JP4745885B2 - Carbide manufacturing method and carbide manufacturing apparatus - Google Patents

Carbide manufacturing method and carbide manufacturing apparatus Download PDF

Info

Publication number
JP4745885B2
JP4745885B2 JP2006134626A JP2006134626A JP4745885B2 JP 4745885 B2 JP4745885 B2 JP 4745885B2 JP 2006134626 A JP2006134626 A JP 2006134626A JP 2006134626 A JP2006134626 A JP 2006134626A JP 4745885 B2 JP4745885 B2 JP 4745885B2
Authority
JP
Japan
Prior art keywords
carbide
temperature
gas
staying
dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006134626A
Other languages
Japanese (ja)
Other versions
JP2007302834A (en
Inventor
正章 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2006134626A priority Critical patent/JP4745885B2/en
Publication of JP2007302834A publication Critical patent/JP2007302834A/en
Application granted granted Critical
Publication of JP4745885B2 publication Critical patent/JP4745885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Coke Industry (AREA)

Description

本発明は、廃棄物を処理して、発火・火災を起こさないような安全性の高い状態の炭化物を製造するための、炭化物製造方法及び炭化物製造装置に関するものである。   The present invention relates to a carbide manufacturing method and a carbide manufacturing apparatus for processing a waste material to manufacture a highly safe carbide that does not cause ignition or fire.

従来から、ごみ等の廃棄物を処理するにあたり、最終処分場(埋立地)の延命化を図るために、焼却やガス化溶融方法等により廃棄物の減量化が図られている。一方、最近では温室効果ガス(例えばCO)の削減の要請から、ごみ等の廃棄物を焼却処理するのではなく、炭化炉で炭化処理して炭化物として回収し、有効利用を可能とする方法が提案されている。この炭化物は、例えば燃料としての石炭、コークス等の代替材や、金属の電気炉における溶湯表面の保温材等として利用できるため、更に省資源化に有効である。一般的に炭化炉で生成された炭化物は、回収器で回収され、炭化物に含まれる塩素等の有害物質を除去するために、水洗槽で水洗処理が施され、水洗処理された炭化物の水分を固液分離機及び乾燥機で除去した後に、貯留槽で貯留され、フレキシブルコンテナ等へ小分けされて、保管・搬送される。 Conventionally, when processing waste such as waste, in order to extend the life of the final disposal site (landfill), the amount of waste has been reduced by incineration, gasification and melting methods, and the like. On the other hand, recently, in response to a request for reduction of greenhouse gases (for example, CO 2 ), waste such as waste is not incinerated, but carbonized in a carbonization furnace and recovered as carbide to enable effective use. Has been proposed. This carbide can be used, for example, as an alternative material such as coal or coke as a fuel, or as a heat insulating material on the surface of a molten metal in a metal electric furnace, and thus is further effective for resource saving. In general, the carbide generated in the carbonization furnace is recovered by a recovery device, and in order to remove harmful substances such as chlorine contained in the carbide, it is subjected to a water-washing process in a water-washing tank. After removing with a solid-liquid separator and dryer, it is stored in a storage tank, subdivided into flexible containers, etc., and stored and transported.

一方、この炭化物は、遊離基・官能基等の反応性に富んだ基を多く含んでおり、低温酸化反応等により発熱する性質を持つ。従って、フレキシブルコンテナ等で保管・搬送中に、炭化物の放熱量より発熱量の方が大きくなると、炭化物が蓄熱し、この熱により炭化物の低温酸化等の発熱反応がより促進され、ある一定の温度を超えると熱暴走して、最悪の場合発火し、火災に至る可能性がある。   On the other hand, this carbide contains many reactive groups such as free radicals and functional groups, and has a property of generating heat due to a low-temperature oxidation reaction or the like. Therefore, if the calorific value is larger than the amount of heat released from the carbide during storage and transportation in a flexible container, etc., the carbide accumulates heat, and this heat further promotes an exothermic reaction such as low-temperature oxidation of the carbide to a certain temperature. Exceeding may cause a thermal runaway and, in the worst case, could ignite and cause a fire.

このため、フレキシブルコンテナ等の貯蔵容器で貯蔵、搬送中の炭化物が、発火・火災を起こさないようにするために、初期の最も反応性に富む低温酸化等の発熱反応が進行し、安定した状態になるまで、炭化物をある程度の時間(例えば150時間)貯蔵容器で貯蔵し、かつ貯蔵中は熱暴走しないように監視することが必要であった。   For this reason, in order to prevent the carbide being stored and transported in a storage container such as a flexible container from causing ignition or fire, an exothermic reaction such as low-temperature oxidation, which is the most reactive in the initial stage, proceeds and is stable. Until then, it was necessary to store the carbide in a storage container for some time (eg 150 hours) and to monitor for thermal runaway during storage.

そして、炭化物が熱暴走した場合は緊急に水をかけて冷却するしかなく、水がかけられた炭化物は含水率が高くなり有姿発熱量(低位発熱量)が小さくなるため、燃料代替製品としての価値が著しく低下したものとなるという問題があった。   And if the carbides run out of heat, the water must be urgently cooled to cool, and the watered carbides have a high moisture content and a low solid heat value (low heat value). There was a problem that the value of was significantly reduced.

このような炭化物の熱暴走を防止するために、放熱しやすいように少ない容量の貯蔵容器に炭化物を小分けして貯留する方法も考えられるが、多数の貯蔵容器が必要で、この貯蔵容器の保管スペースを確保する必要があることからコストが高くなり、また炭化物を小容量で多数の貯蔵容器で貯蔵することから、取り扱いに不便であるという問題がある。   In order to prevent such thermal runaway of carbides, there may be a method of storing carbides in small storage containers so that heat can be easily radiated, but a large number of storage containers are required. There is a problem that the cost is increased because it is necessary to secure a space, and the carbide is stored in a large number of storage containers with a small capacity, which is inconvenient to handle.

従って、炭化物の製造時において、低温酸化等の発熱反応が十分に促進されて、安全性の高い炭化物として製造することができる、新たな炭化物の炭化物製造方法の開発が要望されていた。   Accordingly, there has been a demand for the development of a new carbide production method for carbide that can be produced as a highly safe carbide because the exothermic reaction such as low-temperature oxidation is sufficiently promoted during the production of carbide.

また、上記問題を解決するために、特許文献1に示すような炭化物生成施設が提案されている。この炭化物生成施設は、炭化物に脱酸素剤及び脱酸素水溶液の少なくとも一方を供給し、脱気を行い袋内の酸素濃度を低減した状態で袋詰めをする施設である。しかしながら、この方法によって炭化物の発熱を防止するには、大掛かりな設備が必要となり、また脱酸素剤や脱酸素水溶液が必要でありランニングコストが高くなるという問題がある。   Moreover, in order to solve the said problem, the carbide | carbonized_material production | generation facility as shown to patent document 1 is proposed. This carbide generation facility is a facility that supplies at least one of an oxygen scavenger and a deoxygenated aqueous solution to the carbide and performs bagging in a state where the oxygen concentration in the bag is reduced by deaeration. However, in order to prevent heat generation of carbides by this method, there is a problem that large-scale equipment is required and a deoxidizer and a deoxygenated aqueous solution are required, resulting in high running costs.

特開2004−256122号公報Japanese Patent Laid-Open No. 2004-256122

本発明は上記のような問題点を解決して、発火・火災を起こさないような安全性の高い炭化物を製造するための、炭化物製造方法及び炭化物製造装置を提供することを目的として完成されたものである。   The present invention has been completed with the object of providing a carbide manufacturing method and a carbide manufacturing apparatus for manufacturing a highly safe carbide that does not cause ignition and fire by solving the above problems. Is.

上記課題を解決するためになされた本発明は、内部の空気比が1以下、450℃〜600℃に保たれた砂層で廃棄物を炭化処理する炭化炉で生成後に水洗処理された発熱性を有する炭化物を、乾燥機で加熱乾燥し、30℃〜100℃の温度を維持したまま、コンベアを有する滞留装置内へ導き、この滞留装置内に設置された温度センサーにより測定された温度が所定の温度に達した場合には、前記滞留装置内を冷却することにより、前記炭化物をコンベア上で搬送しながら、前記炭化物の熱暴走を防止しつつ低温酸化反応を促進させて安定化させたうえで前記貯留槽に投入することを特徴とする。 In order to solve the above problems, the present invention has an exothermic property obtained by washing with water after generation in a carbonization furnace for carbonizing waste with a sand layer having an internal air ratio of 1 or less and kept at 450 to 600 ° C. Carbide that has been heated and dried with a dryer, while maintaining the temperature of 30 ℃ ~ 100 ℃ , led to the residence device having a conveyor, the temperature measured by the temperature sensor installed in this residence device is a predetermined temperature When the temperature is reached, the inside of the staying device is cooled , and while the carbide is transported on a conveyor, the thermal runaway of the carbide is prevented and the low-temperature oxidation reaction is promoted and stabilized. It characterized that you put into the storage tank.

また、滞留装置内に空気等の酸素供給源となり得る気体を供給することより、炭化物の低温酸化反応等の発熱反応を促進させることが好ましい。 Further, from supplying a gas that can be a source of oxygen such as air retention device, it is preferable to promote the exothermic reaction such as the low-temperature oxidation reaction of carbides.

また、滞留装置内への空気等の酸素供給源となり得る気体の供給を遮断するか、滞留装置内へ不活性ガスを供給するか、炭化物に水及び水蒸気の少なくとも一方を供給するかいずれか又は2以上により、炭化物の熱暴走を防止しつつ、低温酸化反応等の発熱反応を促進させることが好ましい。 Further, either to cut off the supply of gas that can be a source of oxygen such as air into the retention device, or supplying an inert gas into the residence apparatus, either to provide at least one of water and steam carbide Alternatively, it is preferable to promote an exothermic reaction such as a low-temperature oxidation reaction while preventing thermal runaway of carbide by two or more.

また、滞留装置内の温度情報、乾燥機の出口の温度情報、乾燥機用サイクロンの出口の温度情報、滞留装置出口の温度情報、貯留槽内部の温度情報、滞留装置内の酸素濃度情報のいずれか又は2以上に基づき、滞留装置内への空気等の酸素供給源となり得る気体の供給量、滞留装置内へ不活性ガス供給量、炭化物の加熱量、炭化物への水又は水蒸気供給量、炭化物の冷却量のいずれか又は2以上を制御して、炭化物の低温酸化反応等の発熱反応を制御することが好ましい。   Also, any of the temperature information in the retention device, the temperature information at the outlet of the dryer, the temperature information at the outlet of the cyclone for the dryer, the temperature information at the outlet of the retention device, the temperature information inside the storage tank, and the oxygen concentration information in the retention device Or based on 2 or more, supply amount of gas that can be an oxygen supply source such as air into the retention device, supply amount of inert gas into retention device, heating amount of carbide, supply amount of water or steam to carbide, carbide It is preferable to control an exothermic reaction such as a low-temperature oxidation reaction of carbide by controlling any one or more of the cooling amount.

一方、本発明を具現化するための装置は、炭化物を生成する炭化炉と、得られた炭化物を水洗処理する水洗槽を備えた炭物製造装置において、
前記炭化炉は、内部の空気比が1以下、450℃〜600℃に保たれた砂層で廃棄物を炭化処理する炭化炉であり、
前記水洗槽の後段に、前記水洗槽で水洗処理された炭化物を加熱乾燥し、前記炭化物を30℃〜100℃の温度で排出する乾燥機を設け、
前記乾燥機の後段に、前記乾燥機から排出された30℃〜100℃の発熱性を有する炭化物を、搬送しつつ酸素供給源となり得る気体と接触させて低温酸化反応を促進させ安定化させたうえで貯留槽に投入するコンベアを有する滞留装置を設け、
前記滞留装置には、前記滞留装置内の温度を測定する温度センサー及び前記炭化物を冷却する冷却装置が設けられ、
更に、温度センサーから得られた滞留装置内の温度が所定の温度に達した場合には、前記冷却装置を作動させる制御装置が設けられていることを特徴とする。
On the other hand, an apparatus for embodying the present invention is a charcoal manufacturing apparatus including a carbonizing furnace for generating carbide and a water washing tank for performing water washing treatment of the obtained carbide.
The carbonization furnace is a carbonization furnace for carbonizing waste with a sand layer maintained at 450 ° C. to 600 ° C. with an internal air ratio of 1 or less,
In the subsequent stage of the water washing tank, there is provided a dryer that heats and drys the carbide washed in the water washing tank and discharges the carbide at a temperature of 30 ° C to 100 ° C.
In the subsequent stage of the dryer, the carbide having an exothermic property of 30 ° C. to 100 ° C. discharged from the dryer is brought into contact with a gas that can serve as an oxygen supply source while being conveyed to promote and stabilize the low temperature oxidation reaction . A retention device having a conveyor to be put into the storage tank is provided,
The staying device is provided with a temperature sensor for measuring the temperature in the staying device and a cooling device for cooling the carbide,
Furthermore, a control device is provided for operating the cooling device when the temperature in the staying device obtained from the temperature sensor reaches a predetermined temperature .

なお、滞留装置には、滞留装置内に空気等の酸素供給源となり得る気体を供給する気体供給装置、滞留装置内への不活性ガス供給装置、炭化物を加熱する加熱装置、炭化物に水及び水蒸気の少なくとも一方を供給する水蒸気等供給装置、炭化物を冷却する冷却装置のいずれか又は2以上が設けられていることが好ましい。   The retention device includes a gas supply device that supplies a gas that can be an oxygen supply source such as air into the retention device, an inert gas supply device into the retention device, a heating device that heats carbide, and water and water vapor in the carbide. It is preferable that one or more of a supply device for supplying water vapor and the like for supplying at least one of the above and a cooling device for cooling the carbide are provided.

本発明の炭化物製造方法及び炭化物製造装置によれば、炭化炉で生成後に水洗処理された発熱性を有する炭化物を、水洗槽と貯留槽の間に設けられた滞留装置内へ導き、この滞留装置内において、炭化物の低温酸化反応等の発熱反応を促進させることとしたので、サイロ等の貯留槽やフレキシブルコンテナ等の貯蔵容器で貯蔵している間に炭化物が熱暴走しないように監視する手間を省き、大掛かりな設備によらずに、ランニングコストが低く、安全性の高い炭化物を製造することが可能となる。   According to the carbide manufacturing method and carbide manufacturing apparatus of the present invention, the exothermic carbide that has been washed with water after being generated in the carbonization furnace is guided into a staying device provided between the water washing tank and the storage tank. In this process, exothermic reactions such as low-temperature oxidation reaction of carbides are promoted, so the trouble of monitoring the carbides to prevent thermal runaway while being stored in storage containers such as silos or storage containers such as flexible containers. It is possible to produce a carbide with low running cost and high safety without using large-scale equipment.

また、滞留装置内の温度情報、乾燥機の出口の温度情報、乾燥機用サイクロンの出口の温度情報、滞留装置出口の温度情報、貯留槽内部の温度情報、滞留装置内の酸素濃度情報のいずれか又は2以上に基づき、滞留装置内への空気等供給量、滞留装置内への窒素等不活性ガス供給量、炭化物の加熱量、炭化物への水蒸気等供給量、炭化物の冷却量のいずれか又は2以上を制御して、炭化物の低温酸化等の発熱反応を制御することとすると、炭化物の熱暴走を防止しつつ、効率よく且つ安全に炭化物の低温酸化等の発熱反応を十分に促進させて、安全性の高い炭化物を製造することが可能となる。   Also, any of the temperature information in the retention device, the temperature information at the outlet of the dryer, the temperature information at the outlet of the cyclone for the dryer, the temperature information at the outlet of the retention device, the temperature information inside the storage tank, and the oxygen concentration information in the retention device Or based on 2 or more, supply amount of air or the like into the retention device, supply amount of inert gas such as nitrogen into the retention device, heating amount of carbide, supply amount of steam or the like to carbide, cooling amount of carbide Alternatively, if two or more are controlled to control the exothermic reaction such as low-temperature oxidation of the carbide, the exothermic reaction such as low-temperature oxidation of the carbide is sufficiently promoted efficiently and safely while preventing thermal runaway of the carbide. Thus, it is possible to produce a highly safe carbide.

本発明の炭化物製造方法により、炭化物を比較的低温酸化等の発熱反応性に富んだ状態から、反応を促進させて安全性の高い状態とした場合には、炭化物の可燃分及び有姿発熱量の低下率は実績によると3%以内となり、燃料代替製品等としての製品価値はほとんど低下しない。   When the carbide production method of the present invention promotes the reaction from a state of high exothermic reactivity, such as relatively low-temperature oxidation, to a highly safe state, the combustible part of the carbide and the solid calorific value According to actual results, the rate of decrease is 3% or less, and the product value as a fuel substitute product etc. hardly decreases.

以下に、図面を参照しつつ本発明の好ましい実施の形態を示す。
図1は本発明の実施の形態を示す炭化物製造装置の説明図である。1は炭化炉であり、炭化炉1内の空気比を1以下として、廃棄物を450℃〜600℃に保たれた砂層で、炭化物と熱分解ガスに熱分解するものである。これらの炭化物と熱分解ガスは炭化炉1上部から、炭化炉1の側方に設けられた回収器2に送られ、遠心力の作用により分離される。この熱分解ガスは、焼却炉に導かれ、燃焼後は大気に放出される。なお、この熱分解ガスを系内に利用してもよい。一方、回収器2で回収された炭化物は、塩素分等の有害物質を洗浄除去するための水洗槽3に搬送され、水洗処理される。回収器2で回収された炭化物は、例えば400〜700℃であるが、水洗槽3に投入されると、この炭化物は急冷されて、低温酸化等の反応が抑制される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a carbide manufacturing apparatus showing an embodiment of the present invention. Reference numeral 1 denotes a carbonization furnace, which is a sand layer in which the air ratio in the carbonization furnace 1 is 1 or less and waste is kept at 450 ° C. to 600 ° C., and thermally decomposes into carbide and pyrolysis gas. These carbides and pyrolysis gas are sent from the upper part of the carbonization furnace 1 to the collector 2 provided on the side of the carbonization furnace 1 and separated by the action of centrifugal force. This pyrolysis gas is guided to an incinerator and released into the atmosphere after combustion. Note that this pyrolysis gas may be used in the system. On the other hand, the carbides recovered by the recovery device 2 are transported to a water washing tank 3 for washing and removing harmful substances such as chlorine, and are subjected to a water washing process. The carbide recovered in the recovery device 2 is, for example, 400 to 700 ° C., but when the carbide is put into the washing tank 3, the carbide is rapidly cooled, and a reaction such as low-temperature oxidation is suppressed.

水洗槽3で水洗された炭化物は水分を含んでいるために、水洗槽3の後段に設けられたスクリュー脱水機等の固液分離機(図示せず)に導かれ、水分を除去する。しかしながら、この固液分離機では十分に水分を除去することができないので、炭化物は固液分離機の後段に設けられた乾燥機4に導かれ乾燥される。この乾燥機4はロータリーキルン等であり、この乾燥機4に供給される熱風の温度は直接加熱熱風式の場合100℃〜800℃である。なお、回収器2で分離した熱分解ガスをこの乾燥機4の熱源としてもよい。乾燥機4内の炭化物からはガス分を含む粉塵が発生し、この粉塵は乾燥機4の後段に設けられた乾燥機用サイクロン5に導かれ、遠心力の作用でガス分と炭化物を含む固形分に分離され、ガス分は焼却炉で燃焼され、大気に放出される。なお、このガス分を乾燥機4の熱源として利用したり、系内の熱源として循環利用したりしてもよい。   Since the carbide washed with water in the rinsing tank 3 contains moisture, it is guided to a solid-liquid separator (not shown) such as a screw dehydrator provided at the subsequent stage of the rinsing tank 3 to remove moisture. However, since this solid-liquid separator cannot sufficiently remove moisture, the carbide is led to a dryer 4 provided at the subsequent stage of the solid-liquid separator and dried. The dryer 4 is a rotary kiln or the like, and the temperature of hot air supplied to the dryer 4 is 100 ° C. to 800 ° C. in the case of a direct heating hot air type. The pyrolysis gas separated by the recovery unit 2 may be used as a heat source for the dryer 4. Dust containing gas is generated from the carbide in the dryer 4, and this dust is guided to a cyclone 5 for the dryer provided at the subsequent stage of the dryer 4, and solids containing gas and carbide by the action of centrifugal force. The gas is burned in an incinerator and released into the atmosphere. This gas component may be used as a heat source for the dryer 4 or may be recycled as a heat source in the system.

乾燥機4で水分が除去された炭化物及び乾燥機用サイクロン5で回収された炭化物は低温酸化反応が十分に進行していない状態であるが、通常は貯留槽30に投入されて、フレキシブルコンテナ31に袋詰するまで貯留される。炭化物は貯留槽30で密な状態で貯留され、また酸素の供給も不十分であるので低温酸化反応が十分には進行しない。一方で、貯留槽30で炭化物が低温酸化等の発熱反応を起こした場合には、貯留槽30から熱が放熱されにくいことから、貯留槽30内の炭化物が蓄熱によって昇温し、熱暴走してしまう危険性もある。このように、貯留槽30内で低温酸化等の発熱反応による蓄熱が起こると熱暴走してしまう危険性があるため、貯留槽30内で炭化物を貯留しながら、低温酸化反応を促進させることは困難であり、貯留槽30内で炭化物の低温酸化等の発熱反応が十分に進行していないので、フレキシブルコンテナ31に袋詰めされた状態では、炭化物は低温酸化反応が十分に進行していない。     The carbide from which moisture has been removed by the dryer 4 and the carbide recovered by the cyclone 5 for the dryer are in a state where the low-temperature oxidation reaction has not sufficiently progressed. It is stored until it is packed. The carbide is stored in a dense state in the storage tank 30 and the supply of oxygen is insufficient, so that the low-temperature oxidation reaction does not proceed sufficiently. On the other hand, when the carbide causes an exothermic reaction such as low-temperature oxidation in the storage tank 30, the heat in the storage tank 30 is difficult to dissipate heat, so the carbide in the storage tank 30 rises in temperature due to heat storage and runs out of heat. There is also a risk of endangering. Thus, since there is a risk of thermal runaway when heat storage due to an exothermic reaction such as low-temperature oxidation occurs in the storage tank 30, it is possible to promote the low-temperature oxidation reaction while storing carbide in the storage tank 30. This is difficult, and the exothermic reaction such as low-temperature oxidation of the carbide does not proceed sufficiently in the storage tank 30, so that the low-temperature oxidation reaction of the carbide does not proceed sufficiently in the state of being packed in the flexible container 31.

そこで、乾燥機4で乾燥処理された炭化物及びサイクロン装置5で回収された炭化物を、乾燥機4及びサイクロン装置5の後段に設けられた滞留装置6に導いて、この滞留装置6内で炭化物の低温酸化等の発熱反応を十分に進行させてから、貯留槽30に投入することとした。   Therefore, the carbides dried by the dryer 4 and the carbides recovered by the cyclone device 5 are led to a retention device 6 provided at the subsequent stage of the dryer 4 and the cyclone device 5, and the carbides in the retention device 6 The exothermic reaction such as low-temperature oxidation was sufficiently advanced before being put into the storage tank 30.

この滞留装置6は、例えば図1に示すような、コンベヤ7により、回収器2で回収された炭化物を貯留槽30に搬送するものである。なお、この滞留装置6は水平状、垂直状、斜面状のいずれか又は2以上の組合せに構成されたものである。コンベヤ7の具体例としては、ベルトコンベヤ、エプロンコンベヤ、バケットコンベヤ、パンコンベヤ、フライトコンベヤ、スクリューコンベヤ、スパイラルコンベヤ、振動コンベヤ、フレックスコンベヤ等である。また気体搬送式として炭化物を搬送することとしても差し支えない。また、コンベヤ7には乗り継ぎを利用して、搬送中の炭化物を積極的に撹拌して、空気等の酸素供給源なり得る気体と接触させる機能を持たせてもよい。   This staying device 6 conveys the carbide recovered by the recovery device 2 to the storage tank 30 by a conveyor 7 as shown in FIG. The staying device 6 is configured in a horizontal shape, a vertical shape, a slope shape, or a combination of two or more. Specific examples of the conveyor 7 include a belt conveyor, an apron conveyor, a bucket conveyor, a bread conveyor, a flight conveyor, a screw conveyor, a spiral conveyor, a vibration conveyor, a flex conveyor, and the like. Moreover, it does not interfere with conveying a carbide | carbonized_material as a gas conveyance type. Further, the conveyor 7 may have a function of using a transit to positively agitate the carbide being conveyed and contact with a gas that can be an oxygen supply source such as air.

炭化物は、この滞留装置6内部に設けられたコンベヤ7で搬送中に、滞留装置6内の空気等の酸素供給源となり得る気体と接触することにより低温酸化等の発熱反応が促進される。十分に炭化物の低温酸化等の発熱反応を促進させるために、滞留時間は制御されることが好ましい。コンベヤ7が、スクリューコンベヤやスパイラルコンベヤである場合や、気体搬送方式の場合、コンベヤ7に振動を加える機能を持たせた場合には、炭化物が搬送中に撹拌され、更に低温酸化等の発熱反応の促進に効果がある。また、滞留装置6内部で搬送する途中に、炭化物を一時的に滞留させておくスペース(図示せず)を設け、このスペースで炭化物の低温酸化等の発熱反応を促進させることとしてもよい。   While the carbide is being conveyed by the conveyor 7 provided inside the staying device 6, an exothermic reaction such as low-temperature oxidation is promoted by coming into contact with a gas that can be an oxygen supply source such as air in the staying device 6. In order to sufficiently promote an exothermic reaction such as low-temperature oxidation of carbides, the residence time is preferably controlled. When the conveyor 7 is a screw conveyor or a spiral conveyor, or in the case of a gas conveyance system, if the conveyor 7 has a function of applying vibration, the carbide is agitated during conveyance and further exothermic reaction such as low-temperature oxidation. It is effective in promoting. In addition, a space (not shown) for temporarily retaining carbides may be provided in the middle of transporting in the retention device 6, and an exothermic reaction such as low-temperature oxidation of the carbides may be promoted in this space.

滞留装置6内で炭化物が低温酸化等の発熱反応をすることにより、滞留装置6内の酸素が消費され、炭化物の低温酸化等の発熱反応が阻害される。そこで、滞留装置6の内部に外部から新鮮な空気等の酸素供給源となり得る気体を供給して、炭化物の低温酸化反応等を促進させるための、ブロア・ファン等の気体供給装置8が設けられていることが好ましい。この気体供給装置8は例えば、図1において、滞留装置6の一部に設けられた吸気口9から滞留装置6内に空気等の酸素供給源となり得る気体を供給するものであり、滞留装置6内に供給された空気等の酸素供給源となり得る気体は、滞留装置6内を流通し、滞留装置6の一部に設けられた排気口10から排気される。排気された空気等に同伴された炭化物はバグフィルタ等の集じん機(図示せず)で回収され滞留装置6へ戻る。なお、滞留装置6の通気性が良い場合は、滞留装置6内に新鮮な空気等の酸素供給源となり得る気体が供給されるので、気体供給装置8はなくても差し支えない。   When the carbide undergoes an exothermic reaction such as low-temperature oxidation in the staying device 6, oxygen in the staying device 6 is consumed, and an exothermic reaction such as low-temperature oxidation of the carbide is inhibited. Therefore, a gas supply device 8 such as a blower or a fan for supplying a gas that can be an oxygen supply source such as fresh air from the outside to promote the low-temperature oxidation reaction of the carbide is provided inside the retention device 6. It is preferable. This gas supply device 8 supplies, for example, a gas that can be an oxygen supply source such as air into the staying device 6 from an intake port 9 provided in a part of the staying device 6 in FIG. A gas that can serve as an oxygen supply source such as air supplied into the inside flows through the staying device 6 and is exhausted from an exhaust port 10 provided in a part of the staying device 6. Carbide entrained in the exhausted air or the like is collected by a dust collector (not shown) such as a bag filter and returned to the staying device 6. In addition, when the air permeability of the staying device 6 is good, a gas that can serve as an oxygen supply source such as fresh air is supplied into the staying device 6, so the gas supply device 8 may be omitted.

乾燥機4から排出される炭化物の温度は30〜100℃であり、また乾燥機用サイクロン5から排出される炭化物の温度は30〜100℃であるので、炭化物の低温酸化反応を効率よく促進させるには、温度が低すぎて処理時間がかかってしまう。また、滞留装置6の内部の温度が、例えば40℃以下に低下すると、炭化物の低温酸化等の発熱反応が促進されにくくなる。あるいは、炭化炉1や滞留装置6を起動させた初期の状態では、滞留装置6の内部の温度が低い場合もある。そこで、炭化物を加熱して、滞留装置6内の炭化物の低温酸化等の発熱反応を促進させるために、滞留装置6には加熱装置11が設けられていることが好ましい。この加熱装置11は例えば、滞留装置6に設けられた電熱線等により、熱を発生させて炭化物を加熱してもよいが、コンベヤ7自身に発熱する機能、例えばジャケット式コンベヤのジャケット部に加熱媒体を流通させる等の機能を持たせ、炭化物をコンベヤで搬送中に炭化物を加熱させてもよいし、気体供給装置8に加熱装置11を設けて、滞留装置6内に温風を供給して炭化物を加熱することとしてもよい。また、気体搬送方式で炭化物を搬送する場合には、この気体を温風として搬送中に炭化物の低温酸化反応を促進させることとしてもよい。 Since the temperature of the carbide discharged from the dryer 4 is 30 to 100 ° C., and the temperature of the carbide discharged from the dryer cyclone 5 is 30 to 100 ° C., the low-temperature oxidation reaction of the carbide is efficiently promoted. In this case, the temperature is too low and processing time is required. Further, when the temperature inside the staying device 6 is lowered to 40 ° C. or lower, for example, it becomes difficult to promote an exothermic reaction such as low-temperature oxidation of carbide. Alternatively, in the initial state where the carbonization furnace 1 and the staying device 6 are activated, the temperature inside the staying device 6 may be low. Therefore, in order to heat the carbide and promote an exothermic reaction such as low-temperature oxidation of the carbide in the staying device 6, the staying device 6 is preferably provided with a heating device 11. The heating device 11 may heat the carbide by generating heat with a heating wire or the like provided in the staying device 6, for example. The carbide may be heated while the carbide is being conveyed by the conveyor 7 with a function of circulating the medium, or the heating device 11 is provided in the gas supply device 8 to supply hot air into the retention device 6. The carbide may be heated. Moreover, when conveying a carbide | carbonized_material by a gas conveyance system, it is good also as promoting the low-temperature oxidation reaction of a carbide | carbonized_material during conveyance by making this gas into warm air.

一方で、炭化物はある一定以上の温度(例えば250℃)になると、熱暴走して、可燃分が燃焼して、炭化物の有姿発熱量が小さくなり、エネルギー価値が著しく低下しまう。そこで、炭化物がある一定以上の温度にならないように、滞留装置6内部の温度を調整するために、また炭化物が発火に至りそうな緊急時に炭化物を冷却するために、滞留装置6には、冷却装置12が設けられていることが好ましい。   On the other hand, when the temperature of the carbide exceeds a certain level (for example, 250 ° C.), the thermal runaway occurs, the combustible component burns, the solid calorific value of the carbide decreases, and the energy value decreases significantly. Therefore, in order to adjust the temperature inside the retention device 6 so that the carbide does not reach a certain temperature or to cool the carbide in an emergency in which the carbide is likely to ignite, the retention device 6 has a cooling function. A device 12 is preferably provided.

滞留装置6内の温度が、例えば200℃を超えた場合、冷却装置12を作動させて、炭化物を冷却し、炭化物の発火を防止する。この冷却装置12は、例えば図1に示すように、滞留装置6内に冷却管13を設け、この冷却管13内に冷却媒体を流通させるものである。この冷却管13の内部を流通する冷却媒体により、滞留装置6の内部を冷却して炭化物を冷却する。冷却管13の内部を流通する冷却媒体は、例えば水であり、エチレングリコールやプロピレングリコール等の液体でもよく、空気等の気体であっても差し支えない。また、冷却装置12は、コンベヤ7を冷却するものとし、コンベヤ7で搬送される炭化物をコンベヤ7上で冷却してもよいし、空気供給装置6から供給される空気を冷却して炭化物を冷却することとしてもよいし、滞留装置6内に、後述する水蒸気等供給装置14から水を噴霧することによって冷却してもよい。   When the temperature in the staying device 6 exceeds, for example, 200 ° C., the cooling device 12 is operated to cool the carbide and prevent ignition of the carbide. For example, as shown in FIG. 1, the cooling device 12 is provided with a cooling pipe 13 in the staying device 6, and a cooling medium is circulated in the cooling pipe 13. The inside of the retention device 6 is cooled by the cooling medium flowing through the inside of the cooling pipe 13 to cool the carbide. The cooling medium that circulates inside the cooling pipe 13 is, for example, water, may be a liquid such as ethylene glycol or propylene glycol, or may be a gas such as air. Moreover, the cooling device 12 shall cool the conveyor 7, the carbide conveyed by the conveyor 7 may be cooled on the conveyor 7, the air supplied from the air supply device 6 is cooled, and the carbide is cooled. Alternatively, it may be cooled by spraying water into the staying device 6 from a supply device 14 such as water vapor described later.

また、炭化物が燃焼した時の緊急時に、炭化物に水及び水蒸気の少なくとも一方を供給して、水の蒸発潜熱により炭化物の熱を奪って炭化物を冷却するための、又は不活性ガスである水蒸気を供給して滞留装置6内の酸素濃度を低下させるための、水蒸気等供給装置14が滞留装置6に設けられていることが好ましい。   Also, in the event of an emergency when the carbide burns, at least one of water and water vapor is supplied to the carbide, and the heat of the carbide is taken away by the latent heat of evaporation of the water to cool the carbide, or water vapor that is an inert gas. It is preferable that the staying device 6 is provided with a supply device 14 such as water vapor for supplying and reducing the oxygen concentration in the staying device 6.

同様に、炭化物が発火した時の緊急時に、窒素等の不活性ガスを供給して、滞留装置6内の酸素濃度を低下させて、炭化物の燃焼を停止させる不活性ガス供給装置15が滞留装置6に設けられていることが好ましい。不活性ガスは必ずしも窒素に限定されず、二酸化炭素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等の不活性ガスであってもよい。   Similarly, an inert gas supply device 15 that supplies an inert gas such as nitrogen to reduce the oxygen concentration in the retention device 6 and stops the combustion of the carbide in an emergency when the carbide ignites is a retention device. 6 is preferably provided. The inert gas is not necessarily limited to nitrogen, and may be an inert gas such as carbon dioxide, helium, neon, argon, krypton, or xenon.

滞留装置6内の炭化物を燃焼、発火させることなく、かつ効率よく低温酸化等の発熱反応をさせなければならない。そこで、滞留装置6内に滞留装置内温度センサー16を、乾燥機4の出口に乾燥機出口温度センサー17を、乾燥機用サイクロン5の出口に乾燥機用サイクロン出口温度センサー18を、滞留装置6の出口に滞留装置出口温度センサー19を、貯留槽30の内部に貯留槽内部温度センサー20を設け、また、滞留装置6内に酸素濃度センサー21を設けるとともに、これらの温度センサー16、17、18、19から測定される温度情報及び、酸素濃度センサー21から測定される酸素濃度情報のいずれか又は2以上の情報に基づいて、コンベヤ7の搬送速度、気体供給装置8の空気供給量、加熱装置11の熱発生量、冷却装置12の冷却量、水蒸気等発生装置14の水又は水蒸気供給量、不活性ガス供給装置15の不活性ガス供給量を制御する制御装置22が設けられていることが好ましい。なお、滞留装置内温度センサー16を滞留装置6内に複数設け、これら複数の滞留装置内温度センサー16により、滞留装置6内の温度情報を測定することとしてもよく、同様に、酸素濃度センサー21を滞留装置6内に複数設け、これら複数の酸素濃度センサー21により、滞留装置6内の酸素濃度を測定することとしてもよい。   An exothermic reaction such as low-temperature oxidation must be efficiently performed without burning and igniting the carbide in the staying device 6. Therefore, the staying device 6 has a staying device temperature sensor 16, a dryer outlet temperature sensor 17 at the outlet of the dryer 4, a dryer cyclone outlet temperature sensor 18 at the outlet of the dryer cyclone 5, and the staying device 6. A retention device outlet temperature sensor 19 is provided at the outlet of the storage tank, a storage tank internal temperature sensor 20 is provided inside the storage tank 30, an oxygen concentration sensor 21 is provided in the retention device 6, and these temperature sensors 16, 17, 18 are provided. , 19 and the oxygen concentration information measured from the oxygen concentration sensor 21 or based on two or more information, the conveying speed of the conveyor 7, the air supply amount of the gas supply device 8, the heating device 11 controls the heat generation amount of the cooling device 12, the cooling amount of the cooling device 12, the water or steam supply amount of the steam generator 14 and the inert gas supply amount of the inert gas supply device 15. It is preferable that the control device 22 is provided that. Note that a plurality of residence device temperature sensors 16 may be provided in the residence device 6, and temperature information in the residence device 6 may be measured by the plurality of residence device temperature sensors 16, and similarly, the oxygen concentration sensor 21. May be provided in the retention device 6, and the oxygen concentration in the retention device 6 may be measured by the plurality of oxygen concentration sensors 21.

制御装置22は、炭化物を十分に低温酸化させてから、貯留槽30に投入するために、前述したように、コンベヤ7の搬送速度を制御して、炭化物の滞留装置6内の滞留時間を調整する。   As described above, the control device 22 adjusts the residence time in the carbide retention device 6 by controlling the conveying speed of the conveyor 7 so that the carbide is sufficiently oxidized at a low temperature and then charged into the storage tank 30. To do.

制御装置22により、加熱装置11と冷却装置12を制御して、滞留装置6内の温度を例えば70℃〜200℃に制御することが好ましい。また、制御装置22により、気体供給装置8を制御して、炭化物が効率良く低温酸化等の発熱反応をし、かつ燃焼、発火しないように、滞留装置6内の酸素濃度を制御することが好ましい。更に、吸気口9及び排出口8には滞留装置6内への空気を遮断する遮断弁23を設け、制御装置22がこの遮断弁23を制御して、滞留装置6内の酸素濃度を制御することが好ましい。   It is preferable to control the heating device 11 and the cooling device 12 by the control device 22 to control the temperature in the staying device 6 to, for example, 70 ° C. to 200 ° C. Further, it is preferable to control the gas supply device 8 by the control device 22 so as to control the oxygen concentration in the staying device 6 so that the carbide efficiently performs an exothermic reaction such as low-temperature oxidation and does not burn and ignite. . Further, the intake port 9 and the discharge port 8 are provided with a shut-off valve 23 for shutting off air into the staying device 6, and the control device 22 controls the shut-off valve 23 to control the oxygen concentration in the staying device 6. It is preferable.

いずれかの温度センサー16、17、18、19で測定された温度が、規定の閾値(例えば200℃)を超えた場合、制御装置22は、「炭化物が燃焼しそうな状態」と判断する。もしくは、温度センサー16、17、18、19で測定された温度情報の組み合わせから、制御装置22は、「炭化物が燃焼しそうな状態」と判断する。   When the temperature measured by any one of the temperature sensors 16, 17, 18, and 19 exceeds a predetermined threshold (for example, 200 ° C.), the control device 22 determines that “a state in which the carbide is likely to burn”. Alternatively, from the combination of temperature information measured by the temperature sensors 16, 17, 18, and 19, the control device 22 determines that “the carbide is likely to burn”.

前記判断に基づき、制御装置22は気体供給装置8及び遮断弁23を制御して、滞留装置6内への空気等の酸素供給源となり得る気体の供給を遮断して、炭化物の低温酸化等の発熱反応を抑制し、燃焼を防止する。   Based on the determination, the control device 22 controls the gas supply device 8 and the shut-off valve 23 to shut off the supply of gas that can be an oxygen supply source such as air into the staying device 6, and so on. Suppresses exothermic reaction and prevents combustion.

また、前記判断に基づき、制御装置22は加熱装置11を制御し、炭化物の加熱を停止させて、炭化物の低温酸化等の発熱反応が促進されることを防ぎ、燃焼を防止する。   Further, based on the determination, the control device 22 controls the heating device 11 to stop the heating of the carbide to prevent an exothermic reaction such as low-temperature oxidation of the carbide from being promoted and to prevent combustion.

また、前記判断に基づき、制御装置22は冷却装置12、水蒸気当供給装置14や不活性ガス供給装置15を動作させて、炭化物を冷却し、もしくは炭化物と接触する気体の酸素濃度を低下させ炭化物の低温酸化等の発熱反応を抑制し、燃焼を防止する。   Based on the determination, the control device 22 operates the cooling device 12, the steam supply device 14, and the inert gas supply device 15 to cool the carbide or reduce the oxygen concentration of the gas in contact with the carbide. Suppresses exothermic reactions such as low-temperature oxidation, and prevents combustion.

別の実施例として、コンベヤ7の代わりにロータリーキルン(図示せず)を滞留装置6に設けるか、もしくはコンベヤ7とともにロータリーキルンを滞留装置6に設けて、炭化物の低温酸化等の発熱反応を促進させることとしてもよい。ここで、本発明に使用するロータリーキルンは、円筒(例えば直径が約1m)を、傾斜をもたせたロール上に置き、この円筒がロール上で回転する構造のものである。炭化物が円筒の内部に投入されると、円筒が回転することにより、炭化物は撹拌されながら、円筒内の傾斜面を連続的に移動するので、空気等の酸素供給源となり得る気体と効率よく接触して、炭化物の低温酸化等の発熱反応が促進される。   As another example, a rotary kiln (not shown) is provided in the retention device 6 instead of the conveyor 7, or a rotary kiln is provided in the retention device 6 together with the conveyor 7 to promote an exothermic reaction such as low-temperature oxidation of carbides. It is good. Here, the rotary kiln used in the present invention has a structure in which a cylinder (for example, a diameter of about 1 m) is placed on a roll having an inclination, and the cylinder rotates on the roll. When carbide is thrown into the cylinder, the cylinder rotates, and the carbide is continuously stirred while moving on the inclined surface in the cylinder. Therefore, it efficiently contacts with gas that can be an oxygen supply source such as air. Thus, an exothermic reaction such as low-temperature oxidation of the carbide is promoted.

以上に説明したように、本発明によれば大規模な装置を用いることなく、低温酸化反応等による発熱性を有する炭化物を燃料代替品としての価値を低下させることなく早期に安定化させ、確実に炭化物の熱暴走による発火・火災を起こさないような、安全性の高い炭化物を製造することができる。   As described above, according to the present invention, without using a large-scale apparatus, it is possible to stabilize and quickly stabilize carbide having exothermic properties due to a low-temperature oxidation reaction or the like without deteriorating its value as a fuel substitute. In addition, it is possible to produce a highly safe carbide that does not cause ignition or fire due to thermal runaway of the carbide.

以上、現時点において、もっとも、実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う炭化物製造方法及び炭化物製造装置もまた技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described above in connection with the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed herein. The carbide manufacturing method and the carbide manufacturing apparatus with such changes are also included in the technical scope without departing from the spirit or concept of the invention that can be read from the claims and the entire specification. Must be understood as.

本発明の実施の形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention.

符号の説明Explanation of symbols

1 炭化炉
2 回収器
3 水洗槽
4 乾燥機
5 乾燥機用サイクロン
6 滞留装置
7 コンベヤ
8 気体供給装置
9 吸気口
10 排気口
11 加熱装置
12 冷却装置
13 冷却管
14 水蒸気等供給装置
15 不活性ガス供給装置
16 滞留装置内温度センサー
17 乾燥機出口温度センサー
18 乾燥機用サイクロン出口温度センサー
19 滞留装置出口温度センサー
20 貯留槽内部温度センサー
21 酸素濃度センサー
22 制御装置
23 遮断弁
30 貯留槽
31 フレキシブルコンテナ
DESCRIPTION OF SYMBOLS 1 Carbonization furnace 2 Recovery device 3 Flushing tank 4 Dryer 5 Cyclone for dryer 6 Retention device 7 Conveyor 8 Gas supply device 9 Intake port 10 Exhaust port 11 Heating device 12 Cooling device 13 Cooling pipe 14 Steam supply unit 15 Inert gas Supply device 16 Temperature sensor in dwelling device 17 Dryer outlet temperature sensor 18 Dryer cyclone outlet temperature sensor 19 Retention device outlet temperature sensor 20 Reservoir internal temperature sensor 21 Oxygen concentration sensor 22 Control device 23 Shut-off valve 30 Reservoir 31 Flexible container

Claims (8)

内部の空気比が1以下、450℃〜600℃に保たれた砂層で廃棄物を炭化処理する炭化炉で生成後に水洗処理された発熱性を有する炭化物を、乾燥機で加熱乾燥し、30℃〜100℃の温度を維持したまま、コンベアを有する滞留装置内へ導き、この滞留装置内に設置された温度センサーにより測定された温度が所定の温度に達した場合には、前記滞留装置内を冷却することにより、前記炭化物をコンベア上で搬送しながら、前記炭化物の熱暴走を防止しつつ低温酸化反応を促進させて安定化させたうえで前記貯留槽に投入することを特徴とする炭化物製造方法。 An exothermic carbide that has been heat-washed after being produced in a carbonization furnace that carbonizes waste with a sand layer maintained at 450 ° C. to 600 ° C. with an air ratio of 1 or less inside is heated and dried with a dryer at 30 ° C. When the temperature measured by a temperature sensor installed in the staying device reaches a predetermined temperature while being maintained at a temperature of -100 ° C, the inside of the staying device is passed through the staying device. by cooling, while conveying the carbide on a conveyor, carbides characterized that you put into the storage tank after having stabilized by promoting the low-temperature oxidation reaction while preventing thermal runaway of the carbide Production method. 滞留装置内に酸素供給源となり得る気体を供給することにより炭化物の発熱反応を促進させることを特徴とする請求項1に記載の炭化物製造方法。 The carbide production method according to claim 1, wherein an exothermic reaction of the carbide is promoted by supplying a gas that can serve as an oxygen supply source into the staying device. 滞留装置内への酸素供給源となり得る気体の供給を遮断するか、滞留装置内へ不活性ガスを供給するか、炭化物に水及び水蒸気の少なくとも一方を供給するかのいずれか又は2以上により、炭化物の熱暴走を防止しつつ、発熱反応を促進させることを特徴とする請求項1又は請求項2のいずれかに記載の炭化物製造方法。 Or to cut off the supply of gas that can be a source of oxygen into the retention device, or supplying an inert gas into the retention tower, at least one of water and steam by Kano one or more supplies carbide, The method for producing a carbide according to claim 1, wherein the exothermic reaction is promoted while preventing thermal runaway of the carbide. 滞留装置内の温度情報、乾燥機の出口の温度情報、乾燥機用サイクロンの出口の温度情報、滞留装置出口の温度情報、貯留槽内部の温度情報、滞留装置内の酸素濃度情報のいずれか又は2以上に基づき、滞留装置内への酸素供給源となり得る気体の供給量、滞留装置内へ不活性ガス供給量、炭化物への水又は水蒸気供給量、炭化物の冷却量のいずれか又は2以上を制御して、炭化物の発熱反応を制御することを特徴とする請求項1乃至3のいずれかに記載の炭化物製造方法。   One of the temperature information in the staying device, the temperature information at the outlet of the dryer, the temperature information at the outlet of the cyclone for the dryer, the temperature information at the outlet of the staying device, the temperature information inside the storage tank, and the oxygen concentration information in the staying device or Based on 2 or more, one of the supply amount of gas that can be an oxygen supply source into the retention device, the supply amount of inert gas into the retention device, the supply amount of water or steam to the carbide, the cooling amount of carbide, or two or more 4. The method for producing carbide according to claim 1, wherein the carbide exothermic reaction is controlled. 酸素供給源となり得る気体は、空気であることを特徴とする請求項乃至のいずれかに記載の炭化物製造方法。 The carbide production method according to any one of claims 2 to 4 , wherein the gas that can serve as an oxygen supply source is air. 炭化物を生成する炭化炉と、得られた炭化物を水洗処理する水洗槽を備えた炭物製造装置において、
前記炭化炉は、内部の空気比が1以下、450℃〜600℃に保たれた砂層で廃棄物を炭化処理する炭化炉であり、
前記水洗槽の後段に、前記水洗槽で水洗処理された炭化物を加熱乾燥し、前記炭化物を30℃〜100℃の温度で排出する乾燥機を設け、
前記乾燥機の後段に、前記乾燥機から排出された30℃〜100℃の発熱性を有する炭化物を、搬送しつつ酸素供給源となり得る気体と接触させて低温酸化反応を促進させ安定化させたうえで貯留槽に投入するコンベアを有する滞留装置を設け、
前記滞留装置には、前記滞留装置内の温度を測定する温度センサー及び前記炭化物を冷却する冷却装置が設けられ、
更に、温度センサーから得られた滞留装置内の温度が所定の温度に達した場合には、前記冷却装置を作動させる制御装置が設けられていることを特徴とする炭化物製造装置。
In a charcoal manufacturing apparatus equipped with a carbonizing furnace for generating carbide and a water washing tank for washing the obtained carbide with water,
The carbonization furnace is a carbonization furnace for carbonizing waste with a sand layer maintained at 450 ° C. to 600 ° C. with an internal air ratio of 1 or less,
In the subsequent stage of the water washing tank, there is provided a dryer that heats and drys the carbide washed in the water washing tank and discharges the carbide at a temperature of 30 ° C to 100 ° C.
In the subsequent stage of the dryer, the carbide having an exothermic property of 30 ° C. to 100 ° C. discharged from the dryer is brought into contact with a gas that can serve as an oxygen supply source while being conveyed to promote and stabilize the low temperature oxidation reaction . A retention device having a conveyor to be put into the storage tank is provided,
The staying device is provided with a temperature sensor for measuring the temperature in the staying device and a cooling device for cooling the carbide,
Further, the carbide manufacturing apparatus is provided with a control device for operating the cooling device when the temperature in the staying device obtained from the temperature sensor reaches a predetermined temperature .
滞留装置には、滞留装置内に酸素供給源となり得る気体を供給する気体供給装置、滞留装置内への不活性ガス供給装置炭化物に水及び水蒸気の少なくとも一方を供給する水蒸気等供給装置いずれか又は2以上が設けられていることを特徴とする請求項に記載の炭化物製造装置。 The retention device, a gas supply device for supplying a gas that can be a source of oxygen into the retention device, the inert gas supply unit into the retention device, any water vapor, such as a supply device for supplying at least one of water and steam carbide Or 2 or more, The carbide manufacturing apparatus of Claim 6 characterized by the above-mentioned. 酸素供給源となり得る気体は、空気であることを特徴とする請求項又はに記載の炭化物製造装置。 The carbide producing apparatus according to claim 6 or 7 , wherein the gas that can serve as an oxygen supply source is air.
JP2006134626A 2006-05-15 2006-05-15 Carbide manufacturing method and carbide manufacturing apparatus Active JP4745885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134626A JP4745885B2 (en) 2006-05-15 2006-05-15 Carbide manufacturing method and carbide manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134626A JP4745885B2 (en) 2006-05-15 2006-05-15 Carbide manufacturing method and carbide manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007302834A JP2007302834A (en) 2007-11-22
JP4745885B2 true JP4745885B2 (en) 2011-08-10

Family

ID=38837032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134626A Active JP4745885B2 (en) 2006-05-15 2006-05-15 Carbide manufacturing method and carbide manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4745885B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265186A (en) * 1999-03-16 2000-09-26 Taiheiyo Cement Corp Production of solid fuel and apparatus therefor
JP2004277465A (en) * 2003-03-12 2004-10-07 Japan Sewage Works Agency Apparatus for carbonization treatment of organic material-containing sludge
JP2004277464A (en) * 2003-03-12 2004-10-07 Japan Sewage Works Agency Apparatus for carbonization treatment of organic material-containing sludge
JP2005008662A (en) * 2003-06-16 2005-01-13 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating carbonized product
JP2007246773A (en) * 2006-03-17 2007-09-27 Ngk Insulators Ltd Method for producing carbide and apparatus for producing carbide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265186A (en) * 1999-03-16 2000-09-26 Taiheiyo Cement Corp Production of solid fuel and apparatus therefor
JP2004277465A (en) * 2003-03-12 2004-10-07 Japan Sewage Works Agency Apparatus for carbonization treatment of organic material-containing sludge
JP2004277464A (en) * 2003-03-12 2004-10-07 Japan Sewage Works Agency Apparatus for carbonization treatment of organic material-containing sludge
JP2005008662A (en) * 2003-06-16 2005-01-13 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating carbonized product
JP2007246773A (en) * 2006-03-17 2007-09-27 Ngk Insulators Ltd Method for producing carbide and apparatus for producing carbide

Also Published As

Publication number Publication date
JP2007302834A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5521187B2 (en) Combustible gas generator for gasifying waste and method for producing combustible gas
JP5815503B2 (en) Method and apparatus for gasifying organic waste
TWI429487B (en) Appartus for treating waste
JP6124494B1 (en) Plant biomass semi-carbide production equipment
JP2009300006A (en) Thermal recycling method and system by converting waste tire into fuel
JP6759492B2 (en) Carbide production equipment, carbide production methods, and carbide production systems
KR101200478B1 (en) Carbonize apparatus of dried sludge
JP5957348B2 (en) Partially reduced iron production equipment
JP4416747B2 (en) Carbide storage method
JP4483553B2 (en) Gasification processing method and apparatus
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
JP4745885B2 (en) Carbide manufacturing method and carbide manufacturing apparatus
JP4235654B2 (en) Carbide manufacturing method and carbide manufacturing apparatus
JP2007254604A (en) Method and device for gasifying waste
JP4397379B2 (en) Carbide storage method and carbide storage device
JP2001124317A (en) Method of regenerating waste of high polymer compound, and high polymer compound waste regenerator
JP5102499B2 (en) Rotary carbonization method and apparatus
JP2006231301A (en) Gasification apparatus of waste
KR101005850B1 (en) Apparatus for Drying and Carbonating Combustibile or organic Waste
JP4908914B2 (en) Processing equipment such as aluminum chips
JP2006220365A (en) Waste gasifying device
JP6345139B2 (en) Gas engine system
JP2009066491A (en) System for making contaminated soil harmless
JP2004263193A (en) Thermal treatment equipment using superheated steam
JP3961441B2 (en) Soil treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250