JP4742740B2 - Method for melting low-sulfur steel - Google Patents

Method for melting low-sulfur steel Download PDF

Info

Publication number
JP4742740B2
JP4742740B2 JP2005238116A JP2005238116A JP4742740B2 JP 4742740 B2 JP4742740 B2 JP 4742740B2 JP 2005238116 A JP2005238116 A JP 2005238116A JP 2005238116 A JP2005238116 A JP 2005238116A JP 4742740 B2 JP4742740 B2 JP 4742740B2
Authority
JP
Japan
Prior art keywords
molten steel
mass
steel
converter
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005238116A
Other languages
Japanese (ja)
Other versions
JP2007051350A (en
Inventor
佑 岸本
徹 五十川
学 田野
真一 赤井
守 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005238116A priority Critical patent/JP4742740B2/en
Publication of JP2007051350A publication Critical patent/JP2007051350A/en
Application granted granted Critical
Publication of JP4742740B2 publication Critical patent/JP4742740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、低硫鋼の溶製方法に関し、詳しくは、転炉からの出鋼時に溶鋼に混入して取鍋内に流出したスラグを取鍋から除去しないまま脱硫剤を装入し、脱硫剤と溶鋼とを強制的に攪拌して脱硫処理して低硫鋼を溶製する方法に関するものである。   The present invention relates to a method for melting low-sulfur steel, and more specifically, a desulfurization agent is charged without removing slag that has been mixed into molten steel and discharged into a ladle when steel is discharged from a converter, The present invention relates to a method for melting low-sulfur steel by forcibly stirring the agent and the molten steel to desulfurize the steel.

近年、従来にも増して不純物の少ない高級鋼製造に対する要請が増大しており、特に、鋼材の靭性を害する硫黄含有量の少ない低硫鋼が求められている。低硫鋼の製造においては、転炉での脱炭精錬工程の前に溶銑段階で脱硫処理を施すことが行われているが、硫黄濃度が0.003質量%以下である所謂極低硫鋼では、更に転炉から出鋼後の溶鋼段階でも脱硫処理が行われている。溶鋼の脱硫剤としては、安価であることから、通常、主成分として石灰(CaO)を用い、これに融点降下剤としてのアルミナ(Al23 )、蛍石(CaF2 )などを添加した脱硫剤が使用されている。 In recent years, there has been an increasing demand for the production of high-grade steels with less impurities than before, and in particular, low-sulfur steels with low sulfur content that impair the toughness of steel materials are required. In the production of low-sulfur steel, desulfurization treatment is performed in the hot metal stage before the decarburization refining process in the converter, but the so-called very low-sulfur steel having a sulfur concentration of 0.003% by mass or less. In addition, desulfurization treatment is also performed in the molten steel stage after steel output from the converter. As a desulfurizing agent for molten steel, lime (CaO) is usually used as a main component because it is inexpensive, and alumina (Al 2 O 3 ), fluorite (CaF 2 ), etc. as melting point depressants are added thereto. Desulfurizing agent is used.

この溶鋼の脱硫処理は、一般に、加熱手段や攪拌手段、更にはインジェクション手段を備えた、ASEA−SKF法、VAD法及びLF法などと称される所謂「取鍋精錬法」によって行なわれている。これら取鍋精錬法の基本は、転炉で脱炭精錬された溶鋼を取鍋に受け、取鍋内の溶鋼上に上記脱硫剤を添加して溶鋼の攪拌を行ない、脱硫剤の滓化により形成されたスラグと溶鋼との間で所謂「スラグ−メタル反応」を行なって、溶鋼中の硫黄を除去するというものである。   This desulfurization treatment of molten steel is generally performed by a so-called “ladder refining method” called an ASEA-SKF method, a VAD method, an LF method, or the like equipped with a heating means, a stirring means, and further an injection means. . The basics of these ladle refining methods are to receive the molten steel decarburized and refined in the converter into the ladle, add the above desulfurizing agent to the molten steel in the ladle, stir the molten steel, and hatch the desulfurizing agent. A so-called “slag-metal reaction” is performed between the formed slag and the molten steel to remove sulfur in the molten steel.

ところで、脱硫反応は還元反応であるので、脱硫処理は強還元雰囲気下で行われる。一方、溶鋼の脱硫処理の前工程である転炉脱炭精錬は酸化精錬であり、この酸化精錬によって脱炭反応と同時に、酸化反応である脱燐反応が進行する。即ち、転炉での脱炭精錬時、溶銑に含有される燐は転炉内に形成されるスラグに移行して脱燐反応が進行する。転炉から取鍋への溶鋼の出鋼時、スラグカットボールなどによってスラグ流出対策が実施されるが、スラグの流出を完全には防止することができず、溶鋼に混じってスラグが取鍋内に流出する。   By the way, since the desulfurization reaction is a reduction reaction, the desulfurization treatment is performed in a strong reducing atmosphere. On the other hand, converter decarburization refining, which is a pre-process of the desulfurization treatment of molten steel, is oxidative refining, and by this oxidative refining, dephosphorization reaction that is oxidation reaction proceeds simultaneously with decarburization reaction. That is, at the time of decarburization and refining in the converter, phosphorus contained in the molten iron moves to slag formed in the converter and the dephosphorization reaction proceeds. When molten steel is discharged from the converter to the ladle, slag outflow countermeasures are implemented with slag cut balls, etc., but slag outflow cannot be completely prevented, and slag is mixed with molten steel in the ladle. To leak.

取鍋内に転炉スラグが存在した状態のまま脱硫処理を実施すると、スラグ中の燐は還元されて溶鋼に移行し、溶鋼中の燐含有量が増加する(これを「復燐」と呼ぶ)。従って、この復燐を防止するために、通常、脱硫処理の前には取鍋内に流出した転炉スラグは除去される。しかしながら、除滓するためには、除滓のための設備や要員が必要である上に、除滓による熱ロスが非常に大きく、また、除滓の際に溶鋼も流出して溶鋼歩留まりを低下させる。   When desulfurization treatment is performed with converter slag present in the ladle, phosphorus in the slag is reduced and transferred to molten steel, and the phosphorus content in the molten steel increases (this is called “rebound”). ). Therefore, in order to prevent this recovery, the converter slag that has flowed into the ladle is usually removed before the desulfurization treatment. However, in order to remove the steel, equipment and personnel are required for removal, and the heat loss due to the removal is very large, and the molten steel also flows out during removal to lower the molten steel yield. Let

特許文献1には、脱燐処理及び脱硫処理を施した溶銑を用いて転炉脱炭精錬を行い、脱炭精錬終了時の溶鋼中炭素含有量を0.1質量%以上に維持して出鋼した後、取鍋内のスラグに脱酸剤を添加し、取鍋内のスラグを除滓することなく真空脱ガス設備にて脱炭処理し、その後、脱酸処理及び脱硫処理を実施して極低硫鋼を溶製する方法が提案されている。   In Patent Document 1, converter decarburization refining is performed using hot metal subjected to dephosphorization treatment and desulfurization treatment, and the carbon content in the molten steel at the end of decarburization refining is maintained at 0.1% by mass or more. After steel is added, deoxidizer is added to the slag in the ladle, decarburized with vacuum degassing equipment without removing the slag in the ladle, and then deoxidized and desulfurized. Thus, a method of melting ultra-low sulfur steel has been proposed.

また、特許文献2には、転炉で脱炭精錬された溶鋼を収容する取鍋内に、石灰系物質とアルミナ源とが混合されたフラックスを添加して、転炉から流出したスラグとで脱硫能に優れた組成のスラグを形成し、次いで、スラグを除去しないまま溶鋼とスラグとを攪拌して脱硫処理する方法が提案されている。
特開平6−306442号公報 特開2003−155516号公報
Further, Patent Document 2 includes a slag that flows out of a converter by adding a flux in which a lime-based material and an alumina source are mixed into a ladle containing molten steel decarburized and refined in the converter. There has been proposed a method of forming a slag having a composition excellent in desulfurization ability and then performing a desulfurization treatment by stirring the molten steel and the slag without removing the slag.
JP-A-6-306442 JP 2003-155516 A

しかしながら、これらの従来技術には以下の問題点がある。   However, these conventional techniques have the following problems.

即ち、特許文献1では、脱炭精錬終了時の溶鋼中炭素含有量を0.1質量%以上に維持していることから、その後に真空脱ガス設備における真空脱炭精錬が必須となり、処理工程を煩雑化させるのみならず、真空脱炭精錬の処理費用が必要であり、従来の除滓作業を実施した場合に比べて製造コストの削減効果は少ないと言わざるを得ない。また、特許文献2では、復燐防止の対策が講じられておらず、硫黄含有量は低くなるものの、燐含有量の低い溶鋼の溶製は困難であると言わざるを得ない。   That is, in patent document 1, since the carbon content in molten steel at the time of completion | finish of decarburization refining is maintained at 0.1 mass% or more, the vacuum decarburization refining in a vacuum degassing facility becomes essential after that, and a processing process In addition to complicating the process, the processing cost of vacuum decarburization refining is necessary, and it must be said that the effect of reducing the manufacturing cost is small compared to the case where conventional decarburization work is performed. Further, in Patent Document 2, no measures are taken to prevent recovery, and although the sulfur content is low, it is difficult to melt molten steel with a low phosphorus content.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶鋼に混入して転炉から取鍋に流出される転炉スラグを除去しないまま溶鋼を脱硫処理して低硫鋼を溶製するに当たり、処理工程を煩雑化することなく、復燐を抑えて脱硫処理することのできる、低硫鋼の溶製方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to desulfurize the molten steel without removing the converter slag mixed in the molten steel and flowing out from the converter to the ladle. It is an object to provide a method for melting low-sulfur steel, which can be desulfurized while suppressing dephosphorization without complicating the treatment process.

上記課題を解決するための第1の発明に係る低硫鋼の溶製方法は、溶銑段階で脱硫処理及び燐濃度が0.010〜0.035質量%となるまでの脱燐処理の施された溶銑に対して、マンガン源としてマンガン鉱石を使用した転炉で脱炭精錬を行って炭素含有量が0.1質量%未満の溶鋼を溶製し、この溶鋼を取鍋に出鋼した後、取鍋内のスラグを除去することなく取鍋内に石灰系脱硫剤を添加し、次いで、溶鋼と石灰系脱硫剤とを攪拌して脱硫処理することを特徴とするものである。 The method for melting low-sulfur steel according to the first aspect of the present invention for solving the above-described problems is a desulfurization treatment until the desulfurization treatment and the phosphorous concentration become 0.010 to 0.035% by mass in the hot metal stage. against been hot metal, performing decarburization refining in a converter furnace using manganese ore carbon content was melted the molten steel is less than 0.1 wt% as a manganese source, tapping the molten steel into the ladle After that, the lime-based desulfurizing agent is added to the ladle without removing the slag in the ladle, and then the molten steel and the lime-based desulfurizing agent are stirred to perform the desulfurization treatment.

第2の発明に係る低硫鋼の溶製方法は、第1の発明において、前記脱炭精錬終了後の転炉内スラグは、燐含有量が3質量%以下であることを特徴とするものである。   The method for melting low-sulfur steel according to the second invention is characterized in that, in the first invention, the slag in the converter after the decarburization refining has a phosphorus content of 3% by mass or less. It is.

の発明に係る低硫鋼の溶製方法は、第の発明において、前記脱炭精錬終了後の転炉内スラグは、燐含有量が2質量%以下であり、MnO含有量が5質量%以上であることを特徴とするものである。 In the method for melting low-sulfur steel according to the third invention, in the first invention, the slag in the converter after completion of the decarburization refining has a phosphorus content of 2% by mass or less and an MnO content of 5 It is characterized by being at least mass%.

の発明に係る低硫鋼の溶製方法は、第1ないし第の発明の何れかにおいて、前記低硫鋼は、硫黄含有量が0.003質量%以下であり、マンガン含有量が0.6質量%以上であることを特徴とするものである。 According to a fourth aspect of the present invention, there is provided a method for melting low-sulfur steel according to any one of the first to third aspects, wherein the low-sulfur steel has a sulfur content of 0.003% by mass or less and a manganese content. It is characterized by being 0.6 mass% or more.

本発明によれば、脱燐処理及び脱硫処理の施された溶銑を使用して脱炭精錬を実施するので、転炉スラグの燐含有量は少なく、除滓せずに脱硫処理しても、復燐を抑制することができ、燐含有量の低い製品の溶製が可能である。また、転炉スラグは一旦溶融したものであり、仮に固化したとしても所謂プリメルト状態であり、石灰系脱硫剤の滓化を促進させて、効率的な脱硫を実施可能とする。更に、脱炭精錬では、0.1質量%未満まで溶鋼中炭素を低減するので、二次精錬では極低炭素鋼を除いて脱炭処理を実施する必要がない。また更に、転炉脱炭精錬でマンガン鉱石を使用した場合には、転炉内で溶鋼中にマンガンを歩留まらせることができるのみならず、取鍋内に流出したスラグ中のMnOをも脱硫処理によって溶鋼中に還元することができる。このように、本発明によれば、低硫鋼の製造コストを大幅に削減することが可能となり、工業上有益な効果がもたらされる。   According to the present invention, since decarburization and refining is carried out using hot metal that has been subjected to dephosphorization and desulfurization treatment, the phosphorus content of the converter slag is low, and even if desulfurization treatment is performed without removing it, Recovery of phosphorus can be suppressed and a product having a low phosphorus content can be produced. Further, the converter slag is once melted and is in a so-called pre-melt state even if it is solidified, and promotes the hatching of the lime-based desulfurizing agent to enable efficient desulfurization. Furthermore, in the decarburization refining, the carbon in the molten steel is reduced to less than 0.1% by mass, so that in the secondary refining, it is not necessary to carry out the decarburization process except for the ultra-low carbon steel. Furthermore, when manganese ore is used in converter decarburization refining, not only can manganese be retained in molten steel in the converter, but also MnO in the slag flowing into the ladle is desulfurized. It can be reduced into molten steel by treatment. Thus, according to the present invention, the production cost of low-sulfur steel can be greatly reduced, and an industrially beneficial effect is brought about.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

高炉から出銑された溶銑を溶銑鍋やトーピードカーなどの溶銑保持・搬送用容器で受銑し、次工程の脱炭精錬を行なう転炉に搬送する。通常、この搬送途中で、溶銑に対して脱硫処理、脱燐処理及び脱珪処理などの溶銑予備処理が施されており、本発明においては、低硫鋼を溶製する方法であることから脱硫処理を実施し、また、溶製する鋼の成分規格上からは脱燐処理が必要でない場合でも、後工程の溶鋼段階での脱硫処理でスラグからの復燐を防止するために、脱燐処理を実施する。脱燐処理の前に脱珪処理を行ない、効率的な脱燐反応を阻害する珪素を予め除去しておくことが好ましい。   The hot metal discharged from the blast furnace is received in a hot metal holding / conveying vessel such as a hot metal ladle or torpedo car, and transferred to a converter for decarburization and refining in the next step. Usually, hot metal pretreatment such as desulfurization treatment, dephosphorization treatment and desiliconization treatment is performed on the hot metal during the conveyance, and in the present invention, desulfurization is performed because it is a method of producing low-sulfur steel. In order to prevent dephosphorization from the slag in the desulfurization process at the subsequent molten steel stage, even if no dephosphorization process is required due to the component specifications of the steel to be melted, the dephosphorization process To implement. It is preferable to carry out a desiliconization process before the dephosphorization process to remove in advance silicon that inhibits an efficient dephosphorization reaction.

また、脱燐処理を実施することで、安価なマンガン源としてマンガン鉱石を転炉内に添加し、このマンガン鉱石を高い歩留まりで溶鋼中に還元させることが可能となる。これは、溶銑段階で脱燐処理を施すことによって転炉精錬で必要とする媒溶剤を少なくすることができ、また、転炉内に装入する媒溶剤の量が少ないほどマンガン鉱石の還元が促進されるからである。転炉で使用する媒溶剤を最大限少なくするためには、溶銑の燐濃度を溶製する鋼の成分規格よりも低くなるまで脱燐処理することが好ましい。   Further, by carrying out the dephosphorization treatment, it becomes possible to add manganese ore as an inexpensive manganese source into the converter and reduce this manganese ore into molten steel with a high yield. This is because dephosphorization treatment is performed at the hot metal stage to reduce the amount of medium solvent required for converter refining, and the smaller the amount of medium solvent charged into the converter, the more the manganese ore is reduced. Because it is promoted. In order to minimize the amount of the solvent used in the converter, it is preferable to perform the dephosphorization process until the phosphorus concentration of the hot metal becomes lower than the component standard of the steel to be melted.

このようにして得た溶銑を一次精錬炉である転炉に装入して脱炭精錬を行なう。この転炉脱炭精錬では、マンガン源としてマンガン鉱石を添加しながら必要に応じて少量の生石灰などを媒溶剤として用い、酸素ガスを上吹き及び/または底吹きして溶銑の脱炭精錬を行なう。添加されたマンガン鉱石は送酸脱炭中に溶銑中の炭素によって還元され、還元されたマンガンは溶湯中に移行し、溶湯中のマンガン濃度が上昇する。転炉内に添加したマンガン鉱石のみでは、溶鋼のマンガン濃度が目的とする鋼の成分規格範囲に不足する場合には、転炉から取鍋などの溶鋼保持容器への溶鋼の出鋼時に高炭素フェロマンガンなどの合金鉄を所定量添加し、溶鋼のマンガン濃度を上昇させる。   The hot metal obtained in this way is charged into a converter, which is a primary refining furnace, and decarburized and refined. In this converter decarburization and refining, hot metal decarburization and refining is performed by adding a small amount of quick lime as a solvent and adding oxygen or as a bottom solvent as needed, while adding manganese ore as a manganese source. . The added manganese ore is reduced by carbon in the molten iron during the acid feeding decarburization, and the reduced manganese moves into the molten metal, and the manganese concentration in the molten metal increases. If only the manganese ore added to the converter has a manganese concentration in the molten steel that is not within the component specification range of the target steel, a high carbon content will be produced when the molten steel is discharged from the converter to a molten steel holding vessel such as a ladle. A predetermined amount of iron alloy such as ferromanganese is added to increase the manganese concentration of the molten steel.

マンガン鉱石を還元しながら溶銑の脱炭精錬を行ない、溶銑から溶鋼へと脱炭精錬された溶湯中の炭素濃度が0.1質量%未満の範囲まで脱炭精錬されたなら、転炉内への酸素ガスの供給を停止して脱炭精錬を終了する。このときの炭素濃度は、0.1質量%未満の範囲で、溶製する鋼の成分範囲に応じて決定する。炭素濃度の下限値は特に規定する必要はないが、0.03質量%程度が好ましい。炭素濃度がこの範囲の場合が転炉脱炭精錬は最も効率的であるためである。即ち、炭素濃度が0.03質量%未満では溶鋼が過酸化されて、鉄歩留まりが低下したり、脱酸剤原単位が上昇したりして、製造コストが上昇する。また、0.1質量%以上の場合には、脱炭反応による発熱量が少なく、鉄鉱石などの冷却材の使用量を少なくせざるを得ず、製造コストが上昇し、また、鋼製品の炭素含有量範囲は0.1質量%以下のものが大半であり、0.1質量%以上で脱炭精錬を終了すると、その後に、真空脱ガス設備を用いた脱炭精錬が必要になるからである。   If decarburization and refining of hot metal is performed while reducing manganese ore, and the carbon concentration in the molten metal decarburized and refined from hot metal to molten steel is reduced to a range of less than 0.1% by mass, it is transferred to the converter. The supply of oxygen gas is stopped and decarburization refining is completed. The carbon concentration at this time is determined in accordance with the component range of the steel to be melted within a range of less than 0.1% by mass. The lower limit of the carbon concentration is not particularly required, but is preferably about 0.03% by mass. This is because converter decarburization refining is most efficient when the carbon concentration is within this range. That is, when the carbon concentration is less than 0.03% by mass, the molten steel is peroxidized, the iron yield is reduced, the deoxidizer basic unit is increased, and the production cost is increased. In addition, when the content is 0.1% by mass or more, the amount of heat generated by the decarburization reaction is small, and the amount of coolant such as iron ore has to be reduced. Most of the carbon content range is 0.1% by mass or less, and when decarburization refining is completed at 0.1% by mass or more, decarburization refining using vacuum degassing equipment is required thereafter. It is.

また、後工程の溶鋼での脱硫処理における復燐を防止するために、転炉スラグの燐含有量が3質量%以下、望ましくは2質量%以下になるように、転炉脱炭精錬では、生石灰などの媒溶剤の使用量を調整することが好ましい。つまり、溶銑の燐含有量に応じて、転炉スラグの燐含有量が3質量%以下、望ましくは2質量%以下になるように、生石灰などの媒溶剤の使用量を調整することが好ましい。転炉スラグの燐含有量が3質量%以下になると、復燐を問題のないレベルまで抑えることができ、2質量%以下の場合には更に復燐が低減することを確認している。同様に、後工程の溶鋼の脱硫処理においてMnOの還元を有効に活用するために、転炉スラグのMnO含有量が5質量%以上となるように、マンガン鉱石の添加量を調整することが好ましい。これは、経験的に得られるマンガン鉱石の還元量よりも過剰にマンガン鉱石を添加すればよい。   In the converter decarburization refining so that the phosphorus content in the converter slag is 3% by mass or less, preferably 2% by mass or less, in order to prevent dephosphorization in the desulfurization treatment in the molten steel in the subsequent process, It is preferable to adjust the amount of medium solvent such as quicklime. That is, it is preferable to adjust the usage amount of a medium solvent such as quicklime so that the phosphorus content of the converter slag is 3% by mass or less, preferably 2% by mass or less, depending on the phosphorus content of the hot metal. It has been confirmed that when the phosphorus content of the converter slag is 3% by mass or less, the recovery is suppressed to a level at which there is no problem, and when it is 2% by mass or less, the recovery is further reduced. Similarly, in order to effectively utilize the reduction of MnO in the desulfurization treatment of the molten steel in the subsequent step, it is preferable to adjust the amount of manganese ore added so that the MnO content of the converter slag becomes 5% by mass or more. . This may be achieved by adding manganese ore in excess of the reduced amount of manganese ore obtained empirically.

このようにして脱炭精錬して溶製した溶鋼を転炉から取鍋に出鋼する。出鋼の末期、溶鋼に混じって転炉スラグも取鍋に流出する。出鋼時、転炉スラグを積極的に取鍋に流出させる必要はなく、通常実施されるスラグ流出対策を実施する。出鋼後、溶鋼に混じって流出した転炉スラグを除去することなく、溶鋼を次工程の二次精錬炉に搬送する。石灰系脱硫剤は、脱硫処理を実施する後工程の例えばLF炉(「取鍋精錬炉」ともいう)で添加してもよいが、石灰系脱硫剤の滓化を促進させて効率的な脱硫処理を実施するために、出鋼時或いは出鋼直後に取鍋内に添加することが好ましい。   The molten steel decarburized and refined in this way is discharged from the converter to the ladle. At the end of steelmaking, the converter slag also flows into the ladle mixed with molten steel. There is no need to actively flow converter slag into the ladle at the time of steel production. After the steel is discharged, the molten steel is transferred to the secondary refining furnace in the next step without removing the converter slag that has flowed out of the molten steel. The lime-based desulfurizing agent may be added, for example, in an LF furnace (also referred to as a “lader refining furnace”), which is a post-process for carrying out the desulfurization treatment. In order to carry out the treatment, it is preferable to add it to the ladle at the time of steel output or immediately after the steel output.

本発明の溶製対象である低硫鋼は高級鋼であることから、水素、窒素などの溶鋼中ガス成分も調整の対象になることが多く、従って、出鋼後に脱ガス処理と脱硫処理との双方を実施する場合が大半である。また、炭素濃度範囲が0.03質量%以下の極低炭低硫鋼は脱炭処理も必要とし、この脱炭処理は脱ガス設備で実施する。脱ガス処理が必要でない場合には、脱硫処理のみを実施する。   Since the low-sulfur steel that is the object of melting of the present invention is a high-grade steel, gas components in the molten steel such as hydrogen and nitrogen are often subject to adjustment. In most cases, both are implemented. Moreover, the ultra-low-carbon low-sulfur steel with a carbon concentration range of 0.03% by mass or less also requires decarburization, and this decarburization is carried out in a degassing facility. If degassing is not necessary, only desulfurization is performed.

二次精錬炉として最も一般的なRH真空脱ガス装置では、脱炭処理を含めた脱ガス処理と脱硫処理の双方を実施することは可能であるが、例えば脱炭処理は酸化反応であり、一方、脱硫処理は還元反応であることから、双方を同時に行なうことはできず、それぞれ個別に行なうためにRH真空脱ガス装置における処理時間が延長し、生産性を阻害する。また、本来、RH真空脱ガス装置における脱硫効率よりも、LF炉など溶鋼と脱硫剤との攪拌が可能な二次精錬炉における脱硫効率の方が高いという基本的な利点もある。従って、本発明では、真空脱炭処理を含めた真空脱ガス処理をRH真空脱ガス装置で行ない、脱硫処理をASEA−SKF炉、VAD炉、LF炉などで実施する。   In the most common RH vacuum degassing apparatus as a secondary refining furnace, it is possible to perform both degassing and desulfurization including decarburization. For example, decarburization is an oxidation reaction, On the other hand, since the desulfurization treatment is a reduction reaction, both cannot be carried out simultaneously, and the treatment time in the RH vacuum degassing apparatus is extended because they are carried out individually, thereby impeding productivity. In addition, there is a fundamental advantage that the desulfurization efficiency in the secondary refining furnace capable of stirring the molten steel and the desulfurizing agent such as an LF furnace is higher than the desulfurization efficiency in the RH vacuum degassing apparatus. Therefore, in the present invention, vacuum degassing processing including vacuum decarburization processing is performed with an RH vacuum degassing apparatus, and desulfurization processing is performed with an ASEA-SKF furnace, a VAD furnace, an LF furnace, or the like.

この場合、真空脱ガス処理と脱硫処理のどちらの処理を先に実施しても構わないが、真空脱ガス処理で、脱炭処理を必要とする場合には、真空脱ガス処理を先に実施することが好ましい。これは、脱炭処理は酸化反応であり、一方、脱硫処理は還元反応であり、また、転炉から出鋼された溶鋼は酸化された状態であることから、転炉から出鋼された溶鋼に脱酸処理を施さず、そのまま真空脱炭処理することが効率的であるからである。   In this case, either the vacuum degassing process or the desulfurization process may be performed first. However, when the decarburization process is required in the vacuum degassing process, the vacuum degassing process is performed first. It is preferable to do. This is because the decarburization treatment is an oxidation reaction, while the desulfurization treatment is a reduction reaction, and the molten steel removed from the converter is in an oxidized state. This is because it is efficient to perform a vacuum decarburization process without performing a deoxidation process.

ここでは、真空脱ガス処理を先に実施することで説明する。RH真空脱ガス装置では、真空脱炭処理が必要な場合には最初に真空脱炭処理を実施、真空脱炭処理後に、溶鋼を金属Alなどで脱酸し、更に、処理を継続して脱水素処理、脱窒素処理、成分調整処理などを実施する。処理完了後は、溶鋼を次の脱硫処理工程に搬送する。   Here, a description will be given by performing the vacuum degassing process first. In the RH vacuum degassing device, when vacuum decarburization is required, first vacuum decarburization is performed. After the vacuum decarburization, the molten steel is deoxidized with metal Al, etc., and the treatment is continued to dehydrate. Elemental treatment, denitrification treatment, component adjustment treatment, etc. are performed. After the completion of the treatment, the molten steel is transported to the next desulfurization treatment step.

図1に、本発明で脱硫処理設備として用いたLF炉の1例を示す。図1はLF炉の概略縦断面図であり、図1において、1はLF炉、2は取鍋、3は溶鋼、4はスラグ、5は昇降式の蓋、6はインジェクションランス、7は通電用の電極、8は蓋5と取鍋2とで形成する空間に不活性ガスを供給するためのガス導入管である。このLF炉1においては、インジェクションランス6から、不活性ガスの他に不活性ガスを搬送用ガスとして粉体のフラックス及び金属を溶鋼中に吹き込むことができるようになっており、また、蓋5を貫通して合金鉄及び造滓剤を添加するための投入シュートが蓋5を貫通して設置されているが、図1ではこれらを省略している。   FIG. 1 shows an example of an LF furnace used as a desulfurization treatment facility in the present invention. FIG. 1 is a schematic longitudinal sectional view of an LF furnace. In FIG. 1, 1 is an LF furnace, 2 is a ladle, 3 is molten steel, 4 is a slag, 5 is a liftable lid, 6 is an injection lance, and 7 is energized. The electrode 8 is a gas introduction pipe for supplying an inert gas to the space formed by the lid 5 and the ladle 2. In the LF furnace 1, powder flux and metal can be blown into the molten steel from the injection lance 6 using an inert gas as a carrier gas in addition to the inert gas, and the lid 5 A charging chute for adding the iron alloy and the iron making agent is installed through the lid 5, but these are omitted in FIG.

LF炉1では、台車(図示せず)に積載されて搬送された取鍋2を台車に積載したまま所定の位置に固定し、上方から蓋5を取鍋2の上部に載せ、蓋5と取鍋2とで密閉された空間を形成する。出鋼時や出鋼直後に石灰系脱硫剤の添加が行われていない場合には、この時点で投入シュートを介して石灰系脱硫剤を添加する。また、溶鋼3が脱酸されていない場合には、この時点で金属Alを添加して脱酸する。そして、この空間にガス導入管8を介してArガスなどの不活性ガスを吹き込み、この空間を不活性ガス雰囲気に維持しながら、インジェクションランス6から不活性ガスを吹き込んで溶鋼3とスラグ4とを攪拌する。スラグ4には、石灰系脱硫剤が添加してあるので、溶鋼3はこの石灰系脱硫剤によって脱硫処理される。溶鋼3の硫黄濃度が0.003質量%以下の所定の値になったなら、インジェクションランス6からの不活性ガス吹き込みを停止して脱硫処理を終了する。溶鋼3の温度が所望する温度よりも低い場合、或いは溶鋼3の成分濃度が所望する範囲にない場合には、電極7による溶鋼3の加熱或いは合金鉄の投入を実施する。このようにして硫黄濃度が0.003質量%以下の低硫鋼の溶製を終了し、次の連続鋳造機などの鋳造工程に溶鋼3を搬送する。   In the LF furnace 1, the ladle 2 loaded and transported on a cart (not shown) is fixed at a predetermined position while being loaded on the cart, and the lid 5 is placed on the top of the ladle 2 from above. A sealed space is formed with the ladle 2. When the lime-based desulfurization agent is not added at the time of steel output or immediately after the steel output, the lime-based desulfurization agent is added at this point through the charging chute. Moreover, when the molten steel 3 is not deoxidized, metal Al is added and deoxidized at this time. Then, an inert gas such as Ar gas is blown into the space through the gas introduction pipe 8, and an inert gas is blown from the injection lance 6 while maintaining the space in an inert gas atmosphere. Stir. Since a lime-based desulfurizing agent is added to the slag 4, the molten steel 3 is desulfurized by the lime-based desulfurizing agent. When the sulfur concentration of the molten steel 3 reaches a predetermined value of 0.003% by mass or less, the blowing of the inert gas from the injection lance 6 is stopped and the desulfurization process is ended. When the temperature of the molten steel 3 is lower than the desired temperature, or when the component concentration of the molten steel 3 is not within the desired range, the molten steel 3 is heated by the electrode 7 or the iron alloy is charged. In this manner, the melting of the low-sulfur steel having a sulfur concentration of 0.003 mass% or less is finished, and the molten steel 3 is conveyed to a casting process such as the next continuous casting machine.

ここで、石灰系脱硫剤とは、CaOを50質量%以上含有するものであり、例えば、生石灰単独、或いは、生石灰に蛍石やアルミナなどの融点降下剤を添加した脱硫剤である。尚、スラグ4の酸素ポテンシャルを下げて脱硫反応を促進させるために、脱酸源をスラグ4に添加することが好ましい。脱酸源としては、金属アルミニウム、或いは、アルミニウムスクラップを溶解再生するときに発生するアルミドロス(金属Alを30〜50質量%程度含有する)が適当である。   Here, the lime-based desulfurization agent contains CaO in an amount of 50% by mass or more, for example, quick lime alone or a desulfurization agent obtained by adding a melting point depressant such as fluorite or alumina to quick lime. In addition, it is preferable to add a deoxidation source to the slag 4 in order to lower the oxygen potential of the slag 4 and promote the desulfurization reaction. As the deoxidation source, metal aluminum or aluminum dross (containing about 30 to 50% by mass of metal Al) generated when melting and regenerating aluminum scrap is suitable.

このように本発明では、脱燐処理及び脱硫処理の施された溶銑を使用して転炉で脱炭精錬を実施するので、取鍋2に混入する転炉スラグの燐含有量は少なく、除滓せずに脱硫処理しても、復燐を抑制することができ、燐含有量の低い製品の溶製が可能である。また、転炉スラグは一旦溶融したものであり、石灰系脱硫剤の滓化を促進させて、効率的な脱硫処理が実施可能となる。更に、転炉脱炭精錬でマンガン鉱石を使用した場合には、転炉内で溶鋼中にマンガンを歩留まらせることができるのみならず、取鍋内に流出したスラグ中のMnOをも脱硫処理によって溶鋼中に還元することができ、低硫鋼の製造コストを大幅に削減することが可能となる。本発明は、特に、硫黄含有量が0.003質量%以下であり、マンガン含有量が0.6質量%以上の低硫鋼を溶製する際に、上記効果を如何なく発揮する。   In this way, in the present invention, decarburization and refining is carried out in the converter using hot metal that has been subjected to dephosphorization and desulfurization treatment. Therefore, the phosphorus content of the converter slag mixed in the ladle 2 is small, Even if it is desulfurized without dripping, it is possible to suppress dephosphorization and to produce a product having a low phosphorus content. Further, the converter slag is once melted and promotes the hatching of the lime-based desulfurizing agent, so that efficient desulfurization treatment can be performed. Furthermore, when manganese ore is used in converter decarburization refining, not only can manganese be retained in molten steel in the converter, but also MnO in the slag that has flowed into the ladle is desulfurized. Can be reduced into molten steel, and the production cost of low-sulfur steel can be greatly reduced. In particular, the present invention exhibits the above-described effects when the low-sulfur steel having a sulfur content of 0.003% by mass or less and a manganese content of 0.6% by mass or more is melted.

高炉から出銑された溶銑に脱珪処理、脱硫処理及び脱燐処理を施し、燐濃度が0.010〜0.035質量%、硫黄濃度が0.004〜0.005質量%の溶銑を得た。この溶銑を転炉に装入して、脱炭精錬を実施した。この脱炭精錬では、酸素吹錬中にマンガン鉱石を溶鋼トン当たり3〜20kg添加した。また、脱炭精錬終了後の転炉スラグの燐濃度が2質量%以下になるように、造滓剤として生石灰を投入した。このようにして転炉で溶製した溶鋼を取鍋に出鋼した。出鋼時の溶鋼中炭素濃度は0.05〜0.09質量%であり、出鋼時、転炉スラグが溶鋼に混入して取鍋に流出した。転炉スラグの燐濃度は1.5〜2.0質量%、MnO濃度は6〜10質量%であり、転炉スラグの取鍋への流出量はスラグ厚みから換算するとおよそ溶鋼トン当たり5〜15kgであった。このスラグを除去しないまま、先ず、RH真空脱ガス装置で脱水素処理を実施、次いで、図1に示すLF炉で脱硫処理を実施した。脱硫剤としては80質量%CaO−20質量%Al23 の石灰系脱硫剤を使用し、この脱硫剤をLF炉で投入し、インジェクションランスから溶鋼トン当たり3〜10NLのArガスを溶鋼中に吹き込んで攪拌した。脱硫処理終了後、黒鉛製の電極をスラグに浸漬させてアーク加熱し、処理中の温度補償を行った。 The hot metal discharged from the blast furnace is subjected to desiliconization treatment, desulfurization treatment and dephosphorization treatment to obtain hot metal having a phosphorus concentration of 0.010 to 0.035 mass% and a sulfur concentration of 0.004 to 0.005 mass%. It was. This hot metal was charged into a converter and decarburized and refined. In this decarburization refining, 3-20 kg of manganese ore was added per ton of molten steel during oxygen blowing. In addition, quick lime was added as a slagging agent so that the phosphorous concentration in the converter slag after decarburization and refining was 2% by mass or less. In this way, the molten steel melted in the converter was put into a ladle. The carbon concentration in the molten steel at the time of steel output was 0.05 to 0.09 mass%, and at the time of steel output, converter slag was mixed into the molten steel and flowed into the ladle. The phosphorus concentration of the converter slag is 1.5 to 2.0% by mass and the MnO concentration is 6 to 10% by mass. The amount of outflow of the converter slag to the ladle is approximately 5 ton per molten steel when converted from the slag thickness. It was 15 kg. Without removing this slag, first, dehydrogenation treatment was performed with an RH vacuum degassing apparatus, and then desulfurization treatment was performed with an LF furnace shown in FIG. As a desulfurization agent, a lime-based desulfurization agent of 80% by mass CaO-20% by mass Al 2 O 3 is used. And stirred. After completion of the desulfurization treatment, a graphite electrode was immersed in slag and arc-heated to compensate for the temperature during the treatment.

脱硫処理後の溶鋼中硫黄濃度は0.0008質量%以下であった。また、溶鋼の復燐は0.002〜0.003質量%であり、問題のない範囲であった。溶鋼中マンガン濃度は脱硫処理中に0.1〜0.3質量%上昇した。また、除滓しないことにより、溶鋼温度の降下量を除滓した場合に比べて約5℃低減することができた。   The sulfur concentration in the molten steel after the desulfurization treatment was 0.0008% by mass or less. Moreover, the recovery of molten steel was 0.002 to 0.003% by mass, and there was no problem. The manganese concentration in the molten steel increased by 0.1 to 0.3% by mass during the desulfurization treatment. In addition, by not removing the steel, it was possible to reduce the molten steel temperature drop by about 5 ° C. as compared with the case where the temperature drop was removed.

本発明で脱硫処理設備として用いたLF炉の概略縦断面図である。It is a schematic longitudinal cross-sectional view of LF furnace used as a desulfurization processing equipment by this invention.

符号の説明Explanation of symbols

1 LF炉
2 取鍋
3 溶鋼
4 スラグ
5 蓋
6 インジェクションランス
7 電極
8 ガス導入管
1 LF furnace 2 Ladle 3 Molten steel 4 Slag 5 Lid 6 Injection lance 7 Electrode 8 Gas introduction pipe

Claims (4)

溶銑段階で脱硫処理及び燐濃度が0.010〜0.035質量%となるまでの脱燐処理の施された溶銑に対して、マンガン源としてマンガン鉱石を使用した転炉で脱炭精錬を行って炭素含有量が0.1質量%未満の溶鋼を溶製し、この溶鋼を取鍋に出鋼した後、取鍋内のスラグを除去することなく取鍋内に石灰系脱硫剤を添加し、次いで、溶鋼と石灰系脱硫剤とを攪拌して脱硫処理することを特徴とする、低硫鋼の溶製方法。 In the hot metal step, with respect to hot metal desulfurization and phosphorus concentrations were subjected to dephosphorization until the 0.010 to 0.035 wt%, decarburization refining in a converter furnace using manganese ores as manganese source The molten steel with a carbon content of less than 0.1% by mass is melted, and after the molten steel is put into the ladle, the lime-based desulfurizing agent is added to the ladle without removing the slag in the ladle. A method for melting low-sulfur steel, comprising adding and then desulfurizing the molten steel and the lime-based desulfurizing agent with stirring. 前記脱炭精錬終了後の転炉内スラグは、燐含有量が3質量%以下であることを特徴とする、請求項1に記載の低硫鋼の溶製方法。   The method for melting low-sulfur steel according to claim 1, wherein the slag in the converter after completion of the decarburization refining has a phosphorus content of 3 mass% or less. 前記脱炭精錬終了後の転炉内スラグは、燐含有量が2質量%以下であり、MnO含有量が5質量%以上であることを特徴とする、請求項に記載の低硫鋼の溶製方法。 2. The low-sulfur steel according to claim 1 , wherein the slag in the converter after completion of the decarburization refining has a phosphorus content of 2 mass% or less and a MnO content of 5 mass% or more. Melting method. 前記低硫鋼は、硫黄含有量が0.003質量%以下であり、マンガン含有量が0.6質量%以上であることを特徴とする、請求項1ないし請求項の何れか1つに記載の低硫鋼の溶製方法。 The low-sulfur steel has a sulfur content of 0.003% by mass or less and a manganese content of 0.6% by mass or more, according to any one of claims 1 to 3. The manufacturing method of the low-sulfur steel described.
JP2005238116A 2005-08-19 2005-08-19 Method for melting low-sulfur steel Active JP4742740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238116A JP4742740B2 (en) 2005-08-19 2005-08-19 Method for melting low-sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238116A JP4742740B2 (en) 2005-08-19 2005-08-19 Method for melting low-sulfur steel

Publications (2)

Publication Number Publication Date
JP2007051350A JP2007051350A (en) 2007-03-01
JP4742740B2 true JP4742740B2 (en) 2011-08-10

Family

ID=37915987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238116A Active JP4742740B2 (en) 2005-08-19 2005-08-19 Method for melting low-sulfur steel

Country Status (1)

Country Link
JP (1) JP4742740B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071277B (en) * 2010-12-23 2012-10-24 攀钢集团钢铁钒钛股份有限公司 Converter dephosphorizing and steelmaking method
KR101579011B1 (en) * 2011-08-12 2015-12-18 제이에프이 스틸 가부시키가이샤 Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP5861825B2 (en) * 2011-11-29 2016-02-16 Jfeスチール株式会社 Melting method of low carbon high manganese steel
CN103555886B (en) * 2013-11-11 2015-04-29 攀钢集团攀枝花钢铁研究院有限公司 Method for smelting ultralow-sulfur steel by using vanadium-containing molten iron
CN115305306B (en) * 2021-05-07 2023-11-24 河北龙凤山铸业有限公司 Control method for preparing 4N-grade high-purity iron with ultralow sulfur and ultralow nitrogen through fire purification
CN114657314B (en) * 2022-03-17 2023-07-04 山东钢铁集团日照有限公司 Converter charging method for smelting extremely-low sulfur steel at low cost
CN114622053B (en) * 2022-03-31 2023-01-24 宝武集团鄂城钢铁有限公司 Smelting method for efficient desulfurization at converter end point
CN115323249B (en) * 2022-08-02 2023-03-17 首钢京唐钢铁联合有限责任公司 Smelting method and container device for steel grade
CN115466821B (en) * 2022-08-25 2023-09-08 福建三宝钢铁有限公司 Free-cutting steel 20MnV6S electric furnace smelting process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217110A (en) * 1996-02-14 1997-08-19 Sumitomo Metal Ind Ltd Method for melting extra-low sulfur steel
JP2000212633A (en) * 1999-01-28 2000-08-02 Kawasaki Steel Corp Desulfurization of molten steel in ladle refining

Also Published As

Publication number Publication date
JP2007051350A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4742740B2 (en) Method for melting low-sulfur steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP4736466B2 (en) Method for producing high chromium molten steel
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
EP2663662B1 (en) Method of desulfurizing steel
JP6028755B2 (en) Method for melting low-sulfur steel
JP2011208170A (en) Method of producing manganese-containing low carbon steel
JP5983492B2 (en) Hot metal pretreatment method
JP5891826B2 (en) Desulfurization method for molten steel
JP6551626B2 (en) Method of melting high manganese steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP2008063610A (en) Method for producing molten steel
CN103225009A (en) Method for producing high-cleanness steel
JP2018188730A (en) Converter steelmaking process
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP5326310B2 (en) Method of melting high Mn ultra-low carbon steel
JP2013124385A (en) Method for making manganese-containing low-carbon steel
JP5315669B2 (en) Method for refining molten steel with RH vacuum degassing equipment
JP5157228B2 (en) Desulfurization method for molten steel
JP4957018B2 (en) Method for refining molten steel
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP7302749B2 (en) Molten iron dephosphorization method
JP3496545B2 (en) Hot metal desulfurization method
KR101363923B1 (en) Method for producing of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4742740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250