JP4734738B2 - Brick stacking method near the tap - Google Patents

Brick stacking method near the tap Download PDF

Info

Publication number
JP4734738B2
JP4734738B2 JP2001067075A JP2001067075A JP4734738B2 JP 4734738 B2 JP4734738 B2 JP 4734738B2 JP 2001067075 A JP2001067075 A JP 2001067075A JP 2001067075 A JP2001067075 A JP 2001067075A JP 4734738 B2 JP4734738 B2 JP 4734738B2
Authority
JP
Japan
Prior art keywords
furnace
tap
slag
protrusion
simulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001067075A
Other languages
Japanese (ja)
Other versions
JP2002266009A (en
Inventor
茂行 廣瀬
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001067075A priority Critical patent/JP4734738B2/en
Publication of JP2002266009A publication Critical patent/JP2002266009A/en
Application granted granted Critical
Publication of JP4734738B2 publication Critical patent/JP4734738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉炉底部の出銑口近傍のれんが積み方法に関する。
【0002】
【従来の技術】
高炉の操業においては、炉頂から鉱石等の鉄源およびコークス等の炭材を交互に装入する。さらに炉下部に配設された羽口から熱風を送風することによってコークスを燃焼させ、その燃焼熱によって鉱石が溶融し、溶銑とスラグが生成する。溶銑およびスラグは、炉床に一旦貯溜された後、炉下部の出銑口から炉外に排出される。
【0003】
高炉鉄皮の内面には耐火れんがが施工されているが、炉下部の耐火れんがは炉床に貯溜された溶銑やスラグに接触するので侵食されやすい。特に出銑口近傍の耐火れんがは、出銑の際に溶銑およびスラグが流動するので、著しく損耗する。また、複数の出銑口のうち、一部の出銑口が閉塞されて溶銑やスラグが排出されにくくなると、他の健全な出銑口から排出される溶銑およびスラグの流量が増加するので、耐火れんがが局所的に損耗する。
【0004】
炉下部の耐火れんがが損耗すると、耐火れんがの張り替えを行なうために高炉の操業を停止しなければならない。そこで、出銑回数を減少したり、出銑口からの排出量をバランスさせて、出銑口近傍の耐火れんがの寿命を延長する技術が種々提案されている。
たとえば特開2000-63918号公報には、高炉の操業方法が開示されている。この方法は、出銑孔の炉内側開口部の高さを変えて、出銑孔の鉛直方向の角度を変更することによって、出銑量や出銑時間を調整して出銑回数を低減しようとするものである。しかしこの方法では、出銑孔と出銑樋との位置関係から、出銑孔の水平方向の位置を変更できない。その結果、出銑孔近傍の耐火れんがの損耗を抑制できないので、寿命の大幅な延長は達成できない。
【0005】
特開平9-87713 号公報には、高炉の操業方法が開示されている。この方法は、出銑口の深度を調整することによって、溶銑やスラグの流動不良部を解消しようとするものである。しかしこの方法では、複数の出銑口からの出銑のバランスを維持して局所的な損耗を防止できるが、出銑口近傍の耐火れんがの損耗を抑制できないので、寿命の大幅な延長は達成できない。
【0006】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、溶銑およびスラグを複数の出銑口からバランス良く安定して排出し、出銑回数を減少させ、かつ出銑口近傍の耐火れんがの寿命を延長できる耐火れんがの施工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、出銑口近傍の耐火れんがの施工(以下、れんが積みという)の形状と出銑口からの溶銑やスラグの流出との関係を調査した。その結果、
(1) 出銑口近傍の耐火れんがの寿命を延長するためには、出銑口近傍のれんが積み部の高炉半径方向の厚さを増加して、れんが積み部の炉内側に突出部を形成するのが効果的である、
(2) れんが積み部に突出部を形成すると、突出部の炉内側面における出銑口の開口部が炉芯に充填されたコークスに接近するため、溶銑やスラグが出銑口から流出しにくくなる、
(3) 突出部の炉内側面における出銑口の開口部の炉内側にコークスの存在しない空間を形成することによって、溶銑やスラグを出銑口から容易に流出させることができる
ことを見出した。
【0008】
本発明は、高炉の炉下部に配設される出銑口の近傍のれんが積み方法において、出銑口近傍のれんが積み部を高炉の内側に突出させて突出部を設け、突出部の炉内側面下端を高炉の炉床面に一致させ、突出部の炉内側面における出銑口の開口部の中心と突出部の炉内側面上端との炉高さ方向距離が 0.5〜1.2 mの範囲内を満足する出銑口近傍のれんが積み方法である。
【0009】
【発明の実施の形態】
まず、本発明をなすに到った実験について説明する。図2は、実験に用いたプラスチック製の実験容器3の断面図である。実験容器3は、高炉の炉下部を模した形状とし、実験容器3底部の内側(2ケ所)に模擬突出部7B,7Sを設け、その模擬突出部7B,7S下端を実験容器3の床面に一致させた。さらに、模擬突出部7B,7Sに模擬出銑口6を、それぞれ1ケ所ずつ配設した。模擬突出部7B,7Sの内側面における模擬出銑口6開口部の中心と模擬突出部7B,7Sの内側面の上端との距離LB ,LS は異なる値(LB >LS )とした。つまり模擬突出部7B側をLB =50mmとし、模擬突出部7S側をLS =20mmとした。なお、模擬突出部7B,7Sの内側面における模擬出銑口6開口部の中心と実験容器5の底床との距離は同一である。
【0010】
図2に示す実験容器3を用いた実験においてはコークスを模してプラスチックビーズ8を使用し、図3(a) に示すように実験容器3内にプラスチックビーズ8を充填した。次に、実験容器3外側面における模擬出銑口6開口部を閉塞し、溶銑を模してフロン9を実験容器3内に上部から注入した。このとき、図3(b) に示すように、フロン9は実験容器3の床面から250mm まで貯溜し、プラスチックビーズ8はその浮力で浮上した。その結果、プラスチックビーズ8は、実験容器3床面および模擬突出部7S上面から浮き上がり、フロン9が充満する領域が形成された。
【0011】
次いで、模擬出銑口6からフロン9を排出すると、プラスチックビーズ8は沈降した。このとき、図3(c) に示すように、と実験容器3床面の上側にはプラスチックビーズ8が存在しない空間が形成された。また模擬突出部7S側の模擬出銑口6開口部の内側にも、プラスチックビーズ8が存在しない空間が形成された。しかし模擬突出部7B側の模擬出銑口6開口部の内側は、プラスチックビーズ8が充填された状態になった。
【0012】
高炉の操業においては、炉芯部にコークスが充填される。このコークスの充填層では、溶銑やスラグの通液抵抗が大きい。したがって、炉芯部に充填されたコークスが、炉下部のれんが積み部の炉内側面における出銑口開口部に接近している場合は、溶銑およびスラグが流出しにくくなる。たとえば、図3(c) に例示した模擬突出部7B側のような状態になると、溶銑やスラグが出銑口から排出されにくくなる。しかし、図3(c) に例示した模擬突出部7S側のような状態になると、溶銑やスラグは出銑口から容易に排出されるのである。
【0013】
この実験の結果によると、出銑口3近傍の耐火れんが2の寿命を延長するために、図1に示すような突出部2aを設ける場合には、突出部2aの炉内側面における出銑口3開口部の中心と突出部2aの炉内側面の上端との距離Lが、溶銑やスラグの排出に多大な及ぼすことが分かる。
図1は、本発明を適用する高炉の炉底部を示す部分断面図であり、(a) は出銑口3近傍の縦断面図、(b) はA−A視の横断面図である。
【0014】
鉄皮1の炉内側には耐火れんが2のれんが積み部が形成され、出銑口3近傍には突出部2aが形成される。突出部2aの高炉半径方向の厚さは、突出部2aを外れた部分のれんが積み部の厚さより厚い。こうして、出銑口3近傍の耐火れんが2の寿命を延長する。
突出部2aの炉内側面下端は高炉の炉床面に一致させる。高炉の炉床面と突出部2aの炉内側面下端との間に間隙がある場合は、その間隙に溶銑やスラグが侵入して、耐火れんが2が損耗する。したがって、突出部2aの炉内側面下端を高炉の炉床面に一致させて、溶銑やスラグの侵入を防止する必要がある。
【0015】
しかし突出部2aを形成することによって、突出部2aの炉内側面における出銑口3開口部が炉芯部に充填されたコークスに接近するため、溶銑およびスラグが流出しにくくなる。
すなわち、突出部2aの炉内側面における出銑口3開口部の中心と突出部2aの炉内側面上端との距離をL(m)とすると、L(m)が大きい場合には通液抵抗が大きくなるので、溶銑やスラグが排出されにくい。その結果、安定した溶銑,スラグ流が得られず、出銑量が変動して出銑回数も増加する。その結果、出銑口3近傍の耐火れんが2が著しく損耗する。
【0016】
一方、L(m)が小さい場合には通液抵抗が小さくなるので、溶銑やスラグが安定して排出される。その結果、出銑回数を減らし、出銑口3近傍の耐火れんが2の寿命を延長することができる。
そこで図1に示すように、出銑口3近傍に突出部2aを設け、距離L(m)を変化させてれんが積みを行なった。こうして高炉を操業し、距離L(m)と1日あたりの出銑回数(回)との関係を調査した。その結果を図4に示す。
【0017】
図4から明らかなように、距離Lが 1.2mを超えると、出銑回数(回/日)は増加し、ばらつきも大きくなる。距離Lが 1.2m以下では、出銑回数(回/日)は減少し、しかも安定して操業できる。
一方、距離Lが 0.5m未満では、高炉の操業中に出銑口3が崩壊して、溶銑およびスラグの排出が不安定になる。したがって、距離Lは 0.5〜1.2 mの範囲内を満足する必要がある。
【0018】
【実施例】
図1に示すように、出銑口3近傍に突出部2aを設け、突出部2aの炉内側面における出銑口3開口部の中心と突出部2aの炉内側面上端との距離Lを 0.7mとして高炉を操業した。これを発明例とする。
次に、出銑口3近傍の耐火れんが2が損耗して張り替える際に、距離Lを 1.7mとした。これを比較例とする。
【0019】
発明例と比較例について、出銑回数を比較した。出銑回数を30%低減することができた。
【0020】
【発明の効果】
本発明では、溶銑およびスラグを複数の出銑口からバランス良く安定して排出し、出銑回数を減少させ、かつ出銑口近傍の耐火物の寿命を延長できる。
【図面の簡単な説明】
【図1】本発明を適用する高炉の炉下部を示す部分断面図であり、(a) は出銑口近傍の縦断面図、(b) A−A視の横断面図である。
【図2】実験容器の断面図である。
【図3】実験容器内のプラスチックビーズの挙動を示す断面図であり、 (a)はプラスチックビーズを充填した状態を示す断面図、(b) はフロンを注入した状態を示す断面図、(c) フロンを排出した状態を示す断面図である。
【図4】距離Lと出銑回数との関係を示すグラフである。
【符号の説明】
1 鉄皮
2 耐火れんが
2a 突出部
3 出銑口
4 羽口
5 実験容器
6 模擬出銑口
7B 模擬突出部
7S 模擬突出部
8 プラスチックビーズ
9 フロン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brick stacking method in the vicinity of a tap outlet at the bottom of a blast furnace furnace.
[0002]
[Prior art]
In the operation of a blast furnace, iron sources such as ore and carbon materials such as coke are alternately charged from the top of the furnace. Furthermore, coke is combusted by blowing hot air from the tuyeres arranged in the lower part of the furnace, and the ore is melted by the combustion heat to produce hot metal and slag. Hot metal and slag are once stored in the hearth and then discharged out of the furnace through a spout at the bottom of the furnace.
[0003]
Although the refractory brick is applied to the inner surface of the blast furnace iron skin, the refractory brick at the bottom of the furnace is easily eroded because it contacts the hot metal and slag stored in the hearth. In particular, the refractory bricks near the spout are worn out because the hot metal and slag flow during the spout. Also, if some of the outlets are blocked and it becomes difficult to discharge hot metal and slag, the flow rate of hot metal and slag discharged from other healthy outlets will increase. Refractory bricks wear locally.
[0004]
When the refractory brick at the bottom of the furnace is worn, the operation of the blast furnace must be stopped to replace the refractory brick. Thus, various techniques have been proposed to extend the life of the refractory bricks near the taps by reducing the number of taps or balancing the discharge from the taps.
For example, JP 2000-63918 A discloses a method for operating a blast furnace. In this method, by changing the height of the opening inside the furnace of the tap hole and changing the vertical angle of the tap hole, let's adjust the tap amount and the tap time to reduce the number of taps. It is what. However, with this method, the horizontal position of the tap hole cannot be changed due to the positional relationship between the tap hole and the tap hole. As a result, since the wear of the refractory brick near the tap hole cannot be suppressed, a significant extension of the life cannot be achieved.
[0005]
JP-A-9-87713 discloses a method for operating a blast furnace. This method is intended to eliminate molten iron and slag flow defects by adjusting the depth of the tap outlet. However, this method can maintain the balance of the outputs from multiple outlets and prevent local wear, but it cannot suppress the wear of refractory bricks near the outlets, thus achieving a significant increase in life. Can not.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, discharges hot metal and slag from a plurality of taps stably in a balanced manner, reduces the number of taps, and extends the life of refractory bricks near the taps. It aims at providing the construction method of a refractory brick.
[0007]
[Means for Solving the Problems]
The present inventors investigated the relationship between the shape of construction of refractory bricks (hereinafter referred to as brick stacking) near the tap and the outflow of hot metal and slag from the tap. as a result,
(1) In order to extend the life of refractory bricks near the taphole, the thickness of the brick stack near the taphole is increased in the blast furnace radial direction, and a protruding part is formed inside the furnace of the brick stack. Effective to do,
(2) When the protruding part is formed in the brick stacking part, the opening of the tap outlet on the inner surface of the furnace approaches the coke filled in the furnace core, so hot metal and slag are less likely to flow out of the tap outlet. Become,
(3) It was found that hot metal and slag can be easily discharged from the tap outlet by forming a space without coke in the furnace inside of the opening of the tap outlet on the inner surface of the furnace.
[0008]
The present invention provides a method for stacking bricks in the vicinity of a tap outlet disposed in the lower part of a blast furnace. The lower end of the side is matched with the hearth surface of the blast furnace, and the distance in the furnace height direction between the center of the opening of the tap outlet on the inner surface of the protrusion and the upper end of the inner surface of the protrusion is within the range of 0.5 to 1.2 m. This is a method of stacking bricks near the tap.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, the experiment that led to the present invention will be described. FIG. 2 is a cross-sectional view of the plastic experimental container 3 used in the experiment. The experimental vessel 3 has a shape simulating the lower part of the blast furnace, and is provided with simulated projections 7B and 7S inside the bottom of the experimental vessel 3 (two locations), and the lower ends of the simulated projections 7B and 7S are the floor of the experimental vessel 3 Matched. Furthermore, one simulated spout 6 is provided in each of the simulated protrusions 7B and 7S. The distances L B and L S between the center of the simulated spout 6 opening on the inner surface of the simulated protrusions 7B and 7S and the upper end of the inner surface of the simulated protrusions 7B and 7S are different values (L B > L S ). did. That is, L B = 50 mm on the simulated protrusion 7B side, and L S = 20 mm on the simulated protrusion 7S side. It should be noted that the distance between the center of the simulated spout 6 opening on the inner surface of the simulated protrusions 7B and 7S and the bottom floor of the experimental container 5 is the same.
[0010]
In the experiment using the experimental container 3 shown in FIG. 2, plastic beads 8 were used to simulate coke, and the plastic beads 8 were filled into the experimental container 3 as shown in FIG. 3 (a). Next, the opening of the simulated spout 6 on the outer surface of the experimental container 3 was closed, and chlorofluorocarbon 9 was injected into the experimental container 3 from the top in a manner similar to hot metal. At this time, as shown in FIG. 3 (b), the Freon 9 was stored up to 250 mm from the floor surface of the experimental container 3, and the plastic beads 8 floated by the buoyancy. As a result, the plastic beads 8 were lifted from the floor surface of the experimental container 3 and the upper surface of the simulated protrusion 7S, and a region filled with Freon 9 was formed.
[0011]
Next, when the chlorofluorocarbon 9 was discharged from the simulated spout 6, the plastic beads 8 settled. At this time, as shown in FIG. 3C, a space where the plastic beads 8 do not exist was formed above the floor surface of the experimental container 3. In addition, a space where the plastic beads 8 do not exist was also formed inside the opening of the simulated spout 6 on the simulated projection 7S side. However, the inside of the simulated spout 6 opening on the simulated projection 7B side was filled with plastic beads 8.
[0012]
In operation of the blast furnace, coke is filled in the furnace core. In this coke packed bed, the resistance of molten metal and slag is high. Therefore, when the coke filled in the furnace core portion is close to the outlet opening on the inner surface of the stack of the brick at the bottom of the furnace, hot metal and slag are less likely to flow out. For example, when a state such as that of the simulated projection 7B illustrated in FIG. 3C is reached, hot metal and slag are less likely to be discharged from the spout. However, when the simulated projection 7S illustrated in FIG. 3 (c) is in the state, the hot metal and slag are easily discharged from the spout.
[0013]
According to the result of this experiment, in order to extend the life of the refractory brick 2 in the vicinity of the tap outlet 3, when the protrusion 2a as shown in FIG. It can be seen that the distance L between the center of the three openings and the upper end of the inner surface of the protrusion 2a greatly affects the discharge of hot metal and slag.
1A and 1B are partial cross-sectional views showing the bottom of a blast furnace to which the present invention is applied, wherein FIG. 1A is a vertical cross-sectional view in the vicinity of the taphole 3, and FIG. 1B is a cross-sectional view taken along line AA.
[0014]
A stack of refractory bricks 2 is formed inside the furnace 1 of the iron shell 1, and a protrusion 2 a is formed in the vicinity of the tap 3. The thickness of the protruding portion 2a in the blast furnace radial direction is thicker than the thickness of the brick portion at the portion outside the protruding portion 2a. In this way, the life of the refractory brick 2 near the tap outlet 3 is extended.
The lower end of the inner side surface of the protrusion 2a is made to coincide with the hearth surface of the blast furnace. If there is a gap between the hearth surface of the blast furnace and the lower end of the inner surface of the protruding portion 2a, hot metal or slag enters the gap and the refractory brick 2 is worn out. Therefore, it is necessary to prevent the hot metal and slag from entering by aligning the lower end of the inner side surface of the protrusion 2a with the hearth surface of the blast furnace.
[0015]
However, by forming the protrusion 2a, the opening 3 opening on the inner surface of the furnace of the protrusion 2a approaches the coke filled in the furnace core, so that hot metal and slag are less likely to flow out.
That is, if the distance between the center of the opening 3 at the inner surface of the protrusion 2a and the upper end of the inner surface of the protrusion 2a is L (m), the liquid flow resistance is large when L (m) is large. Because of the increase in size, hot metal and slag are less likely to be discharged. As a result, stable hot metal and slag flow cannot be obtained, and the amount of tapping varies and the number of tapping times increases. As a result, the refractory brick 2 in the vicinity of the spout 3 is significantly worn out.
[0016]
On the other hand, when L (m) is small, the liquid flow resistance is small, so that the hot metal and slag are discharged stably. As a result, the number of taps can be reduced and the life of the refractory bricks 2 near the taps 3 can be extended.
Therefore, as shown in FIG. 1, a protruding portion 2a is provided in the vicinity of the taphole 3, and bricks are stacked by changing the distance L (m). In this way, the blast furnace was operated, and the relationship between the distance L (m) and the number of times of extraction (times) per day was investigated. The result is shown in FIG.
[0017]
As is apparent from FIG. 4, when the distance L exceeds 1.2 m, the number of times of tapping (times / day) increases and the variation also increases. When the distance L is 1.2 m or less, the number of times of tapping (times / day) decreases and the operation can be stably performed.
On the other hand, if the distance L is less than 0.5 m, the outlet 3 collapses during the operation of the blast furnace, and the discharge of the hot metal and slag becomes unstable. Therefore, the distance L needs to satisfy the range of 0.5 to 1.2 m.
[0018]
【Example】
As shown in FIG. 1, a protrusion 2a is provided in the vicinity of the tap opening 3, and the distance L between the center of the opening 3 opening on the inner surface of the protrusion 2a and the upper end of the inner surface of the protrusion 2a is 0.7. The blast furnace was operated as m. This is an invention example.
Next, the distance L was set to 1.7 m when the refractory brick 2 near the taphole 3 was worn out and replaced. This is a comparative example.
[0019]
For the inventive example and the comparative example, the number of tappings was compared. It was possible to reduce the number of times of tapping by 30%.
[0020]
【The invention's effect】
In the present invention, hot metal and slag can be discharged stably and in a balanced manner from a plurality of taps, the number of taps can be reduced, and the life of the refractory near the taps can be extended.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a lower part of a blast furnace to which the present invention is applied, wherein (a) is a vertical cross-sectional view in the vicinity of a taphole, and (b) a cross-sectional view taken along line AA.
FIG. 2 is a cross-sectional view of an experimental container.
FIG. 3 is a cross-sectional view showing the behavior of the plastic beads in the experimental container, (a) is a cross-sectional view showing a state in which plastic beads are filled, (b) is a cross-sectional view showing a state in which chlorofluorocarbon is injected, (c FIG. 3 is a cross-sectional view showing a state where chlorofluorocarbon is discharged.
FIG. 4 is a graph showing a relationship between a distance L and the number of encounters.
[Explanation of symbols]
1 Iron skin 2 Refractory brick
2a Protruding part 3 Outlet 4 Tuyere 5 Test vessel 6 Simulated exit
7B Simulated protrusion
7S Simulated protrusion 8 Plastic beads 9 Freon

Claims (1)

高炉の炉下部に配設される出銑口の近傍のれんが積み方法において、前記出銑口近傍のれんが積み部を前記高炉の内側に突出させて突出部を設け、前記突出部の炉内側面下端を前記高炉の炉床面に一致させ、前記突出部の炉内側面における前記出銑口の開口部の中心と前記突出部の炉内側面上端との炉高さ方向距離が 0.5〜1.2 mの範囲内を満足することを特徴とする出銑口近傍のれんが積み方法。In the brick stacking method in the vicinity of the tap outlet disposed in the lower part of the blast furnace, a brick stacking portion in the vicinity of the tap outlet is protruded to the inside of the blast furnace to provide a protruding portion, and the furnace inner surface of the protruding portion The lower end is made to coincide with the hearth surface of the blast furnace, and the furnace height direction distance between the center of the opening of the tap outlet on the inner surface of the protrusion and the upper end of the inner surface of the protrusion is 0.5 to 1.2 m. A brick stacking method in the vicinity of the taphole characterized by satisfying the range of
JP2001067075A 2001-03-09 2001-03-09 Brick stacking method near the tap Expired - Fee Related JP4734738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067075A JP4734738B2 (en) 2001-03-09 2001-03-09 Brick stacking method near the tap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067075A JP4734738B2 (en) 2001-03-09 2001-03-09 Brick stacking method near the tap

Publications (2)

Publication Number Publication Date
JP2002266009A JP2002266009A (en) 2002-09-18
JP4734738B2 true JP4734738B2 (en) 2011-07-27

Family

ID=18925478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067075A Expired - Fee Related JP4734738B2 (en) 2001-03-09 2001-03-09 Brick stacking method near the tap

Country Status (1)

Country Link
JP (1) JP4734738B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827202Y1 (en) * 1969-10-09 1973-08-10
JPS4836088Y1 (en) * 1970-02-10 1973-10-30

Also Published As

Publication number Publication date
JP2002266009A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
CA2315502C (en) Control of molten metal level in a direct smelting vessel
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP4734738B2 (en) Brick stacking method near the tap
JP2007002269A (en) Side-blown vacuum refining furnace
CN213060916U (en) Slag discharging structure for smelting reduction furnace
CN104975131B (en) The method that the quantity of slag is controlled under converter smelting half steel
JPH10298623A (en) Structure for furnace bottom of blast furnace and operation of blast furnace
CN210702513U (en) Large-scale anti-burst ladle bottom impact area prefabricated part
CN218404300U (en) Iron works blast furnace molten iron system of releasing
RU2772053C1 (en) Furnace for the production of ferrochromium alloys
CN108027209A (en) Channel-type induction furnace
CN209623361U (en) A kind of non-ferrous smelting furnace eye of wind structure
JPH09157714A (en) Furnace bottom structure in blast furnace and operation of blast furnace
JP2002146415A (en) Method for operating blast furnace
JPH0390505A (en) Method for reducing remaining iron at the time of blowing down in blast furnace
KR200268711Y1 (en) A Plug of Corn Shape
JP3011066B2 (en) Blast furnace bottom structure
JPH08134517A (en) Operation of blast furnace
JPS6017011A (en) Vessel for refining by blowing of gas
JPH05239521A (en) Production of molten iron
JP2864574B2 (en) Apparatus and method for producing hot metal
JPH02228408A (en) Method for operating blast furnace
JPH08311516A (en) Production of molten iron
US4009871A (en) Metallurgical furnace
JPH06271918A (en) Cylindrical furnace for producing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees