JP4732262B2 - Method for manufacturing hydrodynamic bearing device - Google Patents

Method for manufacturing hydrodynamic bearing device Download PDF

Info

Publication number
JP4732262B2
JP4732262B2 JP2006199854A JP2006199854A JP4732262B2 JP 4732262 B2 JP4732262 B2 JP 4732262B2 JP 2006199854 A JP2006199854 A JP 2006199854A JP 2006199854 A JP2006199854 A JP 2006199854A JP 4732262 B2 JP4732262 B2 JP 4732262B2
Authority
JP
Japan
Prior art keywords
housing
mold
bearing sleeve
bearing
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006199854A
Other languages
Japanese (ja)
Other versions
JP2008025739A (en
Inventor
仁彦 尾藤
信好 山下
正明 戸田
洋 赤井
弘次 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006199854A priority Critical patent/JP4732262B2/en
Publication of JP2008025739A publication Critical patent/JP2008025739A/en
Application granted granted Critical
Publication of JP4732262B2 publication Critical patent/JP4732262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

本発明は動圧軸受装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に生じる潤滑流体の動圧作用で、支持すべき回転部材を回転自在に非接触支持する軸受装置である。この種の軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的にはHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブのスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The hydrodynamic bearing device is a bearing device that rotatably supports a rotating member to be supported by a hydrodynamic action of a lubricating fluid generated in a bearing gap. This type of bearing device has features such as high-speed rotation, high rotation accuracy, and low noise, and more specifically as a bearing device for motors installed in various electrical equipment including information equipment. As a bearing device for a spindle motor of a disk drive in an optical disk device such as a magnetic disk device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, or a laser It is preferably used as a bearing device for a motor such as a polygon scanner motor of a beam printer (LBP), a color wheel motor of a projector, or a fan motor.

HDD等のディスク装置用のスピンドルモータに組み込まれる動圧軸受装置としては、例えば内周面がラジアル軸受隙間に面し、また一端面が一のスラスト軸受隙間に面する軸受スリーブと、一端面が他方のスラスト軸受隙間に面するハウジングとを備えた構成のものが公知である(例えば、特許文献1参照)。
特開2005−337343号公報
As a hydrodynamic bearing device incorporated in a spindle motor for a disk device such as an HDD, for example, a bearing sleeve whose inner peripheral surface faces a radial bearing gap and whose one end surface faces one thrust bearing gap, and one end surface thereof The thing of the structure provided with the housing which faces the other thrust bearing clearance gap is well-known (for example, refer patent document 1).
JP 2005-337343 A

近年では、情報機器における記録密度の増大や高速回転化に対応するため、上記動圧軸受装置には更なる高回転精度化が求められている。この種の要請に対応するためには、ラジアル軸受隙間やスラスト軸受隙間の幅寸法の更なる高精度管理が重要となり、そのため、軸受隙間の幅寸法精度を左右するハウジングと軸受スリーブの組み付け作業には細心の注意が払われている。   In recent years, in order to cope with an increase in recording density and high speed rotation in information equipment, the dynamic pressure bearing device is required to have higher rotational accuracy. In order to meet this type of request, it is important to further control the width dimensions of radial bearing gaps and thrust bearing gaps. For this reason, it is necessary to assemble the housing and bearing sleeve, which affect the width dimension accuracy of the bearing gap. Is very careful.

ハウジングと軸受スリーブとの間で高い組付け精度を得るための手段として、ハウジングや軸受スリーブを例えば金属の削り加工で高精度に形成する方法がまず考えられる。しかしながら、機械加工は総じて製造コストが高く付くため、今以上の低コスト化は困難な状況にある。機械加工等に代えて、ハウジングや軸受スリーブを型成形で形成すれば、製造コストの低減化は可能であるが、型成形は成形品間の寸法精度にバラツキを生じ易く、組み付け品の精度確保が難しい。   As a means for obtaining a high assembling accuracy between the housing and the bearing sleeve, a method of forming the housing and the bearing sleeve with high accuracy by, for example, metal shaving is conceivable. However, since machining is generally expensive to manufacture, further cost reduction is difficult. If the housing and bearing sleeve are formed by molding instead of machining, manufacturing costs can be reduced. However, mold molding tends to cause variations in dimensional accuracy between molded products, ensuring the accuracy of the assembled product. Is difficult.

以上より、本発明の課題は、部品精度によらず、ハウジングに対する軸受スリーブの組付け精度を低コストに高めた動圧軸受装置の製造方法を提供することである。   As described above, an object of the present invention is to provide a method of manufacturing a hydrodynamic bearing device in which the assembly accuracy of the bearing sleeve to the housing is increased at a low cost regardless of the component accuracy.

前記課題を解決するため、本発明は、内周面がラジアル軸受隙間に面する軸受スリーブを、軸方向一方の端面がスラスト軸受隙間に面するハウジングの内周にすきま接着で固定するに際し、一対の金型の型締めに伴い軸受スリーブの上記内周面を拘束する第1拘束面を一方の金型に設けると共に上記型締めに伴いハウジングの上記端面を拘束する第2拘束面を他方の金型に設けて、第1拘束面と第2拘束面との間の直角度を管理するようにし、かつ、上記型締めに伴い、何れか一方の金型に弾性支持された可動型と第1拘束面とでハウジングおよびハウジングの内周に導入された軸受スリーブを半径方向に挟持すると共に、上記可動型と第2拘束面とでハウジングを軸方向に挟持するようにしたことを特徴とする動圧軸受装置の製造方法を提供する。 To solve the above problems, when the present invention, the bearing sleeve whose inner peripheral surface facing the radial bearing gap, one end face in the axial direction is fixed by a gap adhered to the inner periphery of the housing which faces the thrust bearing gap, the pair A first constraining surface that constrains the inner peripheral surface of the bearing sleeve is provided in one mold as the mold is clamped, and a second constraining surface that constrains the end surface of the housing is coupled to the other as the mold is clamped . A movable mold that is provided on the mold so as to manage the perpendicularity between the first restraining surface and the second restraining surface , and that is elastically supported by one of the molds when the mold is clamped, and the first The housing and the bearing sleeve introduced into the inner periphery of the housing are clamped in the radial direction by the one restraint surface, and the housing is clamped in the axial direction by the movable die and the second restraint surface. Manufacturing method of hydrodynamic bearing device Subjected to.

上述のように、本発明に係る製造方法によれば、軸受スリーブをハウジングの内周にすき間接着で固定することで、これら組み付け品に過度の負荷を与えることなく、ハウジングに対する軸受スリーブの固定姿勢を型締め中に矯正することができる。従って、上述の
ように、軸受スリーブの内周面を拘束する第1拘束面と、ハウジングの端面を拘束する第2拘束面との間の直角度を管理することにより、軸受スリーブの内周面とハウジングの端面との間で高い直角度を有した状態で、かかる軸受スリーブをハウジングの内周に固定することができる。
As described above, according to the manufacturing method of the present invention, the bearing sleeve is fixed to the inner periphery of the housing by gap adhesion, so that the bearing sleeve is fixed to the housing without applying an excessive load to the assembly. Can be corrected during mold clamping. Therefore, as described above, the inner peripheral surface of the bearing sleeve is managed by managing the perpendicularity between the first constraining surface that constrains the inner peripheral surface of the bearing sleeve and the second constraining surface that constrains the end surface of the housing. Such a bearing sleeve can be fixed to the inner periphery of the housing with a high squareness between the housing and the end face of the housing.

ハウジングと軸受スリーブとの間で求められる組み付け精度(形状精度)としては、上記直角度のほか、軸受スリーブの端面とハウジングの端面との間の平行度が求められる場合がある。すなわち、上記特許文献1に記載の如く、軸受スリーブの軸方向一方の端面が一のスラスト軸受隙間に面すると共に、ハウジングの軸方向他方の端面が他方のスラスト軸受隙間に面する場合に両端面間で高い平行度が要求される。 As the assembly accuracy (shape accuracy) required between the housing and the bearing sleeve, in addition to the squareness, a parallelism between the end surface of the bearing sleeve and the end surface of the housing may be required. Ends That is, as described in Patent Document 1, the axial one end face of the bearing sleeve facing the thrust bearing gap of hand, when the axial end face of the other housing is facing the other of the thrust bearing gap A high degree of parallelism is required between the surfaces.

そこで、上記要求に対応するため、本発明は、内周面がラジアル軸受隙間に面すると共に、軸方向他方の端面が第1のスラスト軸受隙間に面する軸受スリーブを、軸方向一方の端面が第2のスラスト軸受隙間に面するハウジングの内周にすきま接着で固定するに際し、一対の金型の型締めに伴い軸受スリーブの上記端面を拘束する第拘束面を一方の金型に設けると共に上記型締めに伴いハウジングの上記端面を拘束する第2拘束面を他方の金型に設けて、第2拘束面と第3拘束面との間の平行度を管理するようにし、かつ、上記型締めに伴い、何れか一方の金型に弾性支持された可動型と第3拘束面とで軸受スリーブを軸方向に挟持すると共に、他方の金型に弾性支持された可動型と第2拘束面とでハウジングを軸方向に挟持するようにしたことを特徴とする動圧軸受装置の製造方法を提供する。 Therefore, in order to cope with the demand, the present invention, together with the inner circumferential surface facing the radial bearing gap, the bearing sleeve the end face of the other axial faces the first thrust bearing gap, one end face in the axial direction When fixing to the inner periphery of the housing facing the second thrust bearing gap by clearance bonding, a third constraining surface for constraining the end surfaces of the bearing sleeves is provided in one mold as the pair of molds are clamped. A second constraining surface for constraining the end surface of the housing in accordance with the mold clamping is provided in the other mold so as to manage parallelism between the second constraining surface and the third constraining surface ; and As the mold is clamped, the movable sleeve elastically supported by one of the molds and the third restraining surface sandwich the bearing sleeve in the axial direction, and the movable mold elastically supported by the other mold and the second restraint. So that the housing is clamped axially with the surface To provide a method of manufacturing a dynamic pressure bearing device, characterized in that the.

上述の方法によれば、軸受スリーブをハウジングの内周にすき間接着で固定することで、これら組み付け品に過度の負荷を与えることなく、ハウジングに対する軸受スリーブの固定姿勢を型締め中に矯正することができる。従って、上述のように、一方(第1)のスラスト軸受隙間に面する軸受スリーブの軸方向他方の端面を拘束する第拘束面と、他方(第2)のスラスト軸受隙間に面するハウジングの軸方向一方の端面を拘束する第2拘束面との間の平行度を管理することにより、ハウジングの端面と、軸受スリーブの端面との間で高い平行度を有した状態で、かかる軸受スリーブをハウジングの内周に固定することができる。 According to the above-described method, the bearing sleeve is fixed to the inner periphery of the housing by gap adhesion, thereby correcting the fixing posture of the bearing sleeve with respect to the housing during mold clamping without applying an excessive load to these assemblies. Can do. Therefore, as described above, the third constraining surface constraining the other axial end surface of the bearing sleeve facing one (first) thrust bearing gap and the housing facing the other (second) thrust bearing gap. By controlling the parallelism between the second constraining surface that constrains one end surface in the axial direction , the bearing sleeve is provided with a high degree of parallelism between the end surface of the housing and the end surface of the bearing sleeve. It can be fixed to the inner periphery of the housing.

ところで、上記何れの方法においても、接着固定される軸受スリーブの外周面やハウジングの内周面は、それほど高い形状精度(面精度)を必要としないため、加工方法によらず、残る他の面を高精度に仕上げることはそれほど困難ではない。そのため、例えば上述のように、軸受スリーブの端面でスラスト軸受隙間を構成する場合には、かかる端面とラジアル軸受隙間に面する内周面との直角度を比較的高精度に仕上げることができる。従って、上述のように、軸受スリーブの端面を拘束する第1拘束面と、ハウジングの端面を拘束する第2拘束面との間の平行度を管理することで、両端面間で高い平行度が得られると共に、軸受スリーブの内周面と、ハウジングの上記端面との間で高い直角度を確保した状態で両部材を固定することが可能となる。   By the way, in any of the above methods, the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing to be bonded and fixed do not require a very high shape accuracy (surface accuracy). It is not so difficult to finish with high precision. Therefore, for example, as described above, when the thrust bearing gap is formed by the end surface of the bearing sleeve, the perpendicularity between the end surface and the inner peripheral surface facing the radial bearing gap can be finished with relatively high accuracy. Therefore, as described above, by managing the parallelism between the first constraining surface that constrains the end surface of the bearing sleeve and the second constraining surface that constrains the end surface of the housing, a high degree of parallelism can be achieved between the two end surfaces. As a result, both members can be fixed in a state where a high squareness is secured between the inner peripheral surface of the bearing sleeve and the end surface of the housing.

上記直角度あるいは平行度の管理に加えて、本発明では、ハウジングの外周面を拘束する第拘束面と、軸受スリーブの内周面を拘束する第拘束面との間の同軸度を管理した状態で軸受スリーブをハウジングの内周に固定することも可能である。かかる方法によれば、第拘束面により拘束されるハウジングの外周面と、第拘束面により拘束される軸受スリーブの内周面との間で高い同軸度を持たせた状態で、かかる軸受スリーブをハウジングの内周に固定することができる。 In addition to managing the perpendicularity or parallelism, in the present invention, the coaxiality between the fourth constraining surface that constrains the outer peripheral surface of the housing and the first constraining surface that constrains the inner peripheral surface of the bearing sleeve is managed. In this state, the bearing sleeve can be fixed to the inner periphery of the housing. According to this method, such a bearing is provided with a high degree of coaxiality between the outer peripheral surface of the housing constrained by the fourth constraining surface and the inner peripheral surface of the bearing sleeve constrained by the first constraining surface. The sleeve can be fixed to the inner periphery of the housing.

上述のようにして、ハウジングに対する軸受スリーブの固定姿勢を決定した後、接着剤を固化させることで、軸受スリーブのハウジングへの固定がなされる。そのため、一旦ハウジングに対する軸受スリーブの固定姿勢を決定すれば、その姿勢を崩すことなく例えば加熱のみで両部材を固定することができ、これにより高精度かつ高強度な組み付け品を得ることができる。   As described above, after determining the fixing posture of the bearing sleeve with respect to the housing, the adhesive is solidified to fix the bearing sleeve to the housing. For this reason, once the fixing posture of the bearing sleeve with respect to the housing is determined, both members can be fixed, for example, only by heating without breaking the posture, thereby obtaining an assembly with high accuracy and high strength.

以上のことから、本発明によれば、部品精度によらず、ハウジングに対する軸受スリーブの組付け精度を低コストに高めた動圧軸受装置の製造方法を提供することができる。   From the above, according to the present invention, it is possible to provide a method for manufacturing a hydrodynamic bearing device that increases the assembly accuracy of the bearing sleeve to the housing at a low cost regardless of the component accuracy.

以下、本発明の第1実施形態に係る動圧軸受装置の製造方法およびこれにより製造される動圧軸受装置を図面に基づいて説明する。なお、以下の説明における『上下』方向は単に各図における上下方向を便宜的に示すもので、動圧軸受装置の設置方向や使用態様、あるいは後述する製造方法に係る製造装置等の設置方向を特定するものではない。   Hereinafter, a method for manufacturing a fluid dynamic bearing device according to a first embodiment of the present invention and a fluid dynamic bearing device manufactured thereby will be described with reference to the drawings. The “up and down” direction in the following description simply indicates the up and down direction in each drawing for the sake of convenience, and indicates the installation direction and usage of the hydrodynamic bearing device, or the installation direction of the manufacturing apparatus according to the manufacturing method described later. Not specific.

図1は、本発明の第1実施形態に係る製造方法により製造される動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部2を備えた回転部材3を回転自在に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6に取付けられ、ロータマグネット5は回転部材3に取付けられている。動圧軸受装置1のハウジング7は、ブラケット6の内周に固定される。また、図示は省略するが、回転部材3には、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)が一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、回転部材3および回転部材3に保持されたディスクが軸部2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 manufactured by the manufacturing method according to the first embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is opposed to the hydrodynamic bearing device 1 that rotatably supports the rotating member 3 including the shaft portion 2 through a gap in the radial direction, for example. The stator coil 4 and the rotor magnet 5 and the bracket 6 are provided. The stator coil 4 is attached to the bracket 6, and the rotor magnet 5 is attached to the rotating member 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 6. Although not shown, the rotating member 3 holds one or a plurality of disk-shaped information recording media (hereinafter simply referred to as disks) such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the rotating member 3 and the disk held by the rotating member 3 are moved to the shaft portion. 2 and rotate together.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7の内周に固定される軸受スリーブ8と、ハウジング7の一端を閉口する蓋部材10と、ハウジング7および軸受スリーブ8に対して相対回転する回転部材3とを主に備えている。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 rotates relative to the housing 7, a bearing sleeve 8 fixed to the inner periphery of the housing 7, a lid member 10 that closes one end of the housing 7, and the housing 7 and the bearing sleeve 8. The rotary member 3 is mainly provided.

回転部材3は、軸受スリーブ8の内周に挿入される軸部2と、軸部2の上端に設けられ、ハウジング7の開口側に配置されるハブ部9とを主に備えている。   The rotating member 3 mainly includes a shaft portion 2 that is inserted into the inner periphery of the bearing sleeve 8 and a hub portion 9 that is provided at the upper end of the shaft portion 2 and is disposed on the opening side of the housing 7.

軸部2は、この実施形態ではハブ部9と一体に形成され、その下端に抜止めとしてフランジ部11を別体に備えている。フランジ部11は、金属製で、例えばねじ結合等の手段により軸部2に固定される。   The shaft portion 2 is formed integrally with the hub portion 9 in this embodiment, and is provided with a flange portion 11 as a separate member at the lower end thereof. The flange portion 11 is made of metal and is fixed to the shaft portion 2 by means such as screw connection.

ハブ9は、ハウジング7の開口側(上側)を覆う円盤部9aと、円盤部9aの外周部から軸方向下方に延びる筒状部9bと、筒状部9bから外径側に突出する鍔部9dと、鍔部9dの上端に形成されるディスク搭載面9cとを備える。図示されていないディスクは円盤部9aの外周に外嵌され、ディスク搭載面9cに載置される。そして、図示しない適当な保持手段によってディスクがハブ部9に保持される。 The hub portion 9 includes a disc portion 9a that covers the opening side (upper side) of the housing 7, a cylindrical portion 9b that extends axially downward from the outer peripheral portion of the disc portion 9a, and a flange that protrudes outward from the cylindrical portion 9b. A portion 9d and a disk mounting surface 9c formed at the upper end of the flange portion 9d. A disk (not shown) is fitted on the outer periphery of the disk portion 9a and placed on the disk mounting surface 9c. Then, the disk is held on the hub portion 9 by an appropriate holding means (not shown).

ハウジング7は、金属あるいは樹脂で形成される。この実施形態では、ハウジング7は金属の鍛造加工で略円筒状に成形される。ハウジング7の端面(上端面)7bの全面または一部環状領域には、スラスト動圧発生部として、例えば図4に示すように、複数の動圧溝7b1をスパイラル形状に配列した領域(動圧発生部B)が形成される。上端面7bの動圧溝7b1形成領域は円盤部9aの下端面9a1と対向し、軸部2の回転時、下端面9a1との間に後述する第1スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   The housing 7 is made of metal or resin. In this embodiment, the housing 7 is formed in a substantially cylindrical shape by metal forging. As shown in FIG. 4, for example, as shown in FIG. 4, an area (dynamic pressure) in which a plurality of dynamic pressure grooves 7 b 1 are arranged as a thrust dynamic pressure generating portion on the entire end surface (upper end surface) 7 b or a partial annular region of the housing 7. A generating part B) is formed. The dynamic pressure groove 7b1 formation region of the upper end surface 7b is opposed to the lower end surface 9a1 of the disk portion 9a, and a thrust bearing gap of the first thrust bearing portion T1 described later is formed between the lower end surface 9a1 and the shaft portion 2 when rotating. (See FIG. 2).

ハウジング7の上方部外周(上端面7b側の外周面)には、上方に向かって漸次拡径する環状のテーパ面7cが形成される。テーパ面7cは筒状部9bの内周面9b1と対向し
、内周面9b1との間に半径方向寸法が上方に向かって漸次縮小するテーパ状のシール空間Sを形成する。潤滑油を動圧軸受装置1内部に充満させた状態では、潤滑油の油面は常時シール空間Sの範囲内にある。
On the outer periphery of the upper part of the housing 7 (the outer peripheral surface on the upper end surface 7b side), an annular tapered surface 7c that gradually increases in diameter upward is formed. The tapered surface 7c faces the inner peripheral surface 9b1 of the cylindrical portion 9b, and forms a tapered seal space S in which the radial dimension gradually decreases upward with respect to the inner peripheral surface 9b1. In a state where the lubricating oil is filled in the hydrodynamic bearing device 1, the oil level of the lubricating oil is always within the range of the seal space S.

ハウジング7の下端開口部は、軸受スリーブ8が固定される内周面7aよりも大径に形成され、この大径内周面7dに、例えば、ステンレス鋼や黄銅等の金属材料で形成された蓋部材10が圧入、あるいは圧入接着等の手段により固定されている。   The lower end opening of the housing 7 is formed with a larger diameter than the inner peripheral surface 7a to which the bearing sleeve 8 is fixed, and is formed on the large inner peripheral surface 7d with a metal material such as stainless steel or brass. The lid member 10 is fixed by means such as press fitting or press fitting.

軸受スリーブ8は、例えば焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、軸受スリーブ8は、銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7aに接着固定される。もちろん、軸受スリーブ8を多孔質以外の材料、例えば樹脂やセラミック、その他の金属材料で形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, for example. In this embodiment, the bearing sleeve 8 is made of a sintered metal porous body mainly composed of copper and formed in a cylindrical shape, and is bonded and fixed to the inner peripheral surface 7 a of the housing 7. Of course, it is also possible to form the bearing sleeve 8 with a material other than the porous material, for example, resin, ceramic, or other metal material.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として複数の動圧溝を配列した領域(動圧発生部A)が形成される。この実施形態では、例えば図3(a)に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列してなる動圧発生部Aが軸方向に離隔して2箇所形成される。動圧溝8a1、8a2形成領域は、軸部2を軸受スリーブ8の内周に挿入した状態では、軸部2の外周面2aと対向し、軸部2の回転時、対向する軸部2の外周面2aとの間に後述する第1、第2ラジアル軸受部R1、R2のラジアル軸受隙間をそれぞれ形成する(図2を参照)。なお、この実施形態では、上側の動圧発生部Aを構成する動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧発生部Aを構成する動圧溝8a2は軸方向対称に形成されている。また、軸受スリーブ8の外周面8bには、1又は複数本(例えば3本)の軸方向溝8b1が軸方向全長に亘って形成されている。   A region (dynamic pressure generating portion A) in which a plurality of dynamic pressure grooves are arranged is formed as a radial dynamic pressure generating portion on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical region. In this embodiment, for example, as shown in FIG. 3A, two dynamic pressure generating portions A formed by arranging a plurality of dynamic pressure grooves 8a1 and 8a2 in a herringbone shape are formed at two positions apart in the axial direction. . The dynamic pressure grooves 8a1 and 8a2 forming regions face the outer peripheral surface 2a of the shaft portion 2 in a state where the shaft portion 2 is inserted into the inner periphery of the bearing sleeve 8, and when the shaft portion 2 rotates, Radial bearing gaps of first and second radial bearing portions R1 and R2, which will be described later, are formed between the outer peripheral surface 2a (see FIG. 2). In this embodiment, the dynamic pressure groove 8a1 constituting the upper dynamic pressure generating part A is formed axially asymmetric with respect to the axial center m (the axial center of the region between the upper and lower inclined grooves). The axial dimension X1 in the upper region from the axial center m is larger than the axial dimension X2 in the lower region. On the other hand, the dynamic pressure grooves 8a2 constituting the lower dynamic pressure generating portion A are formed symmetrically in the axial direction. Further, one or a plurality of (for example, three) axial grooves 8b1 are formed on the outer peripheral surface 8b of the bearing sleeve 8 over the entire axial length.

軸受スリーブ8の下端面8cの全面又は一部環状領域には、動圧発生部Cとして、例えば図3(b)に示すように、複数の動圧溝8c1をスパイラル状に配列した領域が形成される。下端面8cの動圧溝8c1形成領域(動圧発生部C)はフランジ部2bの上端面2b1と対向し、軸部2の回転時、対向する上端面2b1との間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   As shown in FIG. 3B, for example, as shown in FIG. 3B, a region in which a plurality of dynamic pressure grooves 8c1 are arranged in a spiral shape is formed on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region. Is done. The dynamic pressure groove 8c1 formation region (dynamic pressure generating portion C) of the lower end surface 8c is opposed to the upper end surface 2b1 of the flange portion 2b, and a second thrust described later between the opposed upper end surface 2b1 when the shaft portion 2 rotates. A thrust bearing gap is formed in the bearing portion T2 (see FIG. 2).

以下、軸受スリーブ8をハウジング7の内周に接着固定する工程の一例を、図5〜図7に基づいて説明する。   Hereinafter, an example of the process of adhering and fixing the bearing sleeve 8 to the inner periphery of the housing 7 will be described with reference to FIGS.

図5は、軸受スリーブ8をハウジング7の内周に位置決め固定する工程の一例を概念的に示すものである。この工程で用いられる製造装置20は、同図に示すように、水平配置された台座21に固定された2本又は3本以上の支柱22と、支柱22間に配置され、同じく台座21に固定された固定ピン23と、固定ピン23の外周に配置された可動型24と、支柱22に挿入されたピン25と、ピン25にガイドされ、台座21に対して軸方向に相対移動可能な押え型26とを備えている。なお、説明の便宜上、台座21の側を下側、押え型26の側を上側として以下説明を進める。   FIG. 5 conceptually shows an example of the process of positioning and fixing the bearing sleeve 8 to the inner periphery of the housing 7. As shown in the figure, the manufacturing apparatus 20 used in this process is arranged between two or three or more support columns 22 fixed to a horizontally arranged pedestal 21 and the support columns 22, and is also fixed to the pedestal 21. The fixed pin 23, the movable mold 24 arranged on the outer periphery of the fixed pin 23, the pin 25 inserted into the support column 22, and the presser which is guided by the pin 25 and is movable relative to the base 21 in the axial direction. And a mold 26. For convenience of explanation, the following explanation will be made with the pedestal 21 side as the lower side and the presser die 26 side as the upper side.

固定ピン23は、図6に示すように、軸受スリーブ8の保持部23aと、保持部23aよりも大径に形成されたガイド部23bと、ガイド部23bよりも大径に形成されたベース部23cとを備え、ベース部23cの下端が台座21に固定されている。保持部23aは軸受スリーブ8を保持、拘束するためのものであり、円筒状の外周面23a2と、外周面23a2の下端から外径側に広がる円環状の上端面23a1とを有する。   As shown in FIG. 6, the fixing pin 23 includes a holding portion 23a of the bearing sleeve 8, a guide portion 23b having a larger diameter than the holding portion 23a, and a base portion having a larger diameter than the guide portion 23b. 23c, and the lower end of the base portion 23c is fixed to the base 21. The holding portion 23a is for holding and restraining the bearing sleeve 8, and has a cylindrical outer peripheral surface 23a2 and an annular upper end surface 23a1 extending from the lower end of the outer peripheral surface 23a2 to the outer diameter side.

保持部23aの上端面23a1は、型締め時、軸受スリーブ8の下端面8cを拘束可能な第拘束面となる。この端面(第拘束面)23a1は、支柱22の上端面22aから軸方向寸法tだけ離隔した位置に設けられる(図6を参照)。ここで、軸方向寸法tは、ハウジング7の上端面7b(動圧発生部Bの形成面)と軸受スリーブ8の下端面8c(動圧発生部Cの形成面)との離間距離(図2を参照)に等しい値に設定されている。 The upper end surface 23a1 of the holding portion 23a serves as a third constraining surface that can constrain the lower end surface 8c of the bearing sleeve 8 during mold clamping. The end surface ( third constraining surface) 23a1 is provided at a position separated from the upper end surface 22a of the support column 22 by the axial dimension t (see FIG. 6). Here, the axial dimension t is a separation distance between the upper end surface 7b of the housing 7 (formation surface of the dynamic pressure generating portion B) and the lower end surface 8c of the bearing sleeve 8 (formation surface of the dynamic pressure generating portion C) (FIG. 2). Is set to a value equal to

保持部23aの外周面23a2は、軸受スリーブ8を上端面23a1に当接した状態で、軸受スリーブ8の内周面8aを保持可能な程度の外径寸法に設定されている。そのため、型締め時、外周面23a2は、軸受スリーブ8の内周面8aを拘束可能な第拘束面となる。なお、ガイド部23bの外周面は後述する可動型24が移動する際のガイド面となり、その外周面精度が可動型24の動作精度、換言すると軸受スリーブ8の内周面8aに対するハウジング7外周面(例えばテーパ面7c)の同軸度を直接左右することになるので、求められる同軸度(例えば、3μm以下)を確保できるよう高精度に仕上げられている。 The outer peripheral surface 23a2 of the holding portion 23a is set to have an outer diameter that can hold the inner peripheral surface 8a of the bearing sleeve 8 in a state where the bearing sleeve 8 is in contact with the upper end surface 23a1. Therefore, at the time of mold clamping, the outer peripheral surface 23a2 becomes a first constraining surface that can constrain the inner peripheral surface 8a of the bearing sleeve 8. The outer peripheral surface of the guide portion 23b becomes a guide surface when the movable mold 24 described later moves, and the outer peripheral surface accuracy is the operation accuracy of the movable mold 24, in other words, the outer peripheral surface of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8. Since the coaxiality of the taper surface 7c (for example, the taper surface 7c) directly influences, it is finished with high accuracy so as to ensure the required coaxiality (for example, 3 μm or less).

可動型24は、上端内周にハウジング7を保持可能な略円筒状に形成されている。この可動型24は、台座21に固定されたばね等の弾性体で弾性支持されており、型締め時には、その内周を固定ピン23のガイド部23bでガイドされた状態で下方に移動する。図6に示す型開きの状態で、可動型24の上端部は支柱22の上端面22aよりも突出している。可動型24の下端外径側には、外径寸法が他所よりも大きい大径部24bが設けられ(図5を参照)、これを支柱22の段部22bと係合させることにより、型開き状態での抜け止めが図られている。可動型24の上端内周には、ハウジング7のテーパ面7c形状に対応した形状をなしハウジング7を保持する傾斜面状の保持面24aが設けられる。この保持面24aは、型締め時、保持するハウジング7の外周面(ここではテーパ面7c)を拘束可能な第拘束面となる。 The movable mold 24 is formed in a substantially cylindrical shape capable of holding the housing 7 on the inner periphery of the upper end. The movable mold 24 is elastically supported by an elastic body such as a spring fixed to the pedestal 21, and moves downward while being guided by the guide portion 23 b of the fixed pin 23 at the time of mold clamping. In the state of the shown to Mold Opening 6, the upper end portion of the movable mold 24 protrudes from the upper end face 22a of the strut 22. On the outer diameter side of the lower end of the movable mold 24, a large diameter portion 24b having an outer diameter dimension larger than that of the other portion is provided (see FIG. 5), and by engaging this with the step portion 22b of the support column 22, the mold opening is performed. It is designed to prevent it from slipping out. On the inner periphery of the upper end of the movable die 24, there is provided an inclined holding surface 24 a that has a shape corresponding to the shape of the tapered surface 7 c of the housing 7 and holds the housing 7. The holding surface 24a serves as a fourth restraining surface capable of restraining the outer peripheral surface (here, the tapered surface 7c) of the housing 7 to be held during mold clamping.

押え型26は、支柱22や固定ピン23、可動型24に対して相対的に上方に位置し、型締めあるいは型開きに伴い、ピン25でガイドされた状態で上記支柱22等に対して上下に相対移動可能なように構成されている。そのため、押え型26の下端面26aは、型締め時、ハウジング7の上端面(動圧発生部Bの形成面)を拘束可能な第2拘束面となる。なお、この下端面26aは、軸受スリーブ8の下端面8cに対するハウジング7の上端面7bの平行度、および軸受スリーブ8の内周面8aに対する上端面7bの直角度を直接左右することになるので、平面度や固定ピン23の上端面23a1に対する平行度、および固定ピン23の外周面23a2に対する直角度がそれぞれ所定の値以下となるよう高精度に設定されている。   The presser die 26 is positioned relatively above the support 22, the fixed pin 23, and the movable die 24, and is moved up and down with respect to the support 22 and the like while being guided by the pin 25 as the mold is clamped or opened. It is comprised so that relative movement is possible. Therefore, the lower end surface 26a of the presser die 26 becomes a second restraining surface capable of restraining the upper end surface (formation surface of the dynamic pressure generating portion B) of the housing 7 at the time of clamping. The lower end surface 26a directly affects the parallelism of the upper end surface 7b of the housing 7 with respect to the lower end surface 8c of the bearing sleeve 8 and the perpendicularity of the upper end surface 7b with respect to the inner peripheral surface 8a of the bearing sleeve 8. The flatness, the parallelism with respect to the upper end surface 23a1 of the fixing pin 23, and the perpendicularity with respect to the outer peripheral surface 23a2 of the fixing pin 23 are set with high accuracy so as to be equal to or less than predetermined values.

押え型26のうち、軸受スリーブ8の上端面8dと軸方向に対向する一部領域には、押え型26の下端面26aよりも下方(固定ピン23や可動型24の側)に突出した押え部材27が設けられている。この押え部材27は、上部をばね等の弾性体で支持されており、型締めに伴ってその下端面27aが軸受スリーブ8の上端面8dに当接すると、下方に対して後退移動する。この際、押え部材27を支持する弾性体としては、型締め時に軸受スリーブ8に対して過度の負荷を与えることなく、その姿勢(ハウジング7に対する姿勢)を矯正することができる程度の剛性(ばね剛性)を有するものが好適に使用可能である。可動型24を支持する弾性体にも、同様の剛性を有するものが好適に使用可能である。   Of the presser mold 26, a presser that protrudes below the lower end face 26a of the presser mold 26 (on the fixed pin 23 or the movable mold 24 side) in a partial region facing the upper end surface 8d of the bearing sleeve 8 in the axial direction. A member 27 is provided. The upper portion of the presser member 27 is supported by an elastic body such as a spring. When the lower end surface 27a comes into contact with the upper end surface 8d of the bearing sleeve 8 as the mold is clamped, the presser member 27 moves backward. At this time, the elastic body that supports the pressing member 27 has a rigidity (spring) that can correct the posture (the posture with respect to the housing 7) without applying an excessive load to the bearing sleeve 8 at the time of clamping. Those having rigidity) can be suitably used. As the elastic body that supports the movable mold 24, one having the same rigidity can be suitably used.

以上の構成をなす製造装置20において、固定ピン23の保持部23aに軸受スリーブ8を保持し、かつ可動型24の内周(保持面24a)にハウジング7を保持した状態で、押え型26を支柱22に対して相対的に下降させ、型締めを行う。この際、接着固定面となるハウジング7の内周面7aと軸受スリーブ8の外周面8bの何れか一方に予め接着剤を塗布しておく。型締めに伴い(押え型26の下降に伴い)、まず、図7に示すように、
押え型26の下端面26aをハウジング7の上端面7bに当接させ、可動型24と共にハウジング7を下降させる。これにより、ハウジング7が軸受スリーブ8の外周に導入される。さらに、押え型26を下降させ、押え部材27の下端面27aを軸受スリーブ8の上端面8dに当接させることで、軸受スリーブ8の両端面8c、8dを保持部23aの上端面23a1および押え部材27の下端面27aで挟持する。これにより、軸受スリーブ8が上下方向からの矯正力を受け、保持部23aに対する保持姿勢が適正に矯正される。同様に、ハウジング7が下端面26aおよび保持面24aによって挟持され、これにより押え型26に対する姿勢が適正に矯正される。そして、押え型26の下端面26aが支柱22の上端面22aに当接した時点で型締めを停止する。
In the manufacturing apparatus 20 having the above configuration, the holding die 26 is held in a state where the bearing sleeve 8 is held by the holding portion 23a of the fixed pin 23 and the housing 7 is held by the inner periphery (holding surface 24a) of the movable die 24. The mold 22 is lowered relative to the column 22 and clamped. At this time, an adhesive is applied in advance to either the inner peripheral surface 7a of the housing 7 or the outer peripheral surface 8b of the bearing sleeve 8 serving as an adhesive fixing surface. As the mold is clamped (as the presser mold 26 is lowered), first, as shown in FIG.
The lower end surface 26 a of the presser die 26 is brought into contact with the upper end surface 7 b of the housing 7, and the housing 7 is lowered together with the movable die 24. As a result, the housing 7 is introduced to the outer periphery of the bearing sleeve 8. Further, the presser die 26 is lowered, and the lower end surface 27a of the presser member 27 is brought into contact with the upper end surface 8d of the bearing sleeve 8, so that both end surfaces 8c and 8d of the bearing sleeve 8 are connected to the upper end surface 23a1 of the holding portion 23a and the presser. The member 27 is clamped by the lower end surface 27a. Thereby, the bearing sleeve 8 receives the correction force from the vertical direction, and the holding posture with respect to the holding portion 23a is corrected appropriately. Similarly, the housing 7 is sandwiched between the lower end surface 26a and the holding surface 24a, whereby the posture with respect to the presser mold 26 is properly corrected. Then, when the lower end surface 26 a of the presser mold 26 comes into contact with the upper end surface 22 a of the support column 22, the mold clamping is stopped.

この場合、押え型26の下端面26aの、固定ピン23の保持部23aの上端面23a1に対する平行度を所定の精度に形成しておくことにより、型締めを完了した時点(図7を参照)では、ハウジング7の上端面7bを拘束する押え型26の下端面26a(第2拘束面)と、軸受スリーブ8の下端面8cを拘束する固定ピン23の上端面23a1(第拘束面)との間の平行度が高精度に管理された状態となる。そのため、下端面26a(第2拘束面)に拘束されるハウジング7の上端面7bと、上端面23a1(第拘束面)に拘束される軸受スリーブ8の下端面8cとの間で高い平行度を有した状態で、ハウジング7に対する軸受スリーブ8の固定姿勢を決定することができる。 In this case, when the mold clamping is completed by forming the parallelism of the lower end surface 26a of the holding die 26 with respect to the upper end surface 23a1 of the holding portion 23a of the fixing pin 23 with a predetermined accuracy (see FIG. 7). Then, the lower end surface 26a (second constraining surface) of the presser die 26 that constrains the upper end surface 7b of the housing 7, and the upper end surface 23a1 ( third constraining surface) of the fixing pin 23 that constrains the lower end surface 8c of the bearing sleeve 8. The degree of parallelism between is controlled with high accuracy. Therefore, high parallelism between the upper end surface 7b of the housing 7 constrained by the lower end surface 26a (second constraining surface) and the lower end surface 8c of the bearing sleeve 8 constrained by the upper end surface 23a1 ( third constraining surface). In this state, the fixed posture of the bearing sleeve 8 with respect to the housing 7 can be determined.

また、この実施形態では、型締め時、固定ピン23の上端面23a1と押え型26の下端面26aとが所定の軸方向寸法tだけ離隔するように管理しているので、上記平行度と同時に、ハウジング7の上端面7bと軸受スリーブ8の下端面8cとの間の軸方向間隔も高精度に管理することができる。   In this embodiment, at the time of mold clamping, the upper end surface 23a1 of the fixing pin 23 and the lower end surface 26a of the presser mold 26 are managed so as to be separated by a predetermined axial dimension t. The axial distance between the upper end surface 7b of the housing 7 and the lower end surface 8c of the bearing sleeve 8 can also be managed with high accuracy.

また、上述のように、軸受スリーブ8をハウジング7内周にすき間接着で固定することで、接着固定される軸受スリーブ8の外周面8b(あるいはハウジング7の内周面7a)には、それほど高い形状精度(面精度)を必要としない。そのため、この実施形態のように、軸受スリーブ8を圧粉成形および焼結で形成(焼結金属で形成)すれば、外周面8b以外の面、すなわち両端面8c、8dと内周面8aとの間の直角度を比較的高精度に仕上げることができる。これにより、上記下端面8cと上端面7bとの間の平行度が高精度管理されると共に、ハウジング7の上端面7bと軸受スリーブ8の内周面8aとの間の直角度を高精度に管理することができる。   Further, as described above, by fixing the bearing sleeve 8 to the inner periphery of the housing 7 by gap bonding, the outer peripheral surface 8b of the bearing sleeve 8 to be bonded and fixed (or the inner peripheral surface 7a of the housing 7) is so high. Does not require shape accuracy (surface accuracy). Therefore, if the bearing sleeve 8 is formed by compacting and sintering (formed of sintered metal) as in this embodiment, surfaces other than the outer peripheral surface 8b, that is, both end surfaces 8c and 8d and the inner peripheral surface 8a Can be finished with relatively high accuracy. Thereby, the parallelism between the lower end surface 8c and the upper end surface 7b is managed with high accuracy, and the perpendicularity between the upper end surface 7b of the housing 7 and the inner peripheral surface 8a of the bearing sleeve 8 is highly accurate. Can be managed.

特に、この実施形態のように、軸受スリーブ8の内周面8aおよび下端面8cに、動圧発生部として複数本の動圧溝8a1、8c1等が形成されている場合、これらの動圧溝は、通常焼結後の溝サイジング工程で設けられる。そのため、かかる溝サイジングにより動圧溝8a1、8a2、8c1を形成すると共に、下端面8cと内周面8aとの間の直角度を高精度に仕上げることができ、上記直角度を高精度に、かつ最小限の後加工で安価に仕上げることができる。   In particular, when a plurality of dynamic pressure grooves 8a1, 8c1 and the like are formed as dynamic pressure generating portions on the inner peripheral surface 8a and the lower end surface 8c of the bearing sleeve 8 as in this embodiment, these dynamic pressure grooves Is usually provided in the groove sizing step after sintering. Therefore, the dynamic pressure grooves 8a1, 8a2, 8c1 can be formed by such groove sizing, and the perpendicularity between the lower end surface 8c and the inner peripheral surface 8a can be finished with high accuracy. And it can be finished inexpensively with minimal post-processing.

また、この実施形態では、可動型24は同軸配置された固定ピン23の外周でガイドされながら移動可能であるから、ハウジング7の第拘束面となる可動型24の保持面24aと、軸受スリーブ8の第拘束面となる固定ピン23の保持部23aの外周面23a2との間の同軸度を高精度に管理することができる。従って、これら拘束面により軸受スリーブ8の内周面8aに対するハウジング7の外周面(テーパ面7c)の同軸度も高精度に管理することができる。 In this embodiment, the movable die 24 is movable while being guided by the outer periphery of the fixed pin 23 arranged coaxially. Therefore, the holding surface 24a of the movable die 24 serving as the fourth constraining surface of the housing 7, and the bearing sleeve The coaxiality with the outer peripheral surface 23a2 of the holding portion 23a of the fixing pin 23 serving as the first restraining surface 8 can be managed with high accuracy. Accordingly, the concentricity of the outer peripheral surface (tapered surface 7c) of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8 can be managed with high accuracy by these constraining surfaces.

上述のようにして、ハウジング7に対する軸受スリーブ8の固定姿勢および固定位置を決定した後、加熱等により接着剤を固化させる。接着剤の固化後、型開きを行うことで、ハウジング7と軸受スリーブ8の組み付け品が得られる。なお、両者の固定は、上述のよ
うに予め両部材7、8の何れかの面7a、8bに接着剤を塗布した状態で型締めを行う他、型締め後、両部材7、8間の接着隙間に接着剤を充填・固化させることによって行うこともできる。
After determining the fixing posture and fixing position of the bearing sleeve 8 with respect to the housing 7 as described above, the adhesive is solidified by heating or the like. An assembly of the housing 7 and the bearing sleeve 8 is obtained by performing mold opening after the adhesive is solidified. In addition, as for both fixation, in addition to performing mold clamping in the state which applied the adhesive agent to either surface 7a, 8b of both members 7 and 8 beforehand as mentioned above, after mold clamping, between both members 7 and 8 It can also be performed by filling and solidifying the adhesive in the adhesive gap.

以上のように構成された動圧軸受装置1は、ハウジング7の内周に軸受スリーブ8を固定した後、軸受スリーブ8の内周に回転部材3を挿入した状態で回転部材3の下端にフランジ部11を固定し、さらに蓋部材10でハウジング7の下端開口部を封口することで組み立てられる。その後、各軸受隙間を含む軸受内部空間に潤滑油を注油することで、図2に示す動圧軸受装置1が完成する。   In the hydrodynamic bearing device 1 configured as described above, the bearing sleeve 8 is fixed to the inner periphery of the housing 7, and then the rotating member 3 is inserted into the inner periphery of the bearing sleeve 8 with a flange at the lower end of the rotating member 3. It is assembled by fixing the part 11 and sealing the lower end opening of the housing 7 with the lid member 10. Thereafter, lubricating oil is injected into the bearing internal space including each bearing gap, whereby the hydrodynamic bearing device 1 shown in FIG. 2 is completed.

上記構成の動圧軸受装置1において、回転部材3(軸部2)が回転すると、軸受スリーブ8の内周面8aに形成された動圧発生部A、Aは、対向する軸部2の外周面2aとの間にラジアル軸受隙間を形成する。そして、各ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心側に押し込まれ、その圧力が上昇する。このように、動圧溝8a1、8a2(動圧発生部A、A)によって生じる潤滑油の動圧作用によって、軸部2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ構成される。   In the dynamic pressure bearing device 1 having the above-described configuration, when the rotating member 3 (shaft portion 2) rotates, the dynamic pressure generating portions A and A formed on the inner peripheral surface 8a of the bearing sleeve 8 are the outer periphery of the opposing shaft portion 2. A radial bearing gap is formed between the surface 2a. Then, the lubricating oil in each radial bearing gap is pushed into the axial center side of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. As described above, the first radial bearing R1 and the second radial that support the shaft portion 2 in a non-contact manner in the radial direction by the dynamic pressure action of the lubricating oil generated by the dynamic pressure grooves 8a1 and 8a2 (dynamic pressure generating portions A and A). Each of the bearing portions R2 is configured.

これと同時に、軸受スリーブ8の下端面8cに設けられた動圧発生部C(動圧溝8c1形成領域)とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、およびハウジング7の上端面7bに形成される動圧発生部B(動圧溝7b1形成領域)とこれに対向するハブ部9の下端面9a1との間のスラスト軸受隙間に形成される潤滑油膜の圧力が、動圧溝7b1、8c1の動圧作用により高められる。そして、これら油膜の圧力によって、回転部材3(ハブ部9)をスラスト方向に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とがそれぞれ構成される。   At the same time, the thrust bearing gap between the dynamic pressure generating portion C (the dynamic pressure groove 8c1 forming region) provided on the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b facing this, and the housing The pressure of the lubricating oil film formed in the thrust bearing gap between the dynamic pressure generating portion B (dynamic pressure groove 7b1 forming region) formed on the upper end surface 7b of the roller 7 and the lower end surface 9a1 of the hub portion 9 opposed thereto is The dynamic pressure grooves 7b1 and 8c1 increase the dynamic pressure action. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the rotating member 3 (hub portion 9) in the thrust direction in a non-contact manner are constituted by the pressure of these oil films.

この際、上述のように、ハウジング7の上端面7bと軸受スリーブ8の下端面8cとの間の平行度とその軸方向離間距離、ハウジング7の上端面7bと軸受スリーブ8の内周面8aとの間の直角度、およびハウジング7の外周面(テーパ面7c)と軸受スリーブ8の内周面8aとの間の同軸度などを高精度に設定した状態で接着固定を行うことで、各軸受隙間の幅、あるいはモータの駆動部となるさせたステータコイル4とロータマグネット5との対向間隔等を高精度に管理することができる。従って、軸受性能に優れた動圧軸受装置1ひいては回転性能に優れたスピンドルモータを得ることができる。   At this time, as described above, the parallelism between the upper end surface 7b of the housing 7 and the lower end surface 8c of the bearing sleeve 8 and the axial separation distance thereof, the upper end surface 7b of the housing 7 and the inner peripheral surface 8a of the bearing sleeve 8 are used. And fixing with a high degree of accuracy such as the coaxiality between the outer peripheral surface (tapered surface 7c) of the housing 7 and the inner peripheral surface 8a of the bearing sleeve 8, The width of the bearing gap or the interval between the stator coil 4 and the rotor magnet 5 that serve as the motor drive unit can be managed with high accuracy. Therefore, it is possible to obtain a hydrodynamic bearing device 1 having excellent bearing performance and thus a spindle motor having excellent rotational performance.

なお、以上の説明では、軸受スリーブ8とハウジング7に対する軸受スリーブ8の固定姿勢の決定を一度の型締め動作で行う手順について説明を行ったが、一度目の型締め動作でまず固定ピン23(保持部23a)に対する軸受スリーブ8の姿勢矯正を行った後、可動型24にハウジング7をセットして、二度目の型締め動作で両者間の固定姿勢を決定することもできる。   In the above description, the procedure for determining the fixing posture of the bearing sleeve 8 with respect to the bearing sleeve 8 and the housing 7 has been described in a single mold clamping operation. However, the fixing pin 23 ( After correcting the attitude of the bearing sleeve 8 with respect to the holding portion 23a), the housing 7 is set on the movable mold 24, and the fixed attitude between the two can be determined by the second clamping operation.

以下、本発明の第2実施形態に係る動圧軸受装置の製造方法およびそれにより製造された動圧軸受装置を図面に基づいて説明する。   Hereinafter, a method for manufacturing a hydrodynamic bearing device according to a second embodiment of the present invention and a hydrodynamic bearing device manufactured thereby will be described with reference to the drawings.

図8は、第2実施形態に係る製造方法により製造される動圧軸受装置1の一例を示している。この動圧軸受装置1は、主に、ハウジング7が有底筒状に形成される点、およびハブ部9の下端面9a1とハウジング7の上端面7bの間にのみスラスト軸受部Tが設けられる点で、図2に示す動圧軸受装置1と構成を異にしている。なお、その他の構成は図2に示す動圧軸受装置と同一であるので、共通の参照番号を付与して重複説明を省略する。   FIG. 8 shows an example of the hydrodynamic bearing device 1 manufactured by the manufacturing method according to the second embodiment. The hydrodynamic bearing device 1 is mainly provided with a thrust bearing portion T only at a point where the housing 7 is formed in a bottomed cylindrical shape and between the lower end surface 9a1 of the hub portion 9 and the upper end surface 7b of the housing 7. In this respect, the configuration is different from that of the hydrodynamic bearing device 1 shown in FIG. In addition, since the other structure is the same as that of the hydrodynamic bearing device shown in FIG. 2, a common reference number is given and redundant description is omitted.

同図に示す動圧軸受装置1におけるハウジング7と軸受スリーブ8の組み付け(接着固
定)は、例えば図9に示す製造装置30を用いて行われる。
The assembly (adhesion and fixing) of the housing 7 and the bearing sleeve 8 in the dynamic pressure bearing device 1 shown in the figure is performed using, for example, a manufacturing device 30 shown in FIG.

図9に示す製造装置30は、水平配置された台座31に固定された固定ピン33と、固定ピン33の外周に配置され、固定ピン33に対して相対的に上下移動が可能な押え型36とを備える。なお、説明の便宜上、台座31の側を下側、押え型36の側を上側として以下説明を進める。   The manufacturing apparatus 30 shown in FIG. 9 includes a fixing pin 33 fixed to a horizontally arranged pedestal 31 and a presser mold 36 that is disposed on the outer periphery of the fixing pin 33 and that can move up and down relatively with respect to the fixing pin 33. With. For convenience of explanation, the following explanation will be made with the pedestal 31 side as the lower side and the presser die 36 side as the upper side.

固定ピン33は、図9に示すように、軸受スリーブ8の保持部33aと、保持部33aよりも大径に形成されたガイド部33bとを備える。ガイド部33bの下端は台座31に固定されている。保持部33aは軸受スリーブ8を保持、拘束するためのものであり、円筒状の外周面33a2と、外周面33a2の下端から外径側に広がる円環状の上端面33a1とを有する。また、この実施形態では、保持部33aの外周面33a2と上端面33a1との間に段部33cが設けられており、段部33cの小径上端面33c1と、保持部33aの上端面33a1との軸方向間隔が所定値に管理されている。   As shown in FIG. 9, the fixing pin 33 includes a holding portion 33a of the bearing sleeve 8 and a guide portion 33b formed to have a larger diameter than the holding portion 33a. The lower end of the guide portion 33 b is fixed to the pedestal 31. The holding portion 33a is for holding and restraining the bearing sleeve 8, and has a cylindrical outer peripheral surface 33a2 and an annular upper end surface 33a1 extending from the lower end of the outer peripheral surface 33a2 to the outer diameter side. In this embodiment, a step portion 33c is provided between the outer peripheral surface 33a2 and the upper end surface 33a1 of the holding portion 33a, and the small diameter upper end surface 33c1 of the step portion 33c and the upper end surface 33a1 of the holding portion 33a are provided. The axial interval is managed at a predetermined value.

この場合、保持部33aの外周面33a2が、型締め時、軸受スリーブ8の内周面8aを拘束可能な第1拘束面となる。また、保持部33aの上端面33a1が、型締め時、ハウジング7の上端面7bを拘束可能な第2拘束面となる。なお、この上端面33a1および外周面33a2は、軸受スリーブ8の内周面8aに対するハウジング7の上端面7bとの間の直角度を直接左右することになるので、かかる上端面33a1に対する外周面33a2の直角度が所定の値以下となるよう高精度に設定されている。 In this case, the outer peripheral surface 33a2 of the holding portion 33a serves as a first constraining surface that can constrain the inner peripheral surface 8a of the bearing sleeve 8 during mold clamping . Also, the upper end surface 33a1 of the holding portion 33a is, at mold clamping, the second constraining surface can be restrained to the upper end face 7b of the housing 7. The upper end surface 33a1 and the outer peripheral surface 33a2 directly affect the perpendicularity between the inner peripheral surface 8a of the bearing sleeve 8 and the upper end surface 7b of the housing 7. Therefore, the outer peripheral surface 33a2 with respect to the upper end surface 33a1. Is set with high accuracy so that the squareness of the angle is equal to or less than a predetermined value.

同様に、ガイド部33bの外周面は後述する押え型36が移動する際のガイド面となり、その外周面精度が、軸受スリーブ8の内周面8aに対するハウジング7外周面(例えばテーパ面7c)の同軸度を直接左右することになるので、求められる同軸度を確保できるよう高精度に仕上げられている。   Similarly, the outer peripheral surface of the guide portion 33b becomes a guide surface when the presser die 36 described later moves, and the outer peripheral surface accuracy of the outer peripheral surface of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8 (for example, the tapered surface 7c). Since the coaxiality directly affects the coaxiality, it is finished with high accuracy so that the required coaxiality can be secured.

押え型36は、その内周に固定ピン33の保持部33aを収容可能な小径面36aと、固定ピン33のガイド部33bを収容可能な大径面36bとを有する。このうち小径面36aの下端には、ハウジング7のテーパ面7c形状に対応した形状をなしハウジング7を下方に押圧可能な傾斜面36a1が設けられる。かかる構成の押え型36は、台座31や固定ピン33に対して相対的に上方に位置し、型締めあるいは型開きに伴い、固定ピン33に対して相対的に上下移動が可能なように構成されている。そのため、小径面36aに設けられた傾斜面36a1は、型締め時、ハウジング7の外周面(ここではテーパ面7c)を拘束可能な第拘束面となる。なお、この傾斜面36a1は、軸受スリーブ8の内周面8aに対するハウジング7の外周面(テーパ面7c)の同軸度を直接左右することになるので、固定ピン33の外周面33a2に対する同軸度が所定の値以下となるよう高精度に設定されている。 The presser die 36 has a small diameter surface 36 a capable of accommodating the holding portion 33 a of the fixing pin 33 and a large diameter surface 36 b capable of accommodating the guide portion 33 b of the fixing pin 33 on the inner periphery thereof. Among these, the lower end of the small diameter surface 36a is provided with an inclined surface 36a1 that has a shape corresponding to the shape of the tapered surface 7c of the housing 7 and can press the housing 7 downward. The presser mold 36 having such a configuration is positioned relatively above the pedestal 31 and the fixed pin 33, and can be moved up and down relatively with respect to the fixed pin 33 when the mold is clamped or opened. Has been. Therefore, the inclined surface 36a1 provided on the small-diameter surface 36a serves as a fourth constraining surface capable of constraining the outer peripheral surface (here, the tapered surface 7c) of the housing 7 during mold clamping. Since the inclined surface 36a1 directly affects the coaxiality of the outer peripheral surface (tapered surface 7c) of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8, the coaxiality with respect to the outer peripheral surface 33a2 of the fixing pin 33 is determined. It is set with high accuracy so as to be below a predetermined value.

以上の構成をなす製造装置30を用いた接着固定作業は以下の手順で行われる。まず、固定ピン33の保持部33a外周に軸受スリーブ8を導入し、軸受スリーブ8の上端面8d(図9中では下方に位置している)を保持部33aの上端面33a1に当接させた状態でかかる軸受スリーブ8を保持する。次に、ハウジング7を、軸受スリーブ8を被覆するように保持部33aにセットする。この状態から、押え型36を台座31および固定ピン33に対して相対的に下降させ、型締めを行う。この際、接着固定面となるハウジング7の内周面7aと軸受スリーブ8の外周面8bの何れか一方に予め接着剤を塗布しておく。型締めに伴い(押え型36の下降に伴い)、図9に示すように、押え型36の小径面36aに設けた傾斜面36a1をハウジング7の外周面(テーパ面7c)に当接させ、ハウジング7を、かかる傾斜面36a1と固定ピン33の上端面33a1とで挟持する。これに
より、ハウジング7が上下方向からの矯正力を受け、保持部33aに対する保持姿勢が適正に矯正される。そして、押え型26の下端面26aが支柱22の上端面22aに当接した時点で型締めを停止する。
The bonding and fixing work using the manufacturing apparatus 30 having the above configuration is performed according to the following procedure. First, the bearing sleeve 8 is introduced to the outer periphery of the holding portion 33a of the fixing pin 33, and the upper end surface 8d (positioned downward in FIG. 9) of the bearing sleeve 8 is brought into contact with the upper end surface 33a1 of the holding portion 33a. The bearing sleeve 8 is held in the state. Next, the housing 7 is set on the holding portion 33 a so as to cover the bearing sleeve 8. From this state, the presser mold 36 is lowered relative to the pedestal 31 and the fixing pin 33 to perform mold clamping. At this time, an adhesive is applied in advance to either the inner peripheral surface 7a of the housing 7 or the outer peripheral surface 8b of the bearing sleeve 8 serving as an adhesive fixing surface. As the mold is clamped (with the lowering of the presser mold 36), as shown in FIG. 9, the inclined surface 36a1 provided on the small diameter surface 36a of the presser mold 36 is brought into contact with the outer peripheral surface (tapered surface 7c) of the housing 7, The housing 7 is sandwiched between the inclined surface 36 a 1 and the upper end surface 33 a 1 of the fixing pin 33. Thereby, the housing 7 receives a correction force from the vertical direction, and the holding posture with respect to the holding portion 33a is corrected appropriately. Then, when the lower end surface 26 a of the presser mold 26 comes into contact with the upper end surface 22 a of the support column 22, the mold clamping is stopped.

この場合、上端面33a1に対する外周面33a2の直角度を所定の精度に形成しておくことにより、軸受スリーブ8の内周面8aを拘束する固定ピン23の外周面33a2(第1拘束面)と、ハウジング7の上端面7bを拘束する固定ピン33の上端面33a1(第2拘束面)との間の直角度が高精度に管理された状態で型締めを行うことができる。そのため、外周面33a2(第1拘束面)に拘束される軸受スリーブ8の内周面8aと、上端面33a1(第2拘束面)に拘束されるハウジング7の上端面7bとの間で高い直角度が得られるように、ハウジング7に対する軸受スリーブ8の固定姿勢を決定することができる。   In this case, by forming the squareness of the outer peripheral surface 33a2 with respect to the upper end surface 33a1 with a predetermined accuracy, the outer peripheral surface 33a2 (first constraining surface) of the fixing pin 23 that constrains the inner peripheral surface 8a of the bearing sleeve 8 and The mold clamping can be performed in a state in which the squareness between the upper end surface 33a1 (second constraining surface) of the fixing pin 33 that constrains the upper end surface 7b of the housing 7 is managed with high accuracy. Therefore, there is a high straight line between the inner peripheral surface 8a of the bearing sleeve 8 constrained by the outer peripheral surface 33a2 (first constraining surface) and the upper end surface 7b of the housing 7 constrained by the upper end surface 33a1 (second constraining surface). The fixing posture of the bearing sleeve 8 with respect to the housing 7 can be determined so that an angle is obtained.

また、この実施形態では、保持部33aの上端面33a1と段部33cの小径上端面33c1とが所定の軸方向寸法だけ離隔するように固定ピン33を仕上げているので、ハウジング7の上端面7bと軸受スリーブ8の上端面8dとの間の軸方向間隔も高精度に管理することができる。   Further, in this embodiment, since the fixing pin 33 is finished so that the upper end surface 33a1 of the holding portion 33a and the small diameter upper end surface 33c1 of the stepped portion 33c are separated by a predetermined axial dimension, the upper end surface 7b of the housing 7 is finished. And the axial distance between the upper end surface 8d of the bearing sleeve 8 can be managed with high accuracy.

また、この実施形態では、押え型36は同軸配置された固定ピン33(ガイド部33b)の外周でガイドされながら移動可能であるから、ハウジング7の第拘束面となる押え型36の傾斜面36a1と、軸受スリーブ8の第拘束面となる保持部33aの外周面33a2との間の同軸度を高精度に管理することができる。従って、これら拘束面により軸受スリーブ8の内周面8aに対するハウジング7の外周面(テーパ面7c)の同軸度も高精度に管理することができる。 Further, in this embodiment, since the presser mold 36 is movable while being guided on the outer periphery of the fixed pin 33 (guide portion 33 b) arranged coaxially, the inclined surface of the presser mold 36 serving as the fourth restraining surface of the housing 7. The coaxiality between 36a1 and the outer peripheral surface 33a2 of the holding portion 33a that becomes the first restraining surface of the bearing sleeve 8 can be managed with high accuracy. Accordingly, the concentricity of the outer peripheral surface (tapered surface 7c) of the housing 7 with respect to the inner peripheral surface 8a of the bearing sleeve 8 can be managed with high accuracy by these constraining surfaces.

上述のようにして、ハウジング7に対する軸受スリーブ8の固定姿勢および固定位置を決定した後、加熱等により接着剤を固化させる。接着剤の固化後、型開きを行うことで、ハウジング7と軸受スリーブ8の組み付け品が得られる。   After determining the fixing posture and fixing position of the bearing sleeve 8 with respect to the housing 7 as described above, the adhesive is solidified by heating or the like. An assembly of the housing 7 and the bearing sleeve 8 is obtained by performing mold opening after the adhesive is solidified.

以上、本発明の第1、第2実施形態について説明したが、本発明は、これらの実施形態に限られるものではなく、本発明の作用効果を享受し得る範囲内において、製造装置20、30の構成など種々の変更等が可能である。   As mentioned above, although 1st, 2nd embodiment of this invention was described, this invention is not restricted to these embodiment, In the range which can enjoy the effect of this invention, manufacturing apparatus 20 and 30 Various changes, such as the configuration of, can be made.

上記の動圧軸受装置1では、ラジアル軸受部R1、R2として、へリングボーン形状やスパイラル形状の動圧溝により流体の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆる多円弧軸受やステップ軸受を採用しても良い。この場合、軸受スリーブ8の内周面8aに形成される動圧発生部Aは、複数の円弧面あるいは軸方向溝によって構成される。また、上述の動圧発生部は、軸受スリーブ8の内周面8aに限らず、これとラジアル方向に対向する軸部2の外周面2aの側に形成することも可能である。   In the hydrodynamic bearing device 1 described above, the radial bearing portions R1 and R2 exemplify a configuration in which the dynamic pressure action of the fluid is generated by the herringbone-shaped or spiral-shaped hydrodynamic grooves, but the radial bearing portions R1, R2 A so-called multi-arc bearing or step bearing may be adopted as R2. In this case, the dynamic pressure generating portion A formed on the inner peripheral surface 8a of the bearing sleeve 8 is constituted by a plurality of arc surfaces or axial grooves. Further, the above-described dynamic pressure generating portion is not limited to the inner peripheral surface 8a of the bearing sleeve 8, but can be formed on the outer peripheral surface 2a side of the shaft portion 2 facing this in the radial direction.

また、図示は省略するが、スラスト軸受部T1およびT2のうち一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。これらスラスト動圧軸受を構成する動圧発生部(図2でいえば動圧発生部B、Cなど)についても、軸受スリーブ8やハウジング7の側ではなく、これと対向するフランジ部11やハブ部9の下端面9a1の側に設けることも可能である。   Although illustration is omitted, one or both of the thrust bearing portions T1 and T2 is provided with a plurality of radial groove-shaped dynamic pressure grooves at predetermined intervals in the circumferential direction, for example, in a region serving as a thrust bearing surface. Further, it can be constituted by a so-called step bearing, a so-called wave bearing (the step mold is a wave form), or the like. The dynamic pressure generating portions (the dynamic pressure generating portions B and C in FIG. 2) constituting these thrust dynamic pressure bearings are not on the bearing sleeve 8 or housing 7 side, but on the flange portion 11 or hub facing the same. It can also be provided on the lower end surface 9a1 side of the portion 9.

以上の実施形態では、動圧軸受装置1の内部に充満する流体(潤滑流体)として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば
磁性流体や空気等の気体を使用することもできる。
In the above embodiment, the lubricating oil is exemplified as the fluid (lubricating fluid) that fills the inside of the hydrodynamic bearing device 1, but other fluids that can generate dynamic pressure in each bearing gap, such as magnetic Gases such as fluid and air can also be used.

本発明の第1実施形態に係る製造方法により製造された動圧軸受装置を組み込んだスピンドルモータの一例を示す断面図である。It is sectional drawing which shows an example of the spindle motor incorporating the dynamic pressure bearing apparatus manufactured by the manufacturing method which concerns on 1st Embodiment of this invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. (a)は軸受スリーブの断面図、(b)は軸受スリーブの下端面図である。(A) is sectional drawing of a bearing sleeve, (b) is a lower end figure of a bearing sleeve. ハウジングの上端面図である。It is a top view of a housing. 第1実施形態に係る製造工程の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the manufacturing process which concerns on 1st Embodiment. 型締め前の、製造装置の矢印Dで示す領域を拡大した断面図である。It is sectional drawing to which the area | region shown by the arrow D of a manufacturing apparatus before mold clamping was expanded. 型締め時の、製造装置の要部を拡大した断面図である。It is sectional drawing to which the principal part of the manufacturing apparatus was expanded at the time of mold clamping. 第2実施形態に係る製造方法により製造された動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus manufactured by the manufacturing method which concerns on 2nd Embodiment. 第2実施形態に係る製造工程の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the manufacturing process which concerns on 2nd Embodiment.

1 動圧軸受装置
7 ハウジング
7b 上端面
7c テーパ面
8 軸受スリーブ
8a 内周面
8c 下端面
20 製造装置
23 固定ピン
23a 保持部
23a1 上端面(第拘束面)
26 押え型
26a 下端面(第2拘束面)
30 製造装置
33 固定ピン
33a 保持部
33a1 上端面(第2拘束面)
33a2 外周面(第1拘束面)
36 押え型
A、B、C 動圧発生部
R1、R2 ラジアル軸受部
T1、T2、T スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 7 Housing 7b Upper end surface 7c Tapered surface 8 Bearing sleeve 8a Inner peripheral surface 8c Lower end surface 20 Manufacturing apparatus 23 Fixing pin 23a Holding | maintenance part 23a1 Upper end surface ( 3rd restraint surface)
26 Presser mold 26a Lower end surface (second restraint surface)
30 Manufacturing apparatus 33 Fixing pin 33a Holding part 33a1 Upper end surface (2nd restraint surface)
33a2 Outer peripheral surface (first restraint surface)
36 Presser dies A, B, C Dynamic pressure generating portions R1, R2 Radial bearing portions T1, T2, T Thrust bearing portions S Seal space

Claims (4)

内周面がラジアル軸受隙間に面する軸受スリーブを、軸方向一方の端面がスラスト軸受隙間に面するハウジングの内周にすきま接着で固定するに際し
一対の金型の型締めに伴い軸受スリーブの上記内周面を拘束する第1拘束面を一方の金型に設けると共に上記型締めに伴いハウジングの上記端面を拘束する第2拘束面を他方の金型に設けて、第1拘束面と第2拘束面との間の直角度を管理するようにし、かつ、
上記型締めに伴い、何れか一方の金型に弾性支持された可動型と第1拘束面とでハウジングおよびハウジングの内周に導入された軸受スリーブを半径方向に挟持すると共に、上記可動型と第2拘束面とでハウジングを軸方向に挟持するようにしたことを特徴とする動圧軸受装置の製造方法。
When fixing the bearing sleeve whose inner circumferential surface faces the radial bearing gap to the inner circumference of the housing whose one end face in the axial direction faces the thrust bearing gap by clearance bonding ,
A first constraining surface that constrains the inner peripheral surface of the bearing sleeve is provided in one mold as the pair of molds are clamped, and a second constraining surface that constrains the end surface of the housing is provided in the other as the mold is clamped. The right angle between the first constraining surface and the second constraining surface is managed , and
Along with the mold clamping, the movable mold elastically supported by one of the molds and the first restraining surface sandwich the housing and the bearing sleeve introduced into the inner periphery of the housing in the radial direction, and the movable mold A method of manufacturing a hydrodynamic bearing device, wherein the housing is clamped in the axial direction with the second restraining surface .
内周面がラジアル軸受隙間に面すると共に、軸方向他方の端面が第1のスラスト軸受隙間に面する軸受スリーブを、軸方向一方の端面が第2のスラスト軸受隙間に面するハウジングの内周にすきま接着で固定するに際し
一対の金型の型締めに伴い軸受スリーブの上記端面を拘束する第拘束面を一方の金型に設けると共に上記型締めに伴いハウジングの上記端面を拘束する第2拘束面を他方の金型に設けて、第2拘束面と第3拘束面との間の平行度を管理するようにし、かつ、
上記型締めに伴い、何れか一方の金型に弾性支持された可動型と第3拘束面とで軸受スリーブを軸方向に挟持すると共に、他方の金型に弾性支持された可動型と第2拘束面とでハウジングを軸方向に挟持するようにしたことを特徴とする動圧軸受装置の製造方法。
Together with the inner circumferential surface facing the radial bearing gap, the bearing sleeve the end face of the other axial faces the first thrust bearing gap, the inner periphery of the housing to one end face in the axial direction faces the second thrust bearing gap When fixing with clearance adhesive ,
A third constraining surface that constrains the end surface of the bearing sleeve is provided in one mold as the pair of molds are clamped, and a second constraining surface that constrains the end surface of the housing as the mold is clamped is provided in the other mold. Provided in the mold to manage parallelism between the second constraining surface and the third constraining surface ; and
Along with the clamping, the movable sleeve elastically supported by one of the molds and the third restraining surface sandwich the bearing sleeve in the axial direction, and the movable mold elastically supported by the other mold and the second mold A method of manufacturing a hydrodynamic bearing device, wherein a housing is clamped in an axial direction with a restraining surface .
さらに、上記型締めに伴い軸受スリーブの上記内周面を拘束する第1拘束面を一方の金型に設けて、第1拘束面と第2拘束面との間の直角度を管理するようにし、かつ、
上記型締めに伴い、上記一方の金型に弾性支持された可動型と第1拘束面とでハウジングおよびハウジングの内周に導入された軸受スリーブを半径方向に挟持するようにした請求項2に記載の動圧軸受装置の製造方法。
Further, a first constraining surface that constrains the inner peripheral surface of the bearing sleeve with the mold clamping is provided in one mold so as to manage the perpendicularity between the first constraining surface and the second constraining surface. ,And,
Along with the mold clamping, to claim 2 which is adapted to clamp the bearing sleeve which is introduced into the inner periphery of the housing and the housing by the elastic supported movable die and the first constraining surface on one of the mold the radially The manufacturing method of the hydrodynamic bearing apparatus of description.
ハウジングに対する軸受スリーブの固定姿勢を決定した後、接着剤を固化させる請求項1〜3何れかに記載の動圧軸受装置の製造方法。   The method for manufacturing a hydrodynamic bearing device according to any one of claims 1 to 3, wherein an adhesive is solidified after determining a fixing posture of the bearing sleeve with respect to the housing.
JP2006199854A 2006-07-21 2006-07-21 Method for manufacturing hydrodynamic bearing device Expired - Fee Related JP4732262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199854A JP4732262B2 (en) 2006-07-21 2006-07-21 Method for manufacturing hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199854A JP4732262B2 (en) 2006-07-21 2006-07-21 Method for manufacturing hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008025739A JP2008025739A (en) 2008-02-07
JP4732262B2 true JP4732262B2 (en) 2011-07-27

Family

ID=39116569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199854A Expired - Fee Related JP4732262B2 (en) 2006-07-21 2006-07-21 Method for manufacturing hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4732262B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273263A (en) * 1996-04-04 1997-10-21 Misawa Homes Co Ltd Panel for wall with reinforced rib and manufacture thereof
JP2005337341A (en) * 2004-05-25 2005-12-08 Ntn Corp Dynamic pressure bearing device and motor using the same
JP2006105183A (en) * 2004-10-01 2006-04-20 Nippon Densan Corp Method of manufacturing hydrodynamic pressure bearing, spindle motor and recording disk driving device
JP2006207787A (en) * 2004-12-28 2006-08-10 Ntn Corp Housing for dynamic pressure bearing device and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273263A (en) * 1996-04-04 1997-10-21 Misawa Homes Co Ltd Panel for wall with reinforced rib and manufacture thereof
JP2005337341A (en) * 2004-05-25 2005-12-08 Ntn Corp Dynamic pressure bearing device and motor using the same
JP2006105183A (en) * 2004-10-01 2006-04-20 Nippon Densan Corp Method of manufacturing hydrodynamic pressure bearing, spindle motor and recording disk driving device
JP2006207787A (en) * 2004-12-28 2006-08-10 Ntn Corp Housing for dynamic pressure bearing device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2008025739A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US8107190B2 (en) Fluid bearing device, method of manufacturing the same, and disk drive device
US20090279817A1 (en) Fluid dynamic bearing apparatus
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP5312895B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP4619691B2 (en) Hydrodynamic bearing device and motor using the same
JP4732262B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008144847A (en) Dynamic pressure bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
WO2005088143A1 (en) Hydrodynamic bearing device
JP5784777B2 (en) Fluid dynamic bearing device
JP5143435B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor
JP4509650B2 (en) Hydrodynamic bearing device
JP4739030B2 (en) Hydrodynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP4554324B2 (en) Hydrodynamic bearing device
JP4515151B2 (en) Hydrodynamic bearing device
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
JP5602535B2 (en) Fluid dynamic bearing device
JP2005337343A (en) Dynamic pressure bearing device, its manufacturing method, and motor using the device
JP2008298236A (en) Fluid bearing device
JP2008164110A (en) Fluid bearing device shaft member and its manufacturing method
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4732262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees