JP4743165B2 - Micro channel structure - Google Patents

Micro channel structure Download PDF

Info

Publication number
JP4743165B2
JP4743165B2 JP2007140401A JP2007140401A JP4743165B2 JP 4743165 B2 JP4743165 B2 JP 4743165B2 JP 2007140401 A JP2007140401 A JP 2007140401A JP 2007140401 A JP2007140401 A JP 2007140401A JP 4743165 B2 JP4743165 B2 JP 4743165B2
Authority
JP
Japan
Prior art keywords
microchannel
channel
phase
introduction
microparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007140401A
Other languages
Japanese (ja)
Other versions
JP2007283301A (en
Inventor
明 川井
晃治 片山
達 二見
克幸 原
朋裕 大川
恵一郎 西澤
英昭 桐谷
博達 草部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007140401A priority Critical patent/JP4743165B2/en
Publication of JP2007283301A publication Critical patent/JP2007283301A/en
Application granted granted Critical
Publication of JP4743165B2 publication Critical patent/JP4743165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、分取・分離用カラム充填剤に用いられる微小粒子や医薬品、含酵素カプセル、化粧品、香料、表示・記録材料、接着剤、農薬等に利用されるマイクロカプセル、化学反応・溶媒抽出等に用いられる微小粒子の生成方法とその用途であり、また、その微小粒子を生成するための微小流路構造体に関する。   The present invention relates to microcapsules, chemical reaction / solvent extraction used for fine particles and pharmaceuticals, enzyme-containing capsules, cosmetics, perfumes, display / recording materials, adhesives, agricultural chemicals, etc. The present invention relates to a method for producing fine particles used for the above and its use, and also relates to a fine channel structure for producing the fine particles.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより化学反応あるいは微小粒子の生成を行う研究が注目されている。なおここでいう微小粒子とは、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した微小粒子(以下、「半硬化」という。)や、非常に粘性が高い半固体状の微小粒子も含む。このような微小流路は、微小空間の短い分子間距離および大きな比界面積の効果により、効率の良い化学反応を行なうことができることが示唆されている(例えば非特許文献1参照)。   In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research that produces chemical reactions or microparticles by doing so has attracted attention. The microparticles here are solid microparticles, microdroplets, microparticles obtained by curing only the surface of microdroplets (hereinafter referred to as “semi-cured”), and extremely high viscosity. Also includes semi-solid fine particles. It has been suggested that such a microchannel can perform an efficient chemical reaction due to the effect of a short intermolecular distance in a microspace and a large specific interface area (see, for example, Non-Patent Document 1).

また、界面張力の異なる2種類の液体を、交差部分が存在する流路に導入することにより極めて粒径が均一な微小粒子を生成することができる(例えば、非特許文献2及び特許文献1参照)。例えば、非特許文献2に示されている手法は図1に示すように、微小流路基板(1)の上に、連続相導入口(2)、連続相導入流路(3)、分散相導入口(4)、分散相導入流路(5)、排出流路(7)及び排出口(8)を有したT字型の微小流路構造体であり、導入された連続相と分散相とが合流する部分(以下、「合流部」という。)に合流部(6)が存在する。各流路の深さは100μmであり、分散相を導入する導入流路幅が100μm、連続相を導入する導入流路幅は300〜500μmのT字型微小流路を用いて、分散相と連続相の流れの速さを制御して送液を行うと、合流部において極めて均一な微小粒子の生成が可能となる。また、分散相及び連続相の流量を制御することで生成する微小粒子の粒径を制御することも可能となる。   In addition, by introducing two types of liquids having different interfacial tensions into the flow path where the intersecting portion exists, it is possible to generate microparticles having extremely uniform particle diameters (see, for example, Non-Patent Document 2 and Patent Document 1). ). For example, as shown in FIG. 1, the technique disclosed in Non-Patent Document 2 has a continuous phase inlet (2), a continuous phase inlet channel (3), a dispersed phase on a microchannel substrate (1). A T-shaped microchannel structure having an inlet (4), a dispersed phase introduction channel (5), a discharge channel (7), and a discharge port (8), and the introduced continuous phase and dispersed phase The joining portion (6) exists in a portion where the two join together (hereinafter referred to as “joining portion”). The depth of each channel is 100 μm, the introduction channel width for introducing the dispersed phase is 100 μm, and the introduction channel width for introducing the continuous phase is 300 to 500 μm. When liquid feeding is performed while controlling the flow rate of the continuous phase, extremely uniform fine particles can be generated at the junction. It is also possible to control the particle size of the fine particles generated by controlling the flow rates of the dispersed phase and the continuous phase.

しかしながらこの方法は、連続相の導入流路幅が分散相の導入流路幅に対し、3〜5倍広い導入流路を用いており、分散相及び連続相を同一流速で送液した場合、流路幅が狭い分散相の導入流路内で線速は速くなってしまうため、分散相及び連続相がその合流部以降の流れにおいて層流となってしまうことがあり、結果として合流部において微小粒子生成が出来なくなってしまう課題があった。   However, this method uses an introduction channel whose introduction phase width of the continuous phase is 3 to 5 times wider than the introduction channel width of the dispersion phase, and when the dispersion phase and the continuous phase are fed at the same flow rate, Since the linear velocity increases in the introduction flow path of the dispersed phase with a narrow flow path width, the dispersed phase and the continuous phase may become laminar in the flow after the merge portion, and as a result, in the merge portion There was a problem that fine particles could not be generated.

また、このため、連続相を過剰に供給する必要があるが、微小粒子を生成させて工業的に量産する場合には、分散相の使用量に対し連続相の使用量を過剰にすることが必要となり、低コスト化、あるいは廃液量の低減などの課題があった。   For this reason, it is necessary to supply the continuous phase excessively. However, in the case of producing fine particles and industrially mass-producing them, the amount of the continuous phase used may be excessive with respect to the amount of the dispersed phase used. There are problems such as cost reduction and reduction of waste liquid amount.

また、非特許文献2あるいは特許文献1に示されている手法では、複合カプセルや多重カプセルの作成は困難であり、その改善が求められていた。   In addition, with the technique disclosed in Non-Patent Document 2 or Patent Document 1, it is difficult to create composite capsules and multiple capsules, and improvements have been demanded.

また、非特許文献2あるいは特許文献1に示されている手法で生成した微小粒子は、粒径のばらつきが比較的小さく均一であるため、微小粒子を形成している化合物を架橋重合させることなどにより硬化させて、分取、分離用カラム充填剤等に用いられる粒径の均一で微小なゲル粒子などに用いることが試みられている。しかしながら、生成した微小粒子を微小流路の外部でビーカーなどに収集し、架橋重合などにより微小粒子を硬化すると、微小粒子を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうこと、また、硬化する前の微小粒子を媒体から分離することが難しいため、その改善が求められていた。   In addition, since the fine particles generated by the technique shown in Non-Patent Document 2 or Patent Document 1 have a relatively small and uniform particle size variation, the compounds forming the fine particles are cross-linked and polymerized. Attempts have been made to use it for fine gel particles having a uniform particle size used for fractionation, separation column packing and the like. However, if the generated microparticles are collected in a beaker or the like outside the microchannel, and the microparticles are cured by cross-linking polymerization or the like, the shape of the microparticles may be lost or reduced between the collection and curing of the microparticles. Since the coalescence of the particles occurs, the variation in the particle size of the cured microparticles becomes large, and it is difficult to separate the microparticles before curing from the medium. .

また、前述した微小空間の短い分子間距離および大きな比界面積の効果により、効率の良い化学反応を行なうことができることや、界面張力の異なる2種類の液体を、交差部分が存在する流路に導入することにより極めて粒子系が均一な微小粒子を生成することができるような微小空間の特性を生かしたまま、微小流路での化学反応、微小粒子を工業生産に適用しようとする試みも行われている。この場合、微小空間の小ささ故に、単一の微小流路では、単位時間当りの生成量が少なくならざるを得ないが、多数の微小流路を並列に配置することができれば、前記微小流路の特性を生かしたまま単位時間当たりの生成量を増加させることができる(例えば非特許文献3参照)。非特許文献3に示されるように、1本の微小流路を有する微小流路基板を、反応溶液の入り口や反応生成物の出口などの共通部分を貫通した縦穴でつないで積層することなどが試みられている。このように、微小空間の特徴を生かしたまま、大量に化学合成や微小粒子の生成を行なう場合には、最小単位である微小流路の集積度を平面的に高める、あるいは立体的に積層することで可能であると言われているが、平面的あるいは立体的に配置された微小流路へ均一に流体を分配することは、従来非常に困難であり、改善が求められていた。   In addition, due to the effects of the short intermolecular distance and the large specific interfacial area in the minute space described above, an efficient chemical reaction can be performed, and two kinds of liquids having different interfacial tensions can be used in the flow path where the intersecting portion exists. Introducing chemical reactions in microchannels and attempts to apply microparticles to industrial production while taking advantage of the characteristics of microspaces that can produce microparticles with extremely uniform particle systems. It has been broken. In this case, due to the small space, the amount of generated per unit time must be reduced in a single microchannel, but if a large number of microchannels can be arranged in parallel, the microstream The generation amount per unit time can be increased while utilizing the characteristics of the road (see, for example, Non-Patent Document 3). As shown in Non-Patent Document 3, a micro-channel substrate having one micro-channel may be laminated by connecting vertical portions penetrating common portions such as an inlet of a reaction solution and an outlet of a reaction product. Has been tried. In this way, when performing chemical synthesis or generation of microparticles in large quantities while taking advantage of the characteristics of the microspace, the degree of integration of the microchannels, which is the smallest unit, is increased planarly or stacked three-dimensionally. Although it is said that this is possible, it has been extremely difficult to uniformly distribute the fluid to the microchannels arranged in a plane or three-dimensionally, and improvement has been demanded.

また、非特許文献1には、微小空間での短い分子間距離および大きな比界面積の効果による分子のすみやかな拡散により、特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができることや、反応によって生じた目的化合物が反応相から抽出相へすばやく抽出、分離されることによって、引き続いて起こる副反応が抑えられることが示唆されている。   Further, Non-Patent Document 1 describes that an efficient chemical reaction can be performed without performing a special stirring operation due to the rapid diffusion of molecules due to the effect of a short intermolecular distance and a large specific interfacial area in a minute space. In addition, it is suggested that the subsequent side reaction can be suppressed by quickly extracting and separating the target compound produced by the reaction from the reaction phase to the extraction phase.

上記の例等では、図2(a)に示すようにY字状の微小流路(16)に原材料を溶かした有機相(12)と水相(13)を導入し、Y字の合流部で形成される有機相と水相の流体境界(14)で反応や抽出を行なっている。一般的に、マイクロスケールの流路内ではレイノルズ数が1より小さいケースがほとんどであり、よほど流速を大きくしない限りは図2(a)に示すような層流の状態となる。また、拡散時間は微小流路の幅(9)の2乗に比例するので、微小流路の幅を小さくするほど反応液を能動的に混合しなくとも分子の拡散によって混合が進み、反応や抽出が起こりやすくなる。また、一般に反応や抽出は比界面積が大きいほど効率が良い。ここで比界面積とは、相同士が接触することで界面を形成している時の、相の総体積に対する界面の面積比を意味する。反応や抽出において、物質は界面を通してのみ他の相へ移動できるので、比界面積が大きいということは、それだけ反応や抽出の効率が高いことを意味する。   In the above example, as shown in FIG. 2A, an organic phase (12) and an aqueous phase (13) in which raw materials are dissolved are introduced into a Y-shaped microchannel (16), and a Y-shaped junction The reaction and extraction are carried out at the fluid boundary (14) between the organic phase and the aqueous phase formed in (1). In general, there are almost all cases where the Reynolds number is smaller than 1 in a micro-scale flow path, and a laminar flow state as shown in FIG. In addition, since the diffusion time is proportional to the square of the width (9) of the microchannel, the smaller the microchannel width, the more the mixing proceeds due to the diffusion of molecules without active mixing of the reaction solution. Extraction is likely to occur. In general, the larger the specific interface, the better the reaction and extraction. Here, the specific interfacial area means the ratio of the area of the interface to the total volume of the phase when the interface is formed by contacting the phases. In a reaction or extraction, since a substance can move to another phase only through the interface, a large specific interface means that the efficiency of the reaction or extraction is high.

以下では、図2(b)を用いて微小流路内の比界面積の計算方法を示す。図2(b)は、図2(a)のY字流路の合一部の一部分を切り出した立体断面図である。微小流路の幅(9)をW[μm]、微小流路の単位長さ(24)をL[μm]、微小流路の深さ(25)をd[μm]とすると、有機相(12)の総体積は、(W/2)×d×L[μm]となる。また、水相と有機相の流体境界(14)の面積は、d×L[μm]となる。従って比界面積は、(d×L)/{(W/2)×d×L}=2×10/W[cm−1]となり、微小流路の長さや深さ(d)に関係なく微小流路の幅(W)だけで決まることが分かる。例えば、微小流路の幅が1000[μm]の比界面積は、20[cm−1]であるのに対して、微小流路の幅が100[μm]の比界面積は、200[cm−1]となる。従って、微小流路の幅を小さくするほど比界面積が大きくなり、反応や抽出の効率が良くなる。 Below, the calculation method of the specific interface area in a microchannel is shown using FIG.2 (b). FIG. 2B is a three-dimensional cross-sectional view in which a part of the combined portion of the Y-shaped flow path in FIG. When the width (9) of the microchannel is W [μm], the unit length (24) of the microchannel is L [μm], and the depth (25) of the microchannel is d [μm], the organic phase ( The total volume of 12) is (W / 2) × d × L [μm 3 ]. The area of the fluid boundary (14) between the aqueous phase and the organic phase is d × L [μm 2 ]. Accordingly, the specific interface area is (d × L) / {(W / 2) × d × L} = 2 × 10 4 / W [cm −1 ], which is related to the length and depth (d) of the microchannel. It can be seen that it is determined only by the width (W) of the microchannel. For example, the specific interface area when the microchannel width is 1000 [μm] is 20 [cm −1 ], whereas the specific interface area when the microchannel width is 100 [μm] is 200 [cm]. −1 ]. Therefore, as the width of the microchannel is reduced, the specific interface area is increased and the efficiency of reaction and extraction is improved.

しかしながら、前述した図2(a)に示すような層流間での反応や抽出の効率は、逆に言えば拡散時間の短縮と流体境界の比界面積の大きさ、すなわち微小流路の幅で制限されることを意味している。すなわち、反応や抽出に使用する微小流路の幅によって拡散時間と流体境界の比界面積が決まってしまい、反応や抽出の効率を微小流路の幅で決定される効率以上に向上させることができない。また、前述したように微小流路の幅を小さくすればさらに拡散時間を短くして比界面積を大きくでき、反応や抽出の効率を向上させることは可能だが、微小流路の幅が小さいほど圧力損失が大きく送液自体が難しくなり現実的でないため微小流路の幅を小さくすることには限界があり、その改善が求められていた。   However, the reaction and extraction efficiencies between laminar flows as shown in FIG. 2 (a) described above are, conversely, shortening the diffusion time and the size of the specific interface area of the fluid boundary, that is, the width of the microchannel. It means that it is restricted by. In other words, the specific interface area between the diffusion time and the fluid boundary is determined by the width of the microchannel used for the reaction and extraction, and the efficiency of the reaction and extraction can be improved beyond the efficiency determined by the width of the microchannel. Can not. In addition, as described above, if the width of the microchannel is reduced, the diffusion time can be further shortened to increase the specific interface area and the efficiency of reaction and extraction can be improved. Since the pressure loss is large and the liquid feeding itself is difficult and impractical, there is a limit to reducing the width of the micro flow path, and improvement has been demanded.

H.Hisamoto et.al.(H.ひさもと ら著)「Fast and high conversion phase−transfer synthesis exploiting the liquid−liquid interface formed in a microchannel chip」, Chem.Commun., 2001年発行, 2662−2663頁H. Hisamoto et. al. (H. Hisamoto et al.) “Fast and high conversion phase-transfer synthesis exploitation the liquid-liquid interface formed in a microchannel chip”, Chem. Commun. , 2001, 2662-2663. 西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行Takashi Nishisako et al., “Liquid microdroplet generation in microchannels”, Proceedings of the 4th Chemistry and Microsystem Study Group, 59 pages, 2001 菊谷ら、「パイルアップマイクロリアクターによる高収量マイクロチャンネル内合成」、第3回化学とマイクロシステム研究会公演予稿集、9頁、2001年発行Kikutani et al., “High-yield microchannel synthesis using pile-up microreactors”, Proceedings of the 3rd Chemistry and Microsystem Research Meeting, 9 pages, 2001 特許第2975943号Japanese Patent No. 2975943

以上のように従来技術による微小流路内における微小粒子生成の第1の課題は、微小流路において連続相と分散相の合流部で均一な微小粒子を生成する際に分散相及び連続相が層流を形成してしまい合流部において安定して微小粒子を生成することができなくなることである。   As described above, the first problem of the microparticle generation in the microchannel according to the prior art is that the dispersed phase and the continuous phase are generated when the uniform microparticle is generated at the junction of the continuous phase and the dispersed phase in the microchannel. A laminar flow is formed, and fine particles cannot be generated stably at the junction.

第2の課題は、合流部で微小粒子を生成させるためには連続相を過剰に供給する必要があり、例えばゲル製造における連続相の低コスト化、工業的な量産、あるいは微小粒子の生成自体が困難なことである。   The second problem is that it is necessary to supply the continuous phase excessively in order to generate fine particles at the junction. For example, the cost of the continuous phase in gel production, industrial mass production, or the generation of fine particles themselves Is difficult.

第3の課題は複合カプセルや多重カプセルの生成を可能にすることである。   The third problem is to enable generation of composite capsules and multiple capsules.

第4の課題は、生成した微小粒子が微小液滴の場合、微小流路の外部でビーカーなどに収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうことである。また、硬化する前の微小粒子を媒体から分離することが難しいことである。   The fourth problem is that when the generated microparticles are microdroplets, they are collected in a beaker or the like outside the microchannel, and when the microdroplets are cured by crosslinking polymerization or the like, the microdroplets are collected and then cured. By the time, the shape of the microparticles collapses or the microparticles coalesce with each other, resulting in a large variation in the particle size of the cured microparticles. Moreover, it is difficult to separate the fine particles before curing from the medium.

第5の課題は、微小流路構造体に平面的あるいは立体的に配置された複数の微小流路へ均一に流体を分配することは、従来非常に困難なことである。   The fifth problem is that it has been very difficult in the past to uniformly distribute fluid to a plurality of microchannels arranged in a plane or three-dimensionally in the microchannel structure.

第6の課題は、反応や抽出の効率を微小流路の幅で決定される効率以上に向上させることができないことである。   The sixth problem is that the efficiency of reaction and extraction cannot be improved beyond the efficiency determined by the width of the microchannel.

本発明の目的は、上記課題を鑑みてなされたもので、微小流路内での微小粒子生成、複合カプセルや多重カプセルの生成を可能とすると共に、複数の微小流路に均一に流体を分配することにより工業的な量産にも対応でき、また、微小流路を用いて生成した微小粒子の形状を崩さずに微小粒子を生成した直後に微小粒子を硬化させ、微小粒子を媒体から分離することができる微小粒子製造方法及びそのための微小流路構造体を提供することにある。   The object of the present invention has been made in view of the above problems, and enables generation of microparticles in a microchannel, generation of composite capsules and multiple capsules, and uniform distribution of fluids to a plurality of microchannels. In addition, it can be used for industrial mass production, and the microparticles are cured immediately after the microparticles are generated without breaking the shape of the microchannels, and the microparticles are separated from the medium. An object of the present invention is to provide a method for producing fine particles and a fine channel structure for the same.

さらにはゲルやマイクロカプセルの製造方法を提供することにある。   Furthermore, it is providing the manufacturing method of a gel or a microcapsule.

また、この微小流路構造体を用い、微小流路の幅で決定される以上の拡散時間の短縮と流体境界の比界面積の大きさを得ることによって、微小流路内における抽出の効率を微小流路の幅で決定される効率以上に向上する溶媒抽出方法を提供することにある。   In addition, by using this microchannel structure, the efficiency of extraction in the microchannel can be improved by shortening the diffusion time and determining the size of the specific interface area at the fluid boundary, which is greater than the width of the microchannel. An object of the present invention is to provide a solvent extraction method that improves the efficiency more than the efficiency determined by the width of the microchannel.

上記課題を解決する本発明の微小流路構造体は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、前記2つの導入流路が任意の角度で排出流路へと繋がる微小流路構造体である。また、多数の前記微小流路を並列化及び/または積層化して微小粒子を大量に生産するための形態としては、流体を導入するための導入口及び流体を排出するための排出口を備え、基板上に前記導入口及び排出口と連通する共通流路と、前記導入口及び排出口とは異なる位置で前記共通流路と連通する1以上の微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じである微小流路構造体である。   The microchannel structure of the present invention that solves the above problems includes an introduction port and an introduction channel for introducing a dispersed phase, an introduction port and an introduction channel for introducing a continuous phase, a dispersed phase and a continuous phase. A microchannel structure comprising a microchannel having a discharge channel and a discharge port for discharging microparticles generated by the above-described method, and an introduction channel for introducing a dispersed phase And the introduction channel for introducing the continuous phase at an arbitrary angle, and the two introduction channels are connected to the discharge channel at an arbitrary angle. Further, as a mode for producing a large number of microparticles by parallelizing and / or laminating a large number of the microchannels, the system includes an inlet for introducing a fluid and an outlet for discharging the fluid, A microchannel structure having a common channel communicating with the introduction port and the discharge port on the substrate, and one or more microchannels communicating with the common channel at positions different from the introduction port and the discharge port The cross-sectional area of the common channel gradually increases from the communication position with the introduction port toward the communication position with the discharge port or is the same as the minute channel structure.

また、本発明の微小粒子製造方法は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路構造体を用いて微小粒子を生成する方法であって、主として分散相と連続相とを合流させる合流部において、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御することにより分散相を微小粒子化する微小粒子製造方法である。さらに、上記微小流路構造体を用いることで、微小粒子の中でも、マイクロカプセルやゲルのようなものも製造できる。   In addition, the method for producing fine particles of the present invention is generated by an introduction port and an introduction channel for introducing a dispersed phase, an introduction port and an introduction channel for introducing a continuous phase, and the dispersed phase and the continuous phase. A method of generating microparticles using a microchannel structure including a discharge channel and a discharge port for discharging microparticles, mainly in a junction where a dispersed phase and a continuous phase are merged Production of microparticles that transforms the dispersed phase into microparticles by controlling the particle size of the microparticles generated by changing the angle at which the introduction channel for introducing the phase and the introduction channel for introducing the continuous phase intersect Is the method. Furthermore, by using the above microchannel structure, among microparticles, microcapsules and gels can be manufactured.

また、微小流路内において抽出溶媒あるいは被抽出物質含有の流体を微小液滴化した後、前記微小液滴からなる分散相と前記微小液滴を囲む連続相との間で被抽出物質の相間移動により溶媒抽出を行なう溶媒抽出方法として用いることもできる。   Further, after the fluid containing the extraction solvent or the substance to be extracted is made into microdroplets in the microchannel, the phase of the substance to be extracted is between the dispersed phase consisting of the microdroplets and the continuous phase surrounding the microdroplets. It can also be used as a solvent extraction method for performing solvent extraction by movement.

以下、本発明をさらに詳細に説明する。
<微小粒子製造方法>
本発明において用いられる微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路を示す。
Hereinafter, the present invention will be described in more detail.
<Microparticle production method>
The microchannel used in the present invention generally indicates a channel having a width of 500 μm or less and a depth of 300 μm or less.

また本発明における微小粒子とは、微小流路内で連続相が分散相をせん断することで生成される微小粒子であり、その微小粒子サイズは、一般的に直径が微小流路の幅あるいは深さよりも小さい。例えば、幅が100μm、深さが50μmの微小流路で生成される微小粒子の大きさは、微小粒子が完全球体であると仮定するとその直径は50μmより小さい。また本発明における微小粒子は、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した半硬化の微小粒子や、非常に粘性が高い半固体状の微小粒子も含む。   The microparticles in the present invention are microparticles produced by shearing the dispersed phase by a continuous phase in the microchannel, and the microparticle size generally has a diameter that is the width or depth of the microchannel. Smaller than that. For example, the diameter of a microparticle generated in a microchannel having a width of 100 μm and a depth of 50 μm is smaller than 50 μm assuming that the microparticle is a perfect sphere. In addition to the solid microparticles, the microparticles in the present invention include microdroplets, semi-cured microparticles in which only the surface of the microdroplets is cured, and semisolid microparticles with extremely high viscosity. .

また、本発明において用いられる分散相とは、微小流路構造体により微小粒子を生成させるための液状物であり、例えば、スチレンなどの重合用のモノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。ここで分散相としては、本発明が微小な微小粒子を効率的に生成させることを目的としており、この目的を達成させるためであれば微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分も特に制限されない。また、分散相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。   In addition, the dispersed phase used in the present invention is a liquid material for generating microparticles by a microchannel structure, for example, a monomer for polymerization such as styrene, a crosslinking agent such as divinylbenzene, and a polymerization initiator. The medium which melt | dissolved the raw material for gel manufactures, such as in a suitable solvent, is pointed out. Here, as the dispersed phase, the purpose of the present invention is to efficiently generate fine microparticles, and in order to achieve this purpose, the flow path in the microchannel structure can be fed. There is no particular limitation as long as it is fine, and the components are not particularly limited as long as fine particles can be formed. Further, it may be in the form of a slurry in which a solid phase such as a fine powder is mixed in the dispersed phase, or the dispersed phase may be a laminar flow formed from a plurality of fluids. It may be a mixed fluid formed from these fluids or a suspension (emulsion).

本発明において用いられる連続相とは、微小流路構造体により分散相より微小粒子を生成させるために用いられる液状物であり、例えば、ポリビニルアルコールのようなゲル製造用の分散剤を適当な溶媒に溶解した媒体を指す。ここで連続相としては分散相と同様に、微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分は特に制限されない。また、連続相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。生成する微小粒子組成の観点から見た場合は、微小粒子の最外層が有機相であれば連続相の最外層は水相となり、微小粒子の最外層が水相であれば連続相の最外層は有機相となる。   The continuous phase used in the present invention is a liquid material used for generating microparticles from the dispersed phase by the microchannel structure, and for example, a dispersant for gel production such as polyvinyl alcohol is used as an appropriate solvent. Refers to the medium dissolved in Here, as in the case of the dispersed phase, the continuous phase is not particularly limited as long as it can feed the flow path in the micro flow path structure, and the component is not particularly limited as long as micro particles can be formed. Further, it may be a slurry in which a solid material such as a fine powder is mixed in the continuous phase, or the dispersed phase may be a laminar flow formed from a plurality of fluids. It may be a mixed fluid formed from these fluids or a suspension (emulsion). From the viewpoint of the composition of the fine particles to be generated, if the outermost layer of the fine particles is an organic phase, the outermost layer of the continuous phase is an aqueous phase, and if the outermost layer of the fine particles is an aqueous phase, the outermost layer of the continuous phase Becomes the organic phase.

さらに、分散相と連続相とは微小粒子を生成させるために、実質的に交じり合わないあるいは相溶性がないことが好ましく、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相が用いられることとなる。また、連続相として水相を用いた場合にはその逆となる。   Furthermore, it is preferable that the dispersed phase and the continuous phase do not substantially cross each other or have no compatibility in order to form fine particles. For example, when an aqueous phase is used as the dispersed phase, An organic phase such as butyl acetate, which is substantially insoluble in water, is used. Moreover, the reverse is true when an aqueous phase is used as the continuous phase.

本発明の微小粒子製造方法は、前述した分散相と連続相とを後述する本発明における微小流路構造体へその導入流路より導入し、両者が合流する合流部で分散相を連続相でせん断し微小粒子を生成させるものであるが、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることで、生成する微小粒子の粒径を制御することが可能である。これは、従来の微小流路構造体を使った微小粒子の生成においては、分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適している。特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、導入装置を1個用意することで足りるなどコスト面においても優れている。尚、ここでいう分散相の導入速度と連続相の導入速度とが実質的に同じとは、導入速度が多少変動があっても生成する微小粒子の粒径には大きな影響を与えないことを意味している。このようにすることで、安定した粒径の微小粒子を生成することができ、連続相を過剰に供給する必要がなくなり、例えばゲル製造における連続相の低コスト化、工業的な量産が可能となる。   The method for producing fine particles of the present invention introduces the above-described dispersed phase and continuous phase into the microchannel structure according to the present invention, which will be described later, from the introduction flow path, and the dispersed phase is a continuous phase at the junction where both merge. Particles are generated by shearing to generate fine particles, but by changing the angle at which the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase intersect, Can be controlled. This is easier to control in the production of microparticles using a conventional microchannel structure than in the case of producing by changing the introduction speed of the dispersed phase and the continuous phase, and is suitable for industrial mass production. In particular, if the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, it is excellent in terms of cost, for example, it is sufficient to prepare one introduction device. Here, the introduction rate of the dispersed phase and the introduction rate of the continuous phase are substantially the same, which means that even if the introduction rate varies somewhat, the particle size of the generated fine particles is not greatly affected. I mean. By doing so, it is possible to generate fine particles with a stable particle size, and it is not necessary to supply an excessive continuous phase, for example, it is possible to reduce the cost of the continuous phase in gel production and to industrial mass production. Become.

本発明における連続相と分散相との合流の方式としては、基本的には図3に示すようなY字型の微小流路の連続相導入口(2)から連続相を導入し、分散相導入口(4)から分散相を導入し合流部(6)で分散相を連続相によりせん断して微小粒子(17)を生成する。しかしながら本発明はこの方式に限定されるものではなく、図4に示すように、微小流路(16)で分散相(15)を連続相(10)が挟み込むように接触させて分散相を合流部(6)においてせん断して微小粒子(17)を生成する方式でも良いし、図5に示すように、微小流路(16)で連続相(10)を挟み込むように2以上の分散相(15)が接触し、分散相が連続相で合流部(6)においてせん断して微小粒子(17)を生成する方式でも良いし、図6に示すように、直線状に、微小流路(16)の一方の側より分散相(15)を、もう一方の側より連続相(16)を導入し、合流部(6)において分散相と連続相とを合流させることで微小粒子(17)を生成させ、合流した位置より1又は2以上の任意の方向へ排出させる方式でも良い。このようにすることで、微小粒子をより効率的に生成させることができる。なお、図6の方式の場合、生成した微小粒子を含む流体を、再度合流させて生成した微小粒子を回収することができる。   As a method of merging the continuous phase and the dispersed phase in the present invention, basically, the continuous phase is introduced from the continuous phase inlet (2) of the Y-shaped microchannel as shown in FIG. The dispersed phase is introduced from the introduction port (4), and the dispersed phase is sheared by the continuous phase at the joining portion (6) to generate fine particles (17). However, the present invention is not limited to this method. As shown in FIG. 4, the dispersed phase is joined by bringing the dispersed phase (15) into contact with the continuous phase (10) in the micro flow channel (16). A method of generating fine particles (17) by shearing in the part (6) may be used, or, as shown in FIG. 5, two or more dispersed phases (such as sandwiching the continuous phase (10) between the fine flow paths (16) ( 15) may be brought into contact with each other and the dispersed phase may be a continuous phase and sheared at the joining portion (6) to generate the fine particles (17). As shown in FIG. ), The dispersed phase (15) is introduced from one side, and the continuous phase (16) is introduced from the other side, and the dispersed phase and the continuous phase are merged at the merging portion (6). Generate and discharge in one or more arbitrary directions from the merged position It may be. By doing in this way, microparticles can be generated more efficiently. In the case of the method of FIG. 6, the generated microparticles can be recovered by rejoining the fluid containing the generated microparticles.

また、図7(a)〜(g)に示すように、1または複数の分散相(15)を導入する分散相導入流路(5)や1または複数の連続相(10)を導入する連続相導入流路(3)を設けることで、分散相や連続相を、複数の流体の層流または混合液または懸濁液(エマルション)とすることができる。このようにすることで、多層構造の微小粒子や、異なった多種の微小粒子を含有した微小粒子を形成することができ、複合マイクロカプセルや多重マイクロカプセルを生成することができる。なお、連続相、分散相あるいはその両者には微小な粉末を含んでいてもよい。   Moreover, as shown to Fig.7 (a)-(g), the continuous phase which introduce | transduces the disperse phase introduction flow path (5) which introduces 1 or a some disperse phase (15), and 1 or a plurality of continuous phases (10). By providing the phase introduction flow path (3), the dispersed phase or the continuous phase can be made into a laminar flow or mixed liquid or suspension (emulsion) of a plurality of fluids. By doing in this way, the microparticle of a multilayer structure and the microparticle containing various different microparticles can be formed, and a composite microcapsule and a multi-microcapsule can be produced | generated. Note that the continuous phase, the dispersed phase, or both may contain fine powder.

また本発明において、微小流路の合流部で生成した微小粒子が微小液滴であって微小液滴を硬化させる場合、微小流路中及び/又は微小流路の外において硬化させるとよい。さらに、硬化した微小粒子の粒径を均一にするために、微小液滴が排出流路を通過して排出部から出た後、微小流路構造体の排出部から微小流路構造体の外部に設けられた微小流路で連続的に硬化しても良い。さらに、硬化した微小粒子の粒径をより均一にするためには、微小流路の合流部で微小液滴が生成した直後に、微小流路構造体中の微小流路すなわち排出流路で硬化させることがより好ましい。   Further, in the present invention, when the microparticles generated at the confluence portion of the microchannel are microdroplets and the microdroplets are cured, they may be cured in the microchannel and / or outside the microchannel. Furthermore, in order to make the particle size of the hardened microparticles uniform, after the microdroplet passes through the discharge channel and exits the discharge unit, the microchannel structure is discharged from the discharge unit to the outside of the microchannel structure. It may be cured continuously in a microchannel provided in the. Furthermore, in order to make the particle size of the hardened microparticles more uniform, it hardens in the microchannel in the microchannel structure, that is, the discharge channel immediately after the microdroplet is generated at the junction of the microchannel. More preferably.

本発明における微小液滴を硬化する手段の一つは、微小液滴に光を照射することにより硬化させるものであり、この場合の光は、硬化させる微小液滴の材質を比較的多くの材質から選択できることから、紫外線であることが好ましい。光照射(21)は、図8(a)に示すように微小流路構造体(19)の排出口(8)から微小液滴が微小流路構造体の外部に出た後に行なっても良いが、微小粒子の粒径をより均一にするためには、図8(b)に示すように、微小流路の合流部(6)で微小液滴が生成した直後に光照射(21)を行ない微小流路構造体(19)の中の排出流路(7)で硬化することがより好ましい。しかしながら、微小流路構造体中の排出流路において光照射を行なう場合は、微小液滴が生成される前に分散相に光照射されて硬化しないように、微小液滴が生成される前の排出流路の部分と、光照射して微小液滴を硬化させる排出流路の部分は、図8(b)に示すように、微小流路構造体の必要なところだけに光照射スポット(20)があたるようにマスク(22)を設置しておく必要がある。   One of the means for curing the microdroplets in the present invention is to cure by irradiating the microdroplets with light. In this case, the light is cured by using a relatively large number of materials for the microdroplets to be cured. It is preferable that it is ultraviolet rays. As shown in FIG. 8A, the light irradiation (21) may be performed after the micro droplets have exited the micro channel structure from the outlet (8) of the micro channel structure (19). However, in order to make the particle size of the microparticles more uniform, as shown in FIG. 8B, the light irradiation (21) is performed immediately after the microdroplets are generated at the junction (6) of the microchannel. More preferably, curing is performed in the discharge channel (7) in the microchannel structure (19). However, when light irradiation is performed in the discharge channel in the microchannel structure, before the microdroplet is generated, the dispersed phase is not irradiated and cured before the microdroplet is generated. As shown in FIG. 8 (b), the portion of the discharge channel and the portion of the discharge channel that cures the micro droplets by irradiating light are only irradiated with the light irradiation spot (20 It is necessary to install a mask (22) so that

また本発明における微小液滴を硬化する別の手段は、微小液滴を加熱することにより硬化させる手段を用いた微小粒子製造方法である。図9(a)に示すように微小流路構造体(19)の排出口(8)から微小液滴が微小流路構造体の外部に出た後にヒーター(28)などにより加熱を行なっても良いが、微小粒子の粒径をより均一にするためには、図9(b)に示すように、微小流路の合流部(6)で微小液滴が生成した直後にヒーターなどにより加熱を行ない微小流路構造体中の排出流路(7)で硬化することがより好ましい。しかしながら、微小流路構造体中の排出流路において加熱を行なう場合は、微小液滴が生成される前に分散相が加熱されて硬化しないように、微小液滴が生成される前の排出流路の部分と、加熱して微小液滴を硬化させる排出流路の部分は、断熱材などを微小流路構造体の中に埋め込むなどの既知の断熱手法により熱的に絶縁しておく必要がある。   Another means for curing the microdroplets in the present invention is a method for producing microparticles using a means for curing the microdroplets by heating. As shown in FIG. 9 (a), heating may be performed by a heater (28) or the like after a micro droplet comes out of the micro channel structure from the outlet (8) of the micro channel structure (19). Although it is good, in order to make the particle size of the microparticles more uniform, as shown in FIG. 9B, heating is performed by a heater or the like immediately after the microdroplets are generated at the junction (6) of the microchannel. More preferably, curing is performed in the discharge channel (7) in the microchannel structure. However, when heating is performed in the discharge channel in the microchannel structure, the discharge flow before the microdroplet is generated so that the dispersed phase is not heated and hardened before the microdroplet is generated. The part of the channel and the part of the discharge channel that cures the micro droplets by heating must be thermally insulated by a known heat insulation method such as embedding a heat insulating material in the micro channel structure. is there.

なお、本発明において光照射あるいは加熱により微小液滴を硬化させる場合は、微小液滴全体を硬化させても良いが、半硬化させるなどにより、微小液滴の形状が崩れや微小液滴同士の合一が生じない程度に硬化させても良い。この場合、半硬化させた微小粒子をビーカー等で回収し、再度光照射や加熱により完全に硬化させることで、粒径が均一な微小粒子を得ることができる。
このようにすることで微小流路の合流部で生成した微小粒子が微小液滴の場合、微小流路の外部でビーカーなどに収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうことが無くなり、粒径が均一な微小粒子を得ることができる。また、微小液滴を硬化することにより媒体から分離することが容易になる。
In the present invention, when the microdroplet is cured by light irradiation or heating, the entire microdroplet may be cured. However, by semi-curing, the shape of the microdroplet collapses or You may make it harden to such an extent that unity does not arise. In this case, microparticles having a uniform particle size can be obtained by collecting the semi-cured microparticles with a beaker or the like and completely curing the microparticles again by light irradiation or heating.
In this way, if the microparticles generated at the junction of the microchannel are microdroplets, they are collected in a beaker or the like outside the microchannel and cured by cross-linking polymerization. Since the shape of the microparticles collapses or the microparticles coalesce between the collection and the curing, the particle size of the cured microparticles does not vary greatly and the particle size is uniform. Fine particles can be obtained. Moreover, it becomes easy to separate from the medium by curing the fine droplets.

以上のように、本発明の微小粒子製造方法の最も好ましい態様の一つとしては、分散相がゲル製造用原料を含む媒体であり、分散相を導入するための導入口及び導入流路と、連続相がゲル製造用分散剤を含む媒体であり、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路構造体を用いて微小粒子を生成する方法であって、分散相と連続相とを合流させて分散相を微小粒子化し、前記分散相を導入するための導入流路と前記連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御し、微小粒子を微小流路中及び/又は微小流路の外において、光照射及び/又は加熱により硬化させる方法となる。   As described above, as one of the most preferable embodiments of the method for producing fine particles of the present invention, the dispersed phase is a medium containing a raw material for gel production, and an introduction port and an introduction channel for introducing the dispersed phase, The continuous phase is a medium containing a dispersing agent for gel production, and an introduction port and introduction flow channel for introducing the continuous phase, and a discharge flow channel and discharge for discharging fine particles generated by the dispersed phase and the continuous phase. A method of generating microparticles using a microchannel structure provided with an outlet, wherein a dispersed phase and a continuous phase are merged to form a dispersed phase into microparticles, and an introduction flow for introducing the dispersed phase The particle diameter of the microparticles generated is controlled by changing the angle at which the channel and the introduction channel for introducing the continuous phase intersect, and the microparticles are transmitted in the microchannel and / or outside the microchannel. This is a method of curing by irradiation and / or heating.

本発明の微小粒子製造方法において、微小粒子の用途の例として、高速液体クロマトグラフィー用カラムの充填剤、シールロック剤などの接着剤、金属粒子の絶縁粒子、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などのマイクロカプセルやゲルが挙げられる。
<微小流路構造体>
本発明の微小流路構造体は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、前記2つの導入流路が任意の角度で排出流路へと繋がる構造であることを特徴とする微小流路構造体であり、その形態の例として、図3〜図7に示すような、微小流路構造体である。なお、本発明の微小流路構造体は図3〜図7の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。また、本発明の微小流路構造体の流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上3.0未満であることを特徴とする微小流路構造体である。
In the method for producing microparticles of the present invention, examples of the use of microparticles include packing materials for high performance liquid chromatography columns, adhesives such as seal lock agents, insulating particles of metal particles, pressure measurement films, carbonless (pressure sensitive) Copy) paper, toner, thermal expansion agent, heat medium, light control glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoresis capsule, pesticide, artificial feed, artificial seed, fragrance, Examples include microcapsules and gels such as massage creams, lipsticks, vitamin capsules, activated carbon, enzyme-containing capsules, and DDS (drug delivery system).
<Microchannel structure>
The microchannel structure of the present invention includes an introduction port and an introduction channel for introducing a dispersed phase, an introduction port and an introduction channel for introducing a continuous phase, and a microscopic structure generated by the dispersed phase and the continuous phase. A micro-channel structure comprising a micro-channel having a discharge channel and a discharge port for discharging particles, and introducing an introduction channel and a continuous phase for introducing a dispersed phase A microchannel structure characterized in that the two introduction channels intersect with the discharge channel at an arbitrary angle while intersecting with the introduction channel at an arbitrary angle. As an example, a microchannel structure as shown in FIGS. Needless to say, the microchannel structure of the present invention is not limited to the examples of FIGS. 3 to 7 and can be arbitrarily changed without departing from the gist of the present invention. Further, in the microchannel structure according to the present invention, the aspect ratio (ratio of channel depth / width) of the channel cross section of the microchannel structure of the present invention is 0.30 or more and less than 3.0. is there.

ここで、分散相を導入するための導入口は分散相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて分散相を連続的に導入する機構としてもよい。同様に、連続相を導入するための導入口についても、連続相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて連続相を連続的に導入する機構としてもよい。   Here, the introduction port for introducing the dispersed phase means an opening for introducing the dispersed phase, and a mechanism for continuously introducing the dispersed phase by providing an appropriate attachment at the introduction port. Similarly, the introduction port for introducing the continuous phase also means an opening for introducing the continuous phase, and further, as a mechanism for continuously introducing the continuous phase with an appropriate attachment at the introduction port. Good.

分散相を導入するための導入流路は導入口と連通しており、分散相が導入され、この導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その幅は約300μm以下で、排出流路も含め任意の角度で合流する形状となっておればよい。同様に、連続相を導入するための導入流路についても、導入口と連通しており、連続相が導入され、この導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その幅は約300μm以下で、排出流路も含め任意の角度で合流する形状となっておればよい。   The introduction flow path for introducing the dispersed phase communicates with the introduction port, and the dispersed phase is introduced and fed along the introduction flow path. The shape of the introduction channel affects the shape and particle size of the fine particles, but the width is about 300 μm or less, and it may be a shape that joins at an arbitrary angle including the discharge channel. Similarly, the introduction flow path for introducing the continuous phase is also in communication with the introduction port, and the continuous phase is introduced and fed along this introduction flow path. The shape of the introduction channel affects the shape and particle size of the fine particles, but the width is about 300 μm or less, and it may be a shape that joins at an arbitrary angle including the discharge channel.

排出流路は上記の2つの導入流路及び排出口と連通しており、分散相と連続相が合流後、この排出流路に沿って送液され、排出口より排出される。排出流路の形状は特に制限されないが、その幅は約300μm以下で、導入流路も含め任意の角度で合流する形状となっておればよい。また、排出流路は任意の角度で合流部から別れた2以上の排出流路であっても良い。排出口は、生成された微小粒子を排出させるための開口部を意味し、さらに、この排出口に適当なアタッチメントを備えて生成された微小粒子を含む相を連続的に排出する機構としてもよい。尚、これら流路は本明細書においては微小流路ということがある。   The discharge channel communicates with the above two introduction channels and the discharge port, and after the dispersed phase and the continuous phase merge, the liquid is fed along the discharge channel and discharged from the discharge port. The shape of the discharge channel is not particularly limited, but the width is about 300 μm or less, and it may be a shape that joins at an arbitrary angle including the introduction channel. Moreover, the discharge flow path may be two or more discharge flow paths separated from the merging portion at an arbitrary angle. The discharge port means an opening for discharging the generated microparticles, and may be a mechanism for continuously discharging the phase including the generated microparticles by providing an appropriate attachment to the discharge port. . Note that these channels are sometimes referred to as minute channels in this specification.

さらに、本発明の微小流路構造体においては、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、これらの導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような2つの導入流路の交差する角度が任意の角度とすることで、合流部で生成する微小粒子を所望の粒径へと制御することが可能となる。交差角度の設定については、目的とする微小粒子の粒径に応じて適宜決めればよい。   Furthermore, in the microchannel structure of the present invention, the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase intersect at an arbitrary angle, and these introduction channels are optional. It is preferable that the structure is connected to the discharge channel at an angle of. By setting the angle at which the two introduction channels intersect to be an arbitrary angle, it is possible to control the microparticles generated at the merging portion to a desired particle size. What is necessary is just to determine suitably about the setting of a crossing angle according to the particle size of the target fine particle.

導入流路、排出流路の断面形状としては、流路断面のアスペクト比が0.30以上3.0未満であることがこのましい。アスペクト比がこの範囲にあれば、合流部において均一な微小粒子を生成させることができる。この範囲を逸脱して、アスペクト比が0.30未満または3.0以上となると均一な微小粒子を生成させることが困難となることがある。   As the cross-sectional shape of the introduction flow path and the discharge flow path, the aspect ratio of the flow path cross section is preferably 0.30 or more and less than 3.0. If the aspect ratio is within this range, uniform fine particles can be generated at the junction. If the aspect ratio deviates from this range and is less than 0.30 or 3.0 or more, it may be difficult to produce uniform fine particles.

さらに、分散相を導入するための導入流路と連続相を導入するための導入流路の幅及び深さが等しい場合には上記の効果に加え、微小流路構造体の設計が容易となり、また、送液時の制御もより容易となって、工業的量産に好適となる。   Further, when the width and depth of the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase are equal, in addition to the above effects, the design of the micro flow path structure is facilitated, Moreover, the control at the time of liquid feeding becomes easier, and it is suitable for industrial mass production.

また、導入流路の幅と排出流路の幅との関係において、導入流路の幅≧排出流路の幅であれば、導入流路の幅<排出流路の幅よりも、送液速度を増加しても合流部において均一な微小粒子の生成が可能となり、微小粒子の生成速度を増加させることができるという効果を奏することができ、好ましい態様となる。   Further, in the relationship between the width of the introduction flow path and the width of the discharge flow path, if the width of the introduction flow path ≧ the width of the discharge flow path, the liquid feed speed is larger than the width of the introduction flow path <the width of the discharge flow path. Even if it is increased, it is possible to produce uniform fine particles at the confluence, and it is possible to increase the production speed of the fine particles, which is a preferred embodiment.

排出流路の幅としては、分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっていることが好ましい。すなわち、微小粒子の排出口に至るまでの間の内、導入流路と排出流路の合流部において部分的に狭くする、あるいは分散相流路に沿った流路構成壁を凸状に形成する、あるいは図32(a)〜(e)に示すように流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成することで、送液速度を増加しても合流部において均一な微小粒子の生成が可能でありかつ、送液圧力の上昇を緩和することが可能とすることができ、好ましい態様となる。   As for the width of the discharge channel, it is preferable that the width of the discharge channel is narrow at a part of the discharge channel from the intersection where the dispersed phase and the continuous phase intersect to the discharge port. That is, a part of the flow path to the discharge port of the microparticles is narrowed at the junction of the introduction flow path and the discharge flow path, or the flow path configuration wall along the dispersed phase flow path is formed in a convex shape. Alternatively, as shown in FIGS. 32 (a) to 32 (e), by forming one or more protrusions from one or more of the bottom, top and side surfaces of the flow path, the liquid feeding speed can be increased. In addition, it is possible to generate uniform fine particles at the junction, and to reduce the increase in the liquid feeding pressure, which is a preferable mode.

さらに、この排出流路の幅が狭くなっている部位が、排出流路中の交差部又はその近傍にあることが好ましく、特に、排出流路の幅が狭くなっている部位が、排出流路の交差部の分散相の導入流路側にあることが好ましい。   Further, the portion where the width of the discharge channel is narrow is preferably at or near the intersection in the discharge channel. In particular, the portion where the width of the discharge channel is narrow is the discharge channel. It is preferable to be on the introduction flow path side of the dispersed phase at the crossing portion.

また、本発明の微小流路構造体は、微小流路構造体の中に複数の微小流路を平面的あるいは立体的に配置することで工業的に大量の微小粒子を生成することができる。しかしながら、平面的あるいは立体的に配置された複数の微小流路に均一に流体を分配する必要がある。このため、本発明の微小流路構造体は、流体を導入するための導入口及び流体を排出するための排出口を備えかつ、基板上に導入口及び排出口と連通する共通流路と、導入口及び排出口とは異なる位置で共通流路と連通する微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じであることが好ましい。   In addition, the microchannel structure of the present invention can industrially generate a large amount of microparticles by arranging a plurality of microchannels planarly or three-dimensionally in the microchannel structure. However, it is necessary to uniformly distribute the fluid to a plurality of microchannels arranged in a plane or three-dimensionally. For this reason, the microchannel structure according to the present invention includes an inlet for introducing a fluid and an outlet for discharging the fluid, and a common channel communicating with the inlet and the outlet on the substrate; A microchannel structure having a microchannel that communicates with a common channel at a position different from the introduction port and the discharge port, wherein the cross-sectional area of the common channel is greater than the communication port with the discharge port. It is preferable that the size gradually increases or becomes the same toward the communication position.

上記微小流路構造体の最も基本的な概念図を図10に示す。共通流路(29)の両端に流体を導入するための共通流路導入口(32)と流体を排出するための共通流路排出口(31)を設け、共通流路導入口と共通流路排出口の間に、共通流路よりも内径(流路幅)が小さい微小流路(16)を基板上に配置した。一般的に、微小流路の内径は、数十〜300μm程度である。これに対し、共通流路の内径は、500μm〜数mm程度であることが望ましい。共通流路導入口と共通流路をつなぐ流路の内径に特に制限はないが、共通流路と同様に500μm〜数mm程度であることが望ましい。共通流路排出口と共通流路をつなぐ流路の内径も特に制限はないが、微小流路と同様に数十〜300μm程度が望ましい。   The most basic conceptual diagram of the microchannel structure is shown in FIG. A common channel introduction port (32) for introducing fluid to both ends of the common channel (29) and a common channel discharge port (31) for discharging fluid are provided, and the common channel introduction port and the common channel are provided. A minute channel (16) having a smaller inner diameter (channel width) than the common channel was disposed on the substrate between the discharge ports. Generally, the inner diameter of the microchannel is about several tens to 300 μm. On the other hand, it is desirable that the common channel has an inner diameter of about 500 μm to several mm. The inner diameter of the flow path connecting the common flow path inlet and the common flow path is not particularly limited, but is preferably about 500 μm to several mm as with the common flow path. The inner diameter of the flow path connecting the common flow path outlet and the common flow path is not particularly limited, but is preferably about several tens to 300 μm as in the case of the micro flow path.

また、微小流路の配置については、共通流路導入口及び共通流路排出口とは異なる位置で共通流路と連通しておれば特に制限はない。この点をさらに具体的に示せば、図10に示すように、共通流路導入口に最も近い微小流路Yから共通流路排出口に最も近い微小流路Yまでn本の微小流路が共通流路と連通した微小流路構造体の共通流路において、共通流路導入口との連通位置をX、共通流路導入口に最も近い微小流路Yの連通位置をX、連通位置Xと連通位置Xとの間の共通流路に沿った長さをa、共通流路排出口との連通位置をXn+1、共通流路排出口に最も近い微小流路Yの連通位置をX、連通位置Xと連通位置Xn+1との間の共通流路に沿った長さをan+1としたとき、YからYまでの微小流路に均一に流体を分配でき、さらに微小液滴の生成を効率的に行なうことができるために、aからaがすべて等しくなる配置とすることが好ましい。さらに、a〜an+1をすべて等しくすることでこの効果をさらに向上させることができる。 The arrangement of the micro channels is not particularly limited as long as the micro channels are communicated with the common channel at a position different from the common channel introduction port and the common channel discharge port. If we can show point More specifically, FIG. As shown in 10, common channel common channel n the microchannel to the nearest fine channel Y n at the outlet from the fine channel Y 1 is closest to the inlet In the common channel of the microchannel structure in which the channel communicates with the common channel, the communication position with the common channel introduction port is X 0 , and the communication position of the minute channel Y 1 closest to the common channel introduction port is X 1 , the length along the common flow path between the communication position X 0 and the communication position X 1 is a 1 , the communication position with the common flow path discharge port is X n + 1 , and the minute flow closest to the common flow path discharge port when road Y n a communicating position X n, and the length along the common flow path between the communicating position X n and the communication position X n + 1 was a n + 1, uniform fine channel from Y 1 to Y n the fluid can be a distribution, in order to be able to further perform the generation of fine droplets efficient, equal a n all from a 2 It is preferred to become disposed. Furthermore, this effect can be further improved by making all of a 1 to a n + 1 equal.

また、このような微小流路構造体において、基板上に複数の共通流路を有し、各々の共通流路が微小流路と連通させた構造としてもよい。   In addition, such a microchannel structure may have a structure in which a plurality of common channels are provided on the substrate and each common channel communicates with the microchannels.

図11〜図14には、本発明のいくつかの形態の概念図を示す。なお本発明は、これらの形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。   FIGS. 11-14 show conceptual diagrams of several forms of the present invention. Needless to say, the present invention is not limited to these forms and can be arbitrarily changed without departing from the gist of the invention.

図11は、共通流路(19)の内径が共通流路導入口(32)から共通流路排出口(31)に向かって次第に大きくなる例である。この場合、共通流路導入口付近の共通流路の内径(bで示される)は500μm〜1mm程度であり、共通流路排出口付近の共通流路の内径(cで示される)は数mm程度である。   FIG. 11 shows an example in which the inner diameter of the common channel (19) gradually increases from the common channel introduction port (32) toward the common channel discharge port (31). In this case, the inner diameter (indicated by b) of the common channel near the common channel inlet is about 500 μm to 1 mm, and the inner diameter (indicated by c) of the common channel near the common channel outlet is several mm. Degree.

図12は、2本の共通流路(29)からYからYと示される微小流路(16)を引き出してY字状に合流させた例である。図12に示される微小流路構造体を用いて、2本の共通流路に本発明の微小粒子製造方法に用いる連続相と分散相をそれぞれ導入することで、複数のY字状の微小流路に均等に連続相と分散相を分配することができ、すべての微小流路に同じ条件で、極めて粒子系が均一な微小液滴を生成することができる。この形態は、微小流路基板が角型の基板である場合、平面的に多数の微小流路を集積する際に効果的である。 Figure 12 is an example in which are merged in a Y-shape pull from the common flow channel two (29) minute channel represented by Y 1 and Y n (16). Using the microchannel structure shown in FIG. 12, a continuous phase and a dispersed phase used in the method for producing microparticles of the present invention are introduced into two common channels, respectively. The continuous phase and the dispersed phase can be evenly distributed in the channel, and microdroplets with an extremely uniform particle system can be generated under the same conditions in all the microchannels. This form is effective when a large number of microchannels are integrated in a plane when the microchannel substrate is a square substrate.

図13は、共通流路(29)を円弧状に配置した例である。この場合、微小流路(16)は円弧の中心から等角度dで放射状に配置した。この形態は、微小流路基板が円盤状の基板である場合、平面的に多数の微小流路を集積する際に効果的である。この場合、図10におけると同様に、共通流路導入口(32)との連通位置をX、共通流路導入口に最も近い微小流路Yの連通位置をX、連通位置Xと連通位置Xとの間の共通流路に沿った長さをaなどとしたとき、a〜an+1とは、円弧状の共通流路の中心に沿った長さを意味する。 FIG. 13 shows an example in which common channels (29) are arranged in an arc shape. In this case, the microchannels (16) were arranged radially at an equal angle d from the center of the arc. This form is effective when a large number of microchannels are integrated in a plane when the microchannel substrate is a disk-shaped substrate. In this case, as in FIG. 10, the communication position with the common flow path introduction port (32) is X 0 , the communication position of the minute flow path Y 1 closest to the common flow path introduction port is X 1 , and the communication position X 0. and when the common flow path lengths along between the communicating position X 1 and the like a 1, and a 1 ~a n + 1, it means a length along the center of the arc-shaped common channel.

図14は、微小流路(16)を有する微小流路基板(1)を重ねあわせ、共通流路(29)を前記微小流路基板を貫通させて構成した例である。この形態は、微小流路基板を積層し、立体的に多数の微小流路を集積する際に効果的である。この貫通孔の内径の大きさも、図11と同様に流体の共通流路導入口(32)から流体の共通流路排出口(31)に向かって次第に大きくなっても良い。   FIG. 14 shows an example in which the micro-channel substrate (1) having the micro-channel (16) is overlapped and the common channel (29) is configured to penetrate the micro-channel substrate. This form is effective when stacking microchannel substrates and stacking a large number of microchannels three-dimensionally. The size of the inner diameter of the through hole may gradually increase from the fluid common flow path introduction port (32) toward the fluid common flow path discharge port (31) as in FIG.

また、図10〜図14に示した本発明の様々な形態において、共通流路導入口(32)には一般にシリンジポンプなどの送液ポンプを用いて流体を導入するが、共通流路に配置された共通流路排出口(31)から排出された流体を回収し、再び送液ポンプに戻して再度送液できる、すなわち、複数の共通流路の各々が微小流路と連通させ、共通流路排出口から排出された流体を各々の共通流路導入口へ戻す構造としても良く、このようにすることで、導入する連続相及び/または分散相を無駄無く使用することができる。さらに、共通流路の少なくとも1つに分散相を、少なくとも1つに別の共通流路にに連続相を導入し排出することが好ましい。   In various forms of the present invention shown in FIGS. 10 to 14, the fluid is generally introduced into the common channel introduction port (32) using a liquid feed pump such as a syringe pump, but is arranged in the common channel. The fluid discharged from the common channel outlet (31) thus collected can be recovered and returned again to the liquid feed pump, that is, the liquid can be fed again. That is, each of the plurality of common channels communicates with the micro channel, A structure may be adopted in which the fluid discharged from the channel discharge port is returned to each common flow channel introduction port. By doing so, the continuous phase and / or the dispersed phase to be introduced can be used without waste. Further, it is preferable to introduce and discharge a dispersed phase in at least one common channel and a continuous phase in at least one other common channel.

本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、分散相と連続相を導入するための導入部及び導入流路と、導入流路が交わる合流部と、液体を排出させるための排出流路及び排出口を備えた微小流路構造体が、少なくとも一方の面に微小流路が形成された基板と、微小流路が形成された基板面を覆うように、微小流路の所定の位置に、微小流路と微小流路構造体外部とを連通するための***が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から微小流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して微小流路内を通過させることが可能となる。流体の送液は、マイクロポンプなどの機械的手段によって可能となる。   The microchannel structure of the present invention has the above-described structure and performance, but includes an introduction part and an introduction channel for introducing a dispersed phase and a continuous phase, and a junction part where the introduction channel intersects. And a micro-channel structure having a discharge channel and a discharge port for discharging a liquid so as to cover a substrate on which at least one surface is formed with a micro-channel and a substrate surface on which the micro-channel is formed In addition, a cover body in which a small channel for communicating the microchannel and the outside of the microchannel structure is disposed at a predetermined position of the microchannel may be laminated and integrated. As a result, the fluid can be introduced from the outside of the microchannel structure into the microchannel and discharged again to the outside of the microchannel structure. It is possible to pass through the minute flow path. Fluid feeding is possible by mechanical means such as a micropump.

微小流路が形成された基板及びカバー体の材質としては、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された***は、微小流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数mm以下であることが望ましい。カバー体の***の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。   As the material of the substrate and the cover body on which the microchannel is formed, it is desirable that the microchannel can be formed, has excellent chemical resistance, and has an appropriate rigidity. For example, glass, quartz, ceramic, silicon, or metal or resin may be used. The size and shape of the substrate and cover body are not particularly limited, but the thickness is preferably about several mm or less. The small holes arranged in the cover body communicate with the microchannel and the outside of the microchannel structure, and when used as a fluid inlet or outlet, the diameter is preferably, for example, several mm or less. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.

また本発明の微小流路構造体は、微小流路が形成された基板とカバー体は、熱処理接合あるいは光硬化樹脂や熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。
<微小流路構造体による溶媒抽出方法>
本発明の微小流路構造体を用いることで、微小流路内において抽出溶媒あるいは被抽出物質含有の流体を微小液滴化した後、微小液滴からなる分散相と微小液滴を囲む連続相との間で被抽出物質の相間移動により溶媒抽出を行なう溶媒抽出方法としての用途が挙げられる。
Further, in the microchannel structure of the present invention, the substrate on which the microchannel is formed and the cover body are laminated and integrated by means such as heat treatment bonding or adhesion using an adhesive such as photo-curing resin or thermosetting resin. be able to.
<Solvent extraction method using microchannel structure>
By using the microchannel structure according to the present invention, the fluid containing the extraction solvent or the substance to be extracted is converted into microdroplets in the microchannel, and then the dispersed phase composed of microdroplets and the continuous phase surrounding the microdroplets Use as a solvent extraction method in which solvent extraction is performed by phase transfer of a substance to be extracted between the two.

なお、本発明の溶媒抽出法においては、抽出溶媒あるいは被抽出物質含有の流体のどちらか一方を分散相とし、別の一方を連続相として、任意に選択することができる。ここで、被抽出物質とは抽出対象となる物質を示し、被抽出物質含有の流体とは被抽出物質を溶解している液体を意味する。抽出溶媒とは被抽出物質含有の流体から被抽出物質を抽出する液体を意味し、被抽出物質を溶解でき、被抽出物質含有の流体よりも被抽出物質に対する溶解度が高いことが望まれる。また溶媒抽出とは、被抽出物質が被抽出物質含有の流体から抽出溶媒に相間移動により移動することを意味し、相間移動とは被抽出物質含有の流体の相から抽出溶媒の相への移動を意味する。   In the solvent extraction method of the present invention, either the extraction solvent or the fluid containing the substance to be extracted can be arbitrarily selected as a dispersed phase and the other as a continuous phase. Here, the substance to be extracted indicates a substance to be extracted, and the fluid containing the substance to be extracted means a liquid in which the substance to be extracted is dissolved. The extraction solvent means a liquid for extracting the substance to be extracted from the fluid containing the substance to be extracted. It is desired that the substance to be extracted can be dissolved and the solubility in the substance to be extracted is higher than that of the fluid containing the substance to be extracted. Solvent extraction means that the substance to be extracted moves from the fluid containing the substance to be extracted to the extraction solvent by phase transfer, and phase transfer means movement from the phase of the fluid containing the substance to be extracted to the phase of the extraction solvent. Means.

本発明では、抽出溶媒あるいは被抽出物質含有の流体のどちらか一方を分散相とし、別の一方を連続相として、任意に選択することができる。また、微小液滴のサイズは、一般的に直径が微小流路の幅あるいは深さよりも小さい。例えば、幅が100μm、深さが50μmの微小流路で生成される液滴の大きさは、液滴が完全球体であると仮定するとその直径は50μmより小さい。   In the present invention, either the extraction solvent or the fluid containing the substance to be extracted can be arbitrarily selected as a dispersed phase and the other as a continuous phase. The size of the microdroplet is generally smaller in diameter than the width or depth of the microchannel. For example, the size of a droplet generated in a microchannel having a width of 100 μm and a depth of 50 μm has a diameter smaller than 50 μm assuming that the droplet is a perfect sphere.

この溶媒抽出方法が、微小流路の幅で決定される以上の拡散時間の短縮と流体境界の比界面積の大きさを得ることで微小流路内における抽出効率を微小流路の幅で決定される効率以上に向上させることを図15により説明する。   This solvent extraction method determines the extraction efficiency in the microchannel by the width of the microchannel by shortening the diffusion time more than that determined by the width of the microchannel and the size of the specific interface area of the fluid boundary The improvement beyond the efficiency achieved will be described with reference to FIG.

図15に示すように球状の微小液滴の直径(33)をD[μm]とすると、微小液滴の総体積は(4π/3)×(D/2)[μm]となる。また、微小液滴の表面積は、4π×(D/2)[μm]となる。従って、微小液滴(34)とその周囲の媒体との比界面積は、{4π×(D/2)}/{(4π/3)×(D/2)}=6×10/D[cm−1]となる。一方、図1に示したように微小流路(16)に形成された流体境界(14)の比界面積は、2×10/W[cm−1]である。一般に、微小流路により形成される微小液滴の直径Dは、微小流路の幅(9)Wよりも小さいので、D<Wであることから、微小流路で微小液滴を生成すればその比界面積は、単に微小流路で形成される流体境界の比界面積よりも大きくなり、かつ微小液滴と周囲の溶媒との拡散時間も、微小流路で単に層流を形成させたときの拡散時間よりも短くなる。従って、微小流路で抽出溶媒あるいは被抽出物質含有の流体の微小液滴を形成すれば、微小流路の幅で決定される以上の拡散時間の短縮と流体境界の比界面積の大きさを得ることができ、微小流路における抽出効率を微小流路の幅で決定される効率以上に向上することができる。 As shown in FIG. 15, when the diameter (33) of the spherical microdroplet is D [μm], the total volume of the microdroplet is (4π / 3) × (D / 2) 3 [μm 3 ]. The surface area of the microdroplet is 4π × (D / 2) 2 [μm 2 ]. Therefore, the specific interface area between the microdroplet (34) and the surrounding medium is {4π × (D / 2) 2 } / {(4π / 3) × (D / 2) 3 } = 6 × 10 4. / D [cm −1 ]. On the other hand, as shown in FIG. 1, the specific interface area of the fluid boundary (14) formed in the microchannel (16) is 2 × 10 4 / W [cm −1 ]. In general, the diameter D of the microdroplet formed by the microchannel is smaller than the width (9) W of the microchannel, so that D <W. Therefore, if the microdroplet is generated in the microchannel, The specific interfacial area is simply larger than the specific interfacial area of the fluid boundary formed by the microchannel, and the diffusion time between the microdroplet and the surrounding solvent also simply forms a laminar flow in the microchannel. It becomes shorter than the diffusion time. Therefore, if microdroplets of fluid containing extraction solvent or substance to be extracted are formed in the microchannel, the diffusion time can be shortened and the specific interface area of the fluid boundary can be reduced more than determined by the width of the microchannel. Thus, the extraction efficiency in the microchannel can be improved more than the efficiency determined by the width of the microchannel.

また微小液滴化する対象は、抽出溶媒であっても被抽出物質含有の流体であってもよいが、選択的にどちらかを微小液滴化することで、抽出後に抽出相をより分離しやすい様態に合わせて微小液滴化する対象を選択することができる。本発明の微小粒子製造方法では、合一するそれぞれの流体の流速を適切に制御するか、微小流路内壁の親水性、疎水性をそれ自体は公知の方法により変えることで微小液滴化する対象を抽出溶媒にするか被抽出物質含有の流体にするか選択することができ、抽出後に抽出相をより分離しやすい様態に合わせて微小液滴化する対象を選択することができる。また微小液滴の直径は、流速や微小流路の合流部で合一する角度や、微小流路の幅と深さ、あるいはこれらを組合わせることで制御することができ、比界面積をより正確に制御できる。   The target to be microdroplet may be an extraction solvent or a fluid containing the substance to be extracted, but by selectively making either one into microdroplets, the extraction phase can be further separated after extraction. An object to be formed into microdroplets can be selected in accordance with an easy mode. In the method for producing microparticles of the present invention, microfluidization is achieved by appropriately controlling the flow rates of the respective fluids to be combined, or by changing the hydrophilicity and hydrophobicity of the inner wall of the microchannel by a method known per se. The target can be selected as the extraction solvent or the fluid containing the substance to be extracted, and the target to be microdroplet can be selected in accordance with the state in which the extraction phase is more easily separated after extraction. The diameter of the microdroplet can be controlled by adjusting the flow velocity, the angle at which the microchannel meets, the width and depth of the microchannel, or a combination of these. It can be controlled accurately.

また本発明の溶媒抽出方法は、被抽出物質が2種以上の流体を化学反応させて得られる生成物であり、被抽出物質含有の流体が原材料を含有する2種以上の流体を別々に微小流路に導入し接触させて得られた流体であっても良い。このようにすることで、微小流路内で反応させて得られた生成物を生成直後から速やかに溶媒抽出することができ、副反応の抑制や、平衡反応の制御を行なうことが可能となる。   In the solvent extraction method of the present invention, the substance to be extracted is a product obtained by chemically reacting two or more fluids, and the fluid containing the substance to be extracted contains two or more fluids containing raw materials separately. It may be a fluid obtained by being introduced into and brought into contact with the flow path. By doing in this way, the product obtained by reacting in the microchannel can be quickly solvent-extracted immediately after production, and side reactions can be suppressed and equilibrium reactions can be controlled. .

図16は、被抽出物質含有の流体が、原材料を有する流体A(35)と流体B(36)を別々に微小流路(16)に導入し微小流路内の反応相(37)で混合し反応させた流体である場合の概念を示した図である。図16の例では、被抽出物質含有の流体を連続相(10)とし、抽出溶媒(38)を分散相(15)とした。   In FIG. 16, the fluid containing the substance to be extracted introduces the fluid A (35) and the fluid B (36) having raw materials separately into the microchannel (16) and mixes them in the reaction phase (37) in the microchannel. It is the figure which showed the concept in case it is the fluid made to react. In the example of FIG. 16, the fluid containing the substance to be extracted was the continuous phase (10), and the extraction solvent (38) was the dispersed phase (15).

また本発明の溶媒抽出方法は、原材料を含有する2種以上の流体と抽出溶媒を別々に微小流路に導入し、原材料を含有する2種以上の流体を接触させて得られる被抽出物質を抽出溶媒相へと抽出させる方法において、原材料を含有する2種以上の流体は層流を形成しその流体境界で被抽出物質が生成され、抽出溶媒はこの原材料を含有する2種以上の流体で合流部においてせん断されて流体境界上で液滴が形成され、生成された被抽出物質は抽出溶媒の液滴へと抽出という態様をとっても良い。このようにすることで、反応系に用いられている溶媒以外の溶媒を抽出溶媒として導入することができ、例えば生成物の抽出効率がより高い溶媒を抽出溶媒として用いることができる。また、流体境界で生じる反応により生成した生成物を生成直後から速やかに溶媒抽出することができるので、副反応の抑制や平衡反応の制御を行なうことが可能となる。   In addition, the solvent extraction method of the present invention introduces a substance to be extracted obtained by bringing two or more fluids containing raw materials and an extraction solvent separately into a microchannel and bringing two or more fluids containing raw materials into contact with each other. In the method of extracting into the extraction solvent phase, two or more fluids containing the raw material form a laminar flow, and a substance to be extracted is generated at the fluid boundary, and the extraction solvent is two or more fluids containing the raw material. A droplet may be formed on the fluid boundary by being sheared at the junction, and the generated substance to be extracted may be extracted into droplets of the extraction solvent. By doing in this way, solvents other than the solvent currently used for the reaction system can be introduced as an extraction solvent, for example, a solvent with higher product extraction efficiency can be used as an extraction solvent. In addition, since the product produced by the reaction that occurs at the fluid boundary can be quickly extracted from the solvent immediately after the production, side reactions can be suppressed and the equilibrium reaction can be controlled.

図17は、流体境界(14)で生じる反応により生成物を得るための微小流路(16)において、原材料を有する流体A(35)と流体B(36)を連続相(10)とし、この連続相により、流体境界で抽出溶媒(38)をせん断することにより流体境界に微小液滴(34)を形成することで、流体境界に生成した生成物を抽出する概念を示した図である。   FIG. 17 shows that in a microchannel (16) for obtaining a product by a reaction occurring at a fluid boundary (14), fluid A (35) and fluid B (36) having raw materials are continuous phases (10). It is the figure which showed the concept which extracts the product produced | generated in the fluid boundary by forming the micro droplet (34) in a fluid boundary by shearing the extraction solvent (38) in a fluid boundary by a continuous phase.

また本発明の微小粒子の用途としての溶媒抽出方法は、微小流路内で溶媒抽出を行なったあと、前記微小液滴の少なくとも表面を硬化することにより、連続相と分散相を分離しても良い。このようにすることで、微小液滴の分散相と微小液滴を取り囲む連続相をより容易に分離することができ、抽出溶媒と被抽出物質が含まれていた流体とを容易に分離することができる。   In addition, the solvent extraction method as a use of the microparticles of the present invention is such that, after performing solvent extraction in the microchannel, the continuous phase and the dispersed phase can be separated by curing at least the surface of the microdroplet. good. In this way, the dispersed phase of the microdroplet and the continuous phase surrounding the microdroplet can be more easily separated, and the extraction solvent and the fluid containing the substance to be extracted can be easily separated. Can do.

例えば、図18に示すように被抽出物質含有の流体を微小液滴化して分散相(15)とし、連続相(10)である抽出溶媒(38)に被抽出物質を相間移動により溶媒抽出(39)を行なったあと、紫外線による光照射(21)により微小液滴(34)の少なくとも表面を硬化することで微小粒子(17)を形成すれば、連続相の液相と微小粒子の固相をろ過等の手法を用いて容易に分離することができ、被抽出物質を容易に回収できる。なお図18の例では、分散相としての被抽出物質含有の流体は、紫外線照射により硬化する液体を選択している。   For example, as shown in FIG. 18, the fluid containing the substance to be extracted is made into fine droplets to form a dispersed phase (15), and the substance to be extracted is extracted into the extraction solvent (38) which is the continuous phase (10) by phase transfer ( 39), if the microparticles (17) are formed by curing at least the surface of the microdroplets (34) by light irradiation (21) with ultraviolet rays, the liquid phase of the continuous phase and the solid phase of the microparticles are formed. Can be easily separated using a technique such as filtration, and the substance to be extracted can be easily recovered. In the example of FIG. 18, a liquid that is cured by ultraviolet irradiation is selected as the fluid containing the substance to be extracted as the dispersed phase.

また逆に、図19に示すように被抽出物質含有の流体を連続相(10)とし、微小液滴化して分散相(15)とした抽出溶媒(38)に被抽出物質を相間移動により溶媒抽出(39)を行なったあと、紫外線照射により微小液滴(34)の少なくとも表面を硬化することで微小粒子(17)を形成すれば、同様に連続相の液相と微小粒子の固相をろ過等の手法を用いて容易に分離することができる。この場合は、被抽出物質を内部に有する表面が硬化されて微小粒子の表面を、化学的あるいは機械的などの手法により引き割り、微小粒子内部に存在する被抽出物質を取出せば良い。なお図19の例では、分散相としての抽出溶媒は、紫外線照射により硬化する液体を選択できる。   Conversely, as shown in FIG. 19, the fluid containing the substance to be extracted is made into a continuous phase (10), and the substance to be extracted is transferred to the extraction solvent (38) made into fine droplets into a dispersed phase (15) by phase transfer. After the extraction (39), if the microparticles (17) are formed by curing at least the surface of the microdroplets (34) by ultraviolet irradiation, the liquid phase of the continuous phase and the solid phase of the microparticles are similarly formed. It can be easily separated using a technique such as filtration. In this case, the surface having the substance to be extracted is hardened, and the surface of the microparticles is divided by any method such as chemical or mechanical to extract the substance to be extracted existing inside the microparticles. In the example of FIG. 19, the extraction solvent as the dispersed phase can be selected from a liquid that is cured by ultraviolet irradiation.

以上の図18、図19の例では、微小液滴の表面を硬化する手段を紫外線照射とした例であるが、紫外線照射の他にも図9に示すような加熱や化学反応により架橋や重合など、硬化させる分散相の材質にあわせて選択すれば良い。   In the examples of FIGS. 18 and 19, the means for curing the surface of the microdroplet is an ultraviolet irradiation, but in addition to the ultraviolet irradiation, crosslinking or polymerization may be performed by heating or chemical reaction as shown in FIG. The selection may be made according to the material of the dispersed phase to be cured.

本発明の微小粒子製造方法は、分散相と連続相を微小流路を有する微小流路構造体へその導入流路より導入し、両者が合流する合流部で分散相を連続相でせん断し微小粒子を生成させるものであり、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることで、生成する微小粒子の粒径を制御することが可能である。これは、従来の微小流路構造体を使った微小粒子の生成においては、分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適しており、特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、導入装置を1個用意することで足りるなどコスト面においても優れている。従って、本発明の微小粒子製造方法により、安定した粒径の微小粒子を生成することが、連続相を過剰に供給する必要がなくなり、例えばゲル製造における連続相の低コスト化、工業的な量産が可能となる。   The method for producing microparticles of the present invention introduces a dispersed phase and a continuous phase into a microchannel structure having a microchannel from the introduction channel, and shears the dispersed phase with the continuous phase at the junction where the two merge to form a microparticle. Controls the particle size of the fine particles to be generated by changing the angle at which the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase intersect. Is possible. This is easier to control in the production of microparticles using conventional microchannel structures than in the case of changing the introduction speed of the dispersed phase and continuous phase, and is suitable for industrial mass production. In particular, if the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, it is excellent in terms of cost, for example, it is sufficient to prepare one introduction device. Accordingly, the production of fine particles having a stable particle size by the method for producing fine particles of the present invention eliminates the need to supply an excessive continuous phase, for example, lowering the cost of the continuous phase in gel production, and industrial mass production. Is possible.

また複数の分散相及び/または連続相を導入する導入流路を設けることで、分散相及び/または連続相を複数の流体の層流、または混合液または懸濁液(エマルション)とすることができ、このようにすることで、多層構造の微小粒子や、異なった多種の微小粒子を含有した微小粒子を形成することができ、複合マイクロカプセルや多重マイクロカプセルを生成することができる。   Further, by providing an introduction flow path for introducing a plurality of dispersed phases and / or continuous phases, the dispersed phases and / or continuous phases may be made into a laminar flow of a plurality of fluids, or a mixed solution or suspension (emulsion). In this way, microparticles having a multilayer structure or microparticles containing various kinds of microparticles can be formed, and composite microcapsules and multiple microcapsules can be generated.

また微小流路の合流部分で生成した微小粒子が微小液滴であって微小液滴を硬化させる場合、硬化した微小粒子の粒径を均一にするために、微小液滴が排出流路を通過して排出部から出た後、微小流路構造体の排出部から微小流路構造体の外部に設けられた微小流路で連続的に逐次硬化しても良く、さらに硬化した微小粒子の粒径をより均一にするためには、微小流路の合流部分で微小液滴が生成した直後に、微小流路構造体中の微小流路すなわち排出流路で硬化してもよくこのようにすることで微小流路の合流部で生成した微小粒子が微小液滴の場合、微小流路の外部でビーカーなどに収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうことが無くなり、粒径が均一な微小粒子を得ることができる。また、微小液滴を硬化することにより媒体から分離することが容易になる。
また、多数の前記微小流路を並列化及び/または積層化して微小粒子を大量に生産するための形態としては、流体を導入するための導入口及び流体を排出するための排出口を備え、基板上に前記導入口及び排出口と連通する共通流路と、前記導入口及び排出口とは異なる位置で前記共通流路と連通する1以上の微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じである微小流路構造体とすることで微小流路構造体に平面的あるいは立体的に配置された複数の微小流路へ均一に流体を分配することが可能となる。
In addition, when the microparticles generated at the merging part of the microchannel are microdroplets that harden the microdroplets, the microdroplets pass through the discharge channel to make the cured microparticles uniform in particle size. Then, after exiting the discharge section, the microchannel structure may be continuously and sequentially cured from the discharge section of the microchannel structure to the microchannel provided outside the microchannel structure, and the particles of hardened microparticles may be further cured. In order to make the diameter more uniform, the microchannels in the microchannel structure, that is, the discharge channel may be cured immediately after the microdroplets are generated at the confluence portion of the microchannels. Therefore, if the microparticles generated at the junction of the microchannel are microdroplets, they are collected in a beaker etc. outside the microchannel, and when the microdroplets are cured by cross-linking polymerization, the microdroplets are collected. From the time it is cured to the shape of the microparticles or the coalescence of the microparticles Because, there is no the variation of the particle diameter of the cured microparticles is large, it is possible particle size to obtain a uniform fine particles. Moreover, it becomes easy to separate from the medium by curing the fine droplets.
Further, as a mode for producing a large number of microparticles by parallelizing and / or laminating a large number of the microchannels, the system includes an inlet for introducing a fluid and an outlet for discharging the fluid, A microchannel structure having a common channel communicating with the introduction port and the discharge port on the substrate, and one or more microchannels communicating with the common channel at positions different from the introduction port and the discharge port The cross-sectional area of the common flow path is gradually increased from the communication position with the introduction port toward the communication position with the discharge port, or a micro flow channel structure having the same flow path structure. It is possible to uniformly distribute the fluid to a plurality of microchannels arranged in a plane or three-dimensionally.

また、本発明の微小粒子製造方法により生成される微小粒子の用途の例として、高速液体クロマトグラフィー用カラムの充填剤、シールロック剤などの接着剤、金属粒子の絶縁粒子、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などのマイクロカプセルやゲルが挙げられる。   Examples of the use of the fine particles produced by the method for producing fine particles of the present invention include adhesives such as a column for high performance liquid chromatography, seal lock agent, insulating particles of metal particles, pressure measurement film, Carbon (pressure sensitive copying) paper, toner, thermal expansion agent, heat medium, light control glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoresis capsule, pesticide, artificial feed, artificial seed , Aromatic capsules, massage creams, lipsticks, vitamin capsules, activated carbon, enzyme-containing capsules, DDS (drug delivery system) and other microcapsules and gels.

また、本発明の微小流路構造体を用いた溶媒抽出方法は、微小粒子を微小流路内での溶媒抽出に用いることにより、反応や抽出の効率を微小流路の幅で決定される効率以上に向上させることができる。   In addition, the solvent extraction method using the microchannel structure of the present invention uses the microparticles for solvent extraction in the microchannel, whereby the efficiency of the reaction and extraction is determined by the width of the microchannel. This can be improved.

以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.

(実施例1)
本発明の第1の実施例における微小流路を図20に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(2)、分散相導入流路(4)及び排出流路(7)の幅がいずれも220μm、深さ80μm、微小流路のアスペクト比=0.36、排出流路の長さが30mmで、連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる合流部を持ったY字形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。
この微小流路を有する微小流路構造体は、図21に示すように、厚さ1mmで70mm×20mmのガラス基板の一方の面に、微小流路を一般的なフォトリソグラフィーとウェットエッチングにより形成し、この微小流路が形成されたガラス基板の微小流路を有する面に、微小流路の導入口(11)と排出口(8)にあたる位置に予め直径0.6mmの***を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体(30)を熱接合し製作した。なお、製作方法および基板材料はこれに限定するものではない。
Example 1
FIG. 20 shows a microchannel according to the first embodiment of the present invention. The microchannel is a Pyrex (registered trademark) glass having a size of 70 mm × 20 mm × 1 t (thickness), a continuous phase introduction channel (2) corresponding to the microchannel, a dispersed phase introduction channel (4), and a discharge channel. The widths of (7) are 220 μm, the depth is 80 μm, the aspect ratio of the microchannel is 0.36, the length of the discharge channel is 30 mm, the continuous phase introduction channel (3) and the dispersed phase introduction channel ( One Y-shaped flow path having a merging portion that intersects 5) with an angle of 44 ° was formed. Although the width and depth of the microchannel depend on the particle size of the microparticles to be generated, it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0.
As shown in FIG. 21, in the microchannel structure having the microchannel, the microchannel is formed on one surface of a glass substrate having a thickness of 1 mm and 70 mm × 20 mm by general photolithography and wet etching. Then, a small hole having a diameter of 0.6 mm is mechanically provided in a position corresponding to the inlet (11) and the outlet (8) of the microchannel on the surface of the glass substrate on which the microchannel is formed. A glass cover body (30) having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided using the processing means was manufactured by thermal bonding. The manufacturing method and the substrate material are not limited to this.

次に本発明の微小粒子製造方法について説明する。図22に示すように微小流路構造体(19)に液体が送液可能なようにホルダー(23)などで保持すると共に、テフロン(登録商標)チューブ(27)及びフィレットジョイント(40)をホルダーに固定する。テフロン(登録商標)チューブのもう一方はマイクロシリンジ(42)に接続する。これで微小流路構造体に液体の送液が可能となる。次に微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をそれぞれのマイクロシリンジに注入し、マイクロシリンジポンプ(41)で送液を行った。送液速度は分散相及び連続相は共に20μl/minである。送液速度が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部にて、図23に示すような微小粒子の生成が観察された。生成された微小粒子を観察すると図24に示すように平均粒径200μm、粒径の分散度を示すCV値(%)は9.8%となり、極めて均一な微小粒子(17)であった。また、送液速度を分散相及び連続相を共に1μl/minで行った場合、生成した微小粒子の平均粒径は230μm、粒径の分散度を示すCV値(%)は9.5%となり、極めて均一な微小粒子であった。これにより分散相と連続相を同一の送液速度にて行っているので、連続相を過剰に送液することなく、均一な微小粒子を生成することが可能となる。   Next, the method for producing fine particles of the present invention will be described. As shown in FIG. 22, a holder (23) or the like is used so that liquid can be fed to the microchannel structure (19), and the Teflon (registered trademark) tube (27) and fillet joint (40) are held in the holder. Secure to. The other end of the Teflon tube is connected to the microsyringe (42). Thus, liquid can be fed to the microchannel structure. Next, a mixed solution of divinylbenzene and butyl acetate is injected into the dispersed phase for generating fine particles, and a 3% aqueous solution of polyvinyl alcohol is injected into each microsyringe as the continuous phase, and the solution is fed by the microsyringe pump (41). It was. The liquid feeding speed is 20 μl / min for both the dispersed phase and the continuous phase. Formation of microparticles as shown in FIG. 23 was observed at the junction where the dispersed phase and the continuous phase of the microchannel structure intersect in a state where both the liquid feeding speeds were stable. When the generated fine particles were observed, as shown in FIG. 24, the average particle size was 200 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 9.8%, which was extremely uniform fine particles (17). When the liquid feeding speed is 1 μl / min for both the dispersed phase and the continuous phase, the average particle size of the generated fine particles is 230 μm, and the CV value (%) indicating the degree of dispersion of the particle size is 9.5%. It was very uniform fine particles. Thereby, since the disperse phase and the continuous phase are performed at the same liquid feeding speed, uniform fine particles can be generated without excessively feeding the continuous phase.

(実施例2)
本発明の第2の実施例における微小流路を図25に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも185m、深さ75μm、微小流路のアスペクト比=0.41、排出流路(7)の長さが30mmで、連続相導入流路と分散相導入流路とが22°及び44°の角度にて交わる合流部を持ったY字形状の流路を2本形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。この微小流路を有する微小流路構造体は、実施例1と同様な方法で作製した。
(Example 2)
FIG. 25 shows a microchannel according to the second embodiment of the present invention. The microchannel is a Pyrex (registered trademark) glass having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the microchannel, a dispersed phase introduction channel (5), and a discharge channel. The widths of (7) are all 185 m, the depth is 75 μm, the aspect ratio of the micro-channel is 0.41, the length of the discharge channel (7) is 30 mm, the continuous-phase introduction channel and the dispersed-phase introduction channel Two Y-shaped flow paths having merging portions that intersect at an angle of 22 ° and 44 ° were formed. Although the width and depth of the microchannel depend on the particle size of the microparticles to be generated, it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行い、連続相導入流路と分散相導入流路との交差部角度が44°及び22°における比較を行った。送液速度は分散相及び連続相は共に20μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部にて微小粒子の生成が観察された。生成された微小粒子を観察すると、合流部が22°の角度で交わる場合は平均粒径180μm、粒径の分散度を示すCV値(%)は8.7%となり、44°の場合は平均粒径160μm、粒径の分散度を示すCV値(%)は9.2%であった。また、送液速度は分散相及び連続相は共に5μl/minで行った場合の生成させた微小粒子を観察すると、合流部が22°で交わる場合は平均粒径250μm、粒径の分散度を示すCV値(%)は9.4%となり、44°の場合は平均粒径220μmであり、粒径の分散度を示すCV値(%)は8.5%となり、合流部の角度が22°の場合に対し、合流部の角度が44°の場合は0.89倍の粒径となる。これにより導入流路の幅及び深さが一定であると共に、導入する分散相及び連続相の送液速度の条件を変えることなく、導入流路の合流部の角度のみを変えることで粒径をコントロールが可能となる。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is added to the dispersed phase for producing microparticles in the same manner as in Example 1. Inject a 3% aqueous solution of polyvinyl alcohol into the microsyringe in the continuous phase, feed the solution with a microsyringe pump, and compare the crossing angle between the continuous phase introduction channel and the dispersed phase introduction channel at 44 ° and 22 °. went. The liquid feeding speed is 20 μl / min for both the dispersed phase and the continuous phase. Formation of microparticles was observed at the junction where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. When the generated fine particles are observed, the average particle diameter is 180 μm when the joining portion intersects at an angle of 22 °, and the CV value (%) indicating the degree of dispersion of the particle size is 8.7%. The particle size was 160 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 9.2%. In addition, when the liquid feeding speed is 5 μl / min for both the dispersed phase and the continuous phase, the generated fine particles are observed. When the joining portion intersects at 22 °, the average particle size is 250 μm, and the dispersion degree of the particle size is The CV value (%) shown is 9.4%, the average particle size is 220 μm at 44 °, the CV value (%) showing the degree of dispersion of the particle size is 8.5%, and the angle of the joining portion is 22 In contrast to the case of °, the particle size is 0.89 times when the angle of the confluence is 44 °. As a result, the width and depth of the introduction flow path are constant, and the particle size can be reduced by changing only the angle of the merging portion of the introduction flow path without changing the conditions of the liquid feeding speed of the dispersed phase and continuous phase to be introduced. Control becomes possible.

(比較例1)
比較例1における微小流路を図26に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも130μm、深さ35μm、微小流路のアスペクト比=0.27、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる合流部を持ったY字形状の流路を1本形成した。この微小流路構造体は実施例1と同様な方法で作製した。
(Comparative Example 1)
FIG. 26 shows a microchannel in Comparative Example 1. The micro-channel has a width of continuous phase introduction channel (3), dispersed phase introduction channel (5) and discharge channel (7) on Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness). All are 130 μm, depth 35 μm, microchannel aspect ratio = 0.27, discharge channel length is 30 mm, and continuous phase introduction channel and dispersed phase introduction channel meet at an angle of 44 °. One Y-shaped channel having a portion was formed. This microchannel structure was produced in the same manner as in Example 1.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液速度は分散相及び連続相は共に5μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部を観察すると、微小粒子生成が確認出来るが、排出流路内で分離・合一が発生し、生成された微小粒子を観察すると、粒径の分散度を示すCV値(%)は36.5%となり、分散性の悪い微小粒子であった。このアスペクト比の微小流路構造体で分散性の良好な微小粒子の生成を行う場合には、送液速度を連続相>分散相、具体的には5:1以上の流速比を与えて、連続相を過剰に送液する必要がある。   Next, the microchannel structure is held by a holder, and a mixed solution of divinylbenzene and butyl acetate is used as a dispersed phase for generating microparticles in the same manner as in Example 1, and a 3% aqueous solution of polyvinyl alcohol is used as a continuous phase. The solution was injected into a microsyringe and fed. The liquid feeding speed is 5 μl / min for both the dispersed phase and the continuous phase. While the flow velocity is stable, observing the junction where the dispersed phase and continuous phase of the microchannel structure intersect, the generation of microparticles can be confirmed, but separation and coalescence occur in the discharge channel and are generated. When the fine particles were observed, the CV value (%) indicating the degree of dispersion of the particle size was 36.5%, indicating that the fine particles had poor dispersibility. In the case of producing fine particles having good dispersibility with the microchannel structure having this aspect ratio, the liquid feeding speed is set to continuous phase> dispersed phase, specifically, a flow rate ratio of 5: 1 or more is given. The continuous phase needs to be sent in excess.

(実施例3)
本発明の第3の実施例における微小流路を図27(a)に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも146μm、深さ55μm、微小流路のアスペクト比=0.38、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる合流部を持ち、且つ、分散相導入流路と排出流路との合流部に図27(b)の拡大図に示すような排出流路幅の一部を突起状にしたY字形状の流路を形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。また、突起のサイズについては微小粒子の粒径及び導入流路内圧に対するポンプ能力により適宜調整すれば良いが、今回は図27(b)に示すK−K’幅として116μmとした。この微小流路を有する微小流路構造体は、実施例1と同じ方法で作製した。
(Example 3)
FIG. 27 (a) shows a microchannel according to the third embodiment of the present invention. The microchannel is a Pyrex (registered trademark) glass having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the microchannel, a dispersed phase introduction channel (5), and a discharge channel. The width of (7) is 146 μm, the depth is 55 μm, the aspect ratio of the microchannel is 0.38, the length of the discharge channel is 30 mm, and the continuous phase introduction channel and the dispersed phase introduction channel are 44 °. And a part of the discharge channel width as shown in the enlarged view of FIG. 27B is formed in a projection at the junction of the dispersed phase introduction channel and the discharge channel. A Y-shaped channel was formed. Although the width and depth of the microchannel depend on the particle size of the microparticles to be generated, it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. In addition, the size of the protrusion may be adjusted as appropriate depending on the particle size of the microparticles and the pumping ability with respect to the introduction flow path internal pressure, but this time, the KK ′ width shown in FIG. The microchannel structure having this microchannel was produced by the same method as in Example 1.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行い、連続相導入流路と分散相導入流路及び排出流路との交差部位に図27(c)に示す突起の存在しない流路にて比較を行った。送液速度は分散相及び連続相は共に同じとし、微小粒子の生成が可能な流速を計測したところ、突起を有する微小流路構造体における微小粒子の生成可能な流速は10μl/min、図27(c)に示すような突起が無い微小流路構造体においては8μl/minであった。
突起を有する微小流路構造体にて生成された微小粒子を観察すると、平均粒径110μm、粒径の分散度を示すCV値(%)は6.3%となり、良好な粒径分散度が得られている。これにより排出流路内に突起を設けることにより良好な分散度を維持し、且つ生成微する微小粒子の量を増加させることが可能となる。
Next, the microchannel structure is held by a holder, and a mixed solution of divinylbenzene and butyl acetate is used as a dispersed phase for generating microparticles in the same manner as in Example 1, and a 3% aqueous solution of polyvinyl alcohol is used as a continuous phase. Injected into a microsyringe and fed with a microsyringe pump, in the crossing portion of the continuous phase introduction flow path, the dispersed phase introduction flow path, and the discharge flow path in the flow path having no protrusion shown in FIG. A comparison was made. The liquid feeding speed is the same for both the dispersed phase and the continuous phase, and the flow rate at which microparticles can be generated is measured. The flow rate at which microparticles can be generated in the microchannel structure having protrusions is 10 μl / min. In the microchannel structure having no projection as shown in (c), it was 8 μl / min.
When observing the microparticles generated by the microchannel structure having protrusions, the average particle diameter is 110 μm, and the CV value (%) indicating the dispersion degree of the particle diameter is 6.3%. Has been obtained. Accordingly, it is possible to maintain a good degree of dispersion and to increase the amount of fine particles generated by providing protrusions in the discharge channel.

(実施例4)
本発明の第4の実施例における微小流路を図28に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する2本の連続相導入流路(3)、1本の分散相導入流路(5)及び排出流路(7)の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが、2本の連続相導入流路で1本の分散相導入流路を挟む様に、各々22°の角度にて交わる合流部を持った形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。なお、この微小流路構造体は、実施例1と同様な方法で作製した。
Example 4
FIG. 28 shows a microchannel according to the fourth embodiment of the present invention. The microchannels are on Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness), two continuous phase introduction channels (3) corresponding to the microchannels, and one dispersed phase introduction channel ( 5) The width of the discharge channel (7) is 140 μm, the depth is 60 μm, the aspect ratio of the micro channel is 0.43, the length of the discharge channel is 30 mm, and the continuous phase introduction channel and the dispersed phase introduction One channel having a confluence portion that intersects with each other at an angle of 22 ° was formed so that the two channels were sandwiched by two continuous phase introduction channels. Although the width and depth of the microchannel depend on the particle size of the microparticles to be generated, it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. This microchannel structure was produced by the same method as in Example 1.

次に実施例1と同様に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行なった。分散相は、中央の分散相導入流路から、連続相は分散相導入流路の両側にある連続相導入流路から導入した。送液速度は分散相及び連続相は共に6μl/minである。送液速度が共に安定した状態で、微小粒子製造用微小流路構造体の分散相及び連続相が交わる合流部にて微小粒子の生成が観察された。生成された微小粒子を観察すると平均粒径77μm、粒径の分散度を示すCV値(%)は7.0%となり、極めて均一な微小粒子であった。   Next, the microchannel structure is held with a holder in the same manner as in Example 1, and a mixed solution of divinylbenzene and butyl acetate is added to the dispersed phase for generating microparticles in the same manner as in Example 1, and the continuous phase A 3% aqueous solution of polyvinyl alcohol was poured into a microsyringe and fed with a microsyringe pump. The dispersed phase was introduced from the central dispersed phase introduction channel, and the continuous phase was introduced from the continuous phase introduction channel on both sides of the dispersed phase introduction channel. The liquid feeding speed is 6 μl / min for both the dispersed phase and the continuous phase. Formation of microparticles was observed at the junction where the dispersed phase and continuous phase of the microchannel structure for manufacturing microparticles intersect, with both the liquid feeding speeds being stable. When the generated fine particles were observed, the average particle diameter was 77 μm, and the CV value (%) indicating the degree of dispersion of the particle diameter was 7.0%, which were extremely uniform fine particles.

(実施例5)
第5の実施例として、図29に示すような4本の流路を持つ微小流路構造体を製作した。形成した微小流路(16)の幅は100μm、深さは40μmであり、流体導入口A(43)、流体導入口B(44)、流体導入口C(45)、および流体導入口と繋がる層流流路(46)と、層流流路とつながる微小流路は、それぞれ44°の角度で合流させた。この微小流路を有する微小流路構造体を実施例1と同様な方法で製作した。この微小流路の流体導入口Aから分散相として、有機相のジビニルベンゼン、酢酸ブチルの混合溶液を送液し、流体導入口Bから水相のポリビニルアルコール3%水溶液を送液しさらに、流体導入口Cからから連続相として水相のポリビニルアルコール3%水溶液を送液した。送液は、実施例1と同様にマイクロシリンジに流体を注入し、マイクロシリンジポンプで行った。送液速度は流体導入口A及び流体導入口Bからは5μl/min、流体導入口Cからは10μl/minで送液した。送液速度が共に安定した状態で、流体導入口Aと流体導入口Bの層流合流部(47)から、合流部(6)まで層流が観察された。また連続相合流部で微小粒子の生成を確認した。生成された微小粒子を観察すると平均粒径110μm、粒径の分散度を示すCV値(%)は8.2%となり、均一な微小粒子であった。
(Example 5)
As a fifth example, a microchannel structure having four channels as shown in FIG. 29 was manufactured. The formed microchannel (16) has a width of 100 μm and a depth of 40 μm, and is connected to the fluid inlet A (43), the fluid inlet B (44), the fluid inlet C (45), and the fluid inlet. The laminar flow channel (46) and the microchannel connected to the laminar flow channel were joined at an angle of 44 °. A microchannel structure having this microchannel was manufactured in the same manner as in Example 1. A mixed solution of divinylbenzene and butyl acetate in the organic phase is fed as a dispersed phase from the fluid inlet A of this microchannel, and a 3% aqueous solution of polyvinyl alcohol in the aqueous phase is fed from the fluid inlet B. From the introduction port C, a 3% aqueous polyvinyl alcohol solution in an aqueous phase was fed as a continuous phase. In the same manner as in Example 1, liquid feeding was performed by injecting a fluid into the microsyringe and using a microsyringe pump. The liquid feeding speed was 5 μl / min from the fluid inlet A and fluid inlet B, and 10 μl / min from the fluid inlet C. A laminar flow was observed from the laminar flow joining portion (47) of the fluid introduction port A and the fluid introduction port B to the joining portion (6) in a state where both the liquid feeding speeds were stable. Moreover, the production | generation of the microparticle was confirmed in the continuous phase confluence | merging part. When the produced fine particles were observed, the average particle size was 110 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 8.2%, indicating uniform fine particles.

(実施例6)
本発明の第6の実施例における微小流路を図20に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも220μm、深さ80μm、微小流路のアスペクト比=0.36、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる合流部を持ったY字形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する液滴あるいは微小粒子の粒子径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。
送液は実施例1と同様な方法により、微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をそれぞれのマイクロシリンジに注入し、マイクロシリンジポンプで行った。送液速度は分散相及び連続相は共に2μl/minである。送液速度が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部にて微小粒子の生成が観察された。微小粒子生成後、図8(b)に示すように排出口(8)から10mm離れた排出流路(7)の位置を光照射スポット(20)の中心とし、紫外線による光照射(21)を行ない微小粒子を硬化した。光照射スポットのサイズは直径約10mmとした。光照射スポット以外は光照射されないようにマスク(22)を設置した。排出口からは、ポリビニルアルコールの水溶液を媒体とした微小粒子が排出された。生成された微小粒子を観察すると平均粒径200μm、粒径の分散度を示すCV値(%)は8.5%となり、極めて均一な微小粒子であった。また微小流離内で微小粒子を生成した後、光照射する代わりに、図9(a)に示す排出口(8)から微小流路構造体の外部のテフロン(登録商標)チューブ(27)の部分をヒーター(28)により65℃に加熱して微小粒子を硬化した。ビーカー(26)には、ポリビニルアルコールの水溶液を媒体とした微粒子が排出された。生成された微粒子を観察すると平均粒子径200μmの、粒径の分散度を示すCV値(%)は8.5%となり、極めて均一な粒子であった。
(Example 6)
FIG. 20 shows a microchannel according to the sixth embodiment of the present invention. The microchannel is a Pyrex (registered trademark) glass having a size of 70 mm × 20 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the microchannel, a dispersed phase introduction channel (5), and a discharge channel. The width of (7) is 220 μm, the depth is 80 μm, the aspect ratio of the microchannel is 0.36, the length of the discharge channel is 30 mm, and the continuous phase introduction channel and the dispersed phase introduction channel are 44 °. One Y-shaped flow path having a merging portion intersecting at an angle of was formed. The width and depth of this microchannel depend on the particle diameter of the generated droplets or microparticles, but it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. .
In the same manner as in Example 1, liquid feeding was performed by injecting a mixed solution of divinylbenzene and butyl acetate into a dispersed phase for producing fine particles, and injecting a 3% aqueous solution of polyvinyl alcohol into each microsyringe as a continuous phase. A syringe pump was used. The liquid feeding speed is 2 μl / min for both the dispersed phase and the continuous phase. Formation of microparticles was observed at the junction where the dispersed phase and continuous phase of the microchannel structure intersect, with both liquid feed rates stabilized. After the generation of the fine particles, as shown in FIG. 8 (b), the position of the discharge channel (7) 10 mm away from the discharge port (8) is the center of the light irradiation spot (20), and the light irradiation (21) with ultraviolet rays is performed. The fine particles were cured. The size of the light irradiation spot was about 10 mm in diameter. A mask (22) was installed so that light was not irradiated except for the light irradiation spot. From the outlet, fine particles using an aqueous solution of polyvinyl alcohol as a medium were discharged. When the generated fine particles were observed, the average particle size was 200 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 8.5%, which was very uniform fine particles. In addition, instead of irradiating light after generating microparticles within the microflow separation, a portion of the Teflon (registered trademark) tube (27) outside the microchannel structure from the discharge port (8) shown in FIG. 9A. Was heated to 65 ° C. with a heater (28) to cure the fine particles. Fine particles using a polyvinyl alcohol aqueous solution as a medium were discharged into the beaker (26). When the generated fine particles were observed, the CV value (%) indicating the dispersity of the particle diameter with an average particle diameter of 200 μm was 8.5%, and the particles were extremely uniform.

(実施例7)
第7の実施例として、図30に示すような微小流路(16)を有する微小流路構造体を製作した。流路深さが80μmで流路幅が共通流路導入口(32)の位置で0.5mm、共通流路排出口(31)の位置で2mmになるように、共通流路導入口の位置から共通流路排出口の位置にむけて徐々に流路幅を大きくした2本の共通流路(29)から幅220μm、深さ80μmの微小流路を引き出してY字状に合流させた微小流路4本を、6mmの等間隔(a〜aがすべて6mm)で配置した。このY字状の微小流路の形状は、実施例1と同じである。共通流路導入口は、幅0.5mm、深さ80μmとし、共通流路排出口は、幅200μm、深さ80μmとした。この微小流路を有する微小流路構造体は実施例1と同様な方法で製作した。
(Example 7)
As a seventh example, a microchannel structure having a microchannel (16) as shown in FIG. 30 was manufactured. Position of the common channel inlet so that the channel depth is 80 μm and the channel width is 0.5 mm at the common channel inlet (32) and 2 mm at the common channel outlet (31). From the two common channels (29) whose channel width is gradually increased toward the position of the common channel discharge port from which the minute channel having a width of 220 μm and a depth of 80 μm is drawn and merged in a Y shape Four channels were arranged at equal intervals of 6 mm (all of a 1 to a 5 were 6 mm). The shape of this Y-shaped microchannel is the same as that of the first embodiment. The common channel introduction port had a width of 0.5 mm and a depth of 80 μm, and the common channel discharge port had a width of 200 μm and a depth of 80 μm. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.

この微小流路構造体の2本の共通流路のそれぞれの流体導入口に、実施例1と同様な方法で、各共通流路に流速2.5ml/分で純水を5分間送液し、Y字状の微小流路を通過して微小流路の流体排出口から排出された液量を各流路で比較したところ、表1に示す結果が得られ、Y〜Yの各微小流路に均一に液体を送液することができた。 In the same manner as in Example 1, pure water was fed to each common channel at a flow rate of 2.5 ml / min for 5 minutes to the fluid inlets of the two common channels of this microchannel structure. the amount of liquid discharged from the fluid outlet of the fine channel through the Y-shaped minute flow passage was compared in each flow path, the results shown in Table 1 were obtained, each of Y 1 to Y 4 The liquid could be uniformly fed into the microchannel.

Figure 0004743165
また、一方の共通流路にポリビニルアルコールの3%水溶液を、もう一方の共通流路にジビニルベンゼン、酢酸ブチルの混合溶液を実施例1と同様な方法で100μl/minで送液し、各微小流路で生成した10個の微小粒子の粒径を顕微鏡により測定し平均した結果、表2に示す結果が得られ、各微小流路より排出された微小粒子の粒径の平均値が101.0μm、粒径の分散度を示すCV値(%)は8.7%となり、各微小流路で均一な微小粒子を生成することができた。
Figure 0004743165
In addition, a 3% aqueous solution of polyvinyl alcohol is fed to one common channel, and a mixed solution of divinylbenzene and butyl acetate is fed to the other common channel at a rate of 100 μl / min in the same manner as in Example 1. As a result of measuring and averaging the particle diameters of the 10 microparticles generated in the flow path with a microscope, the results shown in Table 2 were obtained. The average value of the particle diameters of the microparticles discharged from each microflow path was 101. The CV value (%) indicating the degree of dispersion of 0 μm and the particle diameter was 8.7%, and uniform microparticles could be generated in each microchannel.

Figure 0004743165
(比較例2)
第2の比較例として、図31に示すような微小流路(16)を有する微小流路構造体を製作した。流路深さが80μmで流路幅が共通流路導入口(32)の位置で2mm、共通流路排出口(31)の位置で0.5mmになるように、共通流路導入口の位置から共通流路排出口の位置にむけて徐々に流路幅を狭くしたの2本の共通流路(29)から幅220μm、深さ80μmの微小流路を引き出してY字状に合流させた微小流路4本を、6mmの等間隔(a〜aがすべて6mm)で配置した。この微小流路の形状は実施例1と同じである。共通流路導入口は、幅0.5mm、深さ80μmとし、共通流路排出口は、幅220μm、深さ80μmとした。この微小流路を有する微小流路構造体は実施例1と同様な方法で製作した。
Figure 0004743165
(Comparative Example 2)
As a second comparative example, a microchannel structure having a microchannel (16) as shown in FIG. 31 was manufactured. Position of the common channel inlet so that the channel depth is 80 μm and the channel width is 2 mm at the common channel inlet (32) and 0.5 mm at the common channel outlet (31). From the two common channels (29) whose channel width was gradually narrowed toward the position of the common channel outlet, a minute channel having a width of 220 μm and a depth of 80 μm was drawn and merged in a Y shape. Four microchannels were arranged at an equal interval of 6 mm (all of a 1 to a 5 were 6 mm). The shape of the microchannel is the same as that in the first embodiment. The common channel introduction port had a width of 0.5 mm and a depth of 80 μm, and the common channel discharge port had a width of 220 μm and a depth of 80 μm. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.

この微小流路構造体の2本の共通流路のそれぞれの流体導入口に、実施例1と同様に送液ポンプを使用して、各共通流路に流速2.5ml/分で純水を5分間送液し、Y字状の微小流路を通過して微小流路の流体排出口から排出された液量を各流路で比較したところ、表1に示す結果が得られ、Y〜Yの各微小流路に均一に液体を送液することができなかった。 Using a liquid feed pump at each fluid inlet of each of the two common channels of the microchannel structure, pure water is supplied to each common channel at a flow rate of 2.5 ml / min. When the amount of liquid delivered for 5 minutes and passing through the Y-shaped microchannel and discharged from the fluid outlet of the microchannel was compared between the channels, the results shown in Table 1 were obtained. Y 1 It could not be uniformly feeding the liquid to each of microchannels to Y 4.

また、一方の共通流路にポリビニルアルコールの3%水溶液を、もう一方の共通流路にジビニルベンゼン、酢酸ブチルの混合溶液をそれぞれ実施例1と同様に送液ポンプで100μl/minで送液し、各微小流路で生成した10個の微小粒子の粒径を顕微鏡により測定し平均した結果、表2に示す結果が得られ、各微小流路で均一な粒径をもつ微小粒子を生成することができなかった。   In addition, a 3% aqueous solution of polyvinyl alcohol was fed into one common channel, and a mixed solution of divinylbenzene and butyl acetate was fed into the other common channel at a rate of 100 μl / min with a liquid feed pump as in Example 1. As a result of measuring and averaging the particle diameters of 10 microparticles generated in each microchannel with a microscope, the results shown in Table 2 are obtained, and microparticles having a uniform particle diameter are generated in each microchannel I couldn't.

(実施例8)
第8の実施例として、図20に示すような微小流路を有する微小流路構造体を製作した。形成した微小流路の幅Wは220[μm]、微小流路の深さdは80[μm]、微小流路の長さは30[mm]であり、導入口(11)とつながる2本の導入流路(48)は、44°の角度で合流させた。この微小流路を有する微小流路構造体は、実施例1と同様な方法で製作した。
(Example 8)
As an eighth example, a microchannel structure having a microchannel as shown in FIG. 20 was manufactured. The width W of the formed microchannel is 220 [μm], the depth d of the microchannel is 80 [μm], and the length of the microchannel is 30 [mm], which is connected to the introduction port (11). The introduction channel (48) was joined at an angle of 44 °. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.

実施例1と同様な方法で、この微小流路の流体導入口の一方からフェノールを被抽出物質として含有した水相を送液し、もう一方の流体導入口からは、抽出溶媒として酢酸エチルの有機相を送液した。送液速度を調整することで、層流を形成して酢酸エチル側にフェノールを抽出した場合と、水相により酢酸エチルの有機相を微小粒子化して抽出した場合で実験を行なった。層流を形成したときの送液速度は、水相および有機相とも20μl/minであった。また水相によりジビニルベンゼンの有機相を微小粒子化した場合の送液速度は、水相および有機相とも2μl/minであった。   In the same manner as in Example 1, an aqueous phase containing phenol as a substance to be extracted is sent from one of the fluid inlets of this microchannel, and from the other fluid inlet, ethyl acetate is used as an extraction solvent. The organic phase was sent. Experiments were conducted when the laminar flow was formed by adjusting the liquid feeding speed to extract phenol on the ethyl acetate side, and when the organic phase of ethyl acetate was extracted into fine particles by the aqueous phase. The liquid feeding speed when the laminar flow was formed was 20 μl / min for both the aqueous phase and the organic phase. The liquid feeding speed when the organic phase of divinylbenzene was made into fine particles by the aqueous phase was 2 μl / min for both the aqueous phase and the organic phase.

この微小流路では、層流を形成した場合に得られる比界面積は、微小流路の幅Wが約220[μm]であることから、2×10/W[cm−1]=約2×10/220[cm−1]=約90[cm−1]となった。また、水相により酢酸エチルの有機相を微小粒子化した場合の微小粒子の平均粒径を高速カメラを用いて測定し、微小粒子の直径Dを求めたところ約200[μm]であった。この場合の比界面積は、6×10/D[cm−1]=約6×10/200[cm−1]=約300[cm−1]となった。このことから水相により酢酸エチルの有機相を微小粒子化した場合の方が、水相と有機相で層流を形成した場合よりも非界面積が大きくなり、抽出効率が上がるものと推定される。 In this microchannel, the specific interface area obtained when the laminar flow is formed is that the width W of the microchannel is about 220 [μm], so that 2 × 10 4 / W [cm −1 ] = about 2 × 10 4/220 [cm -1] = was about 90 [cm -1]. In addition, when the organic phase of ethyl acetate was microparticulated with the aqueous phase, the average particle diameter of the microparticles was measured using a high-speed camera, and the diameter D of the microparticles was determined to be about 200 [μm]. Specific interfacial area in this case, becomes 6 × 10 4 / D [cm -1] = about 6 × 10 4/200 [cm -1] = about 300 [cm -1]. From this, it is estimated that when the organic phase of ethyl acetate is microparticulated with the aqueous phase, the non-interfacial area is larger and the extraction efficiency is higher than when the laminar flow is formed between the aqueous phase and the organic phase. The

実際に、流体排出口から排出された流体を試験管で回収し、有機相のみを取出して高速液体クロマトグラフィーを用いてフェノールの濃度を測定した。有機相と水相が接している時間が長いほど、抽出される物質の量が多くなることから、測定結果を抽出溶媒である有機相の送液速度から計算される微小流路内滞在時間で割り算して補正した。その結果、酢酸エチルの有機相を微小粒子化して抽出した場合のほうがフェノールの濃度が高かった。以上のことから、抽出溶媒を微小粒子化することで、抽出効率が微小流路の幅で決まる効率以上に向上したことを確認した。   Actually, the fluid discharged from the fluid outlet was collected in a test tube, and only the organic phase was taken out and the concentration of phenol was measured using high performance liquid chromatography. The longer the time that the organic phase and the aqueous phase are in contact with each other, the larger the amount of the substance that is extracted, so the measurement result is the residence time in the microchannel calculated from the feeding speed of the organic phase that is the extraction solvent. Divided and corrected. As a result, the concentration of phenol was higher when the organic phase of ethyl acetate was extracted with fine particles. From the above, it was confirmed that the extraction efficiency was improved more than the efficiency determined by the width of the microchannel by making the extraction solvent into fine particles.

従来の微小粒子を生成する微小流路を示す概略図であり、図1右は、図1左のA−A’、B−B’のA−A’ 断面図、B−B’断面図である。It is the schematic which shows the micro flow path which produces | generates the conventional microparticle, The FIG. 1 right is AA 'sectional drawing of BB' at the left of FIG. 1, and BB 'sectional drawing. is there. 図2(a)はY字状微小流路内における層流を示す概念図であり、図2(b)は図2(a)の一部である円内を拡大した立体断面図である。FIG. 2A is a conceptual diagram showing a laminar flow in the Y-shaped microchannel, and FIG. 2B is a three-dimensional cross-sectional view enlarging a circle that is a part of FIG. 微小流路の合流部近傍において連続相が分散相をせん断して微小粒子を形成する方法を示す概念図である。It is a conceptual diagram which shows the method in which a continuous phase shears a dispersed phase in the vicinity of the confluence | merging part of a microchannel, and forms a microparticle. 微小流路の合流部近傍において両側の連続相が中央の分散相を挟み込むようにをせん断して微小粒子を形成する方法を示す概念図である。It is a conceptual diagram which shows the method of forming a microparticle by shearing so that the continuous phase of both sides may pinch | interpose a center dispersed phase in the confluence | merging part vicinity of a microchannel. 微小流路の合流部近傍において中央の連続相が両側の分散をせん断して微小粒子を形成する方法を示す概念図である。It is a conceptual diagram which shows the method of a center continuous phase shearing dispersion | distribution of both sides in the vicinity of the confluence | merging part of a microchannel, and forming a microparticle. 微小流路の合流部近傍において直線状に一方の側より分散相を、もう一方の側より連続相を導入し、分散相を連続相でせん断して微小粒子を生成し、任意の方向へ排出させる方法を示す概念図である。In the vicinity of the confluence of the microchannel, a dispersed phase is introduced linearly from one side and a continuous phase is introduced from the other side, and the dispersed phase is sheared by the continuous phase to generate microparticles, which are discharged in any direction. It is a conceptual diagram which shows the method to make it. 複数の分散相及び/または連続相を導入する分散相導入流路)及び/または連続相導入流路を設けて分散相及び/または連続相を複数の流体の層流、または混合液または懸濁液(エマルション)として、微小流路の合流部近傍において分散相を連続相でせん断して微小粒子を形成する方法を示すいくつかの概念図であり、図7(a)〜(g)はそれぞれの態様を示す。(Dispersed Phase Introducing Channel for Introducing Multiple Dispersed Phases and / or Continuous Phases) and / or Continuous Phase Introducing Channels are provided, and the Dispersed Phases and / or Continuous Phases are Laminar Flows or Mixed Liquids or Suspensions of Multiple Fluids FIG. 7A to FIG. 7G are several conceptual diagrams showing a method of forming a microparticle by shearing a dispersed phase in a continuous phase in the vicinity of a confluence portion of a microchannel as a liquid (emulsion). The aspect of is shown. 光照射により微小粒子を硬化させる方法を示した概略図であり、図8(a)は外部に光照射手段を設けた場合、図8(b)はマスクを使って光照射する場合の概略図である。FIGS. 8A and 8B are schematic views showing a method of curing fine particles by light irradiation, FIG. 8A is a schematic view when light irradiation means is provided outside, and FIG. 8B is a schematic view when light is irradiated using a mask. It is. 加熱により微小粒子を硬化させる方法を示した概略図であり、図9(a)は外部に加熱手段を設けた場合、図9(b)は微小流路構造体内に加熱手段を設けた場合の概略図である。FIGS. 9A and 9B are schematic views showing a method for curing microparticles by heating, in which FIG. 9A shows a case where a heating means is provided outside, and FIG. 9B shows a case where a heating means is provided inside the microchannel structure. FIG. 平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する最も基本的な微小流路形状を示した概念図である。It is the conceptual diagram which showed the most basic microchannel shape which sends a fluid uniformly to several microchannels arrange | positioned planarly or three-dimensionally. 平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、共通流路の断面積が共通流路導入口から共通流路排出口に向かって次第に大きくなる例を示した概念図である。Among the microchannel shapes that uniformly send fluid to a plurality of microchannels arranged in a plane or three-dimensionally, the cross-sectional area of the common channel is from the common channel inlet to the common channel outlet It is the conceptual diagram which showed the example which becomes large gradually. 平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、2本の共通流路からY字上の複数の微小流路に送液した例を示した概念図である。Example in which liquid is sent from two common channels to a plurality of micro channels on the Y-shape among micro channel shapes that uniformly send fluid to a plurality of micro channels arranged in a plane or three-dimensionally It is the conceptual diagram which showed. 平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、共通流路を円弧状に配置した例を示した概念図である。It is the conceptual diagram which showed the example which has arrange | positioned the common flow path in circular arc shape among the micro flow path shapes which send a fluid uniformly to the several micro flow path arrange | positioned planarly or three-dimensionally. 平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、微小流路を有する微小流路基板を重ねあわせ、共通流路を前記微小流路基板を貫通させて構成した例であり、図14上は積層一体化を示す態様、図14下はD−D’、E−E’の断面図である。Among the micro-channel shapes that uniformly send a fluid to a plurality of micro-channels arranged in a plane or three-dimensionally, a micro-channel substrate having a micro-channel is overlapped, and the common channel is defined as the micro-channel FIG. 14 shows an example in which the substrate is penetrated, and FIG. 14 is a cross-sectional view taken along lines DD ′ and EE ′. 微小流路内での微小粒子を示す概念図である。It is a conceptual diagram which shows the microparticle in a microchannel. 被抽出物質含有の流体が、原材料を有する2つの流体を別々に微小流路に導入し微小流路内の反応相で混合し反応させた流体である場合の本発明における微小粒子の用途としての溶媒抽出方法の概念図である。As the use of the microparticles in the present invention, the fluid containing the substance to be extracted is a fluid obtained by separately introducing two fluids having raw materials into the microchannel and mixing and reacting them in the reaction phase in the microchannel. It is a conceptual diagram of the solvent extraction method. 流体境界で生じる反応により生成物を生成する微小流路において、原材料を有する2つの流体を連続相とし、この連続相により流体境界で抽出溶媒をせん断することにより流体境界に微小液滴を形成し分散相とすることで、流体境界に生成した生成物を抽出する概念図である。In a microchannel that generates a product by a reaction that occurs at a fluid boundary, two fluids having raw materials are used as a continuous phase, and the extraction solvent is sheared at the fluid boundary by this continuous phase to form microdroplets at the fluid boundary. It is a conceptual diagram which extracts the product produced | generated in the fluid boundary by setting it as a dispersed phase. 被抽出物質含有の流体を微小液滴化して分散相とし、連続相である抽出溶媒に相間移動を行なって溶媒抽出を行なったあと、微小液滴の少なくとも表面を硬化することで被抽出物質を分離することを示す概念図である。The fluid containing the substance to be extracted is made into fine droplets to form a dispersed phase, phase transfer is performed to the extraction solvent that is a continuous phase, solvent extraction is performed, and then the substance to be extracted is cured by curing at least the surface of the microdroplets. It is a conceptual diagram which shows separating. 被抽出物質含有の流体を連続相とし、微小液滴化して分散相とした抽出溶媒に相間移動を行なって溶媒抽出を行なったあと、微小液滴の少なくとも表面を硬化することで被抽出物質を分離することを示す概念図である。The fluid containing the substance to be extracted is made into a continuous phase, phase-shifted to the extraction solvent made into microdroplets and dispersed, and after solvent extraction, the substance to be extracted is cured by curing at least the surface of the microdroplets. It is a conceptual diagram which shows separating. 実施例1、実施例6、実施例8における微小流路を示す概略図である。It is the schematic which shows the microchannel in Example 1, Example 6, and Example 8. FIG. 実施例1における微小流路構造体を示す概略図である。1 is a schematic diagram showing a microchannel structure in Example 1. FIG. 実施例1における微小粒子生成法を示す概略図である。1 is a schematic diagram showing a method for producing fine particles in Example 1. FIG. 実施例1における微小粒子生成状況を示す概略図である。FIG. 3 is a schematic diagram showing a state of microparticle generation in Example 1. 実施例1における生成した微小粒子を示す図である。FIG. 3 is a diagram showing generated fine particles in Example 1. 実施例2における微小流路を示す概略図であり、図25右は、図25左のG−G’のG−G’断面図である。It is the schematic which shows the micro channel in Example 2, The FIG. 25 right is G-G 'sectional drawing of G-G' of FIG. 25 left. 比較例1における微小流路を示す概略図であり、図26右は、図26左のH−H’のH−H’断面図である。It is the schematic which shows the microchannel in the comparative example 1, and the FIG. 26 right is H-H 'sectional drawing of H-H' of FIG. 26 left. 図27(a)は実施例3における微小流路を示す概略図であり、図27(b)および図27(c)は図27(a)の6の部分の拡大図である。FIG. 27A is a schematic view showing a micro flow channel in Example 3, and FIGS. 27B and 27C are enlarged views of a portion 6 in FIG. 27A. 実施例4における微小流路を示す概略図であり、図28右は、図28左のM−M’のM−M’断面図である。It is the schematic which shows the microchannel in Example 4, The FIG. 28 right is M-M 'sectional drawing of M-M' of the left side of FIG. 実施例5における微小流路を示す概略図であり、図29右は、図29左のN−N’のN−N’断面図である。It is the schematic which shows the microchannel in Example 5, and FIG. 29 right is N-N 'sectional drawing of N-N' of the left side of FIG. 実施例7に示した微小流路形状の概略図である。It is the schematic of the microchannel shape shown in Example 7. 比較例2に示した微小流路形状の概略図である。6 is a schematic diagram of a microchannel shape shown in Comparative Example 2. FIG. 図32(a)〜(e)は、流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成した場合の例を示すいくつかの概念図である。FIGS. 32A to 32E are some conceptual diagrams showing an example in which one or more protrusions are formed from any one or two or more of the bottom, top, and side surfaces of the flow path.

符号の説明Explanation of symbols

1:微小流路基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:合流部
7:排出流路
8:排出口
9:微小流路の幅
10:連続相
11:導入口
12:有機相
13:水相
14:流体境界
15:分散相
16:微小流路
17:微小粒子
18:微小粒子の直径
19:微小流路構造体
20:光照射スポット
21:光照射
22:マスク
23:ホルダー
24:微小流路の単位長さ
25:微小流路の深さ
26:ビーカー
27:テフロン(登録商標)チューブ
28:ヒーター
29:共通流路
30:カバー体
31:共通流路排出口
32:共通流路導入口
33:微小液滴の直径
34:微小液滴
35:流体A
36:流体b
37:反応相
38:抽出溶媒
39:溶媒抽出
40:フィレットジョイント
41:マイクロシリンジポンプ
42:マイクロシリンジ
43:流体導入口A
44:流体導入口B
45:流体導入口C
46:層流流路
47:層流合流部
48:導入流路
1: Microchannel substrate 2: Continuous phase inlet port 3: Continuous phase inlet channel 4: Dispersed phase inlet channel 5: Dispersed phase inlet channel 6: Merging section 7: Discharge channel 8: Discharge port 9: Microchannel 10: Continuous phase 11: Inlet 12: Organic phase 13: Aqueous phase 14: Fluid boundary 15: Dispersed phase 16: Microchannel 17: Microparticle 18: Diameter of microparticle 19: Microchannel structure 20: Light irradiation spot 21: Light irradiation 22: Mask 23: Holder 24: Unit length of micro flow channel 25: Depth of micro flow channel 26: Beaker 27: Teflon (registered trademark) tube 28: Heater 29: Common flow channel 30 : Cover body 31: Common channel outlet 32: Common channel inlet 33: Diameter of micro droplet 34: Micro droplet 35: Fluid A
36: Fluid b
37: Reaction phase 38: Extraction solvent 39: Solvent extraction 40: Fillet joint 41: Micro syringe pump 42: Micro syringe 43: Fluid inlet A
44: Fluid inlet B
45: Fluid inlet C
46: Laminar flow channel 47: Laminar flow confluence 48: Introduction channel

Claims (5)

流体を導入するための導入口及び流体を排出するための排出口を備え、基板上に前記導入口及び排出口を連通する共通流路と、前記導入口及び排出口とは異なる位置で前記共通流路と連通する、内径が共通流路よりも小さい2以上の微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなることを特徴とする微小流路構造体。 A common flow path having an introduction port for introducing a fluid and a discharge port for discharging the fluid, and communicating the introduction port and the discharge port on a substrate; and the common at a position different from the introduction port and the discharge port A microchannel structure having two or more microchannels having an inner diameter smaller than that of the common channel and communicating with the channel, wherein the cross-sectional area of the common channel is a discharge port from a communication position with the introduction port A microchannel structure characterized in that it gradually increases toward the communication position with the . 前記導入口に最も近い微小流路Y1から前記排出口に最も近い微小流路Ynまでn本(nは3以上の整数である)の微小流路が共通流路と連通した微小流路構造体において、導入口との連通位置をX0、導入口に最も近い微小流路Y1の連通位置をX1、X0とX1との間の共通流路に沿った長さをa1、排出口との連通位置をXn+1、排出口に最も近い微小流路Ynの連通位置をXn、XnとXn+1との間の共通流路に沿った長さをan+1としたとき、a2からanがすべて等しいことを特徴とする請求項1記載の微小流路構造体。 A microchannel structure in which n microchannels (n is an integer of 3 or more) from the microchannel Y1 closest to the introduction port to the microchannel Yn closest to the discharge port communicate with the common channel , The communication position with the introduction port is X0, the communication position of the minute channel Y1 closest to the introduction port is X1, the length along the common channel between X0 and X1 is a1, and the communication position with the discharge port Where Xn + 1 is Xn, the communication position of the minute channel Yn closest to the discharge port is Xn, and the length along the common channel between Xn and Xn + 1 is an + 1. The microchannel structure according to claim 1. a1〜an+1がすべて等しいことを特徴とする請求項2記載の微小流路構造体。 3. The microchannel structure according to claim 2, wherein a1 to an + 1 are all equal. 前記微小流路構造体が微小流路を有する1つ以上の微小流路基板を重ねあわせて構成されており、共通流路が微小流路基板を貫通してなることを特徴とする請求項1〜3のいずれかに記載の微小流路構造体。 2. The microchannel structure is formed by stacking one or more microchannel substrates having microchannels, and the common channel penetrates the microchannel substrate. The microchannel structure according to any one of? 前記微小流路構造体において、各々の共通流路の排出口から排出された流体を各々の導入口へ戻す構造となっていることを特徴とする請求項1〜4のいずれかに記載の微小流路構造体。 The micro flow channel structure according to any one of claims 1 to 4, wherein the micro flow channel structure is configured to return the fluid discharged from the discharge port of each common flow channel to each introduction port. Channel structure.
JP2007140401A 2002-04-25 2007-05-28 Micro channel structure Expired - Fee Related JP4743165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140401A JP4743165B2 (en) 2002-04-25 2007-05-28 Micro channel structure

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2002123835 2002-04-25
JP2002123835 2002-04-25
JP2002158093 2002-05-30
JP2002158093 2002-05-30
JP2002215180 2002-07-24
JP2002215180 2002-07-24
JP2002219913 2002-07-29
JP2002219913 2002-07-29
JP2002228470 2002-08-06
JP2002228470 2002-08-06
JP2007140401A JP4743165B2 (en) 2002-04-25 2007-05-28 Micro channel structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003117123A Division JP4193561B2 (en) 2002-04-25 2003-04-22 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure

Publications (2)

Publication Number Publication Date
JP2007283301A JP2007283301A (en) 2007-11-01
JP4743165B2 true JP4743165B2 (en) 2011-08-10

Family

ID=38755547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140401A Expired - Fee Related JP4743165B2 (en) 2002-04-25 2007-05-28 Micro channel structure

Country Status (1)

Country Link
JP (1) JP4743165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226271A (en) * 2008-03-19 2009-10-08 Kanagawa Acad Of Sci & Technol Method of changing emulsion into plug flow and microflow path for this change
WO2017188065A1 (en) * 2016-04-26 2017-11-02 国立大学法人東京大学 Fluid flow control device and fluid flow control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045666A (en) * 2000-08-07 2002-02-12 Shimadzu Corp Liquid mixer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045666A (en) * 2000-08-07 2002-02-12 Shimadzu Corp Liquid mixer

Also Published As

Publication number Publication date
JP2007283301A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
US7718099B2 (en) Fine channel device, fine particle producing method and solvent extraction method
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
EP1894619B1 (en) Microchannel structure and fine-particle production method using the same
Yao et al. Review of the applications of microreactors
JP2003525116A (en) Dispersion apparatus and method for capillary reactor
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP3777427B2 (en) Emulsion production method and production apparatus
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
Tan et al. Surfactant‐free microdispersion process of gas in organic solvents in microfluidic devices
Cui et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels
Boskovic et al. Synthesis of polymer particles and capsules employing microfluidic techniques
JP5072057B2 (en) Microcapsule manufacturing method using microchannel structure
JP4639624B2 (en) Micro channel structure
JP4743165B2 (en) Micro channel structure
JP2004154745A (en) Microchannel structure for forming droplet, droplet forming method using the same and product thereof
US10807054B2 (en) Mixing of fluids
JP2004202476A (en) Particle production method and microchannel structure therefor
JP4144302B2 (en) Droplet generation method
JP4356312B2 (en) Microchannel structure
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP4306243B2 (en) Particle production method
JP5625900B2 (en) Microchannel structure and method for producing microparticles using the same
JP4385886B2 (en) Method for producing solid particles using microchannel structure
Fu et al. Multiphase Flow in a Microchannel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees