JP4734573B2 - Manufacturing method of micro / nanostructure and micro / nanostructure - Google Patents

Manufacturing method of micro / nanostructure and micro / nanostructure Download PDF

Info

Publication number
JP4734573B2
JP4734573B2 JP2006280932A JP2006280932A JP4734573B2 JP 4734573 B2 JP4734573 B2 JP 4734573B2 JP 2006280932 A JP2006280932 A JP 2006280932A JP 2006280932 A JP2006280932 A JP 2006280932A JP 4734573 B2 JP4734573 B2 JP 4734573B2
Authority
JP
Japan
Prior art keywords
micro
nanotube
nano structure
irradiation time
nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006280932A
Other languages
Japanese (ja)
Other versions
JP2008094686A (en
Inventor
俊一郎 田中
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006280932A priority Critical patent/JP4734573B2/en
Publication of JP2008094686A publication Critical patent/JP2008094686A/en
Application granted granted Critical
Publication of JP4734573B2 publication Critical patent/JP4734573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電子的、光学的な用途が期待されるナノチューブであるマイクロ・ナノ構造体の製造方法及びマイクロ・ナノ構造体に関するものである。 The present invention relates to a method for producing a micro / nano structure which is a nanotube expected to be used electronically and optically, and the micro / nano structure .

原子や分子を堆積して特別構造の結晶表面や人工格子などのマイクロ・ナノ物質を、ボトムアップ方式で作成する場合において、適当な条件のもとでは自己組織化が進行する。自己組織化を利用すると基板表面のわずかな原子が堆積した突起を基にして針状の結晶を成長させて金属のミクロワイヤーを作成したり、また基板上の円孔や凹みをその後の結晶成長で埋めることなくそのまま保存したりすることができる。   When micro-nano materials such as crystal surfaces or artificial lattices with special structures are deposited by depositing atoms and molecules by the bottom-up method, self-organization proceeds under appropriate conditions. When self-organization is used, needle-like crystals are grown based on protrusions on which a few atoms are deposited on the surface of the substrate to create metal microwires, and circular holes and dents on the substrate are then grown into crystals. You can save it without filling it with.

このような自己組織化を利用したマイクロ・ナノ構造体として、本願発明者の一人の発明に係る特許文献1に開示されたものがある。このものは、Cu、Al等の金属材料を塑性変形などさせて集合組織を形成し、これにArイオンビームを照射して、集合組織の優先面を基として特定の方位に突起を成長、形成したものである。この突起は集合組織の優先方位の方向に突出しているので、当該マイクロ・ナノ構造体を、各種デバイスや機能材料へ応用することが期待できる。例えば、特定波長の光や電磁波に対するマイクロ・ナノフィルターや導波路、微細な半導体回路、高効率触媒、電子エミッター等に応用することが期待できる。   As a micro / nano structure utilizing such self-organization, there is one disclosed in Patent Document 1 relating to one invention of the present inventor. This material forms a texture by plastic deformation of a metal material such as Cu or Al, and irradiates this with an Ar ion beam to grow and form protrusions in a specific orientation based on the priority surface of the texture. It is a thing. Since this protrusion protrudes in the direction of the preferred orientation of the texture, it can be expected that the micro / nano structure is applied to various devices and functional materials. For example, it can be expected to be applied to micro / nano filters and waveguides for specific wavelengths of light and electromagnetic waves, fine semiconductor circuits, high-efficiency catalysts, electron emitters, and the like.

このようなマイクロ・ナノ構造体の各種デバイスや機能材料等への適用範囲をさらに広げ、これを実現するためには、新規なマイクロ・ナノ構造体の製造方法及びマイクロ・ナノ構造体を提供する必要がある。
特開2005−262373号公報 (図4)
In order to further expand the scope of application of such micro / nanostructures to various devices and functional materials, and to realize this, a novel micro / nanostructure manufacturing method and micro / nanostructures are provided. There is a need.
Japanese Patent Laying-Open No. 2005-262373 (FIG. 4)

本発明は、各種の電子的用途への使用が期待できる新規なマイクロ・ナノ構造体の製造方法及びこの製造方法により製造されたマイクロ・ナノ構造体を提供することを課題とする。 It is an object of the present invention to provide a novel method for producing a micro / nano structure that can be expected to be used in various electronic applications, and a micro / nano structure produced by this production method .

上記の課題を解決するためになされた本発明のマイクロ・ナノ構造体の製造方法は、10 −3 〜10 -5 Paの低真空中で金属銅の表面に高エネルギービームを照射して、励起した銅原子と低真空中に残留する酸素原子とを結合させつつ、自己組織化によって、内部が中空なナノチューブを製造することを特徴とするものである。
In order to solve the above problems, the method for producing a micro / nano structure of the present invention is excited by irradiating a surface of metal copper with a high energy beam in a low vacuum of 10 −3 to 10 −5 Pa. A nanotube having a hollow interior is manufactured by self-organization while bonding copper atoms and oxygen atoms remaining in a low vacuum.

また、本発明のマイクロ・ナノ構造体は、上記したマイクロ・ナノ構造体の製造方法により製造されたマイクロ・ナノ構造体であって、銅酸化物からなり、外径に対する長さの比であるアスペクト比が1.5以上で、内部が中空なナノチューブであることを特徴とするものである。 Moreover, the micro / nanostructure of the present invention is a micro / nanostructure manufactured by the above-described method for manufacturing a micro / nanostructure , which is made of copper oxide and has a ratio of a length to an outer diameter. The aspect ratio is 1.5 or more, and the inside is a hollow nanotube.

本発明のマイクロ・ナノ構造体は、アスペクト比が大きく先端が細いので、形態が特異であることに基づき、半導体材料、電気接点材料、触媒材料等の導電的特性、又は半導体的特性を活かした多岐の用途への使用が期待される。また、本発明に係るマイクロ・ナノ構造体は、CuOの持つバンドギャップ値Eg2.0eVという半導体特性の利用、ナノチューブ化による金属・絶縁体化、ナノチューブの内部に元素、化合物を入れることによる特性の自由な調整を行い得る可能性がある。 Since the micro / nano structure of the present invention has a large aspect ratio and a thin tip, it is based on its unique form, making use of the conductive properties or semiconductor properties of semiconductor materials, electrical contact materials, catalyst materials, etc. Expected to be used for various purposes. In addition, the micro / nano structure according to the present invention is based on the use of semiconductor characteristics such as a band gap value Eg 2.0 eV of Cu 2 O, the formation of a metal / insulator by nanotube formation, and the inclusion of elements and compounds inside the nanotube. There is a possibility that the characteristics can be freely adjusted.

また、本発明に係るマイクロ・ナノ構造体の製造方法は、上記したような広範な用途が期待されるマイクロ・ナノ構造体を、効率的に形成することができるという利点がある。   In addition, the method for producing a micro / nano structure according to the present invention has an advantage that the micro / nano structure which is expected to be widely used as described above can be efficiently formed.

以下に、本発明のマイクロ・ナノ構造体について説明する。
図1〜5に、本発明にかかるナノチューブを例示する。これらのナノチューブは、アモルファス炭素フィルムが蒸着され、且つ複数の貫通孔が設けられた銅製ディスクを、10−4Pa程度(即ち、10−3〜10−5Pa)の低真空下に導き、この貫通孔に加速電圧5〜9kV、照射時間60〜1200secの条件で、Arイオンビームを照射したときに形成されたものであって、図は透過電子顕微鏡(TEM)像である。これらのナノチューブは内部が中空である。ナノチューブの生成する部位は、Arイオンビームの照射面ではなく、非照射面との近傍であり、非照射面近傍に形成されていることから、スパッタ粒子または原子群が飛散集合し、ある特定の成長しやすい面方向に成長する自己組織化によって、ナノチューブが形成されたものと考えられる。
The micro / nano structure of the present invention will be described below.
1 to 5 illustrate nanotubes according to the present invention. These nanotubes lead a copper disk on which an amorphous carbon film is deposited and a plurality of through holes are provided under a low vacuum of about 10 −4 Pa (that is, 10 −3 to 10 −5 Pa). It is formed when an Ar ion beam is irradiated on the through hole under conditions of an acceleration voltage of 5 to 9 kV and an irradiation time of 60 to 1200 sec. The figure is a transmission electron microscope (TEM) image. These nanotubes are hollow inside. The site where the nanotube is generated is not the irradiation surface of the Ar ion beam, but in the vicinity of the non-irradiation surface, and is formed in the vicinity of the non-irradiation surface. It is considered that nanotubes were formed by self-organization that grows in the plane direction where growth is easy.

図1に示すナノチューブは、加速電圧5kV、照射時間600secの条件にて生成されたものである。このナノチューブは、図示のように先端に丸い穴を有しており、内部が中空である。外径は約40nm、長さ約500nmであって、外径に対する長さの比、即ちアスペクト比は約12.5である。   The nanotube shown in FIG. 1 is produced under the conditions of an acceleration voltage of 5 kV and an irradiation time of 600 seconds. As shown in the figure, this nanotube has a round hole at the tip and is hollow inside. The outer diameter is about 40 nm and the length is about 500 nm, and the ratio of the length to the outer diameter, that is, the aspect ratio is about 12.5.

図2に示すナノチューブは、加速電圧9kV,照射時間1200secの条件にて生成されたものである。このナノチューブは先端が丸く閉じられており、また内部は中空である。   The nanotube shown in FIG. 2 is produced under the conditions of an acceleration voltage of 9 kV and an irradiation time of 1200 seconds. The nanotube has a rounded end and is hollow inside.

次に、ナノチューブをTEMのディフラクションパターンより同定した結果を示す。
図3に示すものは加速電圧5kV、照射時間1800secの条件において生成した内部中空のナノチューブである。ディフラクションパターンがデバイリングであるので、このナノチューブは多結晶である。ナノロッドを核としてこの上にArイオンビームの照射によりスパッタされた粒子が堆積し、そのスパッタ粒子が集まり多結晶膜が生成しているためと推定される。
Next, the result of having identified the nanotube from the TEM diffraction pattern is shown.
3 shows hollow nanotubes produced under the conditions of an acceleration voltage of 5 kV and an irradiation time of 1800 sec. The nanotube is polycrystalline because the diffraction pattern is Debye ring. It is presumed that particles sputtered by irradiation with an Ar ion beam were deposited on the nanorods as nuclei, and the sputtered particles gathered to form a polycrystalline film.

図4には、加速電圧9kV,照射時間300secの条件において生成されたナノチューブである。ディフラクションパターンより、このナノチューブはCuOからなる単結晶であることが確かめられた。   FIG. 4 shows a nanotube produced under the conditions of an acceleration voltage of 9 kV and an irradiation time of 300 sec. From the diffraction pattern, this nanotube was confirmed to be a single crystal made of CuO.

また、図5には、加速電圧7kV,照射時間300secの条件において生成されたナノチューブである。面間隔から同定した結果、このナノチューブはCuOからなることが確かめられた。また、ディフラクションパターンがスポットであることから単結晶である。 FIG. 5 shows a nanotube produced under the conditions of an acceleration voltage of 7 kV and an irradiation time of 300 sec. As a result of identification from the face spacing, it was confirmed that the nanotubes consist of Cu 2 O. Further, since the diffraction pattern is a spot, it is a single crystal.

以上のようなナノチューブの成長状態を図6〜9に示す。図6には、加速電圧5、7、9kVにおけるナノチューブの平均長さに及ぼすArイオンビーム照射時間の影響を示す。加速電圧7kV,照射時間900secにおいて特異的に大きな成長がみられるが、ナノチューブの平均長さは全体としてやや長くなっているものと認められる。   The growth state of the nanotube as described above is shown in FIGS. FIG. 6 shows the effect of Ar ion beam irradiation time on the average length of nanotubes at acceleration voltages of 5, 7, and 9 kV. Although an especially large growth is observed at an acceleration voltage of 7 kV and an irradiation time of 900 sec, it is recognized that the average length of the nanotubes is slightly longer as a whole.

図7にはナノチューブの平均直径に及ぼす照射時間の影響を示す。照射時間を長くした場合ナノチューブの平均直径はやや大きくなっているといえる。   FIG. 7 shows the effect of irradiation time on the average diameter of the nanotubes. It can be said that the average diameter of the nanotubes is slightly increased when the irradiation time is increased.

ナノチューブの平均長さ及び平均直径は以上のような状態で変化するが、図8に示すように、ナノチューブのアスペクト比(長さ/直径の比)には、大きな変化はない。なお、ナノチューブのアスペクト比は、1.5以上を必要とする。アスペクト比が、1.5未満では電子放出特性等において十分な効果を発揮することができず、利用価値が低いからである。   Although the average length and average diameter of the nanotubes change in the above-described state, the aspect ratio (length / diameter ratio) of the nanotubes does not change significantly as shown in FIG. The aspect ratio of the nanotube needs to be 1.5 or more. This is because when the aspect ratio is less than 1.5, sufficient effects cannot be exhibited in the electron emission characteristics and the utility value is low.

図9には、ナノチューブの本数密度の照射時間に伴う変化を示す。全体として照射時間の延長につれて密度が低下しているが、この低下は、特にナノチューブの太径化につながっているものと解される。   FIG. 9 shows changes in the number density of nanotubes with irradiation time. The density decreases as the irradiation time is extended as a whole, and it is understood that this decrease particularly leads to an increase in the diameter of the nanotube.

なお、本発明において照射せしめられるビームは、Arイオンビームに限定されるものではなく、ナノチューブを成長させうる高エネルギービームであればよく、例えば、Arイオンビームのほか、このイオンビームと同等の衝撃とスパッタ効率を金属銅の内壁に与えることが可能な電子線、レーザービーム、X線、γ線、中性子線、粒子ビーム等を用いることができる。   Note that the beam irradiated in the present invention is not limited to the Ar ion beam, but may be any high energy beam capable of growing nanotubes. For example, in addition to the Ar ion beam, an impact equivalent to this ion beam can be used. In addition, an electron beam, a laser beam, an X-ray, a γ-ray, a neutron beam, a particle beam, or the like that can impart sputtering efficiency to the inner wall of the metal copper can be used.

また、かかる高エネルギービームとして、Arイオンビームの如きイオンビームを用いる場合にあっては、加速電圧としては、3〜10kV程度、ビーム電流としては、0.5〜1.5mA程度を採用することができる。   Further, when an ion beam such as an Ar ion beam is used as such a high energy beam, an acceleration voltage of about 3 to 10 kV and a beam current of about 0.5 to 1.5 mA are adopted. Can do.

さらに、高エネルギービームを照射せしめる際の、金属銅の平面に対する照射角度については、上述したビームの照射条件や、ビームが照射される金属銅の形状等を総合的に勘案して、適当な角度が設定されることとなるが、その角度が小さすぎると、金属銅に対して効率良くエネルギーを供給することが難しいところから、一般には、銅板面に対して5〜30°の照射角度にて、実施されることとなる。なお、貫通孔の内壁に対する照射角は40〜80°である。   Furthermore, with respect to the irradiation angle with respect to the plane of the metallic copper when irradiating the high energy beam, an appropriate angle is taken in consideration of the above-mentioned irradiation conditions of the beam and the shape of the metallic copper irradiated with the beam. However, if the angle is too small, it is difficult to efficiently supply energy to the copper metal, so in general, at an irradiation angle of 5 to 30 ° with respect to the copper plate surface. Will be implemented. In addition, the irradiation angle with respect to the inner wall of a through-hole is 40-80 degrees.

以上のようなナノチューブは、適当な条件のもとで初めに一つのパターンを与えると以後はそのとおりに組織が成長するという自己組織化を利用して成長、形成させることができる。また、自己組織化が妨げられて初めのパターンに関係なく一様に結晶を成長させるような、拡散型成長といわれる負の自己組織化を利用して、成長、形成させることもできる。   The nanotubes as described above can be grown and formed by utilizing self-organization in which, when a pattern is first given under appropriate conditions, the tissue grows accordingly. It can also be grown and formed using negative self-organization called diffusion-type growth in which self-organization is hindered and crystals are grown uniformly regardless of the initial pattern.

以上に説明したように、本発明に係るマイクロ・ナノ構造体は、形態が特異であることに基づき、半導体材料、電気接点材料、触媒材料等の導電的特性、又は半導体的特性を活かした多岐の用途への使用が期待される。例えば、ショットキー障壁型太陽電池、CuO/ZnO太陽電池、ガスセンサー、バイオセンサー、光感受性電極、Liイオン電池負極、超微細半導体構成要素などの用途が候補として挙げられる。
また、本発明に係るマイクロ・ナノ構造体の製造方法は、優れた特性を有するマイクロ・ナノ構造体を、金属銅の表面に効率的に形成することができるという有利な効果を奏することができる。
As described above, the micro / nano structure according to the present invention is based on the unique shape, and has various characteristics that make use of the conductive characteristics or semiconductor characteristics of semiconductor materials, electrical contact materials, catalyst materials, etc. It is expected to be used for various purposes. Examples of candidates include Schottky barrier solar cells, Cu 2 O / ZnO solar cells, gas sensors, biosensors, photosensitive electrodes, Li ion battery negative electrodes, and ultrafine semiconductor components.
In addition, the method for producing a micro / nano structure according to the present invention has an advantageous effect that a micro / nano structure having excellent characteristics can be efficiently formed on the surface of metallic copper. .

加速電圧5kV、照射時間600secの条件にて生成したナノチューブを示すTEM像である。It is a TEM image which shows the nanotube produced | generated on condition of acceleration voltage 5kV and irradiation time 600sec. 加速電圧9kV、照射時間1200secの条件にて生成したナノチューブを示すTEM像である。It is a TEM image which shows the nanotube produced | generated on condition of acceleration voltage 9kV and irradiation time 1200sec. 加速電圧5kV、照射時間1800secの条件にて生成したナノチューブのTEM像とディフラクションパターンを示す図である。It is a figure which shows the TEM image and the diffraction pattern of the nanotube produced | generated on the conditions of acceleration voltage 5kV and irradiation time 1800sec. 加速電圧9kV、照射時間300secの条件にて生成したナノチューブのTEM像とディフラクションパターンを示す図であるIt is a figure which shows the TEM image and the diffraction pattern of the nanotube produced | generated on condition of acceleration voltage 9kV and irradiation time 300sec. 加速電圧7kV、照射時間300secの条件にて生成したナノチューブのTEM像とディフラクションパターンを示す図である。It is a figure which shows the TEM image and diffraction pattern of the nanotube which were produced | generated on condition of acceleration voltage 7kV and irradiation time 300sec. 照射時間に伴うナノチューブの平均長さの変化を示すグラフである。It is a graph which shows the change of the average length of the nanotube accompanying irradiation time. 照射時間に伴うナノチューブの平均直径の変化を示すグラフである。It is a graph which shows the change of the average diameter of the nanotube accompanying irradiation time. 照射時間に伴うナノチューブのアスペクト比の変化を示すグラフである。It is a graph which shows the change of the aspect-ratio of the nanotube accompanying irradiation time. 照射時間に伴うナノチューブの本数密度の変化を示すグラフである。It is a graph which shows the change of the number density of the nanotube accompanying irradiation time.

Claims (2)

10 −3 〜10 -5 Paの低真空中で金属銅の表面に高エネルギービームを照射して、励起した銅原子と低真空中に残留する酸素原子とを結合させつつ、自己組織化によって、内部が中空なナノチューブを製造することを特徴とするマイクロ・ナノ構造体の製造方法。 By irradiating the surface of metal copper with a high energy beam in a low vacuum of 10 −3 to 10 −5 Pa to bond excited copper atoms and oxygen atoms remaining in the low vacuum, A method for producing a micro / nano structure, comprising producing a hollow nanotube. 請求項1に記載のマイクロ・ナノ構造体の製造方法により製造されたマイクロ・ナノ構造体であって、銅酸化物からなり、外径に対する長さの比であるアスペクト比が1.5以上で、内部が中空なナノチューブであることを特徴とするマイクロ・ナノ構造体。
Billing a micro-nano structures manufactured by the manufacturing method of the micro-nano structure according to claim 1, made of copper oxides, the aspect ratio is the ratio of length to outer diameter of 1.5 or more A micro / nano structure characterized in that the inside is a hollow nanotube.
JP2006280932A 2006-10-16 2006-10-16 Manufacturing method of micro / nanostructure and micro / nanostructure Active JP4734573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280932A JP4734573B2 (en) 2006-10-16 2006-10-16 Manufacturing method of micro / nanostructure and micro / nanostructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280932A JP4734573B2 (en) 2006-10-16 2006-10-16 Manufacturing method of micro / nanostructure and micro / nanostructure

Publications (2)

Publication Number Publication Date
JP2008094686A JP2008094686A (en) 2008-04-24
JP4734573B2 true JP4734573B2 (en) 2011-07-27

Family

ID=39377917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280932A Active JP4734573B2 (en) 2006-10-16 2006-10-16 Manufacturing method of micro / nanostructure and micro / nanostructure

Country Status (1)

Country Link
JP (1) JP4734573B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858689A (en) * 2010-04-23 2013-01-02 海洋王照明科技股份有限公司 Preparation method for copper oxide nanowires
CN102180509B (en) * 2011-03-28 2012-07-11 浙江理工大学 Method for preparing hollow CuO/Cu2O spheres with controllable ingredients
JP5924515B2 (en) * 2011-04-18 2016-05-25 国立大学法人東北大学 Manufacturing method of nano / micro protrusions
JP2013173112A (en) * 2012-02-27 2013-09-05 Tohoku Univ Exhaust gas cleaning catalyst
JP6131437B2 (en) * 2012-08-29 2017-05-24 国立大学法人東北大学 Manufacturing method of nano / micro protrusions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210564A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Boron/carbon/nitrogen nanotube whose surface layer is coated with boron nitride, and production method therefor
JP2005239526A (en) * 2004-02-27 2005-09-08 Kanazawa Inst Of Technology Method for producing cuprous oxide plate, and photovoltaic device
JP2006232606A (en) * 2005-02-24 2006-09-07 Japan Science & Technology Agency Transition metal oxide nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210564A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Boron/carbon/nitrogen nanotube whose surface layer is coated with boron nitride, and production method therefor
JP2005239526A (en) * 2004-02-27 2005-09-08 Kanazawa Inst Of Technology Method for producing cuprous oxide plate, and photovoltaic device
JP2006232606A (en) * 2005-02-24 2006-09-07 Japan Science & Technology Agency Transition metal oxide nanotube

Also Published As

Publication number Publication date
JP2008094686A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
Liu et al. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission
Shen et al. Characterization and field‐emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal‐evaporation process
Bae et al. Heterostructures of ZnO nanorods with various one-dimensional nanostructures
JP5559748B2 (en) Transmission electron microscope grid and manufacturing method thereof
KR101706353B1 (en) Silicon nanowire comprising high density metal nanocluster and process for preparing the same
Li et al. Periodic TiO2 nanorod arrays with hexagonal nonclose‐packed arrangements: excellent field emitters by parameter optimization
Wu et al. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition
Huang et al. SnO 2 nanorod arrays: low temperature growth, surface modification and field emission properties
Zhang et al. Aligned ZnO nanorods with tunable size and field emission on native Si substrate achieved via simple electrodeposition
JP4734573B2 (en) Manufacturing method of micro / nanostructure and micro / nanostructure
Raju et al. Facile synthesis of 3D/2D Cu2Se cauliflower/CuS nanosheets composite as a binder-free electrode for high-performance asymmetric solid-state supercapacitors
TW201018742A (en) Nanomaterial with core-shell structure
Huo et al. Synthesis and field emission properties of rutile TiO2 nanowires arrays grown directly on a Ti metal self-source substrate
JP3940817B2 (en) Electrochemical electrode in which nickel-containing nanostructure having dendritic structure is applied to the active layer and method for producing the same
US20160293346A1 (en) Pseudocapacitive electrodes and methods of forming
JP2023518612A (en) Carbon-based composite material and its preparation method and application
CN103754925A (en) Cuprous oxide nanowire porous film as well as preparation method and application thereof
Wang et al. Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD
JP2010046788A (en) Catalyst particle on tip
Ma et al. Synthesis and applications of one-dimensional porous nanowire arrays: a review
KR101511984B1 (en) Method of fabricating Cu oxide nano-structure and Method of fabricating anode for Li ion secondary battery
CN104254925B (en) The forming method of zinc oxide concaveconvex structure and utilize its manufacture method of solaode
Virk Fabrication and characterization of copper nanowires
CN207529904U (en) Plasma generator electrode
Chakraborty et al. Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150