JP4733359B2 - Method for producing composite reversible electrode for secondary battery - Google Patents

Method for producing composite reversible electrode for secondary battery Download PDF

Info

Publication number
JP4733359B2
JP4733359B2 JP2004093638A JP2004093638A JP4733359B2 JP 4733359 B2 JP4733359 B2 JP 4733359B2 JP 2004093638 A JP2004093638 A JP 2004093638A JP 2004093638 A JP2004093638 A JP 2004093638A JP 4733359 B2 JP4733359 B2 JP 4733359B2
Authority
JP
Japan
Prior art keywords
vanadium pentoxide
positive electrode
battery
polymerization
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004093638A
Other languages
Japanese (ja)
Other versions
JP2005285375A (en
Inventor
顕一 浜崎
秀一郎 山口
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2004093638A priority Critical patent/JP4733359B2/en
Publication of JP2005285375A publication Critical patent/JP2005285375A/en
Application granted granted Critical
Publication of JP4733359B2 publication Critical patent/JP4733359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池用の複合材料可逆電極の製造方法に関する。   The present invention relates to a method for producing a composite material reversible electrode for a secondary battery.

最近、非水溶媒系リチウム(イオン)二次電池の正極材料として、高い容量を有する五酸化バナジウム(V25)が注目されている。しかしながら、五酸化バナジウムは、本来非導電性であるため、正極材料として使用するためには、導電性の物質を添加する必要がある。非特許文献1は、五酸化バナジウムの層間に導電性のポリ(3,4−エチレンジオキシチオフェン)(PEDOT)を挿入することを記載している。非特許文献1によれば、五酸化バナジウムと3,4−エチレンジオキシチオフェン(EDOT)を蒸留水に入れ、還流下に加熱してEDOTを五酸化バナジウムの層間で酸化重合させている。得られた正極材料は、240mAh/gという正極容量を示すが、そのように高い容量を示すのは、初期の充放電サイクル(1〜10サイクル程度)だけであり、しかも得られているリチウム二次電池の放電電圧は低い値を示している。また、非特許文献2は、同様の手法により五酸化バナジウムの層間でアニリンを重合させた後、過酸化水素で酸化処理することを開示している。しかしながら、この正極材料を用いて得られたリチウム二次電池の放電電圧も、同様に低い。
J. Mater. Chem., 2001, 11, 2470-2475 J. Electrochem. Soc., 143, L181 (1996)
Recently, vanadium pentoxide (V 2 O 5 ) having a high capacity has attracted attention as a positive electrode material for non-aqueous solvent lithium (ion) secondary batteries. However, since vanadium pentoxide is inherently non-conductive, it is necessary to add a conductive substance in order to use it as a positive electrode material. Non-Patent Document 1 describes that conductive poly (3,4-ethylenedioxythiophene) (PEDOT) is inserted between vanadium pentoxide layers. According to Non-Patent Document 1, vanadium pentoxide and 3,4-ethylenedioxythiophene (EDOT) are placed in distilled water and heated under reflux to oxidize and polymerize EDOT between vanadium pentoxide layers. The obtained positive electrode material exhibits a positive electrode capacity of 240 mAh / g, but only the initial charge / discharge cycle (about 1 to 10 cycles) exhibits such a high capacity. The discharge voltage of the secondary battery shows a low value. Non-Patent Document 2 discloses that aniline is polymerized between vanadium pentoxide layers by a similar method and then oxidized with hydrogen peroxide. However, the discharge voltage of the lithium secondary battery obtained using this positive electrode material is also low.
J. Mater. Chem., 2001, 11, 2470-2475 J. Electrochem. Soc., 143, L181 (1996)

従って、本発明は、バナジウム系材料でより高い放電電圧を示す二次電池を提供し得る複合材料可逆電極の製造方法を提供することを目的とする。   Therefore, an object of this invention is to provide the manufacturing method of the composite material reversible electrode which can provide the secondary battery which shows a higher discharge voltage with a vanadium-type material.

本発明者らは、鋭意研究した結果、五酸化バナジウムの層間で、EDOTのような重合してレドックス活性を有する導電性ポリマーを生成する有機化合物を重合する際に、反応媒体として含水アルコールまたはアルコール自体を用いることにより、上記目的を達成することができることを見いだした。本発明は、この知見に基づく。   As a result of diligent research, the present inventors have found that water-containing alcohol or alcohol is used as a reaction medium when polymerizing an organic compound that forms a conductive polymer having redox activity by polymerization between vanadium pentoxide layers, such as EDOT. It has been found that the above purpose can be achieved by using itself. The present invention is based on this finding.

すなわち、本発明によれば、反応媒体中に五酸化バナジウムと、重合により導電性ポリマーを生成する有機化合物とを含む反応混合物を前記有機化合物の重合に供することを包含し、前記媒体が0〜50体積%の水を含有するアルコールからなることを特徴とする二次電池用複合材料可逆電極の製造方法が提供される。   That is, according to the present invention, the method includes subjecting a reaction mixture containing vanadium pentoxide and an organic compound that generates a conductive polymer by polymerization to polymerization of the organic compound in the reaction medium, A method for producing a composite material reversible electrode for a secondary battery comprising an alcohol containing 50% by volume of water is provided.

本発明によれば、バナジウム材料を基礎としてより高い放電電圧を示す二次電池を提供し得る複合レドックス可逆電極材料が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the composite redox reversible electrode material which can provide the secondary battery which shows a higher discharge voltage based on vanadium material is obtained.

以下、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明の二次電池用の複合材料可逆電極の製造方法は、反応媒体中に五酸化バナジウムと重合により導電性ポリマーを生成する有機化合物(モノマー)とを含む反応混合物を有機化合物の重合に供することを含む。反応媒体は、0〜50体積%の水を含有するアルコールからなる。   In the method for producing a composite material reversible electrode for a secondary battery according to the present invention, a reaction mixture containing vanadium pentoxide and an organic compound (monomer) that forms a conductive polymer by polymerization in a reaction medium is used for polymerization of the organic compound. Including that. The reaction medium consists of an alcohol containing 0-50% by volume of water.

本発明において、反応媒体を構成するアルコールは、好ましくは、メタノール、エタノール、イソプロピルアルコール等のプロパノールおよびブタノールからなる群の中から選ぶことができる。中でも、メタノールとイソプロピルアルコールが好ましい。本発明により0〜50体積%の水を含有するアルコール系反応媒体を用いることにより、反応媒体として従来使用されている水を用いる場合よりも、得られる複合電極材料は二次電池の放電電圧を有意に向上させる。反応媒体中に占める水の割合が、50体積%を超えると、二次電池の放電電圧が低くなる傾向を示す。   In the present invention, the alcohol constituting the reaction medium can be preferably selected from the group consisting of propanol such as methanol, ethanol, isopropyl alcohol and butanol. Of these, methanol and isopropyl alcohol are preferred. By using an alcohol-based reaction medium containing 0 to 50% by volume of water according to the present invention, the resulting composite electrode material can reduce the discharge voltage of the secondary battery as compared with the case where water conventionally used as the reaction medium is used. Significantly improve. When the proportion of water in the reaction medium exceeds 50% by volume, the discharge voltage of the secondary battery tends to decrease.

本発明において使用される有機化合物(モノマー)は、重合によりレドックス活性を有する導電性ポリマーを生成する化合物である。そのような化合物として、アニリンもしくはその誘導体のようなアニリン化合物、ピロールもしくはその誘導体のようなピロール化合物、チオフェン化合物のような有機硫黄化合物等を用いることができる。チオフェン化合物は、下記式(I):

Figure 0004733359
The organic compound (monomer) used in the present invention is a compound that generates a conductive polymer having redox activity by polymerization. As such a compound, an aniline compound such as aniline or a derivative thereof, a pyrrole compound such as pyrrole or a derivative thereof, an organic sulfur compound such as a thiophene compound, or the like can be used. The thiophene compound has the following formula (I):
Figure 0004733359

(ここで、R1およびR2は、それぞれ独立に、水素もしくは炭素数1〜4のアルキル基であり、または互いに結合して、置換されていてもよい炭素数1〜4のアルキル基または1,2−シクロヘキシン基を形成してもよい)で示すことができる。式(I)で示されるチオフェン化合物としては、3,4−エチレンジオキシチオフェン(以下、EDOTと略称する)が特に好ましい。 (Here, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or bonded to each other to be substituted, or an alkyl group having 1 to 4 carbon atoms or 1 , 2-cyclohexyne group may be formed). As the thiophene compound represented by the formula (I), 3,4-ethylenedioxythiophene (hereinafter abbreviated as EDOT) is particularly preferable.

有機化合物の重合は、上記反応媒体中に五酸化バナジウムと有機化合物を含む反応混合物を、凍結温度を超え、90℃以下の温度で加熱することにより行うことができる。重合反応温度は低いほうが好ましく、75℃以下の温度で行うことがより好ましい。重合反応時間は、通常1時間以上である。この反応によって、有機化合物は五酸化バナジウムの層間で重合し、得られる導電性ポリマーは、五酸化バナジウムの層間に挿入されるか、もしくは五酸化バナジウムの表面を被覆したものとなる。この重合に際し、反応混合物中に酸素を吹き込むことが好ましい。酸素は、五酸化バナジウムから酸素が抜け出すことを抑制し、五酸化バナジウムを安定化させる。この重合により、例えば有機化合物が式(I)で示されるチオフェン化合物であるとき、下記式(II):

Figure 0004733359
The polymerization of the organic compound can be performed by heating a reaction mixture containing vanadium pentoxide and the organic compound in the reaction medium at a temperature exceeding the freezing temperature and not higher than 90 ° C. The polymerization reaction temperature is preferably low, and more preferably 75 ° C. or lower. The polymerization reaction time is usually 1 hour or longer. By this reaction, the organic compound is polymerized between the vanadium pentoxide layers, and the obtained conductive polymer is inserted between the vanadium pentoxide layers or the surface of the vanadium pentoxide is coated. During this polymerization, oxygen is preferably blown into the reaction mixture. Oxygen suppresses the escape of oxygen from vanadium pentoxide and stabilizes vanadium pentoxide. By this polymerization, for example, when the organic compound is a thiophene compound represented by the formula (I), the following formula (II):
Figure 0004733359

(ここで、R1およびR2は、式(I)におけるR1およびR2と同じ意味を有する)で示される繰り返し単位を有するポリチオフェン化合物が得られる。 (Wherein, R 1 and R 2 has the formula (having the same meaning as R 1 and R 2 in I)) polythiophene compound having a repeating unit represented by is obtained.

本発明により得られる複合材料可逆電極において、有機化合物の重合により得られるポリチオフェン化合物、ポリアニリン化合物、ポリピロール化合物等の導電性ポリマーは、五酸化バナジウム1モル当たり、0.001〜0.4モルの割合で存在することが好ましい。複合可逆電極材料中の導電性ポリマーの量が五酸化バナジウム1モル当たり0.001未満であると、得られる二次電池のサイクル特性が低下し、他方その量が0.4モルを越えると、二次電池の電極容量密度が低下する傾向を示す。また、本発明によりアルコール系反応媒体を用いて得られる複合材料可逆電極の導電性ポリマーが、五酸化バナジウム1モル当たり、0.25モル未満であると、高い放電電圧が得られる。複合材料可逆電極内の導電性ポリマーは、五酸化バナジウム1モル当たり、0.005〜0.2モルの割合で存在することが特に好ましい。このような複合電極材料は、五酸化バナジウム1モル当たり、0.1〜0.6モルの量的範囲内で有機化合物を用いることによって製造することができる。   In the composite material reversible electrode obtained by the present invention, the conductive polymer such as polythiophene compound, polyaniline compound, polypyrrole compound and the like obtained by polymerization of the organic compound has a ratio of 0.001 to 0.4 mol per mol of vanadium pentoxide. Is preferably present. When the amount of the conductive polymer in the composite reversible electrode material is less than 0.001 per mole of vanadium pentoxide, the cycle characteristics of the obtained secondary battery are degraded. On the other hand, when the amount exceeds 0.4 mole, The tendency for the electrode capacity density of a secondary battery to fall is shown. Further, when the conductive polymer of the composite material reversible electrode obtained by using the alcohol-based reaction medium according to the present invention is less than 0.25 mol per mol of vanadium pentoxide, a high discharge voltage is obtained. The conductive polymer in the composite reversible electrode is particularly preferably present in a ratio of 0.005 to 0.2 mol per mol of vanadium pentoxide. Such a composite electrode material can be produced by using an organic compound within a quantitative range of 0.1 to 0.6 mol per mol of vanadium pentoxide.

ところで、上記反応混合物中に導電性カーボン材料の粒子を存在させると、得られる複合可逆電極材料中に有効な電子移動変換パスが構築されて導電性が向上し、五酸化バナジウムの4価の状態が安定化され、得られる二次電池は50回以上繰り返し充放電サイクルを行えることがわかった。導電性カーボンの例を挙げると、カーボンブラック、ケッチェンブラック、アセチレンブラック、黒鉛、カーボンナノチューブ等である。この導電性カーボン材料は、10nm〜30μmの平均粒径を有する粒子の形状で用いることが好ましい。導電性カーボン材料の粒子は、五酸化バナジウム100体積部当たり、15〜40体積部の割合で用いることが好ましい。この割合は、重量比では、カーボンブラックの場合は、五酸化バナジウム100重量部当たり、5.3〜20重量部の割合に相当する。導電性カーボン粒子が15体積部(カーボンブラックの場合は5.3重量部)未満であると、電子移動変換パスの構築が不十分となり、40体積部(カーボンブラックの場合は20重量部)を超えると、製膜性が悪くなる傾向を示す。なお、導電性カーボンは、上記重合後に添加することもできる。   By the way, when the particles of the conductive carbon material are present in the reaction mixture, an effective electron transfer conversion path is built in the obtained composite reversible electrode material, and the conductivity is improved, and the tetravalent state of vanadium pentoxide is improved. It was found that the secondary battery can be repeatedly charged and discharged 50 times or more. Examples of the conductive carbon include carbon black, ketjen black, acetylene black, graphite, and carbon nanotube. This conductive carbon material is preferably used in the form of particles having an average particle diameter of 10 nm to 30 μm. The particles of the conductive carbon material are preferably used at a rate of 15 to 40 parts by volume per 100 parts by volume of vanadium pentoxide. In the case of carbon black, this ratio corresponds to a ratio of 5.3 to 20 parts by weight per 100 parts by weight of vanadium pentoxide. If the conductive carbon particles are less than 15 parts by volume (5.3 parts by weight in the case of carbon black), the construction of the electron transfer conversion path becomes insufficient, and 40 parts by volume (20 parts by weight in the case of carbon black) When it exceeds, the film forming property tends to deteriorate. The conductive carbon can also be added after the polymerization.

以上のようにして得られる複合可逆電極材料は、乾燥後、ポリフッ化ビニリデン等のバインダーと混合し、電極基体(集電体)上に塗布することにより、複合可逆電極を作製することができる。電極材料層を支持する基体(集電体)は、少なくとも本発明の複合可逆電極材料の層と接する表面において導電性を示す導電性基体である。この基体は、金属、導電性金属化合物、導電性カーボン等の導電性材料で形成することができるが、銅、金、アルミニウムもしくはそれらの合金または導電性カーボンで形成することが好ましい。あるいは、基体は、非導電性材料で形成された基体本体をこれらの導電性材料で被覆することによっても形成することができる。   The composite reversible electrode material obtained as described above can be dried, mixed with a binder such as polyvinylidene fluoride, and coated on an electrode substrate (current collector) to produce a composite reversible electrode. The substrate (current collector) that supports the electrode material layer is a conductive substrate that exhibits conductivity at least on the surface in contact with the layer of the composite reversible electrode material of the present invention. The substrate can be formed of a conductive material such as a metal, a conductive metal compound, or conductive carbon, but is preferably formed of copper, gold, aluminum, an alloy thereof, or conductive carbon. Alternatively, the substrate can also be formed by coating a substrate body formed of a non-conductive material with these conductive materials.

本発明において、複合材料可逆電極の活物質層は50〜200μmの厚さを有することが好ましい。   In the present invention, the active material layer of the composite material reversible electrode preferably has a thickness of 50 to 200 μm.

本発明により得られる複合可逆電極は、二次電池の正極として、特にリチウム二次電池の正極として用いることが好ましい。二次電池は、正極と負極を備え、それらの間に電解質層が配置されている。リチウム二次電池においては、負極は、リチウム系材料で形成することが好ましい。そのようなリチウム系材料としては金属リチウムやリチウム合金(例えば、Li−Al合金)のようなリチウム系金属材料、またはリチウムインターカレーション炭素材料を例示することができる。リチウム金属系材料は、箔の形態で使用することが電池の軽量化の上で好ましい。正極と負極との間に挿入される電解質層は、電解質の溶液を含むポリマーゲルで構成すること(ポリマーゲル電解質)が好ましい。ポリマーゲルとしては、アクリロニトリルとアクリル酸メチルもしくはメタアクリル酸との共重合体を用いることが好ましい。なお、ポリマーゲル電解質は、ポリマーを電解質溶液中に浸漬することによって、または電解質溶液の存在下でポリマーの構成成分(モノマー/化合物)を重合させることによって得ることができる。また、特開2002−198095号公報に開示されたポリオレフィン系ゲルも好適に使用することができる。このポリオレフィン系ゲルは、ポリエチレンのモル比で約10%がポリエチレングリコール等のポリエチレンオキシドのオリゴマーを含有する化合物でグラフト化されている非架橋ポリマーである。   The composite reversible electrode obtained by the present invention is preferably used as a positive electrode of a secondary battery, particularly as a positive electrode of a lithium secondary battery. The secondary battery includes a positive electrode and a negative electrode, and an electrolyte layer is disposed between them. In the lithium secondary battery, the negative electrode is preferably formed of a lithium-based material. Examples of such lithium-based materials include lithium-based metal materials such as metallic lithium and lithium alloys (for example, Li—Al alloys), and lithium intercalation carbon materials. The lithium metal-based material is preferably used in the form of a foil in order to reduce the weight of the battery. The electrolyte layer inserted between the positive electrode and the negative electrode is preferably composed of a polymer gel containing an electrolyte solution (polymer gel electrolyte). As the polymer gel, it is preferable to use a copolymer of acrylonitrile and methyl acrylate or methacrylic acid. The polymer gel electrolyte can be obtained by immersing the polymer in the electrolyte solution or polymerizing the constituent components (monomer / compound) of the polymer in the presence of the electrolyte solution. Moreover, the polyolefin-type gel disclosed by Unexamined-Japanese-Patent No. 2002-198095 can also be used suitably. This polyolefin-based gel is a non-crosslinked polymer in which about 10% by mole of polyethylene is grafted with a compound containing an oligomer of polyethylene oxide such as polyethylene glycol.

リチウム二次電池においては、CF3SO3Li、C49SO8Li、(CF3SO22NLi、LiBF4、LiPF6、LiClO4等のリチウム塩を電解質として使用することができる。これら電解質を溶解する溶媒は非水溶媒であることが好ましい。非水溶媒には、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物、酸無水物、アミド化合物、ホスフェート化合物、アミン化合物等が含まれる。非水溶媒の具体例を挙げると、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ジメトキシエタン(ジメチルカーボネート:DMC)、γ−ブチルラクトン(GBL)、N−メチル−2−ピロリジノン(NMP)、エチルメチルカーボネート(EMC)、およびこれらの混合物等である。 In lithium secondary batteries, lithium salts such as CF 3 SO 3 Li, C 4 F 9 SO 8 Li, (CF 3 SO 2 ) 2 NLi, LiBF 4 , LiPF 6 , LiClO 4 can be used as the electrolyte. . The solvent for dissolving these electrolytes is preferably a non-aqueous solvent. Non-aqueous solvents include chain carbonates, cyclic carbonates, cyclic esters, nitrile compounds, acid anhydrides, amide compounds, phosphate compounds, amine compounds, and the like. Specific examples of the non-aqueous solvent include ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), dimethoxyethane (dimethyl carbonate: DMC), γ-butyllactone (GBL), N-methyl-2. -Pyrrolidinone (NMP), ethyl methyl carbonate (EMC), and mixtures thereof.

以下、本発明を実施例により説明するが、本発明は、それらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to them.

比較例1
表1に示すように、五酸化バナジウム100g、および蒸留水1Lを四つ口フラスコに入れ、攪拌羽と還流管と温度計と酸素フロー用ノズルをセットし、酸素を流しながら14時間還流下で加熱した。その後、五酸化バナジウムを濾過し、アルコールで洗浄し、50〜60℃で12時間以上真空乾燥し、五酸化バナジウムの酸素処理試料を調製した。得られた五酸化バナジウム粒子について、熱分析(TG)による組成分析、エックス線回折(XRD)による結晶解析(V25層間距離の算出)、IR測定による定性分析とSEM観察を行った。組成分析結果(ポリマー/V25モル比)およびV25層間距離の算出結果を表2に示す。
Comparative Example 1
As shown in Table 1, 100 g of vanadium pentoxide and 1 L of distilled water were put into a four-necked flask, and a stirring blade, a reflux tube, a thermometer, and an oxygen flow nozzle were set, and the mixture was refluxed for 14 hours while flowing oxygen. Heated. Thereafter, vanadium pentoxide was filtered, washed with alcohol, and vacuum-dried at 50 to 60 ° C. for 12 hours or more to prepare an oxygen-treated sample of vanadium pentoxide. The obtained vanadium pentoxide particles were subjected to composition analysis by thermal analysis (TG), crystal analysis by X-ray diffraction (XRD) (calculation of V 2 O 5 interlayer distance), qualitative analysis by IR measurement, and SEM observation. Table 2 shows the composition analysis results (polymer / V 2 O 5 molar ratio) and the V 2 O 5 interlayer distance calculation results.

比較例2
表1に示すように、五酸化バナジウム100g、カーボンブラック(CB:三菱化学#3350B)11g、および蒸留水とメタノールとの体積比75:25の混合物(反応媒体)1Lを四つ口フラスコに入れ、5時間超音波処理を行い、五酸化バナジウムとカーボンブラックを十分に分散させた。ついで四つ口フラスコに攪拌羽、還流管、温度計および酸素フロー用ノズルをセットし、酸素を流しながら14時間還流下で加熱した。その後、得られた反応混合物を濾過し、アルコールで洗浄し、50〜60℃で12時間以上真空乾燥して五酸化バナジウムとカーボンブラックの複合粒子を得た。得られた複合粒子について、熱分析(TG)による組成分析、エックス線回折(XRD)による結晶解析(V25層間距離の算出)、IR測定による定性分析とSEM観察を行った。組成分析結果(ポリマー/V25モル比)およびV25層間距離の算出結果を表2に示す。
Comparative Example 2
As shown in Table 1, 100 g of vanadium pentoxide, 11 g of carbon black (CB: Mitsubishi Chemical # 3350B), and 1 L of a 75:25 volume ratio of distilled water and methanol (reaction medium) are placed in a four-necked flask. Ultrasonic treatment was performed for 5 hours to sufficiently disperse vanadium pentoxide and carbon black. Next, a four-necked flask was equipped with a stirring blade, a reflux tube, a thermometer, and an oxygen flow nozzle, and heated under reflux for 14 hours while flowing oxygen. Thereafter, the obtained reaction mixture was filtered, washed with alcohol, and vacuum-dried at 50 to 60 ° C. for 12 hours or more to obtain composite particles of vanadium pentoxide and carbon black. The obtained composite particles were subjected to composition analysis by thermal analysis (TG), crystal analysis by X-ray diffraction (XRD) (calculation of V 2 O 5 interlayer distance), qualitative analysis by IR measurement, and SEM observation. Table 2 shows the composition analysis results (polymer / V 2 O 5 molar ratio) and the V 2 O 5 interlayer distance calculation results.

比較例3
表1に示すように、五酸化バナジウム100g、EDOT46.84g、および蒸留水1Lを四つ口フラスコに入れ、攪拌羽と還流管と温度計と酸素フロー用ノズルをセットし、酸素を流しながら14時間還流下で加熱した。ついで、反応混合物を濾過し、アルコールで洗浄し、50〜60℃で12時間以上真空乾燥して五酸化バナジウムとポリ(3,4−エチレンジオキシチオフェン)(PEDOT)の複合粒子を得た。得られた複合粒子について、熱分析(TG)による組成分析、エックス線回折(XRD)による結晶解析(V25層間距離の算出)、IR測定による定性分析とSEM観察を行った。組成分析結果(ポリマー/V25モル比)およびV25層間距離の算出結果を表2に示す。
Comparative Example 3
As shown in Table 1, 100 g of vanadium pentoxide, 46.84 g of EDOT, and 1 L of distilled water were placed in a four-necked flask, and a stirring blade, a reflux tube, a thermometer, and an oxygen flow nozzle were set. Heated under reflux for hours. Subsequently, the reaction mixture was filtered, washed with alcohol, and vacuum-dried at 50 to 60 ° C. for 12 hours or more to obtain composite particles of vanadium pentoxide and poly (3,4-ethylenedioxythiophene) (PEDOT). The obtained composite particles were subjected to composition analysis by thermal analysis (TG), crystal analysis by X-ray diffraction (XRD) (calculation of V 2 O 5 interlayer distance), qualitative analysis by IR measurement, and SEM observation. Table 2 shows the composition analysis results (polymer / V 2 O 5 molar ratio) and the V 2 O 5 interlayer distance calculation results.

実施例1
表1に示すように、五酸化バナジウム100g、EDOT46.84g、および水とメタノールとの体積比25:75の混合物(反応媒体)1Lを四つ口フラスコに入れ、5時間超音波処理を行い、五酸化バナジウムを混合溶媒中に十分に分散させた。ついで、四つ口フラスコに攪拌羽、還流管、温度計および酸素フロー用ノズルをセットし、酸素を流しながら14時間還流下に加熱した。その後、反応混合物を濾過し、アルコールで洗浄し、50〜60℃で12時間以上真空乾燥して、五酸化バナジウムとPEDOTとCBの複合粒子を得た。得られた複合粒子について、熱分析(TG)による組成分析、エックス線回折(XRD)による結晶解析(V25層間距離の算出)、IR測定による定性分析とSEM観察を行った。組成分析結果(ポリマー/V25モル比)およびV25層間距離の算出結果を表2に示す。
Example 1
As shown in Table 1, 100 g of vanadium pentoxide, 46.84 g of EDOT, and 1 L of a mixture of water and methanol in a volume ratio of 25:75 (reaction medium) were placed in a four-necked flask and subjected to sonication for 5 hours. Vanadium pentoxide was fully dispersed in the mixed solvent. Next, a four-necked flask was equipped with a stirring blade, a reflux tube, a thermometer, and an oxygen flow nozzle, and heated under reflux for 14 hours while flowing oxygen. Thereafter, the reaction mixture was filtered, washed with alcohol, and vacuum-dried at 50 to 60 ° C. for 12 hours or more to obtain composite particles of vanadium pentoxide, PEDOT, and CB. The obtained composite particles were subjected to composition analysis by thermal analysis (TG), crystal analysis by X-ray diffraction (XRD) (calculation of V 2 O 5 interlayer distance), qualitative analysis by IR measurement, and SEM observation. Table 2 shows the composition analysis results (polymer / V 2 O 5 molar ratio) and the V 2 O 5 interlayer distance calculation results.

比較例4、実施例2〜10
それぞれ表1に示す量で五酸化バナジウム、カーボンブラック(CB:三菱化学#3350B)、および反応媒体を四つ口フラスコに入れ、3時間超音波処理を行い、五酸化バナジウムとカーボンブラックを反応媒体中に十分に分散させた。次に、EDOTまたはアニリンを加え、さらに2時間の超音波処理を行った。ついで、四つ口フラスコに攪拌羽、還流管、温度計および酸素フロー用ノズルをセットし、酸素を流しながら、14時間還流下で加熱した(ただし、実施例9では温度を還流温度未満の60℃に設定した)。その後、反応混合物を濾過し、アルコールで洗浄し、50〜60℃で12時間以上真空乾燥して五酸化バナジウムとカーボンブラックと導電性ポリマー(PEDOTまたはポリアニリン(PANI))の複合粒子をそれぞれ得た。得られた複合粒子について、熱分析(TG)による組成分析、エックス線回折(XRD)による結晶解析(V25層間距離の算出)、IR測定による定性分析とSEM観察を行った。組成分析結果(ポリマー/V25モル比)およびV25層間距離の算出結果を表2に示す。

Figure 0004733359
Comparative Example 4, Examples 2-10
Vanadium pentoxide, carbon black (CB: Mitsubishi Chemical # 3350B), and the reaction medium in the amounts shown in Table 1 were placed in a four-necked flask and subjected to ultrasonic treatment for 3 hours to convert vanadium pentoxide and carbon black into the reaction medium. Well dispersed in. Next, EDOT or aniline was added and sonication was performed for another 2 hours. Then, a four-necked flask was equipped with a stirring blade, a reflux tube, a thermometer, and an oxygen flow nozzle, and heated under reflux for 14 hours while flowing oxygen (however, in Example 9, the temperature was less than the reflux temperature of 60). Set to ° C). Thereafter, the reaction mixture was filtered, washed with alcohol, and vacuum-dried at 50 to 60 ° C. for 12 hours or more to obtain composite particles of vanadium pentoxide, carbon black, and a conductive polymer (PEDOT or polyaniline (PANI)), respectively. . The obtained composite particles were subjected to composition analysis by thermal analysis (TG), crystal analysis by X-ray diffraction (XRD) (calculation of V 2 O 5 interlayer distance), qualitative analysis by IR measurement, and SEM observation. Table 2 shows the composition analysis results (polymer / V 2 O 5 molar ratio) and the V 2 O 5 interlayer distance calculation results.
Figure 0004733359

Figure 0004733359
Figure 0004733359

なお、表1において、MeOHは、メタノールを表し、EtOHは、エタノールを表し、IPAは、イソプロピルアルコールを表す。また、上記比較例および実施例において、重合反応後の五酸化バナジウムおよびカーボンブラックの回収率は、ほぼ100%であった。また、PEDOTの生成は、TGデータからのモノマーEDOTの消失とIRから確認した。PANIの生成も同様にして確認した。   In Table 1, MeOH represents methanol, EtOH represents ethanol, and IPA represents isopropyl alcohol. In the comparative examples and examples, the recovery rate of vanadium pentoxide and carbon black after the polymerization reaction was almost 100%. Moreover, the production | generation of PEDOT was confirmed from the loss | disappearance of monomer EDOT from TG data, and IR. The production of PANI was confirmed in the same manner.

実施例11
比較例1〜3、および実施例1、実施例3〜5、実施例7〜10でそれぞれ得た生成物粒子を遊星式ボールミルにより粉砕した。CBを含んでいない粒子については、表3に示す導電材を表3に示す量(五酸化バナジウムの全体積に対する体積%)添加(後添加)し、導電材を含んでいる粒子はそのまま、それぞれ約100gをポリフッ化ビニリデン系バインダー(呉羽化学社製KFポリマー#9130)の溶液に加え、高分散装置で混練してペースト化し、転写塗工方式により、正極集電体としての厚さ20μmのアルミニウム箔に塗工し、乾燥した。乾燥後の塗工密度および厚さを表3に示す。こうして、2〜4mAh/cm2(200mAh/gとして)の容量を有する正極基材を合計11種(正極A〜K)作製した。各正極材料の塗工量と、この塗工量から、表2の生成物の組成に基づいて算出した各正極材料中の活物質および導電材の塗工量を表3に示す。これら正極材料塗布アルミニウム箔を2×3cm2の大きさの集電体部(正極材料塗布部分)にタブ部が延出した形状に加工し、正極として用いた。
Example 11
The product particles obtained in Comparative Examples 1 to 3 and Example 1, Examples 3 to 5, and Examples 7 to 10 were pulverized by a planetary ball mill. For particles not containing CB, the conductive material shown in Table 3 was added (post-added) in the amount shown in Table 3 (volume% with respect to the total volume of vanadium pentoxide), and the particles containing the conductive material were left as they were, respectively. About 100 g is added to a solution of polyvinylidene fluoride binder (KF Polymer # 9130 manufactured by Kureha Chemical Co., Ltd.), kneaded with a high dispersion device to form a paste, and transferred to a 20 μm thick aluminum as a positive electrode current collector. The foil was applied and dried. Table 3 shows the coating density and thickness after drying. In this manner, a total of 11 types of positive electrode substrates (positive electrodes A to K) having a capacity of 2 to 4 mAh / cm 2 (as 200 mAh / g) were produced. Table 3 shows the coating amount of each positive electrode material and the coating amount of the active material and the conductive material in each positive electrode material calculated from the coating amount based on the composition of the product shown in Table 2. These positive electrode material-coated aluminum foils were processed into a shape in which a tab portion was extended to a current collector portion (positive electrode material-coated portion) having a size of 2 × 3 cm 2 and used as a positive electrode.

他方、リチウムビス(ペンタフルオロエタンスルホン)イミド(LiN(C25SO22)をECとDECとの体積比1:3の混合溶媒に1モル濃度で溶解して調製した電解液を厚さ20μmで3.5×3.5cm2の大きさのポリオレフィン系多孔質セパレータに含浸させた。 On the other hand, an electrolytic solution prepared by dissolving lithium bis (pentafluoroethanesulfone) imide (LiN (C 2 F 5 SO 2 ) 2 ) in a mixed solvent of EC and DEC in a volume ratio of 1: 3 at a 1 molar concentration. A polyolefin-based porous separator having a thickness of 20 μm and a size of 3.5 × 3.5 cm 2 was impregnated.

さらに、3×4cm2の大きさのリチウム金属箔を負極集電体としての銅箔(3×4cm2の大きさの集電体部にタブが延出した形状のもの)に張り合わせ、負極を作製した。 Furthermore, bonding of 3 × 4 cm 2 size of the lithium metal foil to a copper foil (3 × 4 cm 2 in size shape tabs extending in the collector portion ones) as the negative electrode current collector, a negative electrode Produced.

また、1×3cm2の大きさのリチウム金属箔を銅箔(1×3cm2の大きさの集電体部にタブが延出した形状のもの)に張り合わせ、参照電極を作製した。 Moreover, laminating a lithium metal foil 1 × 3 cm 2 size copper foil (one tab having a shape extending collector portion of the first × 3 cm 2 size), to prepare a reference electrode.

このように作製した正極、セパレータ、負極および参照電極を図1に示すように組み合わせ、評価用電池を組み立てた。図1において、セパレータ11の上表面上に、タブ121aを有する正極集電体(アルミニウム箔)121と正極材料122からなる正極12と、タブ131aを有する銅箔131とリチウム箔132からなる参照電極13が離間して配置されている。セパレータ11の下表面には、タブ141aを有する負極集電体(銅箔)141とリチウム箔142からなる負極14が設けられている。   The positive electrode, separator, negative electrode, and reference electrode thus produced were combined as shown in FIG. 1 to assemble an evaluation battery. In FIG. 1, on the upper surface of the separator 11, a positive electrode current collector (aluminum foil) 121 having a tab 121a and a positive electrode 12 made of a positive electrode material 122, a copper foil 131 having a tab 131a, and a reference electrode made of a lithium foil 132 13 are spaced apart. On the lower surface of the separator 11, a negative electrode 14 including a negative electrode current collector (copper foil) 141 having a tab 141 a and a lithium foil 142 is provided.

充放電の測定は、電流値を0.2C相当の0.6mA/cm2とし、充電は4.0もしくは4.2VのCC・CVモード(定電流・定電圧モード)で行い、放電は1.5Vから2.0ボルトまでCCモード(定電流モード)で行った。そして、特性が安定(定常)になってから、サイクリックボルタンメトリー(CV測定)を6mV/分で測定した。その後、同条件で充放電測定を行い、電池試験を計50サイクル行った。電池のCV特性を表4に示す。

Figure 0004733359
Charging / discharging measurement was performed at a current value of 0.6 mA / cm 2 corresponding to 0.2 C, charging was performed in a CC / CV mode (constant current / constant voltage mode) of 4.0 or 4.2 V, and discharging was performed at 1 It was performed in CC mode (constant current mode) from 5 V to 2.0 volts. Then, after the characteristics became stable (steady), cyclic voltammetry (CV measurement) was measured at 6 mV / min. Thereafter, charge / discharge measurement was performed under the same conditions, and a battery test was performed for a total of 50 cycles. Table 4 shows the CV characteristics of the battery.
Figure 0004733359

Figure 0004733359
Figure 0004733359

なお、表3において、KBは、ケッチェンブラック(ライオン(株)製ECP600JD)を表す。また、表4示す酸化電気量は、Qa=∫Idt(I>0)により算出し、還元電気量は、Qc=∫Idt(I<0)により算出した。また、反応電子数は、酸化還元電気量から算出した。   In Table 3, KB represents Ketjen Black (ECP600JD manufactured by Lion Corporation). The amount of electricity oxidized shown in Table 4 was calculated from Qa = ∫Idt (I> 0), and the amount of reduced electricity was calculated from Qc = ∫Idt (I <0). The number of reaction electrons was calculated from the amount of redox electricity.

なお、正極Aを用いて作製した電池のCV特性を図2に、正極Cを用いて作製した電池のCV特性を図3に、正極Eを用いて作製した電池のCV特性を図4に、正極Fを用いて作製した電池のCV特性を図5に、正極Hを用いて作製した電池のCV特性を図6に、正極Jを用いて作製した電池のCV特性を図7に、正極Kを用いて作製した電池のCV特性を図8に示す。   In addition, the CV characteristic of the battery produced using the positive electrode A is shown in FIG. 2, the CV characteristic of the battery produced using the positive electrode C is shown in FIG. 3, and the CV characteristic of the battery produced using the positive electrode E is shown in FIG. FIG. 5 shows the CV characteristics of the battery manufactured using the positive electrode F, FIG. 6 shows the CV characteristics of the battery manufactured using the positive electrode H, FIG. 7 shows the CV characteristics of the battery manufactured using the positive electrode J, and FIG. FIG. 8 shows CV characteristics of a battery manufactured using the above.

また、正極C、EおよびJを用いて作製した電池の充放電容量と電池電圧との関係を図9に示す。図9において、曲線aは、正極Cを用いて作製した電池の結果を、曲線bは、正極Eを用いて作製した電池の結果を、曲線cは、電極Jを用いて作製した電池の結果を示す。   Further, FIG. 9 shows the relationship between the charge / discharge capacity of the battery produced using the positive electrodes C, E and J and the battery voltage. In FIG. 9, the curve a shows the result of the battery manufactured using the positive electrode C, the curve b shows the result of the battery manufactured using the positive electrode E, and the curve c shows the result of the battery manufactured using the electrode J. Indicates.

さらに、電極Eを用いて作製した電池のサイクル数と充放電容量および放電容量密度との関係を図10に示す。図10において、黒丸印は充電容量を示し、白丸印は、放電容量を示す。   Furthermore, the relationship between the cycle number of the battery produced using the electrode E, charge / discharge capacity, and discharge capacity density is shown in FIG. In FIG. 10, black circles indicate charge capacity, and white circles indicate discharge capacity.

また、正極Kを用いて作製した電池の充放電容量と電池電圧との関係を図11に示す。   Further, FIG. 11 shows the relationship between the charge / discharge capacity of a battery manufactured using the positive electrode K and the battery voltage.

実施例12
負極としてカーボン負極を用いても本発明の正極材料が有効かどうかを確認するために以下の試験を行った。
Example 12
In order to confirm whether or not the positive electrode material of the present invention is effective even when a carbon negative electrode is used as the negative electrode, the following test was performed.

正極材料として正極FおよびGの正極材料をそれぞれアルミニウム箔に対し100MPa程度でプレス処理して得た正極LおよびM(正極材料の塗工密度1.6〜1.7g/cc)を用い、実施例11と同様にして評価用電池を組み立てた。充放電の測定は、電流値を0.2相当の0.4mA/cm2とし、充電は4.2VのCC・CVモード(定電流・低電圧モード)で行い、放電は1.5から2.0VまでCCモード(定電流モード)で5から6サイクル行い、特性が安定し、正極にリチウムがドープされた状態(放電状態)で、評価用電池を分解し、用いた負極をカーボン負極(電極面積3.5×3.5cm2、正極:3×3cm2)に取り替えて、評価用電池を再度組み立てた。この評価用電池について、上記と同様の条件で充放電特性評価を行った。この電池の放電容量と電池電圧の関係を図12に示す。図12において、曲線aは、正極Lを用いた場合の結果を、曲線bは、正極Mを用いた場合の結果を示す。図12に示すように、負極材料としてカーボンを用いても、試作電池は十分に満足でくる充放電特性を示すことが確認された。 Using positive electrodes L and M (positive electrode material coating density of 1.6 to 1.7 g / cc) obtained by pressing the positive electrode materials of positive electrodes F and G with aluminum foil at a pressure of about 100 MPa as positive electrode materials, respectively. An evaluation battery was assembled in the same manner as in Example 11. Charging / discharging measurement was performed at a current value of 0.4 mA / cm 2 corresponding to 0.2, charging was performed in the CC / CV mode (constant current / low voltage mode) of 4.2 V, and discharging was performed from 1.5 to 2 5 to 6 cycles in CC mode (constant current mode) up to 0.0 V, the characteristics are stable, the positive electrode is lithium-doped (discharge state), the evaluation battery is disassembled, and the negative electrode used is a carbon negative electrode ( The battery for evaluation was assembled again by replacing the electrode area with 3.5 × 3.5 cm 2 and positive electrode: 3 × 3 cm 2 . This evaluation battery was evaluated for charge / discharge characteristics under the same conditions as described above. The relationship between the discharge capacity of this battery and the battery voltage is shown in FIG. In FIG. 12, a curve a indicates the result when the positive electrode L is used, and a curve b indicates the result when the positive electrode M is used. As shown in FIG. 12, it was confirmed that even when carbon was used as the negative electrode material, the prototype battery exhibited sufficiently satisfactory charge / discharge characteristics.

以上のように、比較例と実施例の比較、図4、図5、図7および図8に示す結果と図3に示す結果との比較から、反応媒体として、アルコール比率が50体積%以上の反応媒体を使用することにより、得られる複合可逆電極材料を用いた二次電池の放電電圧が高電位にシフトすることが明らかとなった。   As described above, from the comparison between the comparative example and the example, and the comparison between the results shown in FIGS. 4, 5, 7 and 8 and the result shown in FIG. 3, the alcohol ratio as the reaction medium is 50% by volume or more. It became clear that the discharge voltage of the secondary battery using the obtained composite reversible electrode material shifts to a high potential by using the reaction medium.

また、特に、表4における電極Hを用いた電池と電極IおよびJを用いた電池における3V以上の還元応答の有無の比較、および図6に示す結果と図7に示す結果との比較から、得られた複合可逆電極材料中のPEDOT/V25モル比が0.25未満の場合に放電電圧が高電位にシフトすることが明らかとなった。そして、得られた複合可逆電極中のPEDOT/V25モル比が小さいほど放電容量密度(mAh/g)が向上し、最大300mAh/gが期待できることが見いだされた(表4中の還元電気量、および図9参照)。 In particular, from the comparison of the presence or absence of a reduction response of 3 V or more in the battery using the electrode H and the battery using the electrodes I and J in Table 4, and the comparison between the result shown in FIG. 6 and the result shown in FIG. It was revealed that the discharge voltage shifted to a high potential when the PEDOT / V 2 O 5 molar ratio in the obtained composite reversible electrode material was less than 0.25. And it was found that the smaller the PEDOT / V 2 O 5 molar ratio in the obtained composite reversible electrode, the better the discharge capacity density (mAh / g), and a maximum of 300 mAh / g can be expected (reduction in Table 4). Electrical quantity and see FIG. 9).

さらに、表3の電極Dと電極Eにおける正極材料塗工密度の比較から、導電性カーボン材料を複合化することにより、可逆電極材料の塗工密度を向上させることができるも明らかとなった。   Furthermore, from comparison of the positive electrode material coating densities of the electrode D and the electrode E in Table 3, it was also revealed that the coating density of the reversible electrode material can be improved by combining the conductive carbon material.

評価用電池の構成を示す斜視図。The perspective view which shows the structure of the battery for evaluation. 実施例11において正極Aを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode A in Example 11. 実施例11において正極Cを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode C in Example 11. 実施例11において正極Eを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode E in Example 11. 実施例11において正極Fを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode F in Example 11. 実施例11において正極Hを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode H in Example 11. 実施例11において正極Jを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode J in Example 11. 実施例11において正極Kを用いて作製した電池のCV特性を示すグラフ。10 is a graph showing CV characteristics of a battery manufactured using positive electrode K in Example 11. 実施例11において正極C、EおよびJを用いて作製した電池の充放電容量と電池電圧との関係を示すグラフ。The graph which shows the relationship between the charging / discharging capacity | capacitance of the battery produced using the positive electrodes C, E, and J in Example 11, and a battery voltage. 実施例11において電極Eを用いて作製した電池のサイクル数と充放電容量および放電容量密度との関係を示すグラフ。The graph which shows the relationship between the cycle number of the battery produced using the electrode E in Example 11, and charging / discharging capacity | capacitance and discharge capacity density. 実施例11において正極Kを用いて作製した電池の充放電容量と電池電圧との関係を示すグラフ。10 is a graph showing the relationship between the charge / discharge capacity of a battery produced using positive electrode K in Example 11 and the battery voltage. 実施例12において正極LおよびMを用いて作製した電池の放電容量と電池電圧の関係を示すグラフ。The graph which shows the relationship between the discharge capacity of the battery produced using the positive electrodes L and M in Example 12, and a battery voltage.

Claims (7)

反応媒体中に五酸化バナジウムと、重合により導電性ポリマーを生成する有機硫黄化合物とを含む反応混合物を前記有機硫黄化合物の重合に供することを包含し、前記有機硫黄化合物が、下記式(I):
Figure 0004733359
(ここで、R1およびR2は、それぞれ独立に、水素もしくは炭素数1〜4のアルキル基であり、または互いに結合して、置換されていてもよい炭素数1〜4のアルキル基または1,2−シクロヘキシン基を形成してもよい)で示される少なくとも1種のチオフェン化合物であり、前記反応媒体が0〜50体積%の水を含有するアルコールからなることを特徴とするリチウム二次電池用複合可逆正極の製造方法。
Including subjecting a reaction mixture containing vanadium pentoxide and an organic sulfur compound that forms a conductive polymer by polymerization to polymerization of the organic sulfur compound in a reaction medium, wherein the organic sulfur compound is represented by the following formula (I): :
Figure 0004733359
(Here, R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or bonded to each other to be substituted, or an alkyl group having 1 to 4 carbon atoms or 1 , 2-cyclohexyne group)), wherein the reaction medium comprises an alcohol containing 0 to 50% by volume of water. A method for producing a composite reversible positive electrode for a battery.
前記反応混合物が、導電性カーボン材料の粒子をさらに含むことを特徴とする請求項1に記載の製造方法。   The method according to claim 1, wherein the reaction mixture further includes particles of a conductive carbon material. 前記導電性カーボン材料が、カーボンブラック、ケッチェンブラック、アセチレンブラック、黒鉛およびカーボンナノチューブからなる群の中から選ばれることを特徴とする請求項1または2に記載の製造方法。   The method according to claim 1 or 2, wherein the conductive carbon material is selected from the group consisting of carbon black, ketjen black, acetylene black, graphite, and carbon nanotubes. 前記アルコールが、メタノール、エタノール、プロパノールおよびブタノールからなる群の中から選ばれることを特徴とする請求項1〜3のいずれか1項に記載の製造方法。   The method according to any one of claims 1 to 3, wherein the alcohol is selected from the group consisting of methanol, ethanol, propanol and butanol. 前記有機硫黄化合物が、3,4−エチレンジオキシチオフェンを含むことを特徴とする請求項1〜4のいずれか1項に記載の製造方法。   The manufacturing method according to claim 1, wherein the organic sulfur compound contains 3,4-ethylenedioxythiophene. 前記重合を90℃以下の温度で行うことを特徴とする請求項1〜5のいずれか1項に記載の製造方法。   The production method according to claim 1, wherein the polymerization is performed at a temperature of 90 ° C. or less. 前記重合により生成する導電性ポリマーが、前記五酸化バナジウムの層間に挿入されるか、前記五酸化バナジウムの表面を被覆することを特徴とする請求項1〜6のいずれか1項に記載の製造方法。The conductive polymer produced by the polymerization is inserted between the vanadium pentoxide layers or covers the surface of the vanadium pentoxide. Method.
JP2004093638A 2004-03-26 2004-03-26 Method for producing composite reversible electrode for secondary battery Expired - Fee Related JP4733359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093638A JP4733359B2 (en) 2004-03-26 2004-03-26 Method for producing composite reversible electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093638A JP4733359B2 (en) 2004-03-26 2004-03-26 Method for producing composite reversible electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2005285375A JP2005285375A (en) 2005-10-13
JP4733359B2 true JP4733359B2 (en) 2011-07-27

Family

ID=35183549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093638A Expired - Fee Related JP4733359B2 (en) 2004-03-26 2004-03-26 Method for producing composite reversible electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP4733359B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123824A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Positive electrode for lithium secondary battery, and nonaqueous lithium secondary battery
JP2008123823A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Method of manufacturing electrode material, electrode material, and nonaqueous lithium secondary battery using it
JP2008123822A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Electrode material, manufacturing method therefor, and nonaqueous lithium secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102162A (en) * 1986-10-17 1988-05-07 Showa Denko Kk Secondary battery
JPS63202858A (en) * 1987-02-18 1988-08-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH0215611A (en) * 1988-04-30 1990-01-19 Bayer Ag Solid electrolyte and electrolytc capacitor containing it
JPH0529022A (en) * 1991-07-19 1993-02-05 Honda Motor Co Ltd Manufacture of lithium secondary battery positive electrode
JPH09161771A (en) * 1995-12-08 1997-06-20 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH10308117A (en) * 1997-05-09 1998-11-17 Matsushita Electric Ind Co Ltd Conductive composition and manufacture thereof
JP2000007784A (en) * 1998-06-18 2000-01-11 Nec Corp Preparation of wiring board inspection contact pin and wiring board inspection apparatus
JP2000090732A (en) * 1998-09-16 2000-03-31 Matsushita Electric Ind Co Ltd Conductive composition, and manufacture of capacitor
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
WO2003067687A1 (en) * 2002-02-07 2003-08-14 Fuji Jukogyo Kabushiki Kaisya Redox active reversible electrode and novel cell using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102162A (en) * 1986-10-17 1988-05-07 Showa Denko Kk Secondary battery
JPS63202858A (en) * 1987-02-18 1988-08-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH0215611A (en) * 1988-04-30 1990-01-19 Bayer Ag Solid electrolyte and electrolytc capacitor containing it
JPH0529022A (en) * 1991-07-19 1993-02-05 Honda Motor Co Ltd Manufacture of lithium secondary battery positive electrode
JPH09161771A (en) * 1995-12-08 1997-06-20 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH10308117A (en) * 1997-05-09 1998-11-17 Matsushita Electric Ind Co Ltd Conductive composition and manufacture thereof
JP2000007784A (en) * 1998-06-18 2000-01-11 Nec Corp Preparation of wiring board inspection contact pin and wiring board inspection apparatus
JP2000090732A (en) * 1998-09-16 2000-03-31 Matsushita Electric Ind Co Ltd Conductive composition, and manufacture of capacitor
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
WO2003067687A1 (en) * 2002-02-07 2003-08-14 Fuji Jukogyo Kabushiki Kaisya Redox active reversible electrode and novel cell using it

Also Published As

Publication number Publication date
JP2005285375A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP6402174B2 (en) Positive electrode for lithium battery
JP5516578B2 (en) Power storage device
JP5474252B2 (en) Lithium battery
JP5385111B2 (en) Lithium secondary battery and manufacturing method thereof
EP3401981B1 (en) Electrode for energy storage devices
KR101378235B1 (en) Lithium secondary battery
JP5228531B2 (en) Electricity storage device
KR101264485B1 (en) Positive electrode of lithium secondary battery and method for producing the same
CN100583541C (en) Battery
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
JP2005340165A (en) Positive electrode material for lithium secondary cell
JP2001110447A (en) Lithium secondary battery
JP4720999B2 (en) Power storage device
JP4721000B2 (en) Power storage device
JP2003077476A (en) Lithium ion secondary battery
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
JP2013196910A (en) Nonaqueous electrolyte secondary battery
JP4830207B2 (en) battery
JP2010277701A (en) Secondary battery and its manufacturing method
JPH0864203A (en) Electrode, manufacture thereof, and secondary battery using it
JP4530133B2 (en) Power storage device
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP4733359B2 (en) Method for producing composite reversible electrode for secondary battery
JP2004185865A (en) Lithium ion battery, its manufacturing method, and negative electrode structure
JP4186463B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees