、およびY方向に沿って同一直線上に配置された4つのターゲットを示す図である。 本発明のある実施形態による入射ラインを用いて散乱計測オーバレイ決定のための技術において用いられる例示的入射ラインおよび視野を示す図である。 第1の画像化および散乱計測ターゲットの組み合わせ実施形態の上面図である。 第2の画像化および散乱計測ターゲットの組み合わせ実施形態の上面図である。 第3の画像化および散乱計測ターゲットの組み合わせ実施形態の上面図である。 本発明のある実施形態による結合されたマークの図である。 本発明の実施形態による結合された計測ツールのバリエーションを示す図である。 本発明の実施形態による結合された計測ツールのバリエーションを示す図である。 本発明の実施形態による結合された計測ツールのバリエーションを示す図である。 本発明の実施形態による結合された計測ツールのバリエーションを示す図である。 本発明の実施形態による結合された計測ツールを用いたフロー図である。

Claims (108)

  1. 試料の第1レイヤ内の複数の第1構造群、および前記試料の第2レイヤ内の複数の第2構造群の間のオーバレイを決定する方法であって、前記方法は、
    前記第1および第2構造群の一部を含むターゲットA、B、CおよびDを提供することであって、
    前記ターゲットAは、その第1および第2構造部分の間にオフセットXaを有するよう設計され、
    前記ターゲットBは、その第1および第2構造部分の間にオフセットXbを有するよう設計され、
    前記ターゲットCは、その第1および第2構造部分の間にオフセットXcを有するよう設計され、
    前記ターゲットDは、その第1および第2構造部分の間にオフセットXdを有するよう設計され、
    前記ターゲットA、B、CおよびDは散乱計測オーバレイターゲットであり、
    前記オフセットXa、Xb、XcおよびXdのそれぞれは予め定義されていると共にゼロとは異なり、XaはXbとは反対の符号で異なり、XcはXdとは反対の符号で異なり、
    ターゲットA、B、CおよびDを電磁放射で照射することによって、ターゲットA、B、CおよびDからそれぞれスペクトルSA、SB、SC、およびSDを得ること、および
    前記スペクトルと既知または基準スペクトルとを比較することなく、前記得られたスペクトルSA、SB、SC、およびSD並びに予め定義されているオフセットに基づいて散乱計測技術を用いて前記第1および第2構造群の間のオーバレイ誤差を決定すること
    を含む方法。
  2. 請求項1に記載の方法であって、オーバレイ誤差を決定することは、
    スペクトルSAおよびSBの一方から他方を差し引くことによって差分スペクトルD1を決定すること、
    スペクトルSCおよびSDの一方から他方を差し引くことによって差分スペクトルD2を決定すること、
    前記差分スペクトルD1およびD2に基づいて線形近似を実行することによってオーバレイ誤差を決定すること
    を含む方法。
  3. 請求項2に記載の方法であって、前記線形近似は、前記差分スペクトルD1の特性P1および前記差分スペクトルD2の特性P2に基づく方法。
  4. 請求項1〜3のいずれかに記載の方法であって、前記ターゲットA、B、C、およびDのそれぞれは、少なくとも一部が前記第1レイヤ内に配置された周期Ta1を持つ周期的構造を有する格子構造Ga1、および少なくとも一部が前記第2レイヤ内に配置された周期Ta2を持つ周期的構造を有する格子構造Ga2を備え、前記第1周期Ta1および前記第2周期Ta2は実質的に同一であり、前記オフセットXa、Xb、Xc、およびXdは、前記構造群に対して前記格子構造Ga1の前記周期Ta1で、前記格子構造Ga2の前記周期Ta2で、第1距離Fおよび第2距離f0の和によって、前記構造群をオフセットすることによってそれぞれ作られ、ここで前記第2距離f0は、前記第1距離Fよりも小さい絶対値を有する方法。
  5. 請求項1〜3のいずれかに記載の方法であって、前記ターゲットA、B、CおよびDは実質的に直線に沿って配置される方法。
  6. 請求項5に記載の方法であって、前記ターゲットBは、前記ターゲットAおよびターゲットCの間に配置され、前記ターゲットCは、前記ターゲットBおよび前記ターゲットDの間に配置される方法。
  7. 請求項1〜3のいずれかに記載の方法であって、前記ターゲットA、B、CおよびDは2次元構成で配置される方法。
  8. 請求項7に記載の方法であって、前記ターゲットAおよびBは第1軸に沿って配置され、前記ターゲットCおよびDは第2軸に沿って配置され、前記第1軸および前記第2軸は実質的に平行である方法。
  9. 請求項1〜8のいずれかに記載の方法であって、前記方法は、
    追加のターゲットEを作ることであって、前記追加ターゲットEは、その間にオフセットYを持つ前記第1および第2構造群の一部を含み、
    前記追加ターゲットEを電磁放射で照射することによってスペクトルSEを得ること、および
    前記オーバレイ誤差を決定することは、前記スペクトルSEにさらに基づくこと
    を含む方法。
  10. 請求項1〜9のいずれかに記載の方法であって、前記スペクトルSA、SB、SC、およびSDを得ることは、ターゲットA、B、C、およびDから光学装置を用いて照射を得ることを含む方法。
  11. 請求項10に記載の方法であって、前記光学装置は画像化反射率計である方法。
  12. 請求項10に記載の方法であって、前記光学装置は画像化分光反射率計である方法。
  13. 請求項10に記載の方法であって、前記光学装置は偏光分光画像化反射率計である方法。
  14. 請求項10に記載の方法であって、前記光学装置は走査反射率計である方法。
  15. 請求項10に記載の方法であって、前記光学装置は、並列データ獲得が可能である2つ以上の反射率計を持つシステムである方法。
  16. 請求項10に記載の方法であって、前記光学装置は、並列データ獲得が可能である2つ以上の分光反射率計を持つシステムである方法。
  17. 請求項10に記載の方法であって、前記光学装置は、並列データ獲得が可能である2つ以上の偏光分光反射率計を持つシステムである方法。
  18. 請求項10に記載の方法であって、前記光学装置は、前記ウェーハステージを移動させることなく、または任意の他の光学要素または前記反射率計ステージを移動させることなく直列データ獲得が可能である2つ以上の偏光分光反射率計を持つシステムである方法。
  19. 請求項10に記載の方法であって、前記光学装置は、画像化分光計である方法。
  20. 請求項10に記載の方法であって、前記光学装置は、波長フィルタを持つ画像化システムである方法。
  21. 請求項20に記載の方法であって、前記光学装置は、ロングパス波長フィルタを持つ画像化システムである方法。
  22. 請求項20に記載の方法であって、前記光学装置は、ショートパス波長フィルタを持つ画像化システムである方法。
  23. 請求項10に記載の方法であって、前記光学装置は、干渉型画像化システムである方法。
  24. 請求項10に記載の方法であって、前記光学装置は、画像化偏光解析装置である方法。
  25. 請求項10に記載の方法であって、前記光学装置は、画像化分光偏光解析装置である方法。
  26. 請求項10に記載の方法であって、前記光学装置は、走査偏光解析装置システムである方法。
  27. 請求項10に記載の方法であって、前記光学装置は、並列データ獲得が可能である複数の偏光解析装置を持つシステムである方法。
  28. 請求項10に記載の方法であって、前記光学装置は、前記ウェーハステージを移動させることなく、または任意の他の光学要素または前記偏光解析装置ステージを移動させることなく直列データ獲得が可能である複数の偏光解析装置を持つシステムである方法。
  29. 請求項10に記載の方法であって、前記光学装置は、Michelson干渉計である方法。
  30. 請求項10に記載の方法であって、前記光学装置は、Mach-Zehnder干渉計である方法。
  31. 請求項10に記載の方法であって、前記光学装置は、Sagnac干渉計である方法。
  32. 請求項10に記載の方法であって、前記光学装置は、分光法線入射反射率計および斜方入射分光反射率計を備えるシステムである方法。
  33. 請求項10に記載の方法であって、前記光学装置は、分光法線入射偏光反射率計および斜方入射分光偏光解析装置を備えるシステムである方法。
  34. 請求項10に記載の方法であって、前記光学装置は、分光法線入射偏光差分反射率計および斜方入射分光偏光解析装置を備えるシステムである方法。
  35. 請求項10に記載の方法であって、前記光学装置は、分光準法線入射偏光差分反射率計および斜方入射分光偏光解析装置を備えるシステムである方法。
  36. 請求項10に記載の方法であって、前記光学装置は、分光法線入射反射率計および分光斜方入射偏光差分反射率計を備えるシステムである方法。
  37. 請求項10に記載の方法であって、前記光学装置は、分光法線入射偏光反射率計および分光斜方入射偏光差分反射率計を備えるシステムである方法。
  38. 請求項10に記載の方法であって、前記光学装置は、分光法線入射偏光差分反射率計および分光斜方入射偏光差分反射率計を備えるシステムである方法。
  39. 請求項10に記載の方法であって、前記光学装置は、分光準法線入射偏光差分反射率計および分光斜方入射偏光差分反射率計を備えるシステムである方法。
  40. 請求項1〜10のいずれかに記載の方法であって、前記スペクトルSA、SB、SC、およびSDの少なくとも1つは、非偏光であるか、または選択的に偏光されるか、または選択的に分析される電磁放射を含む方法。
  41. 請求項1〜10のいずれかに記載の方法であって、前記スペクトルSA、SB、SC、およびSDの少なくとも1つは、非偏光の反射された光、前記ターゲットA、B、CまたはDの少なくとも1つの少なくとも1つの構造の対称軸に実質的に平行な電界を持つ偏光された光、前記ターゲットA、B、CまたはDの少なくとも1つの少なくとも1つの構造の対称軸に実質的に直角な電界を持つ偏光された光、前記ターゲットA、B、CまたはDの少なくとも1つの少なくとも1つの構造の対称軸についてある角度をなす電界を持つ偏光された光、右回り円偏波の放射、または左回り円偏波の放射である電磁放射を含む方法。
  42. 請求項3に記載の方法であって、前記差分スペクトルD1およびD2の前記特性P1およびP2のそれぞれは、光雑音、安定性、ドリフト、スペクトル特性、および光レベルからなるグループから選択される方法。
  43. 請求項1〜42のいずれかに記載の方法であって、前記ターゲットA、B、CまたはDを電磁放射で照射することは実質的に異なる時刻において行われることによって、前記対応するスペクトルSA、SB、SC、およびSDが実質的に異なる時刻において得られる方法。
  44. 請求項1〜42のいずれかに記載の方法であって、前記ターゲットA、B、CまたはDを電磁放射で照射することは実質的に同時に行われることによって、前記対応するスペクトルSA、SB、SC、およびSDが実質的に同時に作られる方法。
  45. 請求項1〜42のいずれかに記載の方法であって、前記ターゲットA、B、CまたはDを電磁放射で照射することは、前記ターゲットA、B、CまたはDのうちの少なくとも2つについて実質的に同時に行われる方法。
  46. 請求項19に記載の方法であって、前記分光画像化システムの照射および画像化NAは、ゼロ次回折次数だけが集められることを確実にすることによって、散乱構造に対する前記器具のパフォーマンスを最適化するように選ばれる方法。
  47. 請求項46に記載の方法であって、前記分光画像化システムは、画像化分光偏光解析装置である方法。
  48. 請求項1〜10のいずれかに記載の方法であって、前記スペクトルSA、SB、SC、およびSDを得ることは、波長フィルタを有する画像化装置を用いて前記ターゲットA、B、C、またはDからの画像を獲得することを含み、前記スペクトルSA、SB、SC、およびSDは、前記対応するターゲット画像の1つ以上の画素の平均化または加算された1つ以上の強度値(群)であり、前記方法は、前記波長フィルタを用いて、前記スペクトルSA、SB、SC、およびSDを間のコントラストが最大化されるようにすることをさらに含む方法。
  49. 請求項48に記載の方法であって、前記試料中の欠陥を検出するために前記ターゲットの前記画像を分析することをさらに含む方法。
  50. 請求項1〜9のいずれかに記載の方法であって、前記スペクトルSA、SB、SC、およびSDを得ることは、光学装置を用いて前記ターゲットA、B、C、およびDからの放射を獲得することを含み、前記放射は、同時に、複数の照射角度において獲得される方法。
  51. 請求項19に記載の方法であって、前記ターゲットA、B、C、およびDの1つだけを照射するよう前記光学ツールをフォーカシングし、前記ターゲットA、B、C、およびDの他の3つを照射するよう前記光学ツールを再フォーカシングしないことをさらに含む方法。
  52. 請求項1〜51のいずれかに記載の方法であって、前記ターゲットA、B、C、およびDのうちの少なくとも1つは、画像化オーバレイ計測型ターゲットを含み、前記方法は、前記画像化オーバレイ計測型ターゲットに対する第2オーバレイ誤差を計測することをさらに含む方法。
  53. 請求項52に記載の方法であって、前記得られたスペクトルSA、SB、SC、およびSDは画像であり、前記画像化オーバレイ計測型ターゲットの前記オーバレイ誤差計測を実行するためにも用いられる方法。
  54. 請求項52に記載の方法であって、前記第1オーバレイは、前記第2オーバレイ誤差と同時に決定される方法。
  55. 試料の第1レイヤ内の複数の第1構造群、および前記試料の第2レイヤ内の複数の第2構造群の間のオーバレイを決定するシステムであって、前記システムは、
    前記ターゲットA、B、CおよびDを電磁放射で照射することによって、ターゲットA、B、CおよびDからそれぞれスペクトルSA、SB、SC、およびSDを得る散乱計測モジュール、および
    前記スペクトルと既知または基準スペクトルとを比較することなく、前記得られたスペクトルSA、SB、SC、およびSD並びに前記第1および第2レイヤ条におけるターゲット構造間の予め定義されているオフセットに基づいて散乱計測技術を用いて前記第1および第2構造群の間のオーバレイ誤差を決定するよう動作可能であるプロセッサを備え、
    前記ターゲットAは、その第1および第2構造部分の間にオフセットXaを有するよう設計され、
    前記ターゲットBは、その第1および第2構造部分の間にオフセットXbを有するよう設計され、
    前記ターゲットCは、その第1および第2構造部分の間にオフセットXcを有するよう設計され、
    前記ターゲットDは、その第1および第2構造部分の間にオフセットXdを有するよう設計され、
    前記ターゲットA、B、CおよびDは散乱計測オーバレイターゲットであり、
    前記オフセットXa、Xb、XcおよびXdのそれぞれは予め定義されていると共にゼロとは異なり、XaはXbとは反対の符号で異なり、XcはXdとは反対の符号で異なる
    システム。
  56. 請求項55に記載のシステムであって、オーバレイ誤差を決定することは、
    スペクトルSAおよびSBの一方から他方を差し引くことによって差分スペクトルD1を決定すること、
    スペクトルSCおよびSDの一方から他方を差し引くことによって差分スペクトルD2を決定すること、
    前記差分スペクトルD1およびD2に基づいて線形近似を実行することによってオーバレイ誤差を決定すること
    を含むシステム。
  57. 請求項56に記載のシステムであって、前記線形近似は、前記差分スペクトルD1の特性P1および前記差分スペクトルD2の特性P2に基づくシステム。
  58. 請求項55〜57のいずれかに記載のシステムであって、前記ターゲットA、B、CおよびDは実質的に直線に沿って配置されるシステム。
  59. 請求項58に記載のシステムであって、前記ターゲットBは、前記ターゲットAおよびターゲットCの間に配置され、前記ターゲットCは、前記ターゲットBおよび前記ターゲットDの間に配置されるシステム。
  60. 請求項55〜57のいずれかに記載のシステムであって、前記ターゲットA、B、CおよびDは2次元構成で配置されるシステム。
  61. 請求項60に記載のシステムであって、前記ターゲットAおよびBは第1軸に沿って配置され、前記ターゲットCおよびDは第2軸に沿って配置され、前記第1軸および前記第2軸は実質的に平行であるシステム。
  62. 請求項55〜61のいずれかに記載のシステムであって、前記プロセッサは、
    追加のターゲットEを作ることであって、前記追加ターゲットEは、その間にオフセットYを持つ前記第1および第2構造群の一部を含み、
    前記追加ターゲットEを電磁放射で照射することによってスペクトルSEを得ること、および
    前記オーバレイ誤差を決定することは、前記スペクトルSEにさらに基づく
    よう動作可能であるシステム。
  63. 請求項55〜62のいずれかに記載のシステムであって、前記散乱計測モジュールは、光学装置であるシステム。
  64. 請求項63に記載のシステムであって、前記光学装置は画像化反射率計であるシステム。
  65. 請求項63に記載のシステムであって、前記光学装置は画像化分光反射率計であるシステム。
  66. 請求項63に記載のシステムであって、前記光学装置は偏光分光画像化反射率計であるシステム。
  67. 請求項63に記載のシステムであって、前記光学装置は走査反射率計であるシステム。
  68. 請求項63に記載のシステムであって、前記光学装置は、並列データ獲得が可能である2つ以上の反射率計を持つシステムであるシステム。
  69. 請求項63に記載のシステムであって、前記光学装置は、並列データ獲得が可能である2つ以上の分光反射率計を持つシステムであるシステム。
  70. 請求項63に記載のシステムであって、前記光学装置は、並列データ獲得が可能である2つ以上の偏光分光反射率計を持つシステムであるシステム。
  71. 請求項63に記載のシステムであって、前記光学装置は、前記ウェーハステージを移動させることなく、または任意の他の光学要素または前記反射率計ステージを移動させることなく直列データ獲得が可能である2つ以上の偏光分光反射率計を持つシステムであるシステム。
  72. 請求項63に記載のシステムであって、前記光学装置は、画像化分光計であるシステム。
  73. 請求項63に記載のシステムであって、前記光学装置は、波長フィルタを持つ画像化システムであるシステム。
  74. 請求項73に記載のシステムであって、前記光学装置は、ロングパス波長フィルタを持つ画像化システムであるシステム。
  75. 請求項73に記載のシステムであって、前記光学装置は、ショートパス波長フィルタを持つ画像化システムであるシステム。
  76. 請求項63に記載のシステムであって、前記光学装置は、干渉型画像化システムであるシステム。
  77. 請求項63に記載のシステムであって、前記光学装置は、画像化偏光解析装置であるシステム。
  78. 請求項63に記載のシステムであって、前記光学装置は、画像化分光偏光解析装置であるシステム。
  79. 請求項63に記載のシステムであって、前記光学装置は、走査偏光解析装置システムであるシステム。
  80. 請求項63に記載のシステムであって、前記光学装置は、並列データ獲得が可能である複数の偏光解析装置を持つシステムであるシステム。
  81. 請求項63に記載のシステムであって、前記光学装置は、前記ウェーハステージを移動させることなく、または任意の他の光学要素または前記偏光解析装置ステージを移動させることなく直列データ獲得が可能である複数の偏光解析装置を持つシステムであるシステム。
  82. 請求項63に記載のシステムであって、前記光学装置は、Michelson干渉計であるシステム。
  83. 請求項63に記載のシステムであって、前記光学装置は、Mach-Zehnder干渉計であるシステム。
  84. 請求項63に記載のシステムであって、前記光学装置は、Sagnac干渉計であるシステム。
  85. 請求項63に記載のシステムであって、前記光学装置は、分光法線入射反射率計および斜方入射分光反射率計を備えるシステムであるシステム。
  86. 請求項63に記載のシステムであって、前記光学装置は、分光法線入射偏光反射率計および斜方入射分光偏光解析装置を備えるシステムであるシステム。
  87. 請求項63に記載のシステムであって、前記光学装置は、分光法線入射偏光差分反射率計および斜方入射分光偏光解析装置を備えるシステムであるシステム。
  88. 請求項63に記載のシステムであって、前記光学装置は、分光準法線入射偏光差分反射率計および斜方入射分光偏光解析装置を備えるシステムであるシステム。
  89. 請求項63に記載のシステムであって、前記光学装置は、分光法線入射反射率計および分光斜方入射偏光差分反射率計を備えるシステムであるシステム。
  90. 請求項63に記載のシステムであって、前記光学装置は、分光法線入射偏光反射率計および分光斜方入射偏光差分反射率計を備えるシステムであるシステム。
  91. 請求項63に記載のシステムであって、前記光学装置は、分光法線入射偏光差分反射率計および分光斜方入射偏光差分反射率計を備えるシステムであるシステム。
  92. 請求項63に記載のシステムであって、前記光学装置は、分光準法線入射偏光差分反射率計および分光斜方入射偏光差分反射率計を備えるシステムであるシステム。
  93. 請求項55〜63のいずれかに記載のシステムであって、前記スペクトルSA、SB、SC、およびSDの少なくとも1つは、非偏光であるか、または選択的に偏光されるか、または選択的に分析される電磁放射を含むシステム。
  94. 請求項55〜63のいずれかに記載のシステムであって、前記スペクトルSA、SB、SC、およびSDの少なくとも1つは、非偏光の反射された光、前記ターゲットA、B、CまたはDの少なくとも1つの少なくとも1つの構造の対称軸に実質的に平行な電界を持つ偏光された光、前記ターゲットA、B、CまたはDの少なくとも1つの少なくとも1つの構造の対称軸に実質的に直角な電界を持つ偏光された光、前記ターゲットA、B、CまたはDの少なくとも1つの少なくとも1つの構造の対称軸についてある角度をなす電界を持つ偏光された光、右回り円偏波の放射、または左回り円偏波の放射である電磁放射を含むシステム。
  95. 請求項57に記載のシステムであって、前記差分スペクトルD1およびD2の前記特性P1およびP2のそれぞれは、光雑音、安定性、ドリフト、スペクトル特性、および光レベルからなるグループから選択されるシステム。
  96. 請求項55〜9のいずれかに記載のシステムであって、前記ターゲットA、B、CまたはDを電磁放射で照射することは実質的に異なる時刻において行われることによって、前記対応するスペクトルSA、SB、SC、およびSDが実質的に異なる時刻において得られるシステム。
  97. 請求項55〜96のいずれかに記載のシステムであって、前記ターゲットA、B、CまたはDを電磁放射で照射することは実質的に同時に行われることによって、前記対応するスペクトルSA、SB、SC、およびSDが実質的に同時に作られるシステム。
  98. 請求項55〜96のいずれかに記載のシステムであって、前記ターゲットA、B、CまたはDを電磁放射で照射することは、前記ターゲットA、B、CまたはDのうちの少なくとも2つについて実質的に同時に行われるシステム。
  99. 請求項72に記載のシステムであって、前記分光画像化システムの照射および画像化NAは、ゼロ次回折次数だけが集められることを確実にすることによって、散乱構造に対する前記器具のパフォーマンスを最適化するように選ばれるシステム。
  100. 請求項99に記載のシステムであって、前記分光画像化システムは、画像化分光偏光解析装置であるシステム。
  101. 請求項55〜63のいずれかに記載のシステムであって、前記スペクトルSA、SB、SC、およびSDを得ることは、波長フィルタを有する画像化装置を用いて前記ターゲットA、B、C、またはDからの画像を獲得することを含み、前記スペクトルSA、SB、SC、およびSDは、前記対応するターゲット画像の1つ以上の画素の平均化または加算された1つ以上の強度値(群)であり、前記方法は、前記波長フィルタを用いて、前記スペクトルSA、SB、SC、およびSDを間のコントラストが最大化されるようにすることをさらに含むシステム。
  102. 請求項101に記載のシステムであって、前記プロセッサは、前記試料中の欠陥を検出するために前記ターゲットの前記画像を分析するようさらに動作可能であるシステム。
  103. 請求項55〜62のいずれかに記載のシステムであって、前記スペクトルSA、SB、SC、およびSDを得ることは、光学装置を用いて前記ターゲットA、B、C、およびDからの放射を獲得することを含み、前記放射は、同時に、複数の照射角度において獲得されるシステム。
  104. 請求項72に記載のシステムであって、前記プロセッサは、前記ターゲットA、B、C、およびDの1つだけを照射するよう前記光学ツールをフォーカシングし、前記ターゲットA、B、C、およびDの他の3つを照射するよう前記光学ツールを再フォーカシングしないようさらに動作可能であるシステム。
  105. 請求項55〜104のいずれかに記載のシステムであって、前記ターゲットA、B、C、およびDのうちの少なくとも1つは、画像化オーバレイ計測型ターゲットを含み、前記方法は、前記画像化オーバレイ計測型ターゲットに対する第2オーバレイ誤差を計測することをさらに含むシステム。
  106. 請求項105に記載のシステムであって、前記得られたスペクトルSA、SB、SC、およびSDは画像であり、前記画像化オーバレイ計測型ターゲットの前記オーバレイ誤差計測を実行するためにも用いられるシステム。
  107. 請求項105に記載のシステムであって、前記第1オーバレイは、前記第2オーバレイ誤差と同時に決定されるシステム。
  108. 複数の第1構造群を有する第1レイヤ、および複数の第2構造群を有する第2レイヤを備えるターゲット構成であって、前記ターゲット構成は、
    前記第1および第2構造群の一部をそれぞれ含むターゲットA、B、CおよびDを備え、
    前記ターゲットAは、その第1および第2構造部分の間にオフセットXaを有するよう設計され、
    前記ターゲットBは、その第1および第2構造部分の間にオフセットXbを有するよう設計され、
    前記ターゲットCは、その第1および第2構造部分の間にオフセットXcを有するよう設計され、
    前記ターゲットDは、その第1および第2構造部分の間にオフセットXdを有するよう設計され、
    前記ターゲットA、B、CおよびDは散乱計測オーバレイターゲットであり、
    前記オフセットXa、Xb、XcおよびXdのそれぞれは予め定義されていると共にゼロとは異なり、XaはXbとは反対の符号で異なり、XcはXdとは反対の符号で異なり、
    ターゲットA、B、CおよびDからそれぞれスペクトルSA、SB、SC、およびSDを得るために前記ターゲットA、B、CおよびDが電磁放射で照射されるとき、前記取得されたスペクトルSA、SB、SC、およびSDおよび前記予め定められているオフセットに基づいて散乱計測技術が前記第1レイヤおよび前記第2レイヤ構造の間のオーバレイ誤差を決定し得るように、前記オフセットXa、Xb、XcおよびXdが選択され、および
    画像化オーバレイ計測を用いて第2オーバレイ誤差が決定されえる画像化オーバレイ計測型ターゲットE
    を備えるターゲット構成。
JP2005508481A 2002-12-05 2003-12-05 散乱計測を用いてオーバレイ誤差を検出する装置および方法 Expired - Fee Related JP4746987B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US43131402P 2002-12-05 2002-12-05
US60/431,314 2002-12-05
US44097003P 2003-01-17 2003-01-17
US60/440,970 2003-01-17
US44949603P 2003-02-22 2003-02-22
US60/449,496 2003-02-22
US49852403P 2003-08-27 2003-08-27
US60/498,524 2003-08-27
US50409303P 2003-09-19 2003-09-19
US60/504,093 2003-09-19
PCT/US2003/038784 WO2004053426A1 (en) 2002-12-05 2003-12-05 Apparatus and methods for detecting overlay errors using scatterometry

Publications (3)

Publication Number Publication Date
JP2006509219A JP2006509219A (ja) 2006-03-16
JP2006509219A5 JP2006509219A5 (ja) 2007-01-25
JP4746987B2 true JP4746987B2 (ja) 2011-08-10

Family

ID=32512688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005508481A Expired - Fee Related JP4746987B2 (ja) 2002-12-05 2003-12-05 散乱計測を用いてオーバレイ誤差を検出する装置および方法

Country Status (4)

Country Link
EP (1) EP1570232B1 (ja)
JP (1) JP4746987B2 (ja)
AU (1) AU2003298003A1 (ja)
WO (1) WO2004053426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227934A (ja) * 2003-02-22 2017-12-28 ケーエルエー−テンカー コーポレイション 散乱計測を用いてオーバレイ誤差を検出する装置および方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541201B2 (en) 2000-08-30 2009-06-02 Kla-Tencor Technologies Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
US7019835B2 (en) * 2004-02-19 2006-03-28 Molecular Imprints, Inc. Method and system to measure characteristics of a film disposed on a substrate
US20080144036A1 (en) 2006-12-19 2008-06-19 Asml Netherlands B.V. Method of measurement, an inspection apparatus and a lithographic apparatus
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7532305B2 (en) * 2006-03-28 2009-05-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using overlay measurement
US7391513B2 (en) * 2006-03-29 2008-06-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using overlay measurement quality indication
US7616313B2 (en) * 2006-03-31 2009-11-10 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US7898662B2 (en) 2006-06-20 2011-03-01 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
FR2902877B1 (fr) * 2006-06-22 2008-09-12 Centre Nat Rech Scient Procede de caracterisation de l'anisotropie d'un milieu diffusant et dispositif pour la mise en oeuvre d'un tel procede
US7564555B2 (en) * 2006-08-15 2009-07-21 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
JP5011302B2 (ja) * 2006-09-19 2012-08-29 オリンパスメディカルシステムズ株式会社 偏光測定装置
US7570358B2 (en) 2007-03-30 2009-08-04 Asml Netherlands Bv Angularly resolved scatterometer, inspection method, lithographic apparatus, lithographic processing cell device manufacturing method and alignment sensor
SG152187A1 (en) * 2007-10-25 2009-05-29 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
WO2010013325A1 (ja) * 2008-07-30 2010-02-04 株式会社ニレコ 分光測光装置
US8329360B2 (en) * 2009-12-04 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus of providing overlay
WO2013178422A1 (en) 2012-05-29 2013-12-05 Asml Netherlands B.V. Metrology method and apparatus, substrate, lithographic system and device manufacturing method
JP6102230B2 (ja) * 2012-12-07 2017-03-29 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
TWI479141B (zh) * 2012-12-27 2015-04-01 Metal Ind Res & Dev Ct Ellipsometry and polarization modulation ellipsometry method for the
US9784690B2 (en) * 2014-05-12 2017-10-10 Kla-Tencor Corporation Apparatus, techniques, and target designs for measuring semiconductor parameters
TWI752764B (zh) * 2015-05-19 2022-01-11 美商克萊譚克公司 用於疊對測量之形貌相位控制
US10451412B2 (en) 2016-04-22 2019-10-22 Kla-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
IL273680B2 (en) 2017-10-05 2024-04-01 Asml Netherlands Bv A metrology system and method for determining a characteristic of one or more structures on a substrate
US10801953B2 (en) * 2019-01-11 2020-10-13 Kla-Tencor Corporation Semiconductor metrology based on hyperspectral imaging
JP2022539321A (ja) 2019-06-25 2022-09-08 ケーエルエー コーポレイション 位置ずれの測定およびその改善のための関心領域の選択
WO2021211154A1 (en) * 2020-04-15 2021-10-21 Kla Corporation Misregistration target having device-scaled features useful in measuring misregistration of semiconductor devices
US11454894B2 (en) 2020-09-14 2022-09-27 Kla Corporation Systems and methods for scatterometric single-wavelength measurement of misregistration and amelioration thereof
CN113296365B (zh) * 2020-12-29 2024-04-02 杭州广立微电子股份有限公司 一种测量套刻误差的方法及测试结构
US11971248B1 (en) * 2023-03-29 2024-04-30 Auros Technology, Inc. Wavelength-tunable fiber optic light source and overlay measurement device with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018871A1 (en) * 2000-09-01 2002-03-07 Kla-Tencor Corporation Improved overlay alignment measurement mark
WO2002019415A1 (en) * 2000-08-30 2002-03-07 Kla-Tencor Corporation Overlay marks, methods of overlay mark design and methods of overlay measurements
WO2002065545A2 (en) * 2001-02-12 2002-08-22 Sensys Instruments Corporation Overlay alignment metrology using diffraction gratings
WO2003020762A1 (en) * 2001-09-03 2003-03-13 Intreat Pty Limited Antibodies to non-functional p2x7receptor, diagnosis and treatment of cancers and other conditions
WO2004107415A1 (ja) * 2003-05-28 2004-12-09 Nikon Corporation 位置情報計測方法及び装置、並びに露光方法及び装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757207A (en) * 1987-03-03 1988-07-12 International Business Machines Corporation Measurement of registration of overlaid test patterns by the use of reflected light
US4999014A (en) 1989-05-04 1991-03-12 Therma-Wave, Inc. Method and apparatus for measuring thickness of thin films
US5856871A (en) 1993-08-18 1999-01-05 Applied Spectral Imaging Ltd. Film thickness mapping using interferometric spectral imaging
US5712707A (en) * 1995-11-20 1998-01-27 International Business Machines Corporation Edge overlay measurement target for sub-0.5 micron ground rules
US6483580B1 (en) 1998-03-06 2002-11-19 Kla-Tencor Technologies Corporation Spectroscopic scatterometer system
US6142629A (en) 1998-08-30 2000-11-07 Applied Spectral Imaging Ltd. Spectral imaging using illumination of preselected spectral content
US6350548B1 (en) * 2000-03-15 2002-02-26 International Business Machines Corporation Nested overlay measurement target
US6503734B1 (en) * 2000-07-26 2003-01-07 Cognis Corporation Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto
IL138552A (en) * 2000-09-19 2006-08-01 Nova Measuring Instr Ltd Measurement of transverse displacement by optical method
US7196782B2 (en) 2000-09-20 2007-03-27 Kla-Tencor Technologies Corp. Methods and systems for determining a thin film characteristic and an electrical property of a specimen
US6699624B2 (en) * 2001-02-27 2004-03-02 Timbre Technologies, Inc. Grating test patterns and methods for overlay metrology
US7804994B2 (en) * 2002-02-15 2010-09-28 Kla-Tencor Technologies Corporation Overlay metrology and control method
US6778275B2 (en) * 2002-02-20 2004-08-17 Micron Technology, Inc. Aberration mark and method for estimating overlay error and optical aberrations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019415A1 (en) * 2000-08-30 2002-03-07 Kla-Tencor Corporation Overlay marks, methods of overlay mark design and methods of overlay measurements
WO2002018871A1 (en) * 2000-09-01 2002-03-07 Kla-Tencor Corporation Improved overlay alignment measurement mark
WO2002065545A2 (en) * 2001-02-12 2002-08-22 Sensys Instruments Corporation Overlay alignment metrology using diffraction gratings
WO2003020762A1 (en) * 2001-09-03 2003-03-13 Intreat Pty Limited Antibodies to non-functional p2x7receptor, diagnosis and treatment of cancers and other conditions
WO2004107415A1 (ja) * 2003-05-28 2004-12-09 Nikon Corporation 位置情報計測方法及び装置、並びに露光方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227934A (ja) * 2003-02-22 2017-12-28 ケーエルエー−テンカー コーポレイション 散乱計測を用いてオーバレイ誤差を検出する装置および方法

Also Published As

Publication number Publication date
EP1570232A4 (en) 2007-08-29
WO2004053426A1 (en) 2004-06-24
EP1570232B1 (en) 2016-11-02
EP1570232A1 (en) 2005-09-07
JP2006509219A (ja) 2006-03-16
AU2003298003A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
JP6668533B2 (ja) 散乱計測を用いてオーバレイ誤差を検出する装置および方法
JP4746987B2 (ja) 散乱計測を用いてオーバレイ誤差を検出する装置および方法
US10451412B2 (en) Apparatus and methods for detecting overlay errors using scatterometry
US7440105B2 (en) Continuously varying offset mark and methods of determining overlay
JP4734261B2 (ja) 連続変化するオフセットマークと、オーバレイ決定方法
US20160047744A1 (en) Apparatus and methods for detecting overlay errors using scatterometry

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100416

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees