JP4736044B2 - 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム - Google Patents

誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム Download PDF

Info

Publication number
JP4736044B2
JP4736044B2 JP2006027976A JP2006027976A JP4736044B2 JP 4736044 B2 JP4736044 B2 JP 4736044B2 JP 2006027976 A JP2006027976 A JP 2006027976A JP 2006027976 A JP2006027976 A JP 2006027976A JP 4736044 B2 JP4736044 B2 JP 4736044B2
Authority
JP
Japan
Prior art keywords
path
data
decoding
signal
error correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006027976A
Other languages
English (en)
Other versions
JP2007208870A (ja
Inventor
愛一郎 都竹
Original Assignee
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 名城大学 filed Critical 学校法人 名城大学
Priority to JP2006027976A priority Critical patent/JP4736044B2/ja
Publication of JP2007208870A publication Critical patent/JP2007208870A/ja
Application granted granted Critical
Publication of JP4736044B2 publication Critical patent/JP4736044B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

本発明は、誤り訂正符号を用いた信号の復号を行う誤り訂正装置、誤り訂正方法および誤り訂正プログラムに関する。
デジタル信号においては、伝送時の雑音等によって信号に混入した誤りを訂正することができる。また、誤り訂正の能力を向上する技術として、畳み込み符号、リードソロモン符号等の各種符号やインターリーブなど種々の技術が知られている(例えば、特許文献1参照)。
特開平8−32632号公報
しかしながら、従来の技術における誤り訂正の能力には限界があり、さらなる誤り訂正の能力を向上が望まれていた。
すなわち、誤り訂正能力を超える雑音が混入した場合、信号系列は適切に復号されないので、信号系列が画像等の情報を示すのであればその情報が乱れるし、信号系列がプログラムなど誤りの許されない情報を示すのであれば、信号の伝送が成り立たない。
さらに、雑音等による誤り発生率は信号の送信電力や伝送路の環境等に影響されるが、低い誤り訂正能力を前提にすると、信号の伝送時に必要とされる電力が大きくなり、また、信号を伝送可能なエリアが狭くなってしまう。従って、高画質画像の伝送や高い信頼性を確保した伝送、省電力での伝送、広範囲に渡る伝送など、高品質のサービスを提供するためには、高い誤り訂正能力が必要になる。
本発明は、このような点に鑑みてなされたものであり、高い誤り訂正能力を備えた誤り訂正技術を提供することを目的とする。
上記目的を達成するため、本発明においては、マルチキャリア伝送方式において、キャリア毎の通信品質を把握し、通信品質が所定の品質を超える場合には、そのキャリアで伝送されたデータを正しいデータであると見なす。すなわち、一般の無線通信において、通信品質が良くなるほど送信データの誤り率は小さくなるので、通信品質が良好な場合にはノイズが含まれていたとしてもその影響は小さく、受信した信号を復調したデータがそのまま正しい場合が多い。そこで、所定の品質を超えるキャリアによって伝送されたデータを正しいとすることにより、煩雑な復号処理を経ることなく正しいデータを得ることができる。
このような構成においては、符号化されたデータを復号する際の復号アルゴリズムと無関係にビットの値を推定することができる。従って、仮に当該復号アルゴリズムによって訂正できないなど、復号アルゴリズムのみの処理では誤りを出力してしまうビットが存在し得るとしても、そのビットが本発明による推定によって正しいとされたデータに相当するとき、ほとんどの場合には、その値を正しい値に拘束しながら復号を行うことができる。この結果、復号時の誤り訂正率を向上することが可能である。
なお、信号取得手段においては、符号化されたデータをマルチキャリア伝送方式で送信した信号を取得することができればよく、アンテナによってこのデータを取得する構成等を採用可能である。ここで、データの符号化形式は限定されず、畳み込み符号やブロック符号など、種々の符号を採用可能である。また、本発明では、キャリア毎にその通信品質を評価することができればよいので、複数のキャリアにてデータを伝送するマルチキャリア伝送方式である限りにおいて、種々の方式を採用可能である。むろん、各キャリアに割り当てられるビット数も限定されず、PSKやQAMなど種々の変調方式を採用可能である。
また、本発明における復調手段は、取得した信号が示すデータを特定することができればよく、送信された信号の変調方式に応じた方式によって復調を行えばよい。例えば、OFDM変調方式によって信号を送信するのであれば、既定の周波数の発振器による検波回路やガードインターバルの除去回路、フーリエ変換回路等を経てキャリア毎の復調を行う回路等を本発明にかかる復調手段とすればよい。
さらに、通信品質取得手段においては、キャリア毎に通信品質に対応した値を取得し、この値に基づいて通信品質を評価できるようにすればよい。通信品質に対応した値としては、種々の値を採用可能であり、例えば、パイロット信号の既定値と受信した信号に含まれるパイロット信号との差分や比等に対応したパラメータやC/N(Carrier to Noise Ratio)を示すパラメータを取得すればよい。
なお、特定の周波数、特定の時間におけるキャリアにのみパイロット信号が含まれるのであれば、このキャリアにおけるパイロット信号に基づいて他のキャリアにおける通信品質を評価することが可能である。例えば、複数のパイロット信号から特定のキャリアについて通信品質に対応した値を取得し、他のキャリアについては補間演算を行うことによって通信品質に対応した値を取得してもよく、種々の構成を採用可能である。
さらに、復号手段においては、前記符号化されたデータについて所定の復号アルゴリズムを適用して復号する。このとき、上述のようにして正しい値であると見なされたデータについては復号アルゴリズムと無関係に、復調されたビットそのままを復号結果として取得できればよい。このための構成は、種々の構成を採用可能であり、例えば、所定の復号アルゴリズムによる復号を実施する回路に対して、前記正しい値であると見なされたデータは変動させないように拘束条件を課す回路を追加する構成等を採用可能である。
なお、通信品質が所定の品質を超えているか否かの判断は、予め決められた判断基準に基づいて行えばよく、例えば、通信品質を示すパラメータに対して予め閾値を決定しておく構成等を採用可能である。また、この閾値等の判断基準は、キャリアの通信品質とその誤り率との相関を統計的に取得するなどして把握すればよく、この相関に基づいて、所望の誤り率となるような通信品質を判断基準とすればよい。
また、前記符号化されたデータは、2重の符号化がなされたデータであっても良い。例えば、畳み込み符号とブロック符号とを含むデータを本発明の適用対象とすることもできるし、ターボ符号を本発明の適用対象とすることもでき、種々の符号を本発明の適用対象とすることができる。これらの場合、復号手段においてはこれらの符号を復号化する構成とする。
さらに、本発明を畳み込み符号によって符号化されたデータに適用すると、当該畳み込み符号の復号アルゴリズムで訂正できない誤りを訂正できる確率を向上することができて好ましい。すなわち、畳み込み符号の復号を行うビタビ復号では、特定の長さのビット列に対応した複数のパスを選択肢とし、その中から生き残りパスを選択して復号を行うが、復号に先だって正しいと見なすべきビットが特定されていれば、予め選択肢としてのパスの数を制限することができる。キャリアの通信品質に基づいて正しいと見なすデータを特定することができれば、前記制限されたパスの中に正しいデータに対応したパスが含まれる確率が極めて高くなる。従って、誤り訂正率を向上することができる。
また、当該ビタビ復号を行う際の構成例として、通信品質が所定の品質を超える場合のみならず、通信品質が所定の品質を下回るキャリアについてはそのデータをパスの選択に利用しない構成を採用しても良い。すなわち、キャリアの通信品質が低下すると復調されたデータが誤りである可能性が大きくなるので、復調されたデータが許容範囲を超えた誤り率となるような所定の通信品質を決めておき、この品質を下回る場合にそのデータをパスの推定に使用しないようにすれば、ビタビ復号における復号結果が誤りである可能性を小さくすることができる。
むろん、ここでいう所定の品質は誤り率が許容範囲であるか否かを判断するための判断基準であるので、正しいと見なすべきデータを特定するための判断基準となる上述の所定の品質とは異なる。例えば、正しいと見なすべきデータを特定するための所定の品質として閾値Aを設定し、誤り率が許容範囲であるか否かを判断するための所定の品質として閾値B(A>B)を設定する構成等を採用可能である。
さらに、符号化されたデータに対してインターリーブを行う構成について本発明を適用しても良い。この構成においては、前記復号手段において当該インターリーブに対応した復号を行う必要があるため、前記符号化されたデータを復号する前に、デインターリーブを行う。この構成によれば、正しいと見なすべきデータや誤りであるとしてパスの選択に利用しないデータが連続しないようにすることができる。従って、復号化されるデータを相当数のビット列でみたときに、局所的に誤り訂正率が向上する構成ではなく、ビット列全体として誤り訂正率を向上することができる。
むろん、以上の装置は、受信装置等、種々の装置に対して適用することが可能であるし、上述した誤り訂正は、本願特有の手順で処理を進めていくことから、その手順を特徴とした方法の発明としても実現可能である。また、その手順をコンピュータに実現させるためのプログラムの発明としても実現可能である。さらに、誤り訂正装置、方法、プログラムは他の装置、方法、プログラムの一部として実現されていてもよいし、複数の装置、方法、プログラムの一部を組み合わせることによって実現されていてもよく、種々の態様を採用可能である。むろん、前記プログラムを記録した記録媒体として本発明を実現することも可能である。
以下、下記の順序に従って本発明の実施の形態について説明する。
(1)受信装置の構成:
(2)復号部の構成:
(3)復号器の動作:
(4)他の実施形態:
(1)受信装置の構成:
図1は、本発明の一実施形態にかかる誤り訂正装置を含む受信装置10を示すブロック図である。受信装置10は、アンテナ11と復調部12とC/N測定部13と復号部20とデータ処理部14とを備えており、アンテナ11を介して無線電波を受信する。以下に示す実施形態において、受信装置10はデジタル放送の受信装置であり、畳み込み符号によって符号化されたデータをOFDM(Orthogonal Frequency Division Multiplexing)伝送方式によって多重した放送電波を受信する。なお、本実施形態においてこの電波の変調方式は64QAM(Quadrature Amplitude Modulation)である。
すなわち、復調部12は、アンテナ11を介してOFDM変調された放送電波を受信し、ガードインターバルの除去やフーリエ変換等を実施しながらキャリア毎にデジタル信号を復調する。この結果、復調部12は、前記符号化されたデータの受信結果を情報系列として出力する。
また、C/N測定部13は、復調部12が復調の過程で生成する信号(本実施形態ではFFTによって生成された信号)を取得し、各キャリアにおけるC/Nに対応したパラメータを取得する。このパラメータは、復調部12にてキャリアの復調を行う際の補正等に使用されるとともに、各キャリアのデータを正しいと見なすべきか否かの決定および誤りと見なすべきか否かの決定に使用される。
本実施形態においては、各キャリアのC/Nに対応したパラメータをパイロット信号のC/Nに対応したパラメータから算出している。図2は、ある時間において受信した信号のC/Nに対応したパラメータを示す図であり、縦軸がC/Nに対応したパラメータ、横軸が周波数である。なお、デジタル放送の電波においては、予めパイロット信号を送信する周波数と時間とが決められており、決められた周波数、時間毎に送信信号がパイロット信号になっている。また、図2においてはパイロット信号に対応した周波数をPとして示している。
パイロット信号は振幅などの波形が既知の信号であり、決められた周波数、時間毎に出力されるため、実際に受信したパイロット信号と既知の波形(基準値と呼ぶ)とを比較することによってこのパイロット信号を伝送したキャリアについてC/Nに対応したパラメータを取得することができる。また、パイロット信号以外のデータは、当該パイロット信号に対して周波数と時間とが異なるキャリアによって伝送されるが、複数のパイロット信号に基づいて補間演算を行うことによってキャリア毎のC/Nに対応したパラメータを取得することができる。図2はこのようにしてキャリア毎に算出したC/Nの例をある時間における複数の周波数について示したものである。
一般に、C/Nは通信品質に対応し、C/Nが良くなるにつれて誤りの発生率は小さくなるので、大半のデータが正しいデータとなるC/Nを特定すれば復号を行う以前に正しいと見なして良いデータを決めることができる。また、誤りの発生率が高くなって、復号を行っても正しいデータを生成できる可能性が小さいC/Nを特定すれば復号を行う際に参照すべきではない、誤りと見なすべきデータを特定することができる。
例えば、64QAMによって符号化率3/4の畳み込み符号を送信した場合、C/Nが約25dBでビット誤り率が1/10000〜1/100000、C/Nが約12dBでビット誤り率が1/10程度であることが知られている。従って、誤り率1/10000〜1/100000であれば信頼するということにするのであれば、C/Nが25dB以上の場合にそのキャリアで伝送されたデータを正しいと見なすことができる。また、許容できない誤り率を1/10とすれば、C/Nが12dB以下の場合にそのキャリアで伝送されたデータを誤りと見なすことができる。
本実施形態においては、このようなC/Nと誤り率との相関を利用しており、正しいと見なすべきキャリアのC/Nに対応したパラメータとして閾値A、誤りと見なすべきキャリアのC/Nに対応したパラメータとして閾値Bを予め設定しておく。すなわち、各キャリアのC/Nに対応したパラメータが閾値Aを超えているときには、畳み込み符号の復号を行う際にそのデータを正しいと見なし、各キャリアのC/Nに対応したパラメータが閾値Bを下回るときには、畳み込み符号の復号を行う際にそのデータを誤りと見なして参照しないこととしている。なお、C/Nに対応したパラメータが閾値Aと閾値Bとの間である場合には通常のビタビ復号によって復号を行う。
C/N測定部13は、キャリア毎にC/Nに対応したパラメータを算出し、そのパラメータを示す値を出力する回路である。当該C/Nに対応したパラメータは通信品質に対応した値であればよく、C/Nそのものであっても良いし、パイロット信号の基準値と実際に受信した信号との比や差分の絶対値や2乗等であってもよく種々の構成を採用可能である。
(2)復号部の構成:
一方、本実施形態において復調部12によって復調されたデータは、復号部20に入力されて復号される。この復号部20においては、前記畳み込み符号を復号化する回路を備えており、前記復調部12が各キャリアについて復調した情報系列を取得し、ビタビアルゴリズムによってこの情報系列を復号する。但し、本実施形態においては、当該ビタビアルゴリズムにおける情報系列の推定を行う前に、このアルゴリズムとは別個に正しいと見なすべきデータを決定する。
このために、復号部20は、削減パス決定部21とブランチメトリック算出部22と生き残りパスメモリ23とACS回路24とパスメトリック記憶部25とトレースバック部26とを備えており、削減パス決定部21は、C/N測定部13が出力するC/Nに対応したパラメータと上述の閾値A,Bとを比較し、適宜ビタビアルゴリズムを修正するため、正しいと見なすべきビットと誤りと見なすべきビットとを示すデータをACS回路24に出力する。
ブランチメトリック算出部22は、復調部12が出力する情報系列を取得し、ビタビアルゴリズムにおけるパス選択のために各状態に到達するパス毎のメトリックを算出する。すなわち、ビタビアルゴリズムは、畳み込み符号を生成する際の符号器における遅延素子の状態数に対応した状態を考え、各状態を通るパスのうち、最も確からしいパスを推定することによって符号語の復号を行うアルゴリズムである。
本実施形態においては、パスを特定する際に復調部12から出力された情報系列と各パスに対応する符号器の出力値とのハミング距離を計算し、その累計(パスメトリック)が最小になるパスを選択することによってパスを推定する。そこで、ブランチメトリック算出部22は、このパスを推定するために、各時刻における各状態に達するパス毎のメトリック(ブランチメトリック)を算出する。
図3は、ビタビアルゴリズムにおける推定を簡略化して説明するトレリス線図であり、同図においては、4つの状態(状態0〜状態3)によって符号器の状態を特定できる畳み込み符号の復号化を示している。また、同図においては、各状態を白丸で示して縦方向に並べるとともに横方向を時間軸として示している。
同図3においては時刻tn-1〜tn+2における各状態を示しており、実線は符号器への入力が"0"である場合、破線は符号器への入力が"1"である場合に対応したパスである。また、各実線および破線の脇に示す2ビットのデータは、各実線および破線のパスに対応した符号器の出力を示している。従って、パス毎にこの符号器の出力値とその時刻に対応した情報系列とを比較すれば、パス毎のブランチメトリックを算出することができる。
例えば、時刻tn-1から時刻tnの各状態に移る際の情報系列に対応するデータ(受信符号)が"11"である場合、状態0に達するパスは2つ存在し、状態0から状態0に達するパスに対応した符号器の出力値は"00"であるため、この場合のハミング距離は"2"である。従って、このパスのブランチメトリックは"2"である。また、状態2から状態0に達するパスに対応した符号器の出力値は"11"であるため、この場合のハミング距離は"0"である。従って、このパスのブランチメトリックは"0"である。なお、図3においてはこのハミング距離の値を白丸の中に示すとともにパスの脇に示している。
図3に示す例において時刻tn-1から時刻tnの各状態に移るパスは、状態0〜状態3の各状態についてそれぞれ2個ずつ存在するので、この例においては、ブランチメトリック算出部22によって8個のパスについてブランチメトリックが算出される。ACS(Add Compare Select)回路24は、ブランチメトリック算出部22の出力データとパスメトリック記憶部25の記憶内容とに基づいて各状態におけるパスを選択する回路である。
すなわち、時刻tnにおいてパスメトリック記憶部25は、時刻tn-1以前のパスであって、選択し得るパス(生き残りパスと呼ぶ)についてブランチメトリックを累計した値(パスメトリック)を記憶している。従って、ACS回路24は、パスメトリック記憶部25に記憶されていた各パスについてのパスメトリックと、ブランチメトリック算出部22が出力するブランチメトリックとをパス毎に加算することによって時刻tnにおける各状態に達するパスのパスメトリックを取得することができる。
各パスのパスメトリックが得られたら、各パスのパスメトリックを比較し、各状態についてパスメトリックの小さいパスを選択することで、より確からしいパスを選択することができる。なお、各状態におけるパスのパスメトリックが同値の場合には、任意のパスを選択するなど種々の方法でパスを選択すればよい。ACS回路24はこの比較と選択を行って、選択されたパスを示すデータを生き残りパスメモリ23に出力する。
生き残りパスメモリ23は、当該生き残りパスを示す情報を記憶するメモリである。当該生き残りパスは、各状態について1つであるが、ある時刻において選択し得る状態が複数個存在する場合には各状態について1つのパスが存在し、パスは未定である。トレースバック部26は、生き残りパスメモリ23に記憶されたパスから確からしいパスを決定し、畳み込み符号の復号データを出力する回路である。本実施形態において、トレースバック部26はある時刻までのパスが一つに限定された場合にその時刻までのパスが推定されたとし、そのパスに対応した復号データを出力する。
すなわち、トレースバック部26は、生き残りパスメモリ23に記憶されている生き残りパスを逆に(負の時間方向)たどっていく。このとき、上述のACS回路24によって生き残りパスが選択されたことに起因して、ある時刻(<tn)までのパスが一つのみに限定される場合がある。そこで、この場合には、その時刻までのパスは確かであるとしてそのパスに対応した復号データを出力する。
なお、以上の例においては、時刻tn-1にて状態0〜状態3の全てを取り得ることとして説明したが、時刻tn-1までの処理によって取り得る状態が限定されているのであれば、取り得る状態からのパスのみについて検討すればよい。また、図3は簡略化した図面であり、状態数はより多数であっても良いし、各状態からのパスは2つのみに限定されないし、トレースバック処理も上述の処理に限定されることはなく、種々の手法を採用可能である。
本実施形態における復号部20は、以上の回路構成に加えて上述の削減パス決定部21を備えており、ACS回路24が当該削減パス決定部21の処理に基づいてパスを制限することによって、キャリア毎の通信品質に応じた畳み込み符号の復号を実施する。すなわち、削減パス決定部21は、正しいと見なすべきビットを示すデータを出力するので、ACS回路24では、このデータに対応したパスのみを選択肢として復号を行う。また、削減パス決定部21は、誤りと見なすべきビットを示すデータを出力するので、ACS回路24では、復調されたデータをパスの選択に反映させずにこのデータに対応したビットの復号を行う。
なお、ここでは、削減パス決定部21が出力するデータに基づいて、ACS回路24がパスの選択を行うように構成すればよく、ブランチメトリック算出部22における出力と同期させ、前記正しいと見なすべきビットのデータに対応しないパスを削除するように構成しても良いし、このパス以外のブランチメトリックを大きくしても良く、種々の処理を実施可能である。また、前記誤りと見なすべきビットのデータについて復号する際には、全てのパスのブランチメトリックを同じ値として処理するなど、種々の構成を採用可能である。
(3)復号器の動作:
いずれにしても、以上の回路によって畳み込み符号を復号化することにより、復号化における誤り訂正率を向上することができ、以下、その動作および誤り訂正の例を説明する。図4は、誤り訂正の例を示す図であり、図5は、復号部20における処理を示すフローチャートである。図4においては、状態0〜状態3のパスを時刻Tn-3〜時刻Tn+3まで示している。この例において、時刻Tn-2から時刻Tn+2で実際に受信した符号は"0000101001"であるとし、これらの中で最初の2ビット"00"および最後の2ビット"01"は誤りであり、3番目〜8番目までのビット"001010"は正しいビットであるとする。また、当該3番目〜8番目までのビットは良好な通信品質で伝送されたビットであるとする。
C/N測定部13においては、復調部12から取得した信号に基づいてパイロット信号を伝送したキャリアのC/Nに対応したパラメータを取得し(ステップS100)、補間演算を行ってパイロット信号以外のデータを伝送したキャリアについてC/Nに対応したパラメータを取得する(ステップS110)。これらのC/Nに対応したパラメータは逐次削減パス決定部21に出力される。
当該削減パス決定部21は、C/Nに対応したパラメータと予め設定された閾値A,Bとを比較してその判断結果をACS回路24に出力する。具体的には、まず、あるキャリアを判別対象とし、そのC/Nに対応するパラメータが閾値Bより小さいか否かを判別する(ステップS120)。同ステップS120にてC/Nに対応するパラメータが閾値Bより小さいと判別されたときには、このキャリアによって伝送されたデータが誤りであるとし、削減パス決定部21は誤りと見なしたビットを示すデータをACS回路24に出力する(ステップS130)。
前記ステップS120にてC/Nに対応するパラメータが閾値Bより小さいと判別されないとき、削減パス決定部21は、さらに、このキャリアのC/Nに対応するパラメータが閾値Aより大きいか否かを判別する(ステップS140)。同ステップS140にてC/Nに対応するパラメータが閾値Aより大きいと判別されたときには、このキャリアによって伝送されたデータが正しいとし、削減パス決定部21は正しいと見なしたビットを示すデータをACS回路24に出力する(ステップS150)。
前記ステップS140にてC/Nに対応するパラメータが閾値Aより大きいと判別されないときには、このキャリアについては通信品質に基づいてデータの正誤を決定することなく、通常の復号処理を行うことになる。そこで、削減パス決定部21は、以上の処理によってあるキャリアについてC/Nに基づく判別を終えると、C/Nの判別対象とすべきキャリアを変更して(ステップS160)、ステップS120以降の処理を繰り返す。
一方、復号部20においては、復調部12から入力される情報系列に対する復号処理を実施している。すなわち、ブランチメトリック算出部22は、復調部12から情報系列(受信符号)の入力を受け(ステップS200)、特定の時刻におけるパスのブランチメトリックを算出する(ステップS210)。例えば、時刻Tnについて処理しているときには、時刻Tn-1から時刻Tnに至るパスのブランチメトリックを算出する。なお、ここで、ブランチメトリックの算出を行う際、一般的には各パスに対応した出力値と受信符号とのハミング距離を計算するが、この受信符号が上述のステップS130にて誤りと見なしたビットに相当するときには、受信データに基づくブランチメトリックの算出を行わない。
例えば、ステップS130にて誤りと見なしたビットにおいては、その時刻における全てのブランチメトリックを同じ値にする。この結果、誤り率が極めて高いデータに基づいて復号を実施することが無く、復号結果において誤り訂正率をむやみに低くすることを防止することができる。なお、本実施形態における符号は畳み込み符号であることから、受信データに基づくブランチメトリックの算出を行わなかったときでも他の時刻におけるデータの復号に伴ってデータが正確に復号されることは充分にあり得る。
ブランチメトリック算出部22がブランチメトリックを算出すると、その値を示すデータがACS回路24に出力され、ACS回路24はそれ以前の時刻のパスメトリックとステップS210にて算出したブランチメトリックとを加算する(ステップS220)。例えば、時刻Tnが処理対象であるとき、時刻Tn-1までのパスメトリックと時刻Tn-1から時刻Tnまでのブランチメトリックとを加算する。そして、当該ACS回路24は、各状態において選択肢とされ得るパスを生き残りパスとするための処理を行う(ステップS230)。
なお、ここで、生き残りパスを選択する際、一般的には各パスのパスメトリックを比較し、各状態についてパスメトリックの小さいパスを選択するが、処理対象となっている受信符号が、上述のステップS150にて正しいと見なしたビットに相当するときには、パスの選択肢を制限した後にパスの選択を行う。すなわち、ステップS140,S150の処理によって正しいと見なしたビットについては、その値が特定されているので、この値に対応したパスのみを選択肢とし、その他のパスは削除される。
例えば、図4に示す例において、時刻Tn-1から時刻Tまでのパスは、一般的には8個である(図3参照)。しかし、受信符号が"00"であり、これらのビットを正しいと見なすとき、パスの選択肢としてはこれらのビットに対応したパス、すなわち、出力値が"00"となるパス(状態2から状態1へのパスおよび状態0から状態0へのパスの2つ)しかあり得ない。
そこで、ACS回路24は各状態におけるパスを選択する際に前記2つのパスを示すデータのみを出力し、他のパスを示すデータは出力しない。この結果、ステップS230の終了時点で、生き残りパスメモリ23に時刻Tn-1から時刻Tまでのパスとして前記2つのパスのみ記録されていることになる。トレースバック部26は、生き残りパスメモリ23を参照して上述のトレースバック処理を実施し、生き残りパスが1本になっている場合にはその生き残りパスに対応した復号データを出力するし、生き残りパスが1本になっていない場合には、上述のステップS200以降の処理を繰り返すことになる(ステップS240,S250)。
トレースバック部26によって出力されたデータはデータ処理部14に入力され、所定の処理が実施される。ここでは、復号化されたデータを利用したあらゆるデータ処理を想定することができ、例えば、受信装置10がデジタル放送映像の視聴装置の場合であれば、復号化されたデータに基づいて画面上に画像を表示するためのデータ処理を行い、図示しない表示画面に当該画像を表示する。むろん、受信装置10はデジタル放送映像の視聴装置に限定されず、デジタル放送映像の記録装置や携帯端末など、各種の装置が本発明の受信装置10となり得る。
以上のように、本実施形態では、C/Nに基づいて正しいと見なすビットを決定しているので、ビタビアルゴリズムによる復号化に際して、パスの選択肢を限定することができ、しかもその選択肢に対応したデータが正しい可能性は極めて高い。従って、正しいと見なすビットを特定しない場合と比較して、復号によって正しい結果が得られる可能性は極めて高くなる。
なお、上述の例は、64QAMであってかつインターリーブを行っていない例であるため、あるキャリアによって伝送されたデータは連続した6ビットのデータになる。このことから、上述の例においては、正しいパスを選択することが極めて容易になり、当該正しいパスの選択に伴って、その前後の時刻に対応するデータも高い確率で正確に復号することが可能になる。
すなわち、図4に示す例においては、時刻Tnから時刻Tn+1に対応した受信符号"10"と時刻Tn+1から時刻Tn+2に対応した受信符号"10"も前記時刻Tn-1から時刻Tに対応した受信符号"00"とともに(計6ビット)正しいと見なされる例を示しており、この場合、これらの時刻におけるパスも2つに限定される。このようにパスが限定されると、各時刻における生き残りパスはそれぞれ2つであり、各生き残りパスに矛盾のないパスは図4に示すパスPn-1,Pn,Pn+1を含むパスしかあり得ない。
従って、この場合には時刻Tn+2における生き残りパスの選択でパスPn-1,Pn,Pn+1を含むパスのみを生き残りパスとする。この結果、時刻Tn-1にてあり得る状態は状態2のみとなり、時刻Tn-2から時刻Tn-1に対応したパスは、状態1から状態2に至るパスと状態3から状態2に至るパス(図4ではこれらのパスを実線で示している)のみしかあり得ないことがわかる。これらのパスに対応した出力値はそれぞれ"01","10"であるため、いずれが生き残りパスとされた場合であっても時刻Tn-2から時刻Tn-1に対応した受信符号"00"と異なる値となる。従って、この受信符号が誤りであるとき、その値は必ず他の値に復号され、誤りが訂正される確率が高くなる。
同様に、時刻Tn+2から時刻Tn+3に対応したパスは出力値"11","00"に対応したパスに限定されるので、受信符号"01"は必ず他の値に復号され、この受信符号が誤りであるときに誤りが訂正される確率が高くなる。以上のように、本発明においては、誤り訂正能力を向上することができる。従って、特定の電力で電波を送信しているときにサービスの提供を受けられるエリアを広くすることができる。また、サービスエリアの広さが一定であることを前提にする場合は、電波の送信に必要とされる電力を小さくすることができる。
(4)他の実施形態:
上述の実施形態は本発明の一実施形態であり、本発明の実施形態は前記の実施形態に限定されない。すなわち、キャリア毎の通信品質に応じて正しいと見なすビットを特定し、この特定結果に基づいて符号化データを復号化することができる限りにおいて、種々の構成を採用可能である。例えば、符号化データに対してインターリーブを行ってデータを送信する構成に本発明を適用しても良い。すなわち、データの送信側において、畳み込み符号による符号化を行った後にそのデータをインターリーブしてから送信する場合、受信装置では復調後のデータに対してまずデインターリーブを行い、当該デインターリーブ後のデータに対して復号処理を行う。
この構成において、変調方式が多値変調の場合は、デインターリーブ前の連続する2以上のビット毎に正しいと見なすビット(あるいは誤りと見なすビット)が特定される。しかし、デインターリーブを行うとその順番が変動するので、復号対象となる連続したビット列において隣り合うビットは異なるキャリアによって伝送されたデータとなる。従って、あるキャリアのC/Nに基づいて正しいと見なされたビットが連続することはなく、伝送されたデータにおけるビット列において離れて位置することになり、データ列の全体に渡って誤り訂正率を向上することができる。なお、上述のインターリーブを行わない構成においては、伝送されたデータ内で局所的に誤り訂正率を向上することが可能であるため、伝送路の性質に応じて好ましい構成を選択すればよい。
さらに、本発明において受信するデータは2つ以上の符号によって符号化されていてもよい。例えば、デジタル放送の放送電波においては、ブロック符号(リードソロモン符号)と畳み込み符号との2つの符号によって符号化されたデータを送信するので、この電波を受信する際にキャリア毎のC/Nに応じて正しいと見なすビットを決めておき、畳み込み符号あるいはブロック符号の復号に際して当該正しいと見なしたビットの値を反映した復号を行う構成とすることもできる。また、トレリス符号化変調がなされた信号を扱う機器に対して本発明を適用することも可能である。
さらに、上述の実施形態はデジタル放送の受信装置であったが、本発明はキャリア毎に通信品質を定義することが可能なあらゆる装置に適用することができる。例えば、信号はデジタル放送の信号に限らず、無線通信の信号であっても良いし、有線の信号など、無線放送以外の送信信号を受信する受信装置であってもよい。また、符号化されたデータを記録するハードディスクドライブやリムーバブル記録装置であっても良い。
さらに、上述の実施形態においては、各回路をLSIによって構成しており、高速性やリアルタイム性が要求される場合に好ましい実施形態となっていた。しかし、高速性やリアルタイム性が要求されないのであれば、汎用的なプロセッサによる処理で上述の処理を実施することとしても良い。
さらに、トレースバック部26においては、トレースバック処理によって生き残りパスが1本になった時点で逐次復号データを出力していたが、むろん、情報系列の全てについての生き残りパスの選択が終了した後に一括してトレースバック処理を行っても良い。また、トレースバック処理に限られず、他の部分の処理としても種々の処理手順を採用可能である。例えば、ブランチメトリック算出部22においてはハミング距離によってメトリックを計算していたが、ブランチメトリックは通信路の性質に応じて決定することが可能であり、ある状態から他の状態に到達する際の条件付き確率、例えば、ユークリッド距離の自乗値等を計算することとしても良い。
また、上述の実施形態は、ブランチメトリックやパスメトリックを整数値のハミング距離によって算出する硬判定を採用していたが、本発明を軟判定の復号に適用してもよい。例えば、シンボルに対応した振幅および位相とパスのユークリッド距離によってブランチメトリックやパスメトリックを算出する構成を採用可能である。さらに、上述のトレリス線図においては、各状態から他の状態に達する2本のパスが存在したが、むろん、各状態に対応するパスの数は2本に限られず、より多数のパスを考えても良い。
さらに、本発明による処理に付随して他の処理を行うことも可能である。例えば、復調部12にてパイロット信号を平均化する際に、パイロット信号に基づいて伝送路の特性変化を推定し、伝送路の特性変化が大きいときには平均化処理を行わなずにAFC等の補正処理を行い、伝送路の特性変化が小さいときには平均化処理を行って当該補正処理を行う構成を採用可能である。この構成によれば、伝送路の特性が安定している場合に雑音の影響を効果的に軽減し、伝送路の特性が安定していない場合にはその特性変化に追従した補正処理を行うことができる。
本発明の一実施形態に係る誤り訂正装置を示すブロック図である。 キャリア毎のC/Nを示す図である。 トレリス線図である。 復号化の例を示す図である。 復号化を示すフローチャートである。
符号の説明
10…受信装置
11…アンテナ
12…復調部
13…C/N測定部
14…データ処理部
20…復号部
21…削減パス決定部
22…ブランチメトリック算出部
23…生き残りパスメモリ
24…ACS回路
25…パスメトリック記憶部
26…トレースバック部

Claims (7)

  1. 畳み込み符号によって符号化されたデータをマルチキャリア伝送方式で送信した信号を取得する信号取得手段と、
    前記取得した信号を復調する復調手段と、
    前記取得した信号に基づいてキャリア毎の通信品質に対応した値を取得する通信品質取得手段と、
    前記通信品質が所定の品質を超えるキャリアによって伝送されたデータは正しい値であるとするとともに、ビタビ復号における情報系列に対応したパスの選択に際して前記正しい値であるとしたデータに対応したパスを選択して畳み込み符号を復号する復号手段とを備えることを特徴とする誤り訂正装置。
  2. 前記通信品質取得手段は、前記取得した信号に含まれるパイロット信号とその基準値とに基づいてパイロット信号のC/Nを取得してキャリア毎のC/Nを推定することを特徴とする請求項1に記載の誤り訂正装置。
  3. 前記ビタビ復号部は、前記通信品質が所定の品質を下回るキャリアによって伝送されたデータをパスの選択に利用しないことを特徴とする請求項に記載の誤り訂正装置。
  4. 前記信号は、符号化されたデータをインターリーブしてから送信されており、
    前記復号手段は、デインターリーブした後に復号を行うことを特徴とする請求項1〜請求項のいずれかに記載の誤り訂正装置。
  5. 前記請求項1〜請求項のいずれかに記載の誤り訂正装置を備えた無線信号の受信装置。
  6. 信号に含まれる誤りを訂正する誤り訂正方法であって、
    畳み込み符号によって符号化されたデータをマルチキャリア伝送方式で送信した信号を取得する信号取得工程と、
    前記取得した信号を復調する復調工程と、
    前記取得した信号に基づいてキャリア毎の通信品質に対応した値を取得する通信品質取得工程と、
    前記通信品質が所定の品質を超えるキャリアによって伝送されたデータは正しい値であるとするとともに、ビタビ復号における情報系列に対応したパスの選択に際して前記正しい値であるとしたデータに対応したパスを選択して畳み込み符号を復号する復号工程と
    を含むことを特徴とする誤り訂正方法。
  7. 信号に含まれる誤りを訂正する誤り訂正プログラムであって、
    畳み込み符号によって符号化されたデータをマルチキャリア伝送方式で送信した信号を取得する信号取得機能と、
    前記取得した信号を復調する復調機能と、
    前記取得した信号に基づいてキャリア毎の通信品質に対応した値を取得する通信品質取得機能と、
    前記通信品質が所定の品質を超えるキャリアによって伝送されたデータは正しい値であるとするとともに、ビタビ復号における情報系列に対応したパスの選択に際して前記正しい値であるとしたデータに対応したパスを選択して畳み込み符号を復号する復号機能とをコンピュータに実現させることを特徴とする誤り訂正プログラム。
JP2006027976A 2006-02-06 2006-02-06 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム Expired - Fee Related JP4736044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027976A JP4736044B2 (ja) 2006-02-06 2006-02-06 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027976A JP4736044B2 (ja) 2006-02-06 2006-02-06 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム

Publications (2)

Publication Number Publication Date
JP2007208870A JP2007208870A (ja) 2007-08-16
JP4736044B2 true JP4736044B2 (ja) 2011-07-27

Family

ID=38487889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027976A Expired - Fee Related JP4736044B2 (ja) 2006-02-06 2006-02-06 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム

Country Status (1)

Country Link
JP (1) JP4736044B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025642A (ja) * 1988-06-24 1990-01-10 Nippon Telegr & Teleph Corp <Ntt> 誤り訂正方式
JPH05130081A (ja) * 1991-11-08 1993-05-25 Toshiba Corp 通信システム及び通信システムにおける誤り訂正方式
JPH06232871A (ja) * 1993-01-29 1994-08-19 Toshiba Corp 無線通信システム
JPH07143098A (ja) * 1993-11-16 1995-06-02 Toshiba Corp Ofdm送信装置及びofdm受信装置
JPH07283740A (ja) * 1994-04-05 1995-10-27 Sony Corp 送信装置、受信装置、および伝送システム
JPH0818461A (ja) * 1994-06-25 1996-01-19 Nec Corp 最尤誤り訂正方式及び訂正装置
JPH10308727A (ja) * 1997-05-09 1998-11-17 Kokusai Electric Co Ltd 無線受信装置及び無線通信システム
JP2000013353A (ja) * 1998-06-18 2000-01-14 Nippon Hoso Kyokai <Nhk> Ofdm信号復調装置
JP2002164946A (ja) * 2000-11-27 2002-06-07 Hitachi Kokusai Electric Inc 復号回路
JP2005295190A (ja) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd パケット再送判定方法、その装置、無線通信装置及びパケット通信システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025642A (ja) * 1988-06-24 1990-01-10 Nippon Telegr & Teleph Corp <Ntt> 誤り訂正方式
JPH05130081A (ja) * 1991-11-08 1993-05-25 Toshiba Corp 通信システム及び通信システムにおける誤り訂正方式
JPH06232871A (ja) * 1993-01-29 1994-08-19 Toshiba Corp 無線通信システム
JPH07143098A (ja) * 1993-11-16 1995-06-02 Toshiba Corp Ofdm送信装置及びofdm受信装置
JPH07283740A (ja) * 1994-04-05 1995-10-27 Sony Corp 送信装置、受信装置、および伝送システム
JPH0818461A (ja) * 1994-06-25 1996-01-19 Nec Corp 最尤誤り訂正方式及び訂正装置
JPH10308727A (ja) * 1997-05-09 1998-11-17 Kokusai Electric Co Ltd 無線受信装置及び無線通信システム
JP2000013353A (ja) * 1998-06-18 2000-01-14 Nippon Hoso Kyokai <Nhk> Ofdm信号復調装置
JP2002164946A (ja) * 2000-11-27 2002-06-07 Hitachi Kokusai Electric Inc 復号回路
JP2005295190A (ja) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd パケット再送判定方法、その装置、無線通信装置及びパケット通信システム

Also Published As

Publication number Publication date
JP2007208870A (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4245602B2 (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体
US7694206B2 (en) Reception method, reception apparatus, and program for decoding an error correction code using soft-decision value
US20080034274A1 (en) Decoder and decoding method in consideration of input message characteristics
US7603591B2 (en) Apparatus selectively adopting different determining criteria in erasure marking procedure when performing decoding process, and method thereof
JP5030891B2 (ja) 雑音電力推定装置、受信装置、雑音電力推定方法、及び、受信方法
US20090327836A1 (en) Decoding method for convolution code and decoding device
JP4380407B2 (ja) ブランチメトリック演算方法
JP4823160B2 (ja) 受信装置
EP2005599A2 (en) Improved method for decoding digital data in a frequency hopping communication system
JP4729726B2 (ja) 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム
US7106810B2 (en) Method and apparatus for a demodulator circuit
JP4729727B2 (ja) 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム
US8286051B2 (en) Method and apparatus for burst error detection and digital communication device
JP4736044B2 (ja) 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム
JP2000315957A (ja) 復号装置
JP4984281B2 (ja) 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム
JP4000067B2 (ja) 受信方法および装置
US20070165749A1 (en) Method and system for an improved cellular diversity receiver
JP4541291B2 (ja) デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体
JP4283721B2 (ja) 復号装置及び復号方法
US9118480B2 (en) Frame quality estimation during viterbi decoding
JP5444038B2 (ja) 受信装置
JP2008042918A (ja) 無線チャネル品質を測定する方法及び関連する装置
JP3356329B2 (ja) 受信装置
JP4918059B2 (ja) 受信装置およびビタビ復号方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Ref document number: 4736044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees