JP4736406B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4736406B2
JP4736406B2 JP2004335039A JP2004335039A JP4736406B2 JP 4736406 B2 JP4736406 B2 JP 4736406B2 JP 2004335039 A JP2004335039 A JP 2004335039A JP 2004335039 A JP2004335039 A JP 2004335039A JP 4736406 B2 JP4736406 B2 JP 4736406B2
Authority
JP
Japan
Prior art keywords
epoxy resin
general formula
resin
resin composition
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004335039A
Other languages
Japanese (ja)
Other versions
JP2006143865A (en
Inventor
大祐 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004335039A priority Critical patent/JP4736406B2/en
Publication of JP2006143865A publication Critical patent/JP2006143865A/en
Application granted granted Critical
Publication of JP4736406B2 publication Critical patent/JP4736406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置に関するものであり、特にプリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみが樹脂封止されたエリア実装型半導体装置に用いられるものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device, and in particular, a semiconductor element is mounted on one side of a printed wiring board or a metal lead frame, and only one side of the mounting surface side is resin-sealed. It is used for a stopped area mounting type semiconductor device.

近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。エリア実装型半導体装置としては、ボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)が代表的であるが、これらは従来のクワッドフラットパッケージ(以下、QFPという)、スモールアウトラインパッケージ(以下、SOPという)に代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。エリア実装型半導体装置の構造としては、ビスマレイミド・トリアジン(以下、BTという)樹脂/銅箔回路基板に代表される硬質回路基板あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち基板の片面のみが樹脂組成物等で成形・封止されている。また基板の素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する回路基板との接合を行う特徴を有している。更に素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。   In recent years, electronic devices have become smaller, lighter, and more functional, and as the integration of semiconductors has progressed year by year and the surface mounting of semiconductor devices has been promoted, new area-mounted semiconductor devices have been developed. It has been developed and is beginning to shift from conventional semiconductor devices. Typical area-mounting semiconductor devices are a ball grid array (hereinafter referred to as BGA) or a chip size package (hereinafter referred to as CSP) in pursuit of further miniaturization, but these are conventional quad flat packages (hereinafter referred to as CSP). The surface mount type semiconductor device represented by the small outline package (hereinafter referred to as SOP) has been developed to meet the demand for high pin count and high speed approaching the limit. The structure of the area mounting type semiconductor device includes a hard circuit board represented by bismaleimide triazine (hereinafter referred to as BT) resin / copper foil circuit board or a flexible circuit board represented by polyimide resin film / copper foil circuit board. A semiconductor element is mounted on one side, and only the element mounting surface, that is, one side of the substrate is molded and sealed with a resin composition or the like. In addition, solder balls are two-dimensionally formed in parallel on the surface opposite to the element mounting surface of the substrate, and are joined to a circuit substrate on which a semiconductor device is mounted. Further, as a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised.

これらエリア実装型半導体装置の構造は基板の素子搭載面のみを樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、リードフレーム等の金属基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため有機基板や金属基板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合あるいは樹脂組成物の成形・硬化時の硬化収縮による影響により、これらの半導体装置では成形直後から反りが発生しやすい。また、これらの半導体装置を実装する回路基板上に半田接合を行う場合、エポキシ樹脂組成物の硬化物の吸湿により半導体装置内部に存在する水分が高温で急激に気化することによる応力で半導体装置にクラックが発生する。さらに、近年、環境問題から従来よりも高融点の無鉛半田の使用が増加しており、この半田の適用により実装温度を従来よりも約20℃高くする必要があり、実装後の半導体装置の信頼性が現状より著しく低下する問題が生じている。このようなことからエポキシ樹脂組成物のレベルアップによる半導体装置の信頼性の向上要求が加速的に強くなってきており、樹脂の低粘度化と無機充填剤の高充填化が進んでいる。
また、成形時に低粘度で高流動性を維持するために、溶融粘度の低い樹脂の使用(例えば、特許文献1参照。)や、また無機充填材の配合量を高めるために無機充填剤をシランカップリング剤で表面処理する方法が知られている(例えば、特許文献2参照。)。しかしこれらは種々ある要求特性のいずれかのみを満足するものが多く、実装時の耐クラック性と低粘度化が両立できる手法は未だ見出されておらず、反りが小さく、耐クラック性に優れた樹脂を用いて、更に無機充填剤の配合量を高めて信頼性を満足させ、流動性と硬化性を損なわない更なる技術が求められていた。
These area-mounted semiconductor devices have a single-side sealing configuration in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface side is not sealed. Very rarely, a metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing resin of about several hundred μm to several mm on the device mounting surface. Since the layer is formed, it is substantially single-sided sealed. For this reason, in these semiconductor devices, due to the effects of thermal expansion / shrinkage mismatch between the organic substrate or metal substrate and the cured resin composition, or the effects of cure shrinkage during molding / curing of the resin composition, Warp is likely to occur. In addition, when solder bonding is performed on a circuit board on which these semiconductor devices are mounted, the moisture present in the semiconductor device due to moisture absorption of the cured product of the epoxy resin composition is applied to the semiconductor device due to stress caused by rapid vaporization at a high temperature. Cracks occur. Furthermore, in recent years, the use of lead-free solder having a higher melting point than ever is increasing due to environmental problems, and it is necessary to raise the mounting temperature by about 20 ° C. compared to the prior art by applying this solder. There is a problem in that the property is significantly lower than the current state. For these reasons, the demand for improving the reliability of semiconductor devices by increasing the level of the epoxy resin composition is acceleratingly increasing, and the lower viscosity of the resin and the higher filling of the inorganic filler are progressing.
In addition, in order to maintain a low viscosity and a high fluidity during molding, use of a resin having a low melt viscosity (see, for example, Patent Document 1), and an inorganic filler is used as a silane in order to increase the compounding amount of the inorganic filler. A method of surface treatment with a coupling agent is known (for example, see Patent Document 2). However, many of these satisfy only one of the various required characteristics, and no method has yet been found that can achieve both crack resistance and low viscosity during mounting, with low warpage and excellent crack resistance. Thus, there has been a demand for a further technique that satisfies the reliability by further increasing the blending amount of the inorganic filler, and does not impair the fluidity and curability.

特開平7−130919号公報(第2〜10頁)JP-A-7-130919 (pages 2 to 10) 特開平8−20673号公報(第2〜6頁)JP-A-8-20673 (pages 2-6)

本発明は、流動性が良好で、反りが小さく、耐半田クラック性に優れ、特にエリア実装型半導体封止用に適したエポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。   The present invention provides an epoxy resin composition having good fluidity, small warpage, excellent resistance to solder cracking, and particularly suitable for area mounting type semiconductor encapsulation, and a semiconductor device using the same. .

本発明は、
[1]基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみがエポキシ樹脂組成物を用いて封止されているエリア実装型半導体装置であって、エポキシ樹脂組成物が、(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、及び(D)無機充填剤を必須成分とし、(A)エポキシ樹脂が一般式(1)で表されるエポキシ樹脂を全エポキシ樹脂中に80重量%以上含み、(B)フェノール樹脂が一般式(2)で表されるフェノール樹脂および一般式(3)で表されるフェノール樹脂をともに全フェノール樹脂中に20重量%以上含み、(D)無機充填剤を全エポキシ樹脂組成物中に対し85重量%以上、89重量%以下含むものであることを特徴とするエリア実装型半導体装置、
である。
The present invention
[1] An area-mounting semiconductor device in which a semiconductor element is mounted on one side of a substrate, and substantially only one side of the substrate surface on which the semiconductor element is mounted is sealed with an epoxy resin composition. The epoxy resin composition comprises (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) an inorganic filler as essential components, and (A) the epoxy resin represented by the general formula (1) The epoxy resin represented is 80% by weight or more in the total epoxy resin, and (B) the phenol resin is represented by the general formula (2) and the phenol resin represented by the general formula (3). wherein in the resin 20 wt% or more, (D) an inorganic filler whole epoxy resin composition for an against 85% by weight or more, the area mounting type semiconductor device, characterized in that those comprising 89 wt% or less,
It is.

Figure 0004736406
(一般式(1)中、R1〜R8は、水素原子又は炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。)
Figure 0004736406
(In the general formula (1), R1 to R8 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other.)

Figure 0004736406
(一般式(2)中、R9、R10は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数。nは平均値で、1〜10の正数。)
Figure 0004736406
(In General Formula (2), R9 and R10 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 4, b is an integer of 0 to 4, and c is 0. An integer of ˜3, where n is an average value and a positive number of 1 to 10.)

Figure 0004736406
(一般式(3)中、R11は炭素数1〜4のアルキル基であり、互いに同一でも異なっていてもよい。dは0〜4の整数、eは0〜3の整数。kは平均値で、1〜10の正数。)
Figure 0004736406
(In the general formula (3), R11 is an alkyl group having 1 to 4 carbon atoms and may be the same or different. D is an integer of 0 to 4, e is an integer of 0 to 3. k is an average value. And a positive number from 1 to 10.)

本発明に従うと、無機充填材の高充填化と高流動性との両立が可能となり、特にエリア実装型の半導体装置においては、低反りと耐半田特性等の高信頼性との両立が可能となるという、顕著な効果が得られるものである。   According to the present invention, it is possible to achieve both high filling and high fluidity of the inorganic filler, and particularly in area mounting type semiconductor devices, both low warpage and high reliability such as solder resistance can be achieved. This is a remarkable effect.

本発明は、(A)一般式(1)で表されるビフェニル型エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、及び(D)無機充填剤を必須成分とし、(B)フェノール樹脂が一般式(2)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂および一般式(3)で表される多官能フェノール樹脂をともに全フェノール樹脂中に重量20%以上含み、(D)無機充填剤を全エポキシ樹脂組成物中に対し85重量%以上、93重量%以下含むことにより、流動性、が良好で、反りが小さく、更に耐半田クラック性に優れ、特にエリア実装型半導体封止用に適したエポキシ樹脂組成物が得られるものである。
以下、各成分について詳細に説明する。
The present invention comprises (A) a biphenyl type epoxy resin represented by the general formula (1), (B) a phenol resin, (C) a curing accelerator, and (D) an inorganic filler as essential components. The resin contains both a phenol aralkyl resin having a biphenylene skeleton represented by the general formula (2) and a polyfunctional phenol resin represented by the general formula (3) in a weight of 20% or more in the total phenol resin, and (D) inorganic filling Including 85 wt% or more and 93 wt% or less of the agent in the total epoxy resin composition, fluidity is good, warpage is small, solder crack resistance is excellent, especially for area mounting type semiconductor encapsulation An epoxy resin composition suitable for the above can be obtained.
Hereinafter, each component will be described in detail.

本発明で用いられる一般式(1)で示されるビフェニル型エポキシ樹脂は、低分子量のため溶融粘度が低く、流動性に優れ成形性が良好である。一般式(1)で示されるエポキシ樹脂は2官能であるため、これを用いたエポキシ樹脂組成物の硬化物は架橋密度が低く抑えられ高温での弾性率が低く、半田処理時等の応力緩和に適しており、成形性と耐半田クラック性とを向上できる。
一般式(1)のビフェニル型エポキシ樹脂の内では、作業性、実用性のバランスの取れた4,4’−ジグリシジルビフェニル、あるいは3,3’,5,5’−テトラメチル−4,4’−ジグリシジルビフェニル及びこの両者の溶融混合物等が好ましい。
Since the biphenyl type epoxy resin represented by the general formula (1) used in the present invention has a low molecular weight, the melt viscosity is low, the fluidity is excellent, and the moldability is good. Since the epoxy resin represented by the general formula (1) is bifunctional, a cured product of an epoxy resin composition using the epoxy resin has a low crosslinking density and a low elastic modulus at a high temperature, and relieves stress during soldering. Therefore, it is possible to improve moldability and solder crack resistance.
Among the biphenyl type epoxy resins represented by the general formula (1), 4,4′-diglycidylbiphenyl or 3,3 ′, 5,5′-tetramethyl-4,4 having a good balance between workability and practicality. '-Diglycidylbiphenyl and a molten mixture of both are preferred.

Figure 0004736406
(一般式(1)中、R1〜R8は、水素原子又は炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。)
Figure 0004736406
(In the general formula (1), R1 to R8 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other.)

本発明では、一般式(1)で表されるビフェニル型エポキシ樹脂を配合することによる特徴を損なわない範囲で、他のエポキシ樹脂を併用することができる。併用する場合、一般式(1)で表されるビフェニル型エポキシ樹脂は全エポキシ樹脂中の少なくとも30重量%以上が好ましく、より好ましくは50重量%以上、更に好ましくは80重量%以上である。下限値未満であれば、結晶性エポキシ樹脂の特徴である流動性が損なわれる恐れがある。併用可能なエポキシ樹脂としては特に限定はしないが、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。併用するエポキシ樹脂は、成形時の溶融粘度が非常に低い結晶性エポキシ樹脂を配合することによる特徴を損なわないよう、極力粘度の低いものを使用することが望ましい。   In this invention, another epoxy resin can be used together in the range which does not impair the characteristic by mix | blending the biphenyl type epoxy resin represented by General formula (1). When used together, the biphenyl type epoxy resin represented by the general formula (1) is preferably at least 30% by weight or more, more preferably 50% by weight or more, further preferably 80% by weight or more based on the total epoxy resin. If it is less than the lower limit, the fluidity characteristic of the crystalline epoxy resin may be impaired. The epoxy resin that can be used in combination is not particularly limited. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, alkyl Modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin and the like may be mentioned, and these may be used alone or in combination of two or more. As the epoxy resin used in combination, it is desirable to use an epoxy resin having a viscosity as low as possible so as not to impair the characteristics caused by blending a crystalline epoxy resin having a very low melt viscosity at the time of molding.

本発明で用いられる一般式(2)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂は、フェノール性水酸基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また、難燃性にも優れ、架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(2)のR9、R10は水素又は炭素数4以下のアルキル基、aは0〜4の整数、bは0〜4の整数、cは0〜3の整数、nは平均値で0〜10の数であるが、これらの内では硬化性の点から式(4)の樹脂等が好ましい。nが上記上限値を越えると樹脂の粘度が増大し、成形時の樹脂組成物の流動性が劣り、より一層の低吸湿化、低そり化のための無機充填材の高充填化が不可能となるので好ましくない。
The phenol aralkyl resin having a biphenylene skeleton represented by the general formula (2) used in the present invention has a hydrophobic and rigid biphenylene skeleton between phenolic hydroxyl groups, and an epoxy resin composition using the same The cured product has a low moisture absorption rate, a low elastic modulus in a high temperature range exceeding Tg, and excellent adhesion to a semiconductor element, an organic substrate, and a metal substrate. Moreover, it has the characteristics that it is excellent in flame retardancy and has high heat resistance for a low crosslinking density.
R9 and R10 in the general formula (2) are hydrogen or an alkyl group having 4 or less carbon atoms, a is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3, and n is 0 on average. Of these, the resin of formula (4) is preferred from the viewpoint of curability. If n exceeds the above upper limit, the viscosity of the resin increases, the fluidity of the resin composition at the time of molding is poor, and it is impossible to increase the inorganic filler to further reduce moisture absorption and warpage. Therefore, it is not preferable.

Figure 0004736406
(式(4)中、nは平均値で0〜10の正数。)
Figure 0004736406
(In Formula (4), n is an average value and a positive number of 0 to 10.)

本発明で用いられる一般式(2)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂は、全フェノール樹脂中に20重量%以上含まれることが必須である。下限値未満であれば高温時の低弾性化や低吸湿化及び接着性が十分に得られず、また耐燃性が低下する恐れがある。   It is essential that the phenol aralkyl resin having a biphenylene skeleton represented by the general formula (2) used in the present invention is contained in 20% by weight or more in the total phenol resin. If it is less than the lower limit, low elasticity at low temperatures, low moisture absorption and adhesion cannot be obtained sufficiently, and flame resistance may be lowered.

本発明で用いられる一般式(3)で表される多官能フェノール樹脂は、一分子中に3個以上の水酸基を有しており、これを用いたエポキシ樹脂組成物の硬化物は、汎用のフェノールノボラック樹脂を用いた場合に比べ、架橋密度が高く、高いTgとなる特徴があるため、硬化収縮量が少なく、成形後の半導体装置の反り量が小さくなる。一般式(3)で示される多官能フェノール樹脂の内では、硬化性の点から、式(5)で示される樹脂が好ましい。   The polyfunctional phenol resin represented by the general formula (3) used in the present invention has three or more hydroxyl groups in one molecule, and a cured product of an epoxy resin composition using the same is a general-purpose product. Compared to the case where a phenol novolac resin is used, the crosslink density is high and the Tg is high. Therefore, the amount of curing shrinkage is small, and the warpage of the semiconductor device after molding is small. Among the polyfunctional phenol resins represented by the general formula (3), the resin represented by the formula (5) is preferable from the viewpoint of curability.

Figure 0004736406
(式(5)中、kは平均値で、1〜10の正数。)
Figure 0004736406
(In formula (5), k is an average value and is a positive number of 1 to 10.)

本発明に用いられる一般式(3)で表される多官能フェノール樹脂は、全フェノール樹脂中に20重量%以上含まれることが必須である。下限値未満であれば、架橋密度が高くならず、硬化収縮量が増大し、成形後の半導体装置の反り量が大きくなり、好ましくない。   It is essential that the polyfunctional phenol resin represented by the general formula (3) used in the present invention is contained in an amount of 20% by weight or more in the total phenol resin. If it is less than the lower limit, the crosslinking density is not increased, the amount of cure shrinkage is increased, and the amount of warping of the semiconductor device after molding is increased, which is not preferable.

本発明では、一般式(2)および一般式(3)のフェノール樹脂を配合することによる特徴を損なわない範囲で、他のフェノール樹脂を併用することができる。併用する場合、一般式(2)および一般式(3)のフェノール樹脂の合計が全フェノール樹脂中の少なくとも40重量%以上である必須であり、60重量%以上が好ましく、80重量%以上がより好ましく、更に好ましくは100重量%である。上記下限値未満であれば、高温時の低弾性化や低吸湿化及び接着性が十分に得られず、また低反りの特徴も損なわれるおそれがあり、また耐燃性が低下する恐れがある。併用するフェノール樹脂は特に限定しないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格を有するフェノールアラルキル樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。無機充填材の高充填化のためには、エポキシ樹脂と同様に、低粘度のものが好ましい。
本発明に用いられる全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比としては、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。上記範囲を外れると、耐湿性、硬化性などが低下する恐れがあるので好ましくない。
In this invention, another phenol resin can be used together in the range which does not impair the characteristic by mix | blending the phenol resin of General formula (2) and General formula (3). When used together, it is essential that the total of the phenolic resins of the general formula (2) and the general formula (3) is at least 40% by weight or more in the total phenolic resin, preferably 60% by weight or more, more preferably 80% by weight or more. Preferably, it is 100 weight%. If it is less than the said lower limit, the low elasticity at the time of high temperature, low moisture absorption, and adhesiveness cannot fully be acquired, there exists a possibility that the characteristic of low curvature may be impaired, and there exists a possibility that flame resistance may fall. The phenol resin used in combination is not particularly limited, and examples thereof include phenol novolak resin, cresol novolak resin, naphthol aralkyl resin, triphenolmethane resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin having a phenylene skeleton, and the like. These may be used alone or in combination of two or more. In order to increase the filling of the inorganic filler, a material having a low viscosity is preferable like the epoxy resin.
The equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 to 2, and more preferably 0.7 to 1.5. If it is out of the above range, the moisture resistance, curability and the like may be lowered, which is not preferable.

本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであれば良く、一般に半導体封止用材料に用いられているものを使用することができ、特に限定するものではない。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは単独でも併用してもよい。   The curing accelerator used in the present invention is not particularly limited as long as it accelerates the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for semiconductor sealing materials can be used. Not what you want. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, and triphenyl Examples include organic phosphines such as phosphine and methyldiphenylphosphine, and tetrasubstituted phosphonium / tetrasubstituted borates such as tetraphenylphosphonium / tetraphenylborate and tetraphenylphosphonium / tetrabenzoate borate, which may be used alone or in combination. .

本発明に用いる、無機充填材としては、一般に半導体封止用材料に用いられているものを使用することができ、特に限定するものではない。例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、これらは単独でも併用してもよい。平均粒径としては、0.5〜30μm、最大粒径としては75μm以下が好ましい。流動性、硬化性等の成形性と耐半田性のバランスから、無機充填材全体の配合量としては、全エポキシ樹脂組成物中に85重量%以上、93重量%以下含有することが必須であり、より好ましくは87重量%以上、91重量%以下である。下限値未満だと、低吸湿性、低熱膨張性が得られず耐半田性が不十分となったり、反りが大きくなったりする恐れがあるので好ましくない。上限値を超えると流動性が低下し、成型時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じたりする恐れがあるので好ましくない。   As an inorganic filler used for this invention, what is generally used for the semiconductor sealing material can be used, It does not specifically limit. Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and these may be used alone or in combination. The average particle size is preferably 0.5 to 30 μm, and the maximum particle size is preferably 75 μm or less. From the balance of moldability such as fluidity and curability and solder resistance, it is essential that the total amount of the inorganic filler is 85% by weight or more and 93% by weight or less in the total epoxy resin composition. More preferably, it is 87 weight% or more and 91 weight% or less. If it is less than the lower limit, low hygroscopicity and low thermal expansibility cannot be obtained, solder resistance may be insufficient, and warpage may increase, which is not preferable. Exceeding the upper limit is not preferable because the fluidity is lowered, and there is a risk of incomplete filling during molding or inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity.

本発明に用いるエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合してもよい。更に、必要に応じて無機充填材をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接無機充填材に添加し、混合機を用いて処理する方法等がある。   In addition to the components (A) to (D), the epoxy resin composition used in the present invention includes inorganic ion exchanges such as brominated epoxy resins, antimony oxides, phosphorus compounds and other flame retardants, and bismuth oxide hydrates as necessary. Body, coupling agents such as γ-glycidoxypropyltrimethoxysilane, colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural wax, synthetic wax, higher fatty acid and metal salts thereof or You may mix | blend various additives, such as mold release agents, such as paraffin, and antioxidant, suitably. Further, if necessary, the inorganic filler may be used after being pretreated with a coupling agent, an epoxy resin or a phenol resin. As a treatment method, a method of removing the solvent after mixing with a solvent, There is a method of adding to an inorganic filler and processing using a mixer.

本発明に用いるエポキシ樹脂組成物は、(A)〜(D)成分、その他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー等の押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。特に本発明のエポキシ樹脂組成物は、エリア実装型半導体装置用に最適である。
The epoxy resin composition used in the present invention is obtained by mixing the components (A) to (D) and other additives at room temperature using a mixer, melt-kneading with a kneader such as an extruder such as a roll or kneader, and cooling. Obtained by post-grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. In particular, the epoxy resin composition of the present invention is optimal for area mounting type semiconductor devices.

以下、本発明を実施例にて具体的に説明するが、本発明はこれらの実施例により限定されるものではない。配合割合は重量部とする。
実施例1
エポキシ樹脂1:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000K、融点105℃、エポキシ当量185) 5.8重量部
フェノール樹脂1:ビフェニレン骨格を有するフェノ−ルアラルキル樹脂(明和化成(株)製、MEH−7851SS、軟化点65℃、水酸基当量203) 2.2重量部
フェノール樹脂2:多官能フェノール樹脂(明和化成(株)製、MEH−7500、軟化点110℃、水酸基当量97) 2.0重量部
トリフェニルホスフィン 0.1重量部
球状溶融シリカ(平均粒径30μm) 89.0重量部
γ−グリシジルプロピルトリメトキシシラン(以下、エポキシシランという)
0.3重量部
カルナバワックス 0.3重量部
カーボンブラック 0.3重量部
を、常温においてミキサーで混合し、70〜120℃で2本ロールにより混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The blending ratio is parts by weight.
Example 1
Epoxy resin 1: biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K, melting point 105 ° C., epoxy equivalent 185) 5.8 parts by weight phenol resin 1: phenol aralkyl resin having biphenylene skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851SS, softening point 65 ° C., hydroxyl equivalent 203) 2.2 parts by weight phenol resin 2: polyfunctional phenol resin (Maywa Kasei Co., Ltd., MEH-7500, softening point 110 ° C., hydroxyl equivalent 97) 2 0.0 part by weight Triphenylphosphine 0.1 part by weight Spherical fused silica (average particle size 30 μm) 89.0 parts by weight γ-glycidylpropyltrimethoxysilane (hereinafter referred to as epoxysilane)
0.3 part by weight Carnauba wax 0.3 part by weight Carbon black 0.3 part by weight is mixed with a mixer at room temperature, kneaded with two rolls at 70 to 120 ° C., cooled and pulverized to obtain an epoxy resin composition. Obtained. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.

金線変形率:トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒で、352pBGA(基板は厚さ0.56mmのビスマレイミド・トリアジン樹脂/ガラスクロス基板、半導体装置のサイズは30mm×30mm、厚さ1.17mm、半導体素子のサイズ15mm×15mm、厚さ0.35mm)を成形し、175℃、2時間で後硬化した。室温まで冷却後、軟X線透視装置で観察し、金線の変形率を(流れ量)/(金線長)の比率で表した。単位は%。   Deformation rate of wire: Using a transfer molding machine, a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 90 seconds, and 352 pBGA (the substrate is a bismaleimide / triazine resin / glass cloth substrate having a thickness of 0.56 mm, The size of the semiconductor device was 30 mm × 30 mm, the thickness was 1.17 mm, the size of the semiconductor element was 15 mm × 15 mm, and the thickness was 0.35 mm), and post-cured at 175 ° C. for 2 hours. After cooling to room temperature, it was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was expressed as a ratio of (flow rate) / (gold wire length). Units%.

パッケージ反り量:金線変形率の評価と同様にして成形した352pBGAパッケージを175℃、2時間で後硬化した。室温まで冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値をパッケージ反り量とした。単位はμm。   Package warpage: A 352 pBGA package molded in the same manner as the evaluation of the gold wire deformation rate was post-cured at 175 ° C. for 2 hours. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the package gate, and the largest value of the displacement difference was taken as the amount of package warpage. The unit is μm.

耐半田性:前記金線変形率の評価と同様にして352pBGAを成形し、175℃、2時間で後硬化してサンプルを得た。各10個のサンプルを別々に60℃、相対湿度60%の環境下で120時間と、85℃、相対湿度60%の環境下で168時間処理し、その後IRリフロ−(260℃)で10秒間処理した。超音波探傷装置を用いて観察し、内部クラック及び各種界面剥離の有無を調べた。不良パッケージの個数がn個であるとき、n/10と表示する。   Solder resistance: 352 pBGA was molded in the same manner as in the evaluation of the gold wire deformation rate, and post-cured at 175 ° C. for 2 hours to obtain a sample. Each of the 10 samples was separately treated in an environment of 60 ° C. and 60% relative humidity for 120 hours and in an environment of 85 ° C. and 60% relative humidity for 168 hours, and then IR reflow (260 ° C.) for 10 seconds. Processed. Observation was carried out using an ultrasonic flaw detector, and the presence or absence of internal cracks and various interface peelings was examined. When the number of defective packages is n, n / 10 is displayed.

実施例2〜4、6〜8参考例5、9、比較例1〜6
表1及び表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1及び表2に示す。実施例1以外で用いた成分について、以下に示す。
エポキシ樹脂2:オルソクレゾ−ルノボラック型エポキシ樹脂(軟化点55℃、エポキシ当量196)
フェノール樹脂3:フェノ−ルノボラック樹脂(軟化点80℃、水酸基当量105)
Examples 2 to 4 , 6 to 8 , Reference Examples 5 and 9, Comparative Examples 1 to 6
According to the composition of Table 1 and Table 2, an epoxy resin composition was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2. The components used in other than Example 1 are shown below.
Epoxy resin 2: Orthocresol-novolak type epoxy resin (softening point 55 ° C., epoxy equivalent 196)
Phenol resin 3: phenol novolak resin (softening point 80 ° C., hydroxyl group equivalent 105)

Figure 0004736406
Figure 0004736406

Figure 0004736406
Figure 0004736406

本発明により得られる半導体封止用エポキシ樹脂は、流動性が良好なため金線変形に優れ、また、反り量が小さく、耐半田クラック性に優れている。そのため、プリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみを樹脂封止されたいわゆるエリア実装型半導体装置に対して、本発明により得られる半導体封止用エポキシ樹脂を適用することで、その信頼性を向上させることが可能である。   The epoxy resin for semiconductor encapsulation obtained by the present invention is excellent in gold wire deformation because of its good fluidity, has a small amount of warpage, and is excellent in solder crack resistance. Therefore, a semiconductor obtained by the present invention is a semiconductor device mounted on one side of a printed wiring board or a metal lead frame, and a so-called area mounting type semiconductor device in which only one side of the mounting side is resin-sealed. By applying an epoxy resin for sealing, the reliability can be improved.

Claims (1)

基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみがエポキシ樹脂組成物を用いて封止されているエリア実装型半導体装置であって、エポキシ樹脂組成物が、(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、及び(D)無機充填剤を必須成分とし、(A)エポキシ樹脂が一般式(1)で表されるエポキシ樹脂を全エポキシ樹脂中に80重量%以上含み、(B)フェノール樹脂が一般式(2)で表されるフェノール樹脂および一般式(3)で表されるフェノール樹脂をともに全フェノール樹脂中に20重量%以上含み、(D)無機充填剤を全エポキシ樹脂組成物中に対し85重量%以上、89重量%以下含むものであることを特徴とするエリア実装型半導体装置
Figure 0004736406
(一般式(1)中、R1〜R8は、水素原子又は炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。)
Figure 0004736406
(一般式(2)中、R9、R10は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数。nは平均値で、1〜10の正数。)
Figure 0004736406
(一般式(3)中、R11は炭素数1〜4のアルキル基であり、互いに同一でも異なっていてもよい。dは0〜4の整数、eは0〜3の整数。kは平均値で、1〜10の正数。)
An area mounting type semiconductor device in which a semiconductor element is mounted on one side of a substrate, and substantially only one side of the substrate surface on which the semiconductor element is mounted is sealed with an epoxy resin composition, The composition comprises (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) an inorganic filler as essential components, and (A) the epoxy resin is represented by the general formula (1). The epoxy resin is contained in all epoxy resins in an amount of 80% by weight or more, and (B) the phenol resin represented by the general formula (2) and the phenol resin represented by the general formula (3) are both included in the total phenol resin. comprises 20 wt% or more, (D) an inorganic filler whole epoxy resin composition for an against 85% by weight or more, the area mounting type semiconductor device, characterized in that those comprising 89 wt% or less.
Figure 0004736406
(In the general formula (1), R1 to R8 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other.)
Figure 0004736406
(In General Formula (2), R9 and R10 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 4, b is an integer of 0 to 4, and c is 0. An integer of ˜3, where n is an average value and a positive number of 1 to 10.)
Figure 0004736406
(In the general formula (3), R11 is an alkyl group having 1 to 4 carbon atoms and may be the same or different. D is an integer of 0 to 4, e is an integer of 0 to 3. k is an average value. And a positive number from 1 to 10.)
JP2004335039A 2004-11-18 2004-11-18 Epoxy resin composition and semiconductor device Active JP4736406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335039A JP4736406B2 (en) 2004-11-18 2004-11-18 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335039A JP4736406B2 (en) 2004-11-18 2004-11-18 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2006143865A JP2006143865A (en) 2006-06-08
JP4736406B2 true JP4736406B2 (en) 2011-07-27

Family

ID=36623933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335039A Active JP4736406B2 (en) 2004-11-18 2004-11-18 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4736406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930767B2 (en) * 2006-08-21 2012-05-16 日立化成工業株式会社 Epoxy resin composition for sealing and electronic component device
WO2011061906A1 (en) * 2009-11-19 2011-05-26 住友ベークライト株式会社 Semiconductor device
CN102633990A (en) * 2012-04-05 2012-08-15 广东生益科技股份有限公司 Epoxy resin composition, prepreg made of epoxy resin composition and copper-coated laminate made of epoxy resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286328A (en) * 2002-01-28 2003-10-10 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor and single side sealed type semiconductor device
JP4366972B2 (en) * 2003-03-31 2009-11-18 日立化成工業株式会社 Epoxy resin molding material for sealing and electronic component device
JP4432381B2 (en) * 2003-07-09 2010-03-17 日立化成工業株式会社 Epoxy resin molding material for sealing and electronic component device

Also Published As

Publication number Publication date
JP2006143865A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4736432B2 (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP2006152185A (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP4770024B2 (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP2006176555A (en) Epoxy resin composition and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2006225464A (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP4543638B2 (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP4470264B2 (en) Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device
JP4645147B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3