JP4745855B2 - Flame-resistant fiber, method for producing the same, and method for producing carbon fiber - Google Patents

Flame-resistant fiber, method for producing the same, and method for producing carbon fiber Download PDF

Info

Publication number
JP4745855B2
JP4745855B2 JP2006038145A JP2006038145A JP4745855B2 JP 4745855 B2 JP4745855 B2 JP 4745855B2 JP 2006038145 A JP2006038145 A JP 2006038145A JP 2006038145 A JP2006038145 A JP 2006038145A JP 4745855 B2 JP4745855 B2 JP 4745855B2
Authority
JP
Japan
Prior art keywords
fiber
flame
fibers
resistant
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006038145A
Other languages
Japanese (ja)
Other versions
JP2007217812A (en
Inventor
朗由 小亀
巧己 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006038145A priority Critical patent/JP4745855B2/en
Publication of JP2007217812A publication Critical patent/JP2007217812A/en
Application granted granted Critical
Publication of JP4745855B2 publication Critical patent/JP4745855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種の複合材料において補強繊維材料として利用される炭素繊維の製造方法、並びに炭素繊維の前駆体である耐炎化繊維及びその製造方法に関する。 The present invention relates to a method of manufacturing a carbon fiber is used as reinforcing fiber material in various composite materials, and methods for producing a flame-resistant fiber and its is a precursor of carbon fiber.

アクリロニトリル系共重合体からなるアクリル系繊維は、炭素繊維の前駆体として用いられている。アクリル系繊維を前駆体として得られる、いわゆるPAN系炭素繊維は、機械的物性に優れ、また生産性もよいため、広く工業的に生産されている。   An acrylic fiber made of an acrylonitrile copolymer is used as a carbon fiber precursor. So-called PAN-based carbon fibers obtained using acrylic fibers as a precursor are widely industrially produced because of their excellent mechanical properties and good productivity.

アクリル系繊維から炭素繊維を製造する場合、まず、アクリル系繊維を酸化雰囲気中200〜300℃で熱処理して耐炎化繊維とし[耐炎化工程]、ついで、炭化処理される。炭化処理では、一般的に公知の技術により、1000〜2000℃の不活性気体中で熱処理する[炭化工程]。また、その前に400〜700℃の上昇温度勾配の不活性雰囲気炉で熱処理する[前炭素化工程]ことが好ましいとされている。また、こうして得られた炭素繊維をさらに高温の不活性ガス中で処理し、黒鉛繊維とする場合もある。   When producing carbon fibers from acrylic fibers, first, the acrylic fibers are heat-treated at 200 to 300 ° C. in an oxidizing atmosphere to form flame-resistant fibers [flame-proofing step], and then carbonized. In the carbonization treatment, heat treatment is performed in an inert gas at 1000 to 2000 ° C. by a generally known technique [carbonization step]. In addition, it is preferable to perform a [pre-carbonization step] in which heat treatment is performed in an inert atmosphere furnace having a rising temperature gradient of 400 to 700 ° C. before that. Further, the carbon fiber thus obtained may be further processed in a high-temperature inert gas to obtain graphite fiber.

アクリル系繊維の耐炎化処理における反応は、アクリル系繊維を構成する高分子鎖に結合したニトリル基の環化反応と、さらにその構造が酸化または脱水素化され熱的に安定な分子鎖であるナフチリジン環とアクリドン環が複合した構造に変わる反応である。   The reaction in the flameproofing treatment of acrylic fiber is a cyclization reaction of the nitrile group bonded to the polymer chain constituting the acrylic fiber and a thermally stable molecular chain that is oxidized or dehydrogenated. This reaction changes to a structure in which a naphthyridine ring and an acridone ring are combined.

すなわち、200〜300℃での耐炎化反応では、アクリル系繊維表面からの酸素の拡散により、熱的に安定な構造に変化する。この耐炎化反応の時間を長くするとアクリル系繊維の中心部まで熱的に安定な構造に変化する。しかし、生産性の理由により耐炎化は30〜60分で行われているので、アクリル系繊維の径にもよるが、アクリル系繊維の内部まで完全には熱的に安定な構造にはならない。このことは、耐炎化時間が30〜60分の耐炎化繊維を、窒素雰囲気中、昇温速度10℃/minの条件での、室温から400℃までのDSC(示差走査熱量測定)測定において、350±10℃に発熱ピークが観測されるのに対して(図1;追加熱処理なし)、耐炎化時間200分の耐炎化繊維ではそのようなピークが観察されないこと、同様の条件で耐炎化時間が30〜60分の耐炎化繊維は室温から700℃までのTG(熱重量減少)測定において、350℃近傍より重量の減少割合が大きくなる(図2;追加熱処理なし)ことから確認できる。   That is, in the flameproofing reaction at 200 to 300 ° C., it changes to a thermally stable structure due to diffusion of oxygen from the acrylic fiber surface. If the time for this flameproofing reaction is lengthened, the structure changes to a thermally stable structure up to the center of the acrylic fiber. However, since the flameproofing is performed in 30 to 60 minutes for the reason of productivity, depending on the diameter of the acrylic fiber, the inside of the acrylic fiber is not completely thermally stable. This means that in flame retardant fibers with a flameproofing time of 30 to 60 minutes in a DSC (differential scanning calorimetry) measurement from room temperature to 400 ° C under a temperature rising rate of 10 ° C / min in a nitrogen atmosphere, While an exothermic peak is observed at 350 ± 10 ° C. (FIG. 1; no additional heat treatment), such a peak is not observed for a flame resistant fiber with a flame resistance time of 200 minutes, and the flame resistance time under the same conditions. However, the flame-resistant fiber of 30 to 60 minutes can be confirmed from the fact that the weight reduction ratio becomes larger than around 350 ° C. in the TG (thermal weight loss) measurement from room temperature to 700 ° C. (FIG. 2; no additional heat treatment).

耐炎化時間を長くすれば、アクリル系繊維の内部まで熱的に安定な構造にできるが、耐炎化時間を長くすることは生産性の上で好ましくない。また、酸化雰囲気中で耐炎化時間を長くしすぎると炭素繊維の強度が低下するので好ましくない。   If the flameproofing time is increased, a structure that is thermally stable up to the inside of the acrylic fiber can be obtained, but it is not preferable in terms of productivity to increase the flameproofing time. Further, if the flameproofing time is too long in an oxidizing atmosphere, the strength of the carbon fiber is lowered, which is not preferable.

耐炎化反応は、酸素の拡散により、環化反応と酸化・脱水素反応が同時に起きる。この反応は共に発熱反応である。フィラメント数が多くなると、熱の蓄積により、耐炎化時に破断する場合がある。この反応熱の制御のために、2段階に分けて熱処理を行い、耐炎化繊維を得ることが提案されており、例えば特許文献1には、アクリル系繊維材料を、アミン化合物を除く有機化合物、フッ素化合物、シロキサン類、硝酸塩、亜硝酸塩のうち1種又は2種類以上の化合物(耐炎化処理剤)存在下で耐炎化処理後、酸化性雰囲気中、0〜400℃で酸化処理する方法が記載されている。   In the flameproofing reaction, cyclization reaction and oxidation / dehydrogenation reaction occur simultaneously due to diffusion of oxygen. Both of these reactions are exothermic reactions. When the number of filaments increases, it may break at the time of flame resistance due to heat accumulation. In order to control this reaction heat, heat treatment is performed in two stages to obtain flame-resistant fibers. For example, Patent Document 1 discloses an acrylic fiber material, an organic compound excluding an amine compound, A method of oxidizing at 0 to 400 ° C. in an oxidizing atmosphere after flameproofing in the presence of one or more compounds (flameproofing agent) among fluorine compounds, siloxanes, nitrates and nitrites is described. Has been.

特許文献2には、アクリル系繊維を酸素濃度0.01〜3容積%の不活性雰囲気中で熱処理し、次いで活性雰囲気中で熱処理する方法が記載されている。活性雰囲気中での熱処理は、好ましくは220〜320℃で3〜10分程度行えば十分であることが記載されている。   Patent Document 2 describes a method in which acrylic fibers are heat-treated in an inert atmosphere having an oxygen concentration of 0.01 to 3% by volume, and then heat-treated in an active atmosphere. It is described that the heat treatment in the active atmosphere is preferably performed at 220 to 320 ° C. for about 3 to 10 minutes.

特許文献3には、予備熱処理した繊維を非酸化性または弱酸化性雰囲気中、300〜500℃の温度で0.3分間以上低温熱処理する方法が記載されている。非酸化性雰囲気とは、ヘリウム、アルゴン等およびそれらの混合物を意味し、弱酸性雰囲気とは、非酸化性ガスに10%以下の酸素を混入した雰囲気を意味すると記載されている。
特開2004−3043号公報 特開平7−292526号公報 特開昭51−75124号公報
Patent Document 3 describes a method in which a preheat-treated fiber is subjected to low-temperature heat treatment at a temperature of 300 to 500 ° C. for 0.3 minutes or more in a non-oxidizing or weakly oxidizing atmosphere. The non-oxidizing atmosphere is described as helium, argon, or a mixture thereof, and the weakly acidic atmosphere is described as meaning an atmosphere in which 10% or less oxygen is mixed in a non-oxidizing gas.
JP 2004-3043 A JP-A-7-292526 JP 51-75124 A

しかし、特許文献1の方法は、第1段目の熱処理で使用する耐炎化処理剤が耐炎化繊維中に残存することがあり、その残存物は前炭素化工程により分解することになるので、炭素繊維の収量を低くする要因となる。特許文献2の方法は、酸素濃度を低く抑えた第1段目の熱処理で環化反応のみが進み、この段階では安定な環化構造はほとんどない。第2段目の熱処理において表面側で急激に酸化脱水素反応が起きる。このため、十分にアクリル系繊維の内部まで熱的に安定な構造にすることは難しい。特許文献3の方法では、前炭素化工程に相当する反応が同時に起きてしまい、環化反応や酸化または脱水素化反応の前に分解する部分があり、炭素繊維の収量が低くなる。   However, in the method of Patent Document 1, the flameproofing agent used in the first stage heat treatment may remain in the flameproofed fiber, and the residue is decomposed by the pre-carbonization step. It becomes a factor which lowers the yield of carbon fiber. In the method of Patent Document 2, only the cyclization reaction proceeds by the first stage heat treatment with the oxygen concentration kept low, and there is almost no stable cyclization structure at this stage. Oxidative dehydrogenation occurs abruptly on the surface side in the second heat treatment. For this reason, it is difficult to make a structure that is sufficiently thermally stable up to the inside of the acrylic fiber. In the method of Patent Document 3, the reaction corresponding to the pre-carbonization step occurs at the same time, and there is a portion that decomposes before the cyclization reaction, oxidation or dehydrogenation reaction, and the yield of carbon fiber is lowered.

本発明は、従来の方法より前炭素化工程における耐炎化繊維の分解物を減らし、得られる炭素繊維の収量を多くすることを目的とする。   An object of this invention is to reduce the decomposition product of the flame-resistant fiber in a pre-carbonization process compared with the conventional method, and to increase the yield of the carbon fiber obtained.

本発明は、炭素繊維用アクリル系前駆体繊維を、酸化性気体濃度15〜25体積%雰囲気中200〜300℃で30〜60分熱処理した後、酸素濃度3〜12体積%雰囲気中300〜350℃で1〜10分熱処理する耐炎化繊維の製造方法である。また、その方法で製造された耐炎化繊維であって、窒素雰囲気中、昇温速度10℃/minの条件での、室温から400℃までのDSC測定において、350℃±10℃に発熱ピークが観測されない耐炎化繊維である。   In the present invention, an acrylic precursor fiber for carbon fiber is heat-treated at 200 to 300 ° C. for 30 to 60 minutes in an atmosphere having an oxidizing gas concentration of 15 to 25% by volume, and then 300 to 350 in an atmosphere having an oxygen concentration of 3 to 12% by volume. It is a manufacturing method of the flame-resistant fiber which heat-processes at 1 degreeC for 1-10 minutes. In addition, the flame-resistant fiber produced by the method has an exothermic peak at 350 ° C. ± 10 ° C. in DSC measurement from room temperature to 400 ° C. in a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. It is a flame resistant fiber that is not observed.

さらに、前記の方法で製造された耐炎化繊維を、400〜700℃の範囲で上昇温度勾配を有する不活性雰囲気炉で熱処理し、さらに1000〜2000℃の不活性気体中で熱処理する炭素繊維の製造方法である。   Further, the flame-resistant fiber produced by the above method is heat treated in an inert atmosphere furnace having a rising temperature gradient in the range of 400 to 700 ° C, and further heat treated in an inert gas at 1000 to 2000 ° C. It is a manufacturing method.

本発明の耐炎化繊維は、これまで熱的に不安定であった内部環化構造が熱的に安定化されているので、炭素繊維製造工程における前炭素化工程での分解量が少なくなり、炭素繊維としたときの収量が多くなる。また、分解物が少なくなることにより、前炭素化工程で使用する不活性雰囲気炉のメンテナンスの頻度が少なくなることが期待される。   In the flame-resistant fiber of the present invention, the internal cyclization structure that has been thermally unstable so far is thermally stabilized, so that the amount of decomposition in the pre-carbonization step in the carbon fiber production process is reduced, The yield when using carbon fiber is increased. Moreover, it is expected that the frequency of maintenance of the inert atmosphere furnace used in the pre-carbonization process is reduced by reducing the decomposition products.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の耐炎化繊維は、窒素雰囲気中、昇温速度10℃/minの条件での、室温から400℃までのDSC測定において、350±10℃に発熱ピークが観測されない耐炎化繊維である。このような耐炎化繊維は、繊維内部まで安定環化されており、その後の不活性雰囲気中での熱処理(前炭素化工程や炭化工程)での分解物が少ない。したがって、この耐炎化繊維を用いて炭素繊維を製造すると、炭素繊維の収量が増加する。   The flame-resistant fiber of the present invention is a flame-resistant fiber in which no exothermic peak is observed at 350 ± 10 ° C. in a DSC measurement from room temperature to 400 ° C. in a nitrogen atmosphere under a temperature rising rate of 10 ° C./min. Such flame-resistant fibers are stably cyclized to the inside of the fibers, and there are few decomposition products in the subsequent heat treatment (pre-carbonization step or carbonization step) in an inert atmosphere. Therefore, when carbon fiber is produced using this flameproof fiber, the yield of carbon fiber increases.

このような耐炎化繊維は、炭素繊維用アクリル系前駆体繊維を所定の条件で熱処理することで得ることができる。   Such flame-resistant fibers can be obtained by heat-treating acrylic precursor fibers for carbon fibers under predetermined conditions.

本発明で使用する炭素繊維用アクリル系前駆体繊維とは、アクリロニトリル系重合体からなる繊維である。アクリロニトリル系重合体としては、アクリロニトリルのホモポリマー及び/又は他のモノマーとの共重合体を用いることができる。この場合、炭素化を良好に行う目的でアクリロニトリル系重合体中のアクリロニトリル単位の含有量は90質量%以上であることが好ましい。また、炭素繊維にした時のアクリロニトリル系重合体に起因する欠陥点を少なくし、炭素繊維の品位ならびに性能を向上させる目的から、アクリロニトリル単位の含有量は95質量%以上であることがより好ましい。   The acrylic precursor fiber for carbon fiber used in the present invention is a fiber made of an acrylonitrile polymer. As the acrylonitrile-based polymer, homopolymers of acrylonitrile and / or copolymers with other monomers can be used. In this case, the content of acrylonitrile units in the acrylonitrile-based polymer is preferably 90% by mass or more for the purpose of good carbonization. Moreover, the content of acrylonitrile units is more preferably 95% by mass or more for the purpose of reducing defects caused by the acrylonitrile polymer when the carbon fiber is formed and improving the quality and performance of the carbon fiber.

アクリロニトリルと共重合可能なモノマーとしては、特に制限はないが、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ウラリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどの不飽和モノマー類;p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、及びこれらのアルカリ金属塩などが例示される。これらは、1種でもよく、2種以上の組み合わせでもよい。   The monomer copolymerizable with acrylonitrile is not particularly limited, but methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxy acrylate Acrylic esters represented by propyl and the like; methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, uraryl methacrylate, 2-hydroxyethyl methacrylate, Methacrylic acid esters represented by hydroxypropyl methacrylate, diethylaminoethyl methacrylate, etc .; acrylic acid, methacrylic acid, itaconic acrylamide, N-methylol acrylamide, dia Unsaturated monomers such as tonacrylamide, styrene, vinyltoluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, vinylidene fluoride; p-sulfophenylmethallyl ether, methallylsulfonic acid , Allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and alkali metal salts thereof. These may be one kind or a combination of two or more kinds.

アクリロニトリルと共重合可能な他のモノマーとして、炭素化工程における環化反応を促進する目的で、カルボン酸基を有するモノマーやアクリルアミドを用いることが好ましい。カルボン酸基を有するモノマーとしては、メタクリル酸やイタコン酸が好ましい。そして、溶剤に対する溶解性の向上の観点から、アクリルアミド単位がアクリロニトリル系重合体に1質量%以上含まれていることが好ましい。   As another monomer copolymerizable with acrylonitrile, a monomer having a carboxylic acid group or acrylamide is preferably used for the purpose of promoting the cyclization reaction in the carbonization step. As the monomer having a carboxylic acid group, methacrylic acid and itaconic acid are preferable. And, from the viewpoint of improving the solubility in a solvent, it is preferable that 1% by mass or more of acrylamide units are contained in the acrylonitrile-based polymer.

アクリロニトリル系重合体は、溶液重合、懸濁重合など公知の重合方法により得ることができる。重合により得られたアクリロニトリル系重合体からは、未反応モノマーなどの不純物を除く処理をすることが望ましい。   The acrylonitrile polymer can be obtained by a known polymerization method such as solution polymerization or suspension polymerization. It is desirable to remove impurities such as unreacted monomers from the acrylonitrile-based polymer obtained by polymerization.

このアクリロニトリル系重合体、好ましくは不純物を除去したアクリロニトリル系重合体を溶剤に溶解し、紡糸原液とする。溶剤としては、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドなどの有機溶剤や、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液が使用できる。作製される繊維中に金属を含有せず、また、工程が簡略化される点で、有機溶剤が好ましい。紡糸原液中のアクリロニトリル系重合体の濃度は、紡糸工程上、その重合度にもよるが、17質量%以上が好ましく、より好ましくは19質量%以上であり、25質量%以下が好ましい。   This acrylonitrile polymer, preferably an acrylonitrile polymer from which impurities have been removed, is dissolved in a solvent to obtain a spinning dope. As the solvent, organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate can be used. An organic solvent is preferable in that the fiber to be produced does not contain a metal and the process is simplified. The concentration of the acrylonitrile polymer in the spinning dope is preferably 17% by mass or more, more preferably 19% by mass or more, and preferably 25% by mass or less, depending on the degree of polymerization in the spinning process.

紡糸方法としては、紡糸原液をノズル孔より直接凝固浴中に紡出する湿式紡糸法、一旦空気中へ紡出した後に浴中凝固させる乾湿式紡糸方法を用いることができる。凝固浴には紡糸原液に用いられる溶剤を含む水溶液が使用される。水溶液中の溶剤の濃度は、使用する溶剤の種類にもよるが、例えば、ジメチルアセトアミドあるいはジメチルホルムアミドを使用する場合、50〜80質量%が好ましい。凝固浴の温度は20〜50℃が生産性上好ましい。   As the spinning method, a wet spinning method in which a spinning solution is directly spun into a coagulation bath from a nozzle hole, or a dry and wet spinning method in which the spinning solution is once spun into air and then coagulated in the bath can be used. For the coagulation bath, an aqueous solution containing a solvent used for the spinning dope is used. The concentration of the solvent in the aqueous solution depends on the type of solvent used, but for example, when dimethylacetamide or dimethylformamide is used, it is preferably 50 to 80% by mass. The temperature of the coagulation bath is preferably 20 to 50 ° C. in terms of productivity.

紡糸原液を紡出して得られた凝固糸は、水洗後、延伸処理、乾燥することにより、炭素繊維用アクリル系前躯体繊維が得られる。延伸処理、乾燥処理は公知の方法により行うことができる。延伸処理は、限定されるものではなく、例えば、2本のロールに凝固糸を巻きつけ2本のロール間の回転速度を変える方法により行うことができる。延伸時の雰囲気も限定されるものではなく、例えば、凝固浴と同種の溶剤を含む水溶液中、熱水中、高圧水蒸気中、等から適宜選択し、また組み合わせて行うことができる。乾燥方法も限定される訳ではないが、例えば、凝固糸を加熱されたロールに巻きつけ通過させる方法が例示される。   The coagulated yarn obtained by spinning the spinning stock solution is washed with water, drawn and dried to obtain an acrylic precursor fiber for carbon fiber. The stretching process and the drying process can be performed by a known method. The stretching process is not limited, and can be performed, for example, by a method in which a coagulated yarn is wound around two rolls and the rotation speed between the two rolls is changed. The atmosphere at the time of stretching is not limited, and for example, it can be appropriately selected from an aqueous solution containing the same kind of solvent as the coagulation bath, hot water, high-pressure steam, etc., and combined. Although a drying method is not necessarily limited, For example, the method of winding and passing the coagulated yarn around a heated roll is exemplified.

このようにして得られた炭素繊維用アクリル系前駆体繊維を、まず、公知の方法により酸化雰囲気中200〜300℃で30〜60分熱処理する。熱処理は、炭素繊維用アクリル系前躯体繊維を、加熱空気を吹き込む炉を通過させる方法が例示される。熱処理時間は加熱炉内を通過する時間で調整することができる。   The carbon fiber acrylic precursor fiber thus obtained is first heat-treated at 200 to 300 ° C. for 30 to 60 minutes in an oxidizing atmosphere by a known method. Examples of the heat treatment include a method of passing the acrylic precursor fiber for carbon fiber through a furnace in which heated air is blown. The heat treatment time can be adjusted by the time for passing through the heating furnace.

なお、酸化雰囲気とは、酸化性気体を15〜25体積%の濃度で含む混合気体であり、酸化性気体とは、その気体存在下で、物質を酸化物に変化させる能力を有する気体である。酸化性気体としては、二酸化窒素、二酸化硫黄、酸素が例示され、これらを単独、または混合して用いてもよい。酸化性気体が10体積%より少ないと酸化あるいは脱水素の進行が遅いのであまり好ましくない。経済性からは空気下で行うことが望ましい。   The oxidizing atmosphere is a mixed gas containing an oxidizing gas at a concentration of 15 to 25% by volume, and the oxidizing gas is a gas having an ability to change a substance into an oxide in the presence of the gas. . Examples of the oxidizing gas include nitrogen dioxide, sulfur dioxide, and oxygen, and these may be used alone or in combination. When the oxidizing gas is less than 10% by volume, the progress of oxidation or dehydrogenation is slow, which is not preferable. In terms of economy, it is desirable to carry out under air.

熱処理の温度は200〜300℃であり、好ましくは、230〜270℃である。酸化による急激な発熱を抑制するために段階的に昇温加熱することが好ましい。加熱時間は30〜60分であり、30〜60分が好ましい。30分より短いと未反応の分子が残る可能性がある。60分より長いと経済的に好ましくない。   The temperature of heat processing is 200-300 degreeC, Preferably, it is 230-270 degreeC. In order to suppress rapid heat generation due to oxidation, it is preferable to raise the temperature stepwise. The heating time is 30 to 60 minutes, preferably 30 to 60 minutes. If it is shorter than 30 minutes, unreacted molecules may remain. If it is longer than 60 minutes, it is not economically preferable.

通常の炭素繊維の製造方法では、この工程で得られた繊維を耐炎化繊維としている。しかし、本発明では、さらに酸素濃度3〜12体積%となる雰囲気中、300〜350℃で1〜10分熱処理したものを耐炎化繊維とする。熱処理は前記と同様な方法で行うことができる。酸素濃度は、例えば先の熱処理を空気下で行った場合、炉内に不活性ガスを吹き込むことにより調整することができる。不活性ガスとしては経済的に窒素が好ましい。   In a normal carbon fiber manufacturing method, the fiber obtained in this step is used as a flameproof fiber. However, in the present invention, a fiber that has been heat-treated at 300 to 350 ° C. for 1 to 10 minutes in an atmosphere having an oxygen concentration of 3 to 12% by volume is defined as a flame resistant fiber. The heat treatment can be performed by the same method as described above. The oxygen concentration can be adjusted, for example, by blowing an inert gas into the furnace when the previous heat treatment is performed under air. As the inert gas, nitrogen is preferred economically.

この熱処理をする雰囲気の酸素濃度は3〜12体積%である。好ましくは3〜10体積%である。酸素濃度が低いと環化構造の安定化が進まず、酸素濃度が高いと繊維内に余剰に酸素がとりこまれ、酸素と結合した環構造が増えるので好ましくない。この熱処理の温度は300〜350℃である。300℃より低いと内部の環化構造が熱的安定構造に変化するのに時間がかかり好ましくない。350℃よりも高いと内部の分解が進むので好ましくない。この熱処理の時間は1〜10分であり、好ましくは1〜5分である。熱処理時間が短すぎると反応が進まず、長いと繊維内に余剰に酸素がとりこまれ、表面に酸素と結合した環構造が増えるので好ましくない。   The oxygen concentration in the atmosphere for this heat treatment is 3 to 12% by volume. Preferably it is 3-10 volume%. If the oxygen concentration is low, the stabilization of the cyclized structure does not proceed, and if the oxygen concentration is high, excessive oxygen is taken into the fiber and the ring structure bonded to oxygen increases, which is not preferable. The temperature of this heat treatment is 300 to 350 ° C. If it is lower than 300 ° C., it takes time to change the internal cyclized structure to a thermally stable structure, which is not preferable. If it is higher than 350 ° C., internal decomposition proceeds, which is not preferable. The time for this heat treatment is 1 to 10 minutes, preferably 1 to 5 minutes. If the heat treatment time is too short, the reaction does not proceed. If the heat treatment time is too long, excessive oxygen is taken into the fiber, and the ring structure bonded to oxygen increases on the surface, which is not preferable.

好ましい酸素濃度と熱処理の温度と熱処理の時間は、これらの組み合わせにより決まり、酸素濃度が3〜7体積%かつ熱処理温度が300〜320℃と低い場合は、熱処理時間は3〜5分が好ましい。   The preferable oxygen concentration, heat treatment temperature and heat treatment time are determined by a combination of these. When the oxygen concentration is 3 to 7% by volume and the heat treatment temperature is as low as 300 to 320 ° C., the heat treatment time is preferably 3 to 5 minutes.

耐炎化繊維内部の環化構造が熱的に安定化しているかどうかは、耐炎化繊維を、窒素雰囲気中、昇温速度10℃/minの条件で、室温(25℃)から400℃までのDSC測定を行い、350℃±10℃に発熱ピークが観測されるか否かで判断することができる。環化構造が熱的に安定化していると発熱ピークが観測されない。   Whether the cyclized structure inside the flame-resistant fiber is thermally stabilized is determined by determining whether the flame-resistant fiber is subjected to DSC from room temperature (25 ° C.) to 400 ° C. in a nitrogen atmosphere at a heating rate of 10 ° C./min. It can be determined by measuring whether an exothermic peak is observed at 350 ° C. ± 10 ° C. When the cyclized structure is thermally stabilized, no exothermic peak is observed.

上記の方法で得られた耐炎化繊維は、DSC測定により350±10℃の範囲に発熱ピークは観測されない(図1;追加熱処理あり)ので、繊維内部まで熱的に安定な構造の耐炎化繊維である。また、この耐炎化繊維についてTG測定を行うと、重量の減少割合が大きくなる温度が400℃近傍になる(図2;追加熱処理あり)。   In the flame resistant fiber obtained by the above method, no exothermic peak is observed in the range of 350 ± 10 ° C. by DSC measurement (FIG. 1; with additional heat treatment), so that the flame resistant fiber has a structure that is thermally stable to the inside of the fiber. It is. Further, when TG measurement is performed on the flame-resistant fiber, the temperature at which the weight reduction ratio increases becomes close to 400 ° C. (FIG. 2; with additional heat treatment).

このようにして得られた耐炎化繊維は、その後の前炭素化工程での分解量が少なくなり、炭素繊維としたときの収量が多くなる。また、分解物が少なくなることにより、前炭素化工程で使用する不活性雰囲気炉のメンテナンスの頻度が少なくなることが期待される。   The flame-resistant fiber thus obtained has a reduced amount of decomposition in the subsequent pre-carbonization step, and the yield when the carbon fiber is obtained increases. Moreover, it is expected that the frequency of maintenance of the inert atmosphere furnace used in the pre-carbonization process is reduced by reducing the decomposition products.

このようにして得た耐炎化繊維を公知の前炭素化工程、炭素化工程を経ることにより、炭素繊維を得ることができる。前炭素化工程における温度範囲は、400〜700℃である。上昇温度勾配は、炉を複数設置してそれぞれに並んだ炉の温度を上昇するように設定することにより実現できる。前炭素化工程は不活性雰囲気炉で行うことができる。不活性雰囲気は限定されるものではないが、経済的に窒素が用いられる。炭素化工程における温度範囲は、1000〜2000℃であり、好ましくは、1000〜1500℃である。炭素化工程は不活性気体中で行うことができる。不活性気体としては限定されるものではないが、経済的に窒素が用いられる。   Carbon fibers can be obtained by subjecting the flame resistant fibers thus obtained to a known pre-carbonization step and carbonization step. The temperature range in the pre-carbonization step is 400 to 700 ° C. The rising temperature gradient can be realized by setting a plurality of furnaces and increasing the temperature of the furnaces arranged in each. The pre-carbonization step can be performed in an inert atmosphere furnace. The inert atmosphere is not limited, but nitrogen is economically used. The temperature range in a carbonization process is 1000-2000 degreeC, Preferably, it is 1000-1500 degreeC. The carbonization step can be performed in an inert gas. The inert gas is not limited, but nitrogen is economically used.

得られた炭素繊維は、公知の技術により、さらに不活性雰囲気炉で2000〜3000℃で黒鉛化処理をしてもよい。   The obtained carbon fiber may be further graphitized at 2000 to 3000 ° C. in an inert atmosphere furnace by a known technique.

以下実施例を示して説明する
[炭素繊維用アクリル系前駆体繊維]
アクリロニトリル96質量%、メタクリル酸1質量%、アクリルアミド3質量%の組成で共重合したアクリロニトリル系重合体を重合体濃度21質量%となるようにジメチルアセトアミドに溶解して紡糸原液とし、温度を60℃に調整した。この紡糸原液を用いて湿式紡糸法により、炭素繊維用アクリル系前駆体繊維を得た。なお、紡糸原液を紡出する凝固浴は、濃度50〜70質量%、温度30〜50℃のジメチルアセトアミド水溶液である。使用したノズルのホール数は12000である。凝固浴中で凝固して得られた凝固糸を、濃度50〜70質量%、温度30〜50℃のジメチルアセトアミド水溶液からなる第二凝固浴中にて、所定量の延伸を施し、さらに90〜100℃水中とスチーム雰囲気中で延伸を行い、トータルの延伸倍率を12倍とし、炭素繊維用アクリル系前駆体繊維の束を得た。
[Examples] [Examples] [Acrylic precursor fiber for carbon fiber]
An acrylonitrile polymer copolymerized with a composition of 96% by mass of acrylonitrile, 1% by mass of methacrylic acid, and 3% by mass of acrylamide is dissolved in dimethylacetamide so that the polymer concentration becomes 21% by mass to obtain a spinning dope. Adjusted. An acrylic precursor fiber for carbon fiber was obtained by a wet spinning method using this spinning dope. The coagulation bath for spinning the spinning stock solution is a dimethylacetamide aqueous solution having a concentration of 50 to 70% by mass and a temperature of 30 to 50 ° C. The number of holes in the nozzle used is 12,000. The coagulated yarn obtained by coagulation in the coagulation bath is subjected to a predetermined amount of stretching in a second coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 50 to 70% by mass and a temperature of 30 to 50 ° C. Stretching was performed in 100 ° C. water and in a steam atmosphere, the total draw ratio was set to 12 times, and a bundle of carbon fiber acrylic precursor fibers was obtained.

上記の炭素繊維用アクリル系前駆体繊維の束を空気中5つの加熱ゾーンを通過させ段階的に昇温し、60分熱処理して繊維Aの束を得た。加熱ゾーンの温度はそれぞれ、220、230、240、250、255℃、各ゾーンの通過時間は12分である。   The bundle of acrylic precursor fibers for carbon fiber was passed through five heating zones in the air, heated in steps, and heat-treated for 60 minutes to obtain a bundle of fibers A. The temperatures of the heating zones are 220, 230, 240, 250, and 255 ° C., respectively, and the passing time of each zone is 12 minutes.

この繊維Aの束を以下の実施例又は比較例の条件で熱処理して耐炎化繊維を得た。得られた耐炎化繊維を以下の方法で評価した。   This bundle of fibers A was heat-treated under the conditions of the following examples or comparative examples to obtain flame-resistant fibers. The obtained flame resistant fiber was evaluated by the following method.

[DSC測定]
各耐炎化繊維の昇温DSC測定を行った。温度範囲は室温〜400℃である。昇温速度は10℃/minである。測定は窒素雰囲気中で行った。サンプルとしては、耐炎化繊維の束を約3〜5mmの長さに切ったものを約7mg使用した。測定装置は、セイコー株式会社製示差熱測定装置DSC220(商品名)を用いた。
[DSC measurement]
The temperature rise DSC measurement of each flameproof fiber was performed. The temperature range is from room temperature to 400 ° C. The heating rate is 10 ° C./min. The measurement was performed in a nitrogen atmosphere. As a sample, about 7 mg of a flame-resistant fiber cut into a length of about 3 to 5 mm was used. As a measuring device, a differential heat measuring device DSC220 (trade name) manufactured by Seiko Co., Ltd. was used.

[熱重量減少測定]
炭素繊維製造工程における400〜700℃の温度勾配の不活性雰囲気炉での熱処理による分解量を比較するために、各耐炎化繊維の束の熱重量減少測定を行った。
[Measurement of thermogravimetry]
In order to compare the amount of decomposition by heat treatment in an inert atmosphere furnace with a temperature gradient of 400 to 700 ° C. in the carbon fiber production process, the thermogravimetric decrease measurement of each flameproof fiber bundle was performed.

温度範囲は室温から700℃である。昇温速度は10℃/minである。測定は窒素雰囲気中で行った。サンプルとしては、耐炎化繊維の束を約3〜5mmの長さに切ったものを約7mg使用した。また、100℃に達した時点の重量を100%とした。測定装置は、セイコー株式会社製示差熱熱重量同時測定装置TG/DTA6300(商品名)を用いた。   The temperature range is from room temperature to 700 ° C. The heating rate is 10 ° C./min. The measurement was performed in a nitrogen atmosphere. As a sample, about 7 mg of a flame-resistant fiber cut into a length of about 3 to 5 mm was used. Further, the weight when the temperature reached 100 ° C. was taken as 100%. As a measuring device, Seiko Co., Ltd. differential thermal thermogravimetric simultaneous measuring device TG / DTA6300 (trade name) was used.

[実施例1]
繊維Aの束を、窒素を送り込むことにより酸素濃度5体積%に調整した加熱炉で、300℃で4.5分の熱処理をして、耐炎化繊維の束を得た。
[Example 1]
The bundle of fibers A was heat-treated at 300 ° C. for 4.5 minutes in a heating furnace adjusted to an oxygen concentration of 5% by feeding nitrogen to obtain a bundle of flame-resistant fibers.

その耐炎化繊維の束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定では、350±10℃の範囲に発熱ピークは観察されなかった。熱重量減少測定では、700℃で重量は78%にまで減少した。   Sampling was performed from the bundle of flame-resistant fibers, and DSC measurement and thermal weight loss measurement were performed. In DSC measurement, no exothermic peak was observed in the range of 350 ± 10 ° C. Thermal weight loss measurements showed that the weight decreased to 78% at 700 ° C.

[実施例2]
酸素濃度を10体積%に調整した以外は実施例1と同様の処理により、繊維Aの束から耐炎化繊維の束を得た。
[Example 2]
A bundle of flame resistant fibers was obtained from the bundle of fibers A by the same treatment as in Example 1 except that the oxygen concentration was adjusted to 10% by volume.

その耐炎化繊維の束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定では、350±10℃の範囲に発熱ピークは観察されなかった。熱重量減少測定では、700℃で重量は79%にまで減少した。   Sampling was performed from the bundle of flame-resistant fibers, and DSC measurement and thermal weight loss measurement were performed. In DSC measurement, no exothermic peak was observed in the range of 350 ± 10 ° C. In the thermogravimetric measurement, the weight decreased to 79% at 700 ° C.

[実施例3]
酸素濃度を10体積%とし、処理時間を1.5分にした以外は実施例1と同様の処理により、繊維Aの束から、耐炎化繊維の束を得た。
[Example 3]
A bundle of flame resistant fibers was obtained from the bundle of fibers A by the same treatment as in Example 1 except that the oxygen concentration was 10% by volume and the treatment time was 1.5 minutes.

その耐炎化繊維の束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定、熱重量減少測定を行った。DSC測定では、350±10℃の範囲に発熱ピークは観察されなかった。熱重量減少測定では、700℃で重量は79%にまで減少した。   Sampling was performed from the bundle of flame-resistant fibers, and DSC measurement and thermal weight loss measurement were performed. DSC measurement and thermogravimetric decrease measurement were performed. In DSC measurement, no exothermic peak was observed in the range of 350 ± 10 ° C. In the thermogravimetric measurement, the weight decreased to 79% at 700 ° C.

[実施例4]
熱処理温度を330℃とし、処理時間を1.5分にした以外は実施例1と同様の処理により、繊維Aの束から、耐炎化繊維の束を得た。
[Example 4]
A bundle of flame resistant fibers was obtained from the bundle of fibers A by the same treatment as in Example 1 except that the heat treatment temperature was 330 ° C. and the treatment time was 1.5 minutes.

その耐炎化繊維の束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定、熱重量減少測定を行った。DSC測定では、350±10℃の範囲に発熱ピークは観察されなかった。熱重量減少測定では、700℃で重量は79%にまで減少した。   Sampling was performed from the bundle of flame-resistant fibers, and DSC measurement and thermal weight loss measurement were performed. DSC measurement and thermogravimetric decrease measurement were performed. In DSC measurement, no exothermic peak was observed in the range of 350 ± 10 ° C. In the thermogravimetric measurement, the weight decreased to 79% at 700 ° C.

[比較例1]
繊維Aの束を熱処理を行わず、その束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定では350℃に発熱ピークが観察された。熱重量減少測定では、700℃で重量は72%にまで減少した。
[Comparative Example 1]
The fiber A bundle was sampled from the bundle without heat treatment, and DSC measurement and thermal weight loss measurement were performed. In DSC measurement, an exothermic peak was observed at 350 ° C. In the thermogravimetry measurement, the weight decreased to 72% at 700 ° C.

[比較例2]
酸素濃度を0%に調整した以外は実施例1と同様の処理により、繊維Aの束から耐炎化繊維の束を得た。
[Comparative Example 2]
A bundle of flame resistant fibers was obtained from the bundle of fibers A by the same treatment as in Example 1 except that the oxygen concentration was adjusted to 0%.

その耐炎化繊維の束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定では350℃に発熱ピークが観察された。熱重量減少測定では、700℃で重量は72%にまで減少した。   Sampling was performed from the bundle of flame-resistant fibers, and DSC measurement and thermal weight loss measurement were performed. In DSC measurement, an exothermic peak was observed at 350 ° C. In the thermogravimetry measurement, the weight decreased to 72% at 700 ° C.

[比較例3]
酸素濃度を0%に調整した以外は実施例4と同様の処理により、繊維Aの束から耐炎化繊維の束を得た。
[Comparative Example 3]
A bundle of flame-resistant fibers was obtained from the bundle of fibers A by the same treatment as in Example 4 except that the oxygen concentration was adjusted to 0%.

その耐炎化繊維の束からサンプリングを行い、DSC測定、熱重量減少測定を行った。DSC測定では350℃に発熱ピークが観察された。熱重量減少測定では、700℃で重量は73%にまで減少した。   Sampling was performed from the bundle of flame-resistant fibers, and DSC measurement and thermal weight loss measurement were performed. In DSC measurement, an exothermic peak was observed at 350 ° C. In the thermogravimetry measurement, the weight decreased to 73% at 700 ° C.

[実施例5]
実施例3で得られた耐炎化繊維の束を、400〜700℃で1.5分の前炭素化処理を行い、さらに1100〜1300℃で1.5分の炭素化処理を行うことで、炭素繊維の束を得た。
[Example 5]
By performing the pre-carbonization treatment for 1.5 minutes at 400 to 700 ° C., and further performing the carbonization treatment for 1.5 minutes at 1100 to 1300 ° C., for the bundle of flameproof fibers obtained in Example 3. A bundle of carbon fibers was obtained.

得られた炭素繊維の束の収量は、1mあたり0.84gであった。   The yield of the obtained carbon fiber bundle was 0.84 g per meter.

[比較例4]
繊維Aの束を実施例4と同じ条件で前炭素化処理及び炭素化処理を行い、炭素繊維の束を得た。
[Comparative Example 4]
The bundle of fibers A was pre-carbonized and carbonized under the same conditions as in Example 4 to obtain a bundle of carbon fibers.

得られた炭素繊維の束の収量は、1mあたり0.80gであった。   The yield of the obtained carbon fiber bundle was 0.80 g per meter.

Figure 0004745855
Figure 0004745855

DSC測定結果の一例を示す図である。It is a figure which shows an example of a DSC measurement result. 熱重量減少測定結果の一例を示す図である。It is a figure which shows an example of a thermogravimetric reduction measurement result.

Claims (3)

炭素繊維用アクリル系前駆体繊維を、酸化性気体濃度15〜25体積%雰囲気中200〜300℃で30〜60分熱処理した後、酸素濃度3〜12体積%雰囲気中300〜350℃で1〜10分熱処理する耐炎化繊維の製造方法。     The acrylic precursor fiber for carbon fiber is heat-treated at 200 to 300 ° C. for 30 to 60 minutes in an atmosphere having an oxidizing gas concentration of 15 to 25% by volume, and then 1 to 300 to 350 ° C. in an atmosphere having an oxygen concentration of 3 to 12% by volume. A method for producing flame-resistant fibers, which is heat-treated for 10 minutes. 請求項1に記載の方法で製造された耐炎化繊維であって、窒素雰囲気中、昇温速度10℃/minの条件での、室温から400℃までのDSC測定において、350℃±10℃に発熱ピークが観測されない耐炎化繊維。     A flameproof fiber manufactured by the method according to claim 1, wherein the DSC measurement is performed at 350 ° C. ± 10 ° C. in a DSC measurement from room temperature to 400 ° C. in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min. Flame resistant fiber where no exothermic peak is observed. 請求項1に記載の方法で製造された耐炎化繊維を、400〜700℃の範囲で上昇温度勾配を有する不活性雰囲気炉で熱処理し、さらに1000〜2000℃の不活性気体中で熱処理する炭素繊維の製造方法。     Carbon which is heat treated in an inert atmosphere furnace having an increasing temperature gradient in the range of 400 to 700 ° C. and further heat treated in an inert gas at 1000 to 2000 ° C. A method for producing fibers.
JP2006038145A 2006-02-15 2006-02-15 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber Expired - Fee Related JP4745855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038145A JP4745855B2 (en) 2006-02-15 2006-02-15 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038145A JP4745855B2 (en) 2006-02-15 2006-02-15 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber

Publications (2)

Publication Number Publication Date
JP2007217812A JP2007217812A (en) 2007-08-30
JP4745855B2 true JP4745855B2 (en) 2011-08-10

Family

ID=38495401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038145A Expired - Fee Related JP4745855B2 (en) 2006-02-15 2006-02-15 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP4745855B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175124A (en) * 1974-12-25 1976-06-29 Toray Industries TANSOSENINOSEIZOHOHO
JPS58136838A (en) * 1982-02-08 1983-08-15 Mitsubishi Rayon Co Ltd Production of high-performance carbon fiber
JPS58174630A (en) * 1982-04-08 1983-10-13 Toray Ind Inc Production of acrylic carbon fiber

Also Published As

Publication number Publication date
JP2007217812A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2016540131A (en) Polyacrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP5656185B2 (en) Method for producing flame-resistant acrylonitrile polymer
US4113847A (en) Process for producing carbon fibers
TWI465468B (en) Production method of acrylonitrile-based copolymer, and production method of polyacrylonitrile precursor for carbon fiber
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
JP2017141525A (en) Flame resistant fiber bundle and manufacturing method therefor
KR20160142538A (en) Method of manufacturing carbon fiber with thick denier
JP5072668B2 (en) Precursor fiber, and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP4745855B2 (en) Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2013023801A (en) Method for producing carbon fiber bundle
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP5537617B2 (en) Precursor fiber, and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP4919410B2 (en) Carbon fiber manufacturing method
JP2006183174A (en) Method for producing flame resistant fiber
JPH0255549B2 (en)
JPS6327448B2 (en)
JPH0770812A (en) Production of acrylonitrile-based fiber
JPH0433890B2 (en)
JPS6254889B2 (en)
JPH0157165B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees