JP4725415B2 - Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof - Google Patents

Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof Download PDF

Info

Publication number
JP4725415B2
JP4725415B2 JP2006142672A JP2006142672A JP4725415B2 JP 4725415 B2 JP4725415 B2 JP 4725415B2 JP 2006142672 A JP2006142672 A JP 2006142672A JP 2006142672 A JP2006142672 A JP 2006142672A JP 4725415 B2 JP4725415 B2 JP 4725415B2
Authority
JP
Japan
Prior art keywords
less
hot
steel sheet
mass
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006142672A
Other languages
Japanese (ja)
Other versions
JP2007314817A (en
Inventor
祐久 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006142672A priority Critical patent/JP4725415B2/en
Publication of JP2007314817A publication Critical patent/JP2007314817A/en
Application granted granted Critical
Publication of JP4725415B2 publication Critical patent/JP4725415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、自動車のボデー構造部品、足回り部品等を始めとする機械構造部品の製造に使用するのに適した熱間プレス用鋼板と熱間プレス鋼板部材ならびにそれらの製造方法に関する。   The present invention relates to a hot-pressed steel sheet and hot-pressed steel sheet member suitable for use in the manufacture of machine structural parts such as automobile body structural parts and undercarriage parts, and methods for producing the same.

近年、自動車の燃費向上のため、使用する鋼材の高強度化を図り、自動車の重量を減ずる努力が進んでいる。その結果、自動車に広く使用される鋼板においては、鋼板強度の増加に伴って、プレス成形性が低下し、複雑な形状を製造することが困難になってきている。具体的には、鋼板の延性が低下し、加工度が高い部位で破断が生じる、スプリングバックや壁反りが大きくなり寸法精度が劣化する、といった問題が発生する。このような理由から、高強度、特に引張強さが780MPa級以上の鋼板を用いて、プレス成形で部品を製造することは容易ではない。プレス成形ではなくロール成形によれば、高強度の鋼板の加工が可能であるが、ロール成形は長手方向に一様な断面を有する部品にしか適用できない。   In recent years, efforts have been made to reduce the weight of automobiles by increasing the strength of steel materials used to improve automobile fuel efficiency. As a result, in steel plates widely used in automobiles, as the strength of the steel plates increases, press formability decreases, making it difficult to manufacture complex shapes. Specifically, the ductility of the steel sheet is reduced, and a problem occurs in that fracture occurs at a site with a high degree of processing, springback and wall warpage increase, and dimensional accuracy deteriorates. For these reasons, it is not easy to produce a part by press molding using a steel plate having a high strength, particularly a tensile strength of 780 MPa or more. According to roll forming instead of press forming, it is possible to process a high-strength steel sheet, but roll forming is applicable only to parts having a uniform cross section in the longitudinal direction.

そのため、英国特許第1490535号公報に開示されているように、加熱した鋼板をプレスし成形する熱間プレス法とよばれる成形方法が開発された。熱間プレス法では、加熱された高温の鋼板が軟質、高延性になっているため、複雑な形状を寸法精度よく成形することが可能である。さらに、鋼板をオーステナイト域に加熱してからプレス成形し、金型内で急冷(焼入れ)することにより、マルテンサイト変態による鋼板の高強度化を成形と同時に達成できるという利点がある。   Therefore, as disclosed in British Patent No. 1490535, a forming method called a hot press method in which a heated steel sheet is pressed and formed has been developed. In the hot pressing method, since a heated high-temperature steel sheet is soft and highly ductile, it is possible to form a complicated shape with high dimensional accuracy. Further, there is an advantage that high strength of the steel sheet by martensitic transformation can be achieved at the same time as forming by press forming after heating the steel sheet to the austenite region and quenching (quenching) in the mold.

特開平10−96031号公報には、室温で予め所定の形状に成形してから、金型に入れたままオーステナイト域に加熱し、金型内で急冷することで鋼板の高強度化を成形と同時に達成する予成形プレスクエンチ法が開示されている。   In JP-A-10-96031, after forming into a predetermined shape at room temperature in advance, heating to the austenite region while being put in the mold, and quenching in the mold, the steel sheet is made to have high strength. A preformed press quench method is disclosed which is accomplished simultaneously.

このような熱間プレス法や予成形プレスクエンチ法は、プレス成形部材の高強度化を成形と同時に確保できる優れた成形方法であり、現在、バンパーの補強材やセンターピラーの補強材等に代表される自動車用補強部材等の製造に多用されるようになっている。
英国特許第1490535号公報 特開平10−96031号公報
The hot press method and the pre-formed press quench method are excellent forming methods that can ensure high strength of the press-formed parts at the same time as forming, and are currently representative of bumper reinforcing materials and center pillar reinforcing materials. It is frequently used in the manufacture of automotive reinforcing members and the like.
British Patent No. 1490535 Japanese Patent Laid-Open No. 10-96031

ところが、熱間プレス法で製造される鋼板部材の高強度化が進み、引張強さ(以下、TSとも表記する)が1080MPa以上になってきたことから、靱性の問題が顕在化するようになってきた。周知のように、強度と靱性は両立が難しい。しかし、熱間プレス法により製造される引張強さが1080MPa以上の鋼板部材について、従来技術では靭性改善に関して詳細な検討が行われていないのが実状である。   However, since the strength of steel plate members manufactured by the hot press method has been increased, and the tensile strength (hereinafter also referred to as TS) has become 1080 MPa or more, the problem of toughness becomes apparent. I came. As is well known, it is difficult to achieve both strength and toughness. However, as for the steel sheet member with a tensile strength of 1080 MPa or more manufactured by the hot pressing method, the actual state is that detailed examination is not made on the toughness improvement in the prior art.

さらに、熱間プレス法により製造された鋼板部材は局所的な強度(硬度)のばらつきを生じる場合がある。そのような場合には、部材の靭性も悪化し、十分な性能が発揮できなくなる。そのため、熱間プレス後の局所的な強度(硬度)ばらつきが少ない熱間プレス用の鋼板が求められる。   Furthermore, the steel plate member manufactured by the hot press method may cause local variations in strength (hardness). In such a case, the toughness of the member also deteriorates and sufficient performance cannot be exhibited. Therefore, a steel sheet for hot pressing with little local strength (hardness) variation after hot pressing is required.

熱間プレス用鋼板は、熱間プレス後の強度(焼入れ強度)を確保するためCを多量に含有するという特徴があり、鋼板内の局所的なC含有量のばらつきが局所的な製品強度のばらつきを生じさせる。また、熱間プレス用鋼板の平坦度が劣る場合には、金型との接触が不均一となり、局所的な冷却速度のばらつきを生じる場合があり、この局所的な冷却速度のばらつきも、局所的な製品強度のばらつきを生じさせる。   The steel sheet for hot pressing has a feature that it contains a large amount of C in order to ensure the strength (quenching strength) after hot pressing, and the local variation in the C content in the steel sheet has a local product strength. Causes variation. In addition, when the flatness of the steel sheet for hot pressing is inferior, the contact with the mold becomes non-uniform, and there may be a variation in local cooling rate. Cause variations in product strength.

本発明の目的は、上記現状に鑑み、自動車や各種の産業機械に用いられる、引張強さが1080MPa以上となる高強度の熱間プレス鋼板部材であって、上述した靱性の低下や硬度のばらつきが抑制された熱間プレス鋼板部材、およびそのような熱間プレス鋼板部材を製造するための熱間プレス用鋼板、ならびにそれらの製造方法を提供することである。   An object of the present invention is a high-strength hot-pressed steel sheet member having a tensile strength of 1080 MPa or more, which is used for automobiles and various industrial machines in view of the above-described situation, and has the above-described decrease in toughness and variation in hardness. It is providing the hot-pressed steel plate member by which hot-rolled steel plate was suppressed, the hot-pressed steel plate for manufacturing such a hot-pressed steel plate member, and the manufacturing method thereof.

本発明者らは、上記課題を解決すべく詳細な検討を行った結果、熱間プレス用鋼板中の介在物を低減し、さらに熱間プレス用鋼板内の中心偏析を抑制することにより、熱間プレス鋼板部材の靭性を大幅に改善できること、さらには、熱間プレス用鋼板における鋼組織を規定し、鋼板内に存在するCの分布、いわゆる鋼組織内のセメンタイトの分布を均一化させることにより、一層靭性改善を図ることができるとの新知見を得た。   As a result of detailed investigations to solve the above problems, the present inventors have reduced the inclusions in the hot-press steel sheet, and further suppressed the center segregation in the hot-press steel sheet. By greatly improving the toughness of hot pressed steel sheet members, and further by defining the steel structure in the steel sheet for hot pressing, and by making the distribution of C existing in the steel sheet, the distribution of cementite in the so-called steel structure uniform New knowledge that toughness can be further improved.

上記新知見に基づく本発明は次の通りである。
(1) 質量%で、C:0.09〜0.60%、Si:2.0%以下、Mn:0.5〜3.5%、P:0.10%以下、S:0.05%以下、Al:0.005〜2.0%、およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、清浄度が0.08%以下、下記式(1)で規定されるPの偏析度αが1.6以下、下記式(2)で規定されるSの偏析度βが1.6以下であり、かつ熱間プレス後の引張強さが1080MPa以上であることを特徴とする熱間プレス用鋼板:
α=[板厚中心部での最大P濃度(質量%)]/[表面から板厚の1/4深さ位置での平均P濃度(質量%)] ・・・ (1)
β=[板厚中心部での最大S濃度(質量%)]/[表面から板厚の1/4深さ位置での平均S濃度(質量%)] ・・・ (2)。
The present invention based on the above new findings is as follows.
(1) By mass%, C: 0.09 to 0.60%, Si: 2.0% or less, Mn: 0.5 to 3.5%, P: 0.10% or less, S: 0.05 %, Al: 0.005 to 2.0%, and N: 0.01% or less, with the balance being a chemical composition of Fe and impurities, cleanliness of 0.08% or less, The segregation degree α of P defined by (1) is 1.6 or less, the segregation degree β of S defined by the following formula (2) is 1.6 or less, and the tensile strength after hot pressing is Steel sheet for hot pressing characterized by being 1080 MPa or more:
α = [maximum P concentration (mass%) at the thickness center portion] / [average P concentration (mass%) at the 1/4 depth position of the thickness from the surface] (1)
β = [maximum S concentration (mass%) at the thickness center portion] / [average S concentration (mass%) at the 1/4 depth position of the thickness from the surface] (2).

(2) 上記熱間プレス用鋼板において、前記化学組成が、Feの一部に代えて、質量%で、Ti:0.2%以下、Nb:0.2%以下、およびV:1.0%以下からなる群から選ばれた1種または2種以上を含有する。   (2) In the steel sheet for hot pressing, the chemical composition is in mass%, Ti: 0.2% or less, Nb: 0.2% or less, and V: 1.0 instead of a part of Fe. 1 type or 2 types or more selected from the group which consists of% or less.

(3) 上記熱間プレス用鋼板において、前記化学組成が、Feの一部に代えて、質量%で、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下、およびB:0.01%以下からなる群から選ばれた1種または2種以上を含有する。   (3) In the above steel sheet for hot pressing, the chemical composition is in mass% instead of part of Fe, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% Hereinafter, it contains one or more selected from the group consisting of Ni: 1.0% or less and B: 0.01% or less.

(4) 上記熱間プレス用鋼板において、前記化学組成が、Feの一部に代えて、質量%で、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下からなる群から選ばれた1種または2種以上を含有する。   (4) In the steel sheet for hot pressing, the chemical composition is in mass%, Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.1 instead of a part of Fe. 1 type or 2 types or more selected from the group which consists of% or less.

(5) 上記熱間プレス用鋼板において、面積%で、ポリゴナルフェライトが30%以上、マルテンサイトが30%以下である鋼組織を有し、前記ポリゴナルフェライトの平均結晶粒径が25μm以下、前記ポリゴナルフェライトに占める、粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合が0.6以上である。   (5) The steel sheet for hot pressing has a steel structure in which the area% is polygonal ferrite is 30% or more and martensite is 30% or less, and the average crystal grain size of the polygonal ferrite is 25 μm or less, The number ratio of polygonal ferrite containing 5 or more cementite particles having a particle size of 0.2 μm or more in the polygonal ferrite is 0.6 or more.

(6) 表面にめっき層を備える上記熱間プレス用鋼板。
(7) 上記化学組成を有する溶鋼を、溶鋼の加熱温度を液相線温度から5℃以上高い温度かつ単位時間当たりの溶鋼鋳込み量を6ton/分以下とし、さらに鋳片が完全凝固する前に中心偏析低減処理を施す連続鋳造法によりスラブとなし、前記スラブを圧延することを特徴とする熱間プレス用鋼板の製造方法。
(6) The steel sheet for hot pressing provided with a plating layer on the surface.
(7) The molten steel having the above chemical composition is heated at a temperature higher than the liquidus temperature by 5 ° C or more and the casting amount of molten steel per unit time is 6 ton / min or less, and before the slab is completely solidified. A method for producing a steel sheet for hot pressing, characterized in that a slab is formed by a continuous casting method for performing a center segregation reduction treatment, and the slab is rolled.

(8) 上記スラブに熱間圧延を施し、熱間圧延完了後に100℃/秒以下の平均冷却速度で冷却し、500℃以上の温度で巻き取って熱間圧延鋼板となし、前記熱間圧延鋼板をスケール除去処理後、20%以上の圧下率で冷間圧延を施して冷間圧延鋼板となし、前記冷間圧延鋼板に(Ac点−100℃)以上、Ac点未満の温度範囲で5秒間以上、500秒間以下保持する焼鈍を施し、次いで1℃/秒以上の平均冷却速度で350〜700℃の温度域まで冷却することを特徴とする、熱間プレス用鋼板の製造方法。 (8) The slab is hot-rolled, cooled at an average cooling rate of 100 ° C./second or less after completion of the hot rolling, and taken up at a temperature of 500 ° C. or more to form a hot-rolled steel sheet. After removing the scale from the steel sheet, the steel sheet is cold-rolled at a rolling reduction of 20% or more to form a cold-rolled steel sheet, and the cold-rolled steel sheet has a temperature range of (Ac 1 point-100 ° C.) or more and less than Ac 3 points. A method for producing a steel sheet for hot pressing, comprising: annealing for 5 seconds to 500 seconds, and then cooling to a temperature range of 350 to 700 ° C. at an average cooling rate of 1 ° C./second or more.

(9) 上記製造方法にて得られた熱間プレス用鋼板の表面にめっき処理を施すことを特徴とする熱間プレス用鋼板の製造方法。
(10) 上記化学組成を有し、清浄度が0.08%以下、上記式(1)で規定されるPの偏析度αが1.6以下、上記式(2)で規定されるSの偏析度βが1.6以下であり、かつ引張強さが1080MPa以上であることを特徴とする熱間プレス鋼板部材。
(9) A method for producing a steel sheet for hot pressing, wherein the surface of the steel sheet for hot pressing obtained by the above production method is plated.
(10) having the above chemical composition, a cleanliness of 0.08% or less, a segregation degree α of P defined by the above formula (1) of 1.6 or less, and an S of S defined by the above formula (2) A hot-pressed steel sheet member having a segregation degree β of 1.6 or less and a tensile strength of 1080 MPa or more.

(11) 表面にめっき層を備える、上記熱間プレス鋼板部材。
(12) 上記熱間プレス用鋼板を、Ac点超、1100℃以下に加熱したのちに、Ar点以上の温度でプレスを開始し、10℃/秒以上の冷却速度で350℃以下の温度域まで冷却する熱間プレスを施すことを特徴とする、熱間プレス鋼板部材の製造方法。
(11) The hot-pressed steel sheet member having a plating layer on the surface.
(12) After heating the steel sheet for hot pressing above Ac 3 points to 1100 ° C. or lower, pressing starts at a temperature of Ar 3 points or higher, and 350 ° C. or lower at a cooling rate of 10 ° C./second or higher. A method for producing a hot-pressed steel sheet member, characterized by performing a hot press for cooling to a temperature range.

本発明の熱間プレス用鋼板は、熱間プレスを施すことにより、引張強さ1080MPa以上の高強度で靱性にも優れた熱間プレス鋼板部材とすることができるので、熱間プレス鋼板部材の素材として最適である。また、本発明の熱間プレス鋼板部材は自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のメンバーや足廻り部品に代表される構造部材の素材として特に最適である。また安価に製造できるので、産業上格段の効果を奏する。   The hot-press steel sheet of the present invention can be made into a hot-press steel sheet member having high tensile strength of 1080 MPa or more and excellent toughness by performing hot press. Ideal as a material. The hot-pressed steel sheet member of the present invention is particularly suitable as a material for structural members used in automobiles and various industrial machines, particularly as a material for structural members represented by automobile members and undercarriage parts. Moreover, since it can be manufactured at a low cost, it has a remarkable industrial effect.

<鋼組成>
本発明の熱間プレス用鋼板の鋼組成を上記のように特定した理由は次の通りである。なお、以下の説明において、鋼の化学組成(各元素の含有量)に関する%はすべて質量%である。
<Steel composition>
The reason why the steel composition of the steel sheet for hot pressing according to the present invention is specified as described above is as follows. In the following description, all percentages relating to the chemical composition of steel (content of each element) are mass%.

C:0.09〜0.60%
熱間プレスは、材料を加熱することで軟質化させ、成形を容易にすることが一つの特色であるが、あわせて、プレス金型等で急冷することで鋼を焼入れし、成形と同時に成形品を高強度化できるという別の特色があり、成形時に焼入れを行うのが普通である。
C: 0.09 to 0.60%
Hot press is one of the features of softening the material by heating and facilitating molding. In addition, steel is quenched by quenching with a press die, etc., and molded simultaneously with molding. Another feature is that the strength of the product can be increased, and quenching is usually performed during molding.

鋼の焼入れ後の強度は主に炭素(C)含有量によって決まるため、求める強度に応じてC含有量を設定する。本発明においては、熱間プレス後に1080MPa以上の引張強さを確保するために、C含有量を0.09%以上とする。より高強度の成形品が必要な場合にはC含有量を0.20%超にすることが望ましい。Cを過剰に含有する場合には、溶接性が低下する恐れがあるため、C含有量は0.60%以下とし、更に好ましくは0.40%以下である。   Since the strength after quenching of steel is mainly determined by the carbon (C) content, the C content is set according to the required strength. In the present invention, in order to secure a tensile strength of 1080 MPa or more after hot pressing, the C content is set to 0.09% or more. When a higher strength molded product is required, the C content is desirably over 0.20%. When C is contained excessively, the weldability may be lowered, so the C content is 0.60% or less, and more preferably 0.40% or less.

Si:2.0%以下
Siは、鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するのに有効な元素である。しかし、Si含有量が2.0%超になると、熱間圧延時ならびに熱間プレス時の加熱中にSiスケールが多く発生し、スケール疵を生じ易くなる。そのため、Si含有量の上限を2.0%とする。Si含有量の下限は特に規定しないが、焼入れ性向上効果を確実に発揮させるには0.02%以上含有させることが望ましい。コストと焼入れ性向上のバランスの観点から、Si含有量を0.1〜1.0%とすることが更に望ましい。
Si: 2.0% or less Si is an element effective in enhancing the hardenability of the steel sheet and stably securing the strength after quenching. However, when the Si content exceeds 2.0%, a large amount of Si scale is generated during heating during hot rolling and during hot pressing, and scale flaws are likely to occur. Therefore, the upper limit of Si content is set to 2.0%. Although the lower limit of the Si content is not particularly defined, it is desirable to contain 0.02% or more in order to reliably exhibit the effect of improving hardenability. From the viewpoint of balance between cost and hardenability improvement, the Si content is more preferably 0.1 to 1.0%.

Mn:0.5〜3.5%
Mnは、鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するのに有効な元素である。Mn含有量が0.5%未満では、その効果は十分ではない。一方、Mn含有量が3.5%を超えると、その効果は飽和し、無駄なコストが嵩む上、焼入れ部の靭性劣化を招く。したがって、Mn含有量を0.5〜3.5%とする。コストと焼入れ性向上のバランスの観点から、Mn含有量を0.8〜2.5%とすることが望ましい。
Mn: 0.5 to 3.5%
Mn is an element that is effective for enhancing the hardenability of the steel sheet and stably securing the strength after quenching. If the Mn content is less than 0.5%, the effect is not sufficient. On the other hand, if the Mn content exceeds 3.5%, the effect is saturated, the useless cost increases, and the toughness of the quenched portion is deteriorated. Therefore, the Mn content is set to 0.5 to 3.5%. From the viewpoint of a balance between cost and hardenability improvement, the Mn content is desirably 0.8 to 2.5%.

P:0.10%以下
Pは、不純物の1種として含有されるが、Pの含有量が0.10%超では、鋼板板厚中心部以外にも過度のPの偏析が発生するため、靭性が著しく劣化する。したがって、P含有量を0.10%以下とする。
P: 0.10% or less P is contained as one type of impurity, but if the P content exceeds 0.10%, excessive segregation of P occurs in addition to the steel plate thickness center portion. Toughness deteriorates significantly. Therefore, the P content is 0.10% or less.

P含有量は少なければ少ないほど好ましいので、その下限は特に規定しない。しかし、P含有量を0.003%より少なくするのは製造コストの著しい上昇を招くので、この観点からは、P含有量の下限を0.003%とすることが望ましい。コストと靭性改善のバランスの観点からは、P含有量を0.005〜0.05%とすることが更に望ましい。   The lower the P content, the better. Therefore, the lower limit is not specified. However, if the P content is less than 0.003%, the production cost is significantly increased. From this viewpoint, the lower limit of the P content is preferably 0.003%. From the viewpoint of balance between cost and toughness improvement, the P content is more preferably 0.005 to 0.05%.

S:0.05%以下
Sは、鋼板の板厚中心部に偏析し、靭性を低下させる硫化物を生成させるため、可能な限り低減する必要のある不純物である。Sの含有量が0.05%超では、鋼板板厚中心部以外にも過度のSの偏析が発生するため、靭性が著しく劣化する。したがって、S含有量を0.05%以下とする。
S: 0.05% or less S is an impurity that needs to be reduced as much as possible in order to generate sulfide that segregates in the center of the plate thickness of the steel sheet and lowers toughness. If the S content exceeds 0.05%, excessive segregation of S occurs in addition to the central portion of the steel plate thickness, so that the toughness is remarkably deteriorated. Therefore, the S content is set to 0.05% or less.

S含有量は少なければ少ないほど好ましいので、その下限は特に規定しない。しかし、S含有量を0.0003%より少なくするのは製造コストの著しい上昇を招くので、この観点から、S含有量の下限を0.0003%とすることが望ましい。コストと靭性改善のバランスの観点からS含有量を0.0005〜0.01%とすることが更に望ましい。   The lower the S content, the better. The lower limit is not particularly specified. However, if the S content is less than 0.0003%, the production cost is significantly increased. From this viewpoint, the lower limit of the S content is preferably 0.0003%. From the viewpoint of a balance between cost and toughness improvement, the S content is more preferably 0.0005 to 0.01%.

Al:0.005〜2.0%
Alは、鋼の脱酸剤として用いられる。その効果を得るには0.005%以上のAlの含有が必要である。一方、Alを2.0%を超えて含有させても、脱酸性が飽和し、製造コストが上昇する。したがって、Al含有量を0.005〜2.0%とする。脱酸性とコストのバランスの観点よりAl含有量を0.01〜0.08%とすることが好ましい。
Al: 0.005 to 2.0%
Al is used as a deoxidizer for steel. In order to obtain the effect, it is necessary to contain 0.005% or more of Al. On the other hand, even if Al is contained in excess of 2.0%, deacidification is saturated and the production cost increases. Therefore, the Al content is set to 0.005 to 2.0%. From the viewpoint of balance between deacidification and cost, the Al content is preferably set to 0.01 to 0.08%.

N:0.01%以下
Nは、不純物として含有され、AlやTiやNb等と結合して窒化物を形成する。窒化物は靭性を劣化させる傾向を有するので、N含有量はできるだけ低減するのが望ましい。本発明においては、N含有量が0.01%以下の含有量であれば実害はない。したがって、N含有量を0.01%以下とする。N含有量は少なければ少ないほど好ましいので下限は特に規定しない。しかし、N含有量を0.0005%より少なくするのは製造コストの著しい上昇を招くので、この観点からN含有量の下限を0.0005%とすることが望ましい。コストと靭性改善のバランスの観点より、N含有量を0.0005〜0.0050%とすることが更に望ましい。
N: 0.01% or less N is contained as an impurity and combines with Al, Ti, Nb or the like to form a nitride. Since nitrides tend to degrade toughness, it is desirable to reduce the N content as much as possible. In the present invention, there is no actual harm as long as the N content is 0.01% or less. Therefore, the N content is set to 0.01% or less. Since the N content is preferably as small as possible, the lower limit is not particularly defined. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased. From this viewpoint, the lower limit of the N content is preferably set to 0.0005%. From the viewpoint of balance between cost and toughness improvement, the N content is more preferably 0.0005 to 0.0050%.

Ti:0.2%以下、Nb:0.2%以下、V:1.0%以下からなる群から選ばれた1種または2種以上
これらの元素は、鋼板の焼入れ性を高めかつ、焼入れ後の強度を安定して確保するのに有効な元素であるので、必要に応じて1種または2種以上を含有させることができる。しかし、過剰に含有させても上記効果は飽和して、無駄なコストが嵩むので、Ti、Nb、Vの含有量は、それぞれ0.2%以下、0.2%以下、1.0%以下とする。上記効果を確実に得るための望ましいTi、Nb、Vの含有量は、それぞれ0.01%以上、0.005%以上、0.005%以上である。
One or more selected from the group consisting of Ti: 0.2% or less, Nb: 0.2% or less, and V: 1.0% or less. These elements enhance the hardenability of the steel sheet and harden it. Since it is an element effective for ensuring the subsequent strength in a stable manner, one or more kinds can be contained as required. However, the above effect is saturated even if it is contained excessively, and wasteful costs increase, so the contents of Ti, Nb, and V are 0.2% or less, 0.2% or less, and 1.0% or less, respectively. And Desirable Ti, Nb, and V contents for reliably obtaining the above effects are 0.01% or more, 0.005% or more, and 0.005% or more, respectively.

Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれた1種または2種以上
これらの元素も、鋼板の焼入れ性を高め、かつ焼入れ後の強度を安定して確保するのに有効な元素であるので、必要に応じて1種または2種以上を含有させることができる。しかし、過剰に含有させても上記効果は飽和し、無駄コストが嵩むので、Cr、Mo、Cu、Ni、Bの含有量は、それぞれ1.0%以下、1.0%以下、1.0%以下、1.0%以下、0.01%以下とする。上記効果を確実に得るための望ましいCr、Mo、Cu、Ni、Bの含有量は、それぞれ0.02%以上、0.02%以上、0.02%以上、0.02%以上、0.0002%以上である。
One or two selected from the group consisting of Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less Species or more These elements are also effective elements for enhancing the hardenability of the steel sheet and stably securing the strength after quenching, so that one or more kinds can be contained as required. . However, the above effect is saturated even if it is contained excessively, and wasteful costs increase, so the contents of Cr, Mo, Cu, Ni, and B are 1.0% or less, 1.0% or less, 1.0, respectively. % Or less, 1.0% or less, or 0.01% or less. Desirable Cr, Mo, Cu, Ni, and B contents for reliably obtaining the above effects are 0.02% or more, 0.02% or more, 0.02% or more, 0.02% or more, and 0.0%, respectively. 0002% or more.

Ca:0.01%以下、Mg:0.01%以下およびREM:0.1%以下からなる群から選ばれた1種または2種以上
これらの元素は、鋼中の介在物の形態を微細化し、介在物による熱間プレス時の割れを防止する効果を有するので、必要に応じて1種または2種以上を含有させることができる。しかし、過剰に含有させても上記効果は飽和し、無駄なコストが嵩むので、Ca、Mg、REMの含有量は、それぞれ0.01%以下、0.01%以下、0.1%以下とする。上記効果を確実に得るための望ましいCa、Mg、REMの含有量は、それぞれ0.0005%以上、0.0005%以上、0.0005%以上である。
One or more selected from the group consisting of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.1% or less. These elements finely form the inclusions in the steel. Since it has the effect of preventing cracking during hot pressing due to inclusions, it can contain one or more as required. However, the above effect is saturated even if it is contained excessively, and wasteful costs increase, so the contents of Ca, Mg, and REM are 0.01% or less, 0.01% or less, and 0.1% or less, respectively. To do. Desirable Ca, Mg, and REM contents for reliably obtaining the above effects are 0.0005% or more, 0.0005% or more, and 0.0005% or more, respectively.

<鋼板中の介在物と偏析>
熱間プレス後の強度(TS)が1080MPa以上となる高強度の熱間プレス鋼板部材の靭性を改善するには、熱間プレスに供する熱間プレス用鋼板の清浄度を0.08%以下、下記式(1)で規定されるPの偏析度αを1.6以下、下記式(2)で規定されるSの偏析度βを1.6以下とすることが必要である。
<Inclusions and segregation in steel sheet>
In order to improve the toughness of a high strength hot-pressed steel sheet member having a strength (TS) after hot pressing of 1080 MPa or more, the cleanliness of the hot-press steel sheet to be subjected to hot pressing is 0.08% or less, It is necessary that the segregation degree α of P defined by the following formula (1) is 1.6 or less and the segregation degree β of S defined by the following formula (2) is 1.6 or less.

α=[板厚中心部での最大P濃度(質量%)]/[表面から板厚の1/4深さ位置での平均P濃度(質量%)] ・・・ (1)
β=[板厚中心部での最大S濃度(質量%)]/[表面から板厚の1/4深さ位置での平均S濃度(質量%)] ・・・ (2)
清浄度は、鋼板中に含まれるA系、B系、C系介在物量(JIS G0555)の算術計算での総和で定義される。A系、B系、C系の介在物は破壊の起点となり、介在物が増加すると亀裂伝播が容易に起こるため靭性が劣化する。TSが1080MPa以上となる熱間プレス鋼板部材の靭性を改善するには、清浄度を0.08%以下とする必要がある。清浄度が0.08%超の場合、介在物の量が多いため、実用上十分な靭性を確保することが困難となる。靱性をより一層改善するには清浄度を0.04%以下とすることが好ましい。
α = [maximum P concentration (mass%) at the thickness center portion] / [average P concentration (mass%) at the 1/4 depth position of the thickness from the surface] (1)
β = [maximum S concentration (mass%) at the thickness center portion] / [average S concentration (mass%) at the 1/4 depth position of the thickness from the surface] (2)
The degree of cleanliness is defined as the sum of arithmetic amounts of A, B and C inclusions (JIS G0555) contained in the steel sheet. Inclusions of A-type, B-type, and C-type serve as starting points of fracture, and when the inclusions increase, crack propagation easily occurs and the toughness deteriorates. In order to improve the toughness of a hot-pressed steel sheet member having a TS of 1080 MPa or more, the cleanliness needs to be 0.08% or less. When the degree of cleanliness exceeds 0.08%, the amount of inclusions is large, and it becomes difficult to ensure practically sufficient toughness. In order to further improve toughness, the cleanliness is preferably 0.04% or less.

また、鋼板の板厚断面中心部には、PおよびSが中心偏析して濃化し、PおよびSの粒界偏析または燐化物や硫化物の生成により靭性が悪化する。そのため、靭性を改善するためには、Pの偏析度αとSの偏析度βをいずれも1.6以下とすることが必要である。Pの偏析度αまたはSの偏析度βが1.6超となると、板厚中心部にPまたはSが多く存在するため、靭性が悪化する。靱性の一層の改善のためには、Pの偏析度αまたはSの偏析度βの一方を1.2以下とすることが好ましく、Pの偏析度αとSの偏析度βをいずれも1.2以下とすることがより好ましい。   Further, P and S are segregated and concentrated at the center of the plate thickness cross section of the steel sheet, and the toughness deteriorates due to the grain boundary segregation of P and S or the formation of phosphides and sulfides. Therefore, in order to improve toughness, it is necessary that both the segregation degree α of P and the segregation degree β of S be 1.6 or less. When the degree of segregation α of P or the degree of segregation β of S exceeds 1.6, toughness deteriorates because a large amount of P or S is present in the central portion of the plate thickness. In order to further improve toughness, it is preferable to set one of P segregation degree α and S segregation degree β to 1.2 or less, and P segregation degree α and S segregation degree β are both 1. More preferably, it is 2 or less.

この鋼板中の介在物と偏析は、主に鋼板組成、特に不純物含有量と、連続鋳造の条件により制御され、熱間圧延および熱間プレスの前後では実質的に変化しない。従って、熱間プレス用鋼板の介在物および偏析状況が本発明を満たしていれば、それから熱間プレスにより製造された熱間プレス鋼板部材の介在物および偏析状況も同様に本発明を満たす。   Inclusions and segregation in the steel sheet are mainly controlled by the steel sheet composition, particularly the impurity content, and the conditions of continuous casting, and do not substantially change before and after hot rolling and hot pressing. Therefore, if the inclusions and segregation status of the hot-press steel sheet satisfy the present invention, the inclusions and segregation status of the hot-pressed steel sheet member manufactured by hot pressing from the steel sheet also satisfy the present invention.

<熱間プレス用鋼板の金属組織>
靭性を更に向上させるには、熱間プレス用鋼板の金属組織を、面積%で、ポリゴナルフェライトが30%以上、マルテンサイトが30%以下である組織とし、かつ前記ポリゴナルフェライトの平均結晶粒径を25μm以下とし、前記ポリゴナルフェライトに占める粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合を0.6以上とすることが好ましい。
<Metal structure of hot-press steel sheet>
In order to further improve the toughness, the metal structure of the steel sheet for hot pressing is a structure in which area%, polygonal ferrite is 30% or more, martensite is 30% or less, and the average crystal grain of the polygonal ferrite The diameter is preferably 25 μm or less, and the number ratio of polygonal ferrite containing 5 or more cementite particles having a particle size of 0.2 μm or more in the polygonal ferrite is preferably 0.6 or more.

金属組織に占めるポリゴナルフェライトの割合が30面積%未満の場合には、鋼板が硬質となり、鋼板の平坦矯正が困難となる場合がある。鋼板の平坦が悪いと、熱間プレスに時にAc点以上に加熱しても、鋼板の平坦は修正されない。鋼板の平坦が悪い状態で熱間プレスされると、金型との接触状態が不均一になり、冷却速度(従って、焼入れ状況)が異なる部位が生じる。その結果、熱間プレス鋼板部材の硬度がばらついて、靭性の劣化を招く。したがって、ポリゴナルフェライトの面積率を30%以上とすることが好ましい。マルテンサイトが30面積%超である場合にも同様の問題が生じる場合があるので、マルテンサイトの面積率を30%以下とすることが好ましい。 When the proportion of polygonal ferrite in the metal structure is less than 30% by area, the steel plate becomes hard and it may be difficult to correct the flatness of the steel plate. If the flatness of the steel plate is poor, the flatness of the steel plate is not corrected even if it is heated to Ac 3 or more points during hot pressing. When hot pressing is performed in a state where the flatness of the steel sheet is poor, the contact state with the mold becomes non-uniform, and parts with different cooling rates (and hence quenching conditions) are generated. As a result, the hardness of the hot-pressed steel sheet member varies, leading to deterioration of toughness. Therefore, the area ratio of polygonal ferrite is preferably 30% or more. Since the same problem may arise also when a martensite exceeds 30 area%, it is preferable to make the area ratio of a martensite 30% or less.

また、Cを多く含有するパーライト組織、ベイナイト組織、マルテンサイト組織、オーステナイト組織などは、ポリゴナルフェライトの粒界に生成するため、ポリゴナルフェライトが粗大になると鋼組織中のCの分散が粗くなる。熱間プレスに際してはAc点以上に加熱するが、その時間は通常短時間であるため、鋼組織中のCの分散が粗いとオーステナイト中のC濃度が不均一となり、熱間プレス鋼板部材の硬度ばらつきが生じ易くなる。したがって、ポリゴナルフェライトの平均結晶粒径を25μm以下とすることが好ましい。この観点からのポリゴナルフェライトの平均結晶粒径の下限は特に規定する必要はないが、ポリゴナルフェライトの粒径が小さいと、鋼板が硬質となり、上記ポリゴナルフェライト面積率の下限限定理由やマルテンサイト面積率の上限限定理由と同様の問題が生じる場合があるので、ポリゴナルフェライトの平均結晶粒径は2μm以上とすることが好ましい。 Moreover, since the pearlite structure, bainite structure, martensite structure, austenite structure, etc. containing a large amount of C are formed at the grain boundaries of polygonal ferrite, the dispersion of C in the steel structure becomes coarse when the polygonal ferrite becomes coarse. . During hot pressing, Ac is heated to 3 or more points, but since the time is usually short, if the C dispersion in the steel structure is coarse, the C concentration in the austenite becomes non-uniform. Hardness variation tends to occur. Therefore, the average crystal grain size of polygonal ferrite is preferably 25 μm or less. From this viewpoint, the lower limit of the average crystal grain size of polygonal ferrite need not be specified. However, if the grain size of polygonal ferrite is small, the steel sheet becomes hard, and the reason for limiting the lower limit of the polygonal ferrite area ratio is not limited. Since the same problem as the reason for limiting the upper limit of the site area ratio may occur, the average crystal grain size of polygonal ferrite is preferably 2 μm or more.

さらに、前記ポリゴナルフェライトに占める粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合を0.6以上とすることにより、熱間プレスに際してAc点以上に加熱した時に、より短時間でオーステナイト中のC濃度を均一化させることができる。その結果、熱間プレス鋼板部材における硬度のばらつきをさらに抑制することが可能となる。 Furthermore, the number ratio of polygonal ferrite containing 5 or more cementite particles having a particle size of 0.2 μm or more in the polygonal ferrite is set to 0.6 or more, thereby increasing the Ac to 3 or more points during hot pressing. When heated, the C concentration in the austenite can be made uniform in a shorter time. As a result, it is possible to further suppress the hardness variation in the hot pressed steel sheet member.

前記個数割合が0.6未満の場合、セメンタイトを粒内にもつポリゴナルフェライトの割合が少ないため、熱間プレスに際しての加熱時におけるオーステナイト中のC濃度を均一化する効果が小さい。したがって、前記個数割合を0.6以上にすることが好ましい。   When the number ratio is less than 0.6, since the ratio of polygonal ferrite having cementite in the grains is small, the effect of uniformizing the C concentration in austenite during heating during hot pressing is small. Therefore, the number ratio is preferably 0.6 or more.

ポリゴナルフェライト粒内のセメンタイトは、ポリゴナルフェライト粒内におけるカーボンの拡散の観点から粒径0.2μm以上のものを5個以上含有することが望ましい。このような観点からは、ポリゴナルフェライト粒内のセメンタイトの個数の上限は特に規定する必要はないが、ポリゴナルフェライト粒内に多くセメンタイトが存在すると鋼板が硬質となり、上記ポリゴナルフェライト面積率の下限限定理由やマルテンサイト面積率の上限限定理由と同様の問題が生じる場合があるので、セメンタイト個数の上限は200個程度が望ましい。特に望ましくは、ポリゴナルフェライト粒内に粒径0.2μm以上のセメンタイトが5〜80個存在する場合である。   The cementite in the polygonal ferrite grains preferably contains five or more particles having a particle diameter of 0.2 μm or more from the viewpoint of carbon diffusion in the polygonal ferrite grains. From this point of view, the upper limit of the number of cementite in the polygonal ferrite grains need not be specified in particular, but if there is a lot of cementite in the polygonal ferrite grains, the steel plate becomes hard, and the above-mentioned polygonal ferrite area ratio Since the same problem as the reason for limiting the lower limit and the reason for limiting the upper limit of the martensite area ratio may occur, the upper limit of the number of cementite is preferably about 200. It is particularly desirable when 5 to 80 cementites having a particle size of 0.2 μm or more are present in the polygonal ferrite grains.

なお、ここでいうセメンタイトは、TiC、NbC、VCなどの析出強化型微細炭化物を含まない。析出強化型微細炭化物はその大きさが数〜数十nmと非常に小さく、Ac点以上の加熱によりごく短時間で固溶してしまうので、これらの影響を考慮する必要は実質上ないからである。 In addition, the cementite here does not contain precipitation strengthening type fine carbides such as TiC, NbC, and VC. Precipitation strengthened fine carbides are very small in size of several to several tens of nanometers and are dissolved in a very short time by heating at three or more points of Ac, so there is virtually no need to consider these effects. It is.

ポリゴナルフェライトおよびマルテンサイト以外の残部組織としては、圧延未再結晶フェライト、ベイニティックフェライトやベイナイト、パーライト、残留オーステナイトなどが例示される。前記残部組織は特に規定しないが、パーライトであることが望ましい。残部組織をパーライトもしくはパーライト面積率が50%以上のパーライト主体の組織とすることにより、熱間プレス用鋼板をより軟質化することが可能となり、鋼板の平坦矯正やブランク加工などを容易にすることができる。   Examples of the remaining structure other than polygonal ferrite and martensite include rolled non-recrystallized ferrite, bainitic ferrite, bainite, pearlite, and retained austenite. The remaining structure is not particularly defined, but is preferably pearlite. By making the remaining structure pearlite or a pearlite-based structure with a pearlite area ratio of 50% or more, it becomes possible to soften the steel sheet for hot pressing, and to facilitate flattening of the steel sheet, blanking, etc. Can do.

<熱間プレス用鋼板の製造方法>
(1)連続鋳造
鋼板の清浄度を0.08%以下にするには、溶鋼を連続鋳造する際に、溶鋼の加熱温度をその鋼の液相線温度から5℃以上高い温度とし、かつ、単位時間当たりの溶鋼鋳込み量を6ton/分以下に抑えることが有効である。このように、比較的高温の溶鋼をある上限以下の鋳込み量で連続鋳造することにより、鋼板の清浄度、言い換えればスラブ段階での介在物を効果的に減少させることができる。
<Method for producing steel sheet for hot pressing>
(1) Continuous casting To reduce the cleanliness of the steel sheet to 0.08% or less, when continuously casting the molten steel, the heating temperature of the molten steel is set to a temperature higher than the liquidus temperature of the steel by 5 ° C or more, and It is effective to suppress the molten steel casting amount per unit time to 6 ton / min or less. Thus, by continuously casting a relatively high temperature molten steel at a casting amount below a certain upper limit, the cleanliness of the steel sheet, in other words, inclusions at the slab stage can be effectively reduced.

連続鋳造時に溶鋼の単位時間当たりの鋳込み量が6ton/分を超えると、鋳型内での溶鋼流動が速いために、凝固シェルに介在物が捕捉されやすくなり、スラブ中の介在物が増加する。また、溶鋼加熱温度が液相線温度から5℃未満であると、溶鋼の粘度が高くなり、連続鋳造機内にて介在物が浮上しにくく、介在物が増加し、清浄度が悪化し易い。   When the casting amount per unit time of the molten steel exceeds 6 ton / min during continuous casting, the molten steel flow in the mold is fast, so that inclusions are easily trapped in the solidified shell and inclusions in the slab increase. Moreover, when the molten steel heating temperature is less than 5 ° C. from the liquidus temperature, the viscosity of the molten steel becomes high, and inclusions hardly float in the continuous casting machine, inclusions increase, and cleanliness tends to deteriorate.

溶鋼の液相線温度からの溶鋼加熱温度を5℃以上、かつ単位時間当たりの溶鋼鋳込み量を6ton/分以下として鋳造することにより、介在物がスラブ内に持ち込まれにくくなり、0.08%以下という鋼板清浄度を容易に達成できる。さらに好ましくは、溶鋼を連続鋳造する際、溶鋼の液相線温度からの溶鋼加熱温度を8℃以上、かつ単位時間当たりの溶鋼鋳込み量を5ton/分以下にすることであり、これにより清浄度を0.04%以下とすることが容易にできる。   By casting the molten steel from the liquidus temperature of the molten steel at 5 ° C or more and the molten steel casting amount per unit time at 6 ton / min or less, inclusions are less likely to be brought into the slab, and 0.08% The following steel plate cleanliness can be easily achieved. More preferably, when continuously casting the molten steel, the molten steel heating temperature from the liquidus temperature of the molten steel is 8 ° C. or more, and the molten steel casting amount per unit time is 5 ton / min or less. Can be easily made 0.04% or less.

また、鋼板板厚中心部、言い換えればスラブ厚中心部では、Mn、P、Sなどが濃化するが、その中でもPおよびSの中心偏析は熱間プレス鋼板部材の靭性を著しく悪化させる。そのため、鋼板板厚断面中心部におけるPの偏析度αを1.6以下およびSの偏析度βを1.6以下にする。   Further, Mn, P, S and the like are concentrated in the steel plate thickness center portion, in other words, in the slab thickness center portion, and among these, the center segregation of P and S significantly deteriorates the toughness of the hot pressed steel plate member. Therefore, the segregation degree α of P is 1.6 or less and the segregation degree β of S is 1.6 or less.

これを達成するため、鋳片が完全凝固する前の未凝固層において、電磁攪拌や未凝固層圧下などにより完全凝固前にPやSが濃化した溶鋼を排出させる、中心偏析低減処理を実施する。中心偏析低減処理を実施しない場合、スラブ厚中心部にPおよびSが濃化し、Pの偏析度αが1.6超ならびにSの偏析度βが1.6超になって熱間プレス後部材の靭性が悪化するようになる。   To achieve this, center segregation reduction processing is performed in the unsolidified layer before the slab is completely solidified, in which molten steel enriched in P and S is discharged before complete solidification by electromagnetic stirring or unsolidified layer pressure. To do. When the center segregation reduction treatment is not performed, P and S are concentrated at the center of the slab thickness, P segregation degree α exceeds 1.6 and S segregation degree β exceeds 1.6, and the member after hot pressing The toughness of the steel becomes worse.

(2)圧延および焼鈍
上記介在物ならびにPおよびSの中心偏析を低減したスラブを圧延することで本発明の熱間プレス用鋼板を容易に得ることができる。スラブの圧延は、熱間圧延により行うことが好ましい。熱間圧延の圧延完了温度は700℃以上とすることが好ましい。圧延完了温度が700℃未満の場合、温度が低すぎるため、圧延中に鋼板の破断や鋼板の表面割れを起こすことがある。
(2) Rolling and annealing The steel sheet for hot pressing of the present invention can be easily obtained by rolling the slab in which the inclusions and the central segregation of P and S are reduced. The slab is preferably rolled by hot rolling. The rolling completion temperature of hot rolling is preferably 700 ° C. or higher. When the rolling completion temperature is less than 700 ° C., the temperature is too low, and the steel plate may be broken or the steel plate may be cracked during rolling.

熱間圧延を施した鋼板は、必要な強度および靱性を確保するため、さらに次のような工程で冷間圧延を施して、熱間プレス用鋼板を製造することが好ましい。なお、最終的に得られる本発明の熱間プレス用鋼板の板厚は特に制限されないが、通常0.4〜8.0mmの範囲内である。   In order to ensure the required strength and toughness, the hot-rolled steel sheet is preferably subjected to cold rolling in the following steps to produce a hot-press steel sheet. In addition, the plate | board thickness of the steel plate for hot presses of this invention finally obtained is although it does not restrict | limit, Usually, it exists in the range of 0.4-8.0 mm.

すなわち、熱間圧延完了後、100℃/秒以下の平均冷却速度で冷却して500℃以上の温度で巻き取って熱間圧延鋼板となし、この熱間圧延鋼板に、酸洗などのスケール除去処理を施した後、20%以上の圧下率で冷間圧延を施して冷間圧延鋼板となし、得られた冷間圧延鋼板に、(Ac点−100℃)以上、Ac点未満の温度範囲で5秒間以上、500秒間以下保持する焼鈍を施し、次いで1℃/秒以上の平均冷却速度で350〜700℃の温度域まで冷却して、熱間プレス用鋼板を製造する。 That is, after completion of hot rolling, it is cooled at an average cooling rate of 100 ° C./second or less and wound at a temperature of 500 ° C. or more to form a hot rolled steel plate, and scale removal such as pickling is performed on this hot rolled steel plate. After the treatment, cold rolling is performed at a reduction rate of 20% or more to form a cold rolled steel sheet, and the obtained cold rolled steel sheet is (Ac 1 point-100 ° C.) or more and less than Ac 3 points. A steel sheet for hot pressing is manufactured by annealing at a temperature range of 5 seconds to 500 seconds and then cooling to a temperature range of 350 to 700 ° C. at an average cooling rate of 1 ° C./second or more.

それにより、ポリゴナルフェライトの面積率が30%以上、そのポリゴナルフェライトの平均結晶粒径が25μm以下、そのポリゴナルフェライトに占める粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合が0.6以上の鋼組織を持ち、熱間プレス鋼板部材の硬度ばらつきを抑制することが可能な、熱間プレス用鋼板を容易に得ることができる。   As a result, the area ratio of polygonal ferrite is 30% or more, the average crystal grain size of the polygonal ferrite is 25 μm or less, and 5 or more cementite particles having a grain size of 0.2 μm or more in the polygonal ferrite are contained in the grain. A steel sheet for hot pressing that has a steel structure in which the number ratio of polygonal ferrite is 0.6 or more and can suppress the hardness variation of the hot pressed steel sheet member can be easily obtained.

熱間圧延完了温度は、上述したように700℃以上とする。さらに好ましくは、Ar点以上である。Ar点未満のフェライト域圧延であると、圧延時の荷重変動が大きくなり、操業トラブルの危険性があるからである。 As described above, the hot rolling completion temperature is set to 700 ° C. or higher. More preferably, it is Ar 3 points or more. This is because if the ferrite region rolling is less than Ar 3 points, the load fluctuation during rolling becomes large and there is a risk of operation trouble.

熱間圧延完了後は、得られた熱間圧延鋼板に平均冷却速度100℃/秒以下の冷却を施し、500℃以上の温度で巻き取ることで、まず、熱間圧延鋼板の鋼組織をフェライトとパーライト、フェライトと球状化セメンタイト、またはフェライトとパーライトと球状化セメンタイトを含む組織にする。   After the hot rolling is completed, the obtained hot rolled steel sheet is cooled at an average cooling rate of 100 ° C./second or less and wound at a temperature of 500 ° C. or higher. And pearlite, ferrite and spheroidized cementite, or ferrite, pearlite and spheroidized cementite.

このようにして得られた熱間圧延鋼板に、圧下率20%以上の冷間圧延を施すことにより、パーライト中のラメラ状のセメンタイトや球状化セメンタイトが、圧延未再結晶フェライト中に分散する。   By subjecting the hot-rolled steel sheet thus obtained to cold rolling at a reduction rate of 20% or more, lamellar cementite and spheroidized cementite in pearlite are dispersed in the rolled unrecrystallized ferrite.

このようにして得られた冷間圧延鋼板に、(Ac点−100℃)〜Ac点未満の温度範囲で5秒間以上の焼鈍を施すことにより、圧延未再結晶フェライトが再結晶して最終的にポリゴナルフェライトとなり、そのポリゴナルフェライト粒内には冷間圧延によって分散されたセメンタイトが残存するようになる。その結果、ポリゴナルフェライトに占める粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合が0.6以上とすることが容易にできる。 The cold-rolled steel sheet thus obtained is annealed for 5 seconds or more in a temperature range from (Ac 1 point to 100 ° C.) to less than Ac 3 points, whereby the unrecrystallized rolled ferrite recrystallizes. Finally, it becomes polygonal ferrite, and cementite dispersed by cold rolling remains in the polygonal ferrite grains. As a result, the number ratio of polygonal ferrite containing 5 or more cementite particles having a particle size of 0.2 μm or more in the polygonal ferrite can be easily adjusted to 0.6 or more.

一方、熱間圧延後の平均冷却速度が100℃/秒超または巻き取り温度が500℃未満であると、熱間圧延鋼板中にベイナイト組織またはマルテンサイト組織が多く生成するため、その後の冷間圧延−焼鈍を経て得られる鋼組織において、ポリゴナルフェライトに占める粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合が低下し、前記個数割合が0.6未満となってしまう場合がある。同様に冷間圧延時の圧下率が20%未満であると、熱間圧延鋼板に生成しているパーライトや球状化セメンタイトが充分に分散せず、前記個数割合を0.6以上とすることが困難となる。   On the other hand, when the average cooling rate after hot rolling exceeds 100 ° C./second or the coiling temperature is less than 500 ° C., a lot of bainite structure or martensite structure is generated in the hot rolled steel sheet. In the steel structure obtained through rolling-annealing, the number ratio of polygonal ferrite containing 5 or more cementites having a particle size of 0.2 μm or more in the polygonal ferrite is decreased, and the number ratio is 0.6. It may be less than. Similarly, when the rolling reduction during cold rolling is less than 20%, the pearlite and spheroidized cementite produced in the hot rolled steel sheet are not sufficiently dispersed, and the number ratio may be 0.6 or more. It becomes difficult.

また、焼鈍温度がAc点以上であると、オーステナイト単相となってフェライト中に存在していたセメンタイトがすべて再固溶してしまい、前記個数割合が0.6未満になる。また、焼鈍温度が、(Ac点−100℃)未満または焼鈍時間が5秒間未満では、圧延未再結晶フェライトのポリゴナルフェライトへの再結晶が不十分となり、最終的なポリゴナルフェライトの面積率が30%未満となる。 Further, when the annealing temperature is Ac 3 point or higher, all cementite that is in the austenite single phase and is present in the ferrite is re-dissolved, and the number ratio is less than 0.6. Further, when the annealing temperature is less than (Ac 1 point-100 ° C.) or the annealing time is less than 5 seconds, recrystallization of the rolled non-recrystallized ferrite into polygonal ferrite becomes insufficient, and the area of the final polygonal ferrite is reduced. The rate is less than 30%.

焼鈍時間が500秒間超、焼鈍後の平均冷却速度が1℃/秒未満または焼鈍後の冷却停止温度が700℃超では、ポリゴナルフェライトの再結晶が過剰に促進され、ポリゴナルフェライトの平均結晶粒径が25μm超となる場合がある。焼鈍後の平均冷却速度の上限は、特に規定しないが、冷却速度が200℃/秒超になるとポリゴナルフェライトの平均結晶粒径が小さくなって鋼板が硬質となり、上記ポリゴナルフェライト面積率の下限限定理由やマルテンサイト面積率の上限限定理由と同様の問題が生じる場合があるので、上限を200℃/秒とすることが好ましい。   When the annealing time exceeds 500 seconds, the average cooling rate after annealing is less than 1 ° C./second, or the cooling stop temperature after annealing exceeds 700 ° C., recrystallization of polygonal ferrite is excessively promoted, and the average crystal of polygonal ferrite The particle size may exceed 25 μm. The upper limit of the average cooling rate after annealing is not particularly specified, but when the cooling rate exceeds 200 ° C./second, the average crystal grain size of polygonal ferrite becomes small and the steel plate becomes hard, and the lower limit of the above-mentioned polygonal ferrite area ratio Since the same problem as the reason for limitation and the reason for limiting the upper limit of the martensite area ratio may occur, the upper limit is preferably set to 200 ° C./second.

焼鈍後の冷却の停止温度は350℃以上とすることで、マルテンサイトの生成を抑制して、マルテンサイトの面積率を30%以下とすることができる。冷却停止温度が350℃未満であると、マルテンサイトの面積率が30%超となる場合がある。   By setting the cooling stop temperature after annealing to 350 ° C. or higher, the martensite formation can be suppressed and the martensite area ratio can be 30% or less. If the cooling stop temperature is lower than 350 ° C., the martensite area ratio may exceed 30%.

(3)めっき
本発明の熱間プレス用鋼板および熱間プレス鋼板部材は、熱間プレスの加熱工程における表面酸化抑制や熱間プレス後の熱間プレス鋼板部材の耐食性向上を目的として、鋼板表面にめっき層を備えてもよい。
(3) Plating The steel sheet for hot pressing and the hot pressed steel sheet member of the present invention are steel sheet surfaces for the purpose of suppressing surface oxidation in the heating process of the hot press and improving the corrosion resistance of the hot pressed steel sheet member after hot pressing. May be provided with a plating layer.

めっきの種類は、前記目的に適うものであればよく特に限定する必要はない。アルミニウム系めっき鋼板 (例、溶融アルミニウムめっき鋼板、溶融55%Al−Zn合金めっき鋼板)、亜鉛系めっき鋼板 (例、電気もしくは溶融亜鉛めっき鋼板、溶融5%Al-Znめっき鋼板、合金化溶融亜鉛めっき鋼板、電気Ni−Zn合金めっき鋼板) 等が例示される。また、めっき方法についても特に限定する必要はなく、溶融めっき、電気めっき、化学めっき、蒸着めっき等の周知の方法を適用することができる。めっき付着量は一般的な範囲内であればよく、通常は片面当たり3〜500g/m2の範囲内である。 The type of plating is not particularly limited as long as it meets the above purpose. Aluminum-based plated steel sheet (eg, hot-dip aluminum-plated steel sheet, hot-dip 55% Al-Zn alloy-plated steel sheet), zinc-based steel sheet (eg, electric or hot-dip galvanized steel sheet, hot-dip 5% Al-Zn-plated steel sheet, alloyed hot-dip zinc Examples thereof include plated steel sheets and electric Ni—Zn alloy plated steel sheets). Moreover, it is not necessary to specifically limit the plating method, and well-known methods such as hot dipping, electroplating, chemical plating, and vapor deposition plating can be applied. The plating adhesion amount may be within a general range, and is usually within a range of 3 to 500 g / m 2 per side.

生産性の観点から、溶融めっきを適用することが好ましく、熱間プレスにおける加工性の観点からは溶融亜鉛めっきとすることが好ましく、耐食性の観点からはさらに合金化処理を施した方が好ましい。溶融めっき浴温度は、特に規定しないが、生産性の観点からめっきする金属の融点以上、(融点+200℃)以下の温度とすることが望ましい。   From the viewpoint of productivity, it is preferable to apply hot dip plating, from the viewpoint of workability in hot pressing, preferably hot dip galvanizing, and from the viewpoint of corrosion resistance, it is preferable to further perform alloying treatment. The temperature of the hot dipping bath is not particularly defined, but it is desirable to set the temperature to be not lower than the melting point of the metal to be plated and not higher than (melting point + 200 ° C.) from the viewpoint of productivity.

溶融亜鉛めっき後に合金化処理を施す場合には、鋼板表面温度が 470℃〜(Ac点+50℃)となる合金化処理温度域で1〜30秒間保持して行うことが望ましい。合金化処理温度が470℃未満では、温度が低すぎるため、合金化処理に時間がかかり生産性が劣化する。生産性の観点から合金化処理温度は500℃以上が望ましい。一方、合金化処理温度が(Ac点+50℃)超であると、鋼組織が変化して所望の鋼組織が得られない場合がある。合金化処理時間を1〜30秒間することで、めっき皮膜中のFe濃度を5%〜25%とすることができる。 When the alloying treatment is performed after the hot dip galvanization, it is desirable that the steel sheet surface temperature is maintained for 1 to 30 seconds in an alloying treatment temperature range in which the steel sheet surface temperature is 470 ° C. to (Ac 1 point + 50 ° C.). If the alloying treatment temperature is less than 470 ° C., the temperature is too low, so the alloying treatment takes time and the productivity deteriorates. From the viewpoint of productivity, the alloying temperature is preferably 500 ° C. or higher. On the other hand, if the alloying treatment temperature is higher than (Ac 1 point + 50 ° C.), the steel structure may change and a desired steel structure may not be obtained. By making the alloying treatment time 1 to 30 seconds, the Fe concentration in the plating film can be 5% to 25%.

<熱間プレス>
鋼板の加熱温度はAc点超とする必要がある。加熱温度がAc点℃以下では、熱間プレス前にオーステナイト単相状態とはならず、鋼板中にフェライトまたは、パーライト、ベイナイトが残存してしまう。その結果、熱間プレス後にマルテンサイト単相組織とはならず、所望の硬度が得られない場合がある。また、熱間プレス鋼板部材の硬度ばらつきも大きくなってしまう。加熱温度の上限は1100℃とする。加熱温度が1100℃超であるとオーステナイトが、粗大化し、部材の靭性が劣化する場合がある。
<Hot press>
The heating temperature of the steel sheet needs to exceed Ac 3 points. When the heating temperature is Ac 3 points or lower, the austenite single phase state is not obtained before hot pressing, and ferrite, pearlite, or bainite remains in the steel sheet. As a result, a martensite single phase structure is not obtained after hot pressing, and a desired hardness may not be obtained. Moreover, the hardness variation of a hot press steel plate member will also become large. The upper limit of the heating temperature is 1100 ° C. When the heating temperature is higher than 1100 ° C., austenite becomes coarse and the toughness of the member may deteriorate.

加熱時間は、1〜10分間が望ましい。加熱時間が1分未満であると、加熱してもオーステナイト単相化が不十分となる場合がある。10分超では、オーステナイトが粗大化し、熱間プレス鋼板部材の靭性が劣化してしまう場合がある。   The heating time is desirably 1 to 10 minutes. When the heating time is less than 1 minute, austenite single phase may be insufficient even when heated. If it exceeds 10 minutes, austenite may become coarse and the toughness of the hot-pressed steel sheet member may deteriorate.

熱間プレスの開始温度は、Ar点以上とする。Ar点未満の温度であると、フェライト変態が始まるために、その後に強制冷却してもマルテンサイト単相組織にならない。熱間プレス後の冷却速度は10℃/秒以上の急冷が望ましく、20℃/秒以上で行うことがさらに望ましい。冷却速度の上限は特に規定しない。この冷却速度で冷却開始した後、一気に鋼板部材温度を350℃以下の温度域に下げる。冷却終了温度は、好ましくは100℃以下、更に好ましくは室温である。熱間プレス後に一気に350℃以下に材料温度を下げることで、硬度ばらつきの少ない単一マルテンサイト組織となった熱間プレス鋼板部材を得ることができる。 The starting temperature of hot pressing is at least 3 points for Ar. If the temperature is lower than Ar 3 point, ferrite transformation starts, so even if it is forcibly cooled after that, it does not become a martensite single phase structure. The cooling rate after hot pressing is preferably 10 ° C./second or more, more preferably 20 ° C./second or more. There is no particular upper limit on the cooling rate. After starting cooling at this cooling rate, the steel plate member temperature is lowered to a temperature range of 350 ° C. or less at once. The cooling end temperature is preferably 100 ° C. or lower, more preferably room temperature. By reducing the material temperature to 350 ° C. or less at once after hot pressing, a hot pressed steel sheet member having a single martensite structure with little hardness variation can be obtained.

表1に示す化学成分を有する鋼を試験用転炉で溶製し、試験用連続鋳造機にて連続鋳造を実施した。連続鋳造時には、単位時間あたりの鋳込み量ならびに溶鋼加熱温度(液相線温度から加熱温度)を変更させた。また、スラブ最終凝固部において、連続鋳造機内の上下対のロール間隔を狭める未凝固層圧下により、完全凝固前にP、Sの濃化溶鋼を吐き出させる中心偏析低減処理を実施した。比較として、中心偏析低減処理をしないスラブも鋳造した。その後、試験用圧延機にて、熱間圧延を実施し、板厚2.0〜5.8mmの熱間圧延鋼板を得た。熱間圧延鋼板のうち、板厚2.0mm超のものについては、酸洗を実施後、冷間圧延を実施し、板厚2.0mmの冷間圧延鋼板とした。   Steels having the chemical components shown in Table 1 were melted in a test converter, and continuous casting was performed with a test continuous casting machine. During continuous casting, the casting amount per unit time and the molten steel heating temperature (from the liquidus temperature to the heating temperature) were changed. In the final solidification part of the slab, a central segregation reduction process for discharging P and S concentrated molten steel before complete solidification was carried out under unsolidified layer pressure which narrows the gap between the upper and lower pairs in the continuous casting machine. As a comparison, a slab without a center segregation reduction treatment was also cast. Then, hot rolling was implemented with the rolling mill for a test, and the hot rolled steel plate with a plate thickness of 2.0-5.8 mm was obtained. Among the hot-rolled steel sheets, those with a thickness of more than 2.0 mm were pickled and then cold-rolled to obtain cold-rolled steel sheets having a thickness of 2.0 mm.

一部の鋼板については、冷間圧延後、焼鈍試験装置にて焼鈍を実施した。さらに、得られた熱間圧延鋼板、冷間圧延鋼板の焼鈍板について、溶融めっき試験ラインにて溶融めっきを施した。一部のものについて合金化処理も行った。めっきは、亜鉛めっきならびにアルミニウムめっきを実施した。スラブの鋳造条件と熱間圧延鋼板の製造条件を表2に示す。冷間圧延ならびに冷間圧延後の焼鈍、めっきおよび合金化処理の条件と製品鋼板の種類を表3に示す。   About some steel plates, it annealed with the annealing test apparatus after cold rolling. Further, the obtained hot rolled steel sheet and cold rolled steel sheet were subjected to hot dip plating in a hot dip test line. Alloying treatment was also performed on some of them. For plating, zinc plating and aluminum plating were performed. Table 2 shows slab casting conditions and hot-rolled steel sheet manufacturing conditions. Table 3 shows the conditions of cold rolling and annealing, plating and alloying treatment after cold rolling, and the types of product steel plates.

得られた熱間圧延鋼板、冷間圧延鋼板、溶融めっき鋼板、または合金化溶融めっき鋼板について、鋼板清浄度、板厚中心部のPおよびSの偏析度αおよびβ、鋼組織、めっき目付量および合金化度、ならびに引張特性を次のようにして調査した。めっき鋼板または合金化溶融めっき鋼板の場合、めっき目付量および合金化度以外の調査項目も、めっき後に調査した。これらの試験結果は表4にまとめて示す。   About the obtained hot rolled steel sheet, cold rolled steel sheet, hot dip galvanized steel sheet, or alloyed hot dip galvanized steel sheet, steel sheet cleanliness, P and S segregation degrees α and β at the center of the plate thickness, steel structure, plating weight per unit area In addition, the degree of alloying and tensile properties were investigated as follows. In the case of a plated steel plate or an alloyed hot-dip plated steel plate, survey items other than the coating weight and the degree of alloying were also investigated after plating. These test results are summarized in Table 4.

<鋼板清浄度>
鋼板の清浄度は、JIS G0555に準拠して調査した。各鋼板について5個所から供試材を切り出した。各供試材の板厚1/8t、1/4t、1/2t、3/4t、7/8tの各位置について、点算法にて清浄度を調査した。各板厚における清浄度の値が最も大きい(清浄度が最も低い)数値を、その供試材の清浄度とした。清浄度は、A系、B系、C系介在物の総和とした。
<Steel plate cleanliness>
The cleanliness of the steel sheet was investigated according to JIS G0555. Test materials were cut out from five locations for each steel plate. The cleanliness was investigated by a point calculation method at each position of the plate thickness 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, and 7 / 8t of each test material. The value with the largest cleanliness value (lowest cleanliness) at each plate thickness was defined as the cleanliness of the specimen. The cleanliness was the sum of inclusions of A, B, and C inclusions.

<板厚中心部の偏析度>
鋼板の偏析調査は、EPMAによるPとSの成分面分析により行った。各鋼板について5個所から供試材を切り出した。板厚1/4t、1/2tの各位置において調査し、各位置において500倍の倍率にて10視野ずつ調査した。
<Segregation degree at the center of the plate thickness>
The segregation investigation of the steel sheet was performed by component surface analysis of P and S by EPMA. Test materials were cut out from five locations for each steel plate. Investigation was made at each position of the plate thickness of 1/4 t and 1/2 t, and 10 visual fields were examined at each magnification at a magnification of 500 times.

Pの偏析度αおよびSの偏析度βを、下記式(1)および(2)に従って算出し、5個の供試材の算術計算により偏析度を求めた。
α=[板厚中心部での最大P濃度(質量%)]/[表面から板厚の1/4深さ位置での平均P濃度(質量%)] ・・・ (1)
β=[板厚中心部での最大S濃度(質量%)]/[表面から板厚の1/4深さ位置での平均S濃度(質量%)] ・・・ (2)
<鋼組織>
鋼板の圧延方向に平行な断面について、走査型電子顕微鏡を用いて、鋼組織を観察した。測定は、板厚1/8t、1/4t、1/2t、3/4t、7/8tの各位置について倍率2000倍で実施し、各供試材について20視野ずつ測定した。得られた画像をもとに各組織の面積率、ポリゴナルフェライトの平均結晶粒径、ポリゴナルフェライト粒内における粒径0.2μm以上のセメンタイトの個数を画像処理にて調査し、ポリゴナルフェライトの面積率、マルテンサイトの面積率、パーライトの面積率、ベイナイトの面積率、オーステナイトの面積率、ポリゴナルフェライトの平均結晶粒径、ポリゴナルフェライトの全個数(α)に占める粒内に粒径0.2μm以上のセメンタイトを5個以上含有しているポリゴナルフェライトの個数(αC)の割合(αC/α)を算術計算にて求めた。ポリゴナルフェライトの平均結晶粒径は、JIS G0552に準拠して測定した。
The segregation degree α of P and the segregation degree β of S were calculated according to the following formulas (1) and (2), and the segregation degree was obtained by arithmetic calculation of five specimens.
α = [maximum P concentration (mass%) at the thickness center portion] / [average P concentration (mass%) at the 1/4 depth position of the thickness from the surface] (1)
β = [maximum S concentration (mass%) at the thickness center portion] / [average S concentration (mass%) at the 1/4 depth position of the thickness from the surface] (2)
<Steel structure>
About the cross section parallel to the rolling direction of a steel plate, the steel structure was observed using the scanning electron microscope. The measurement was performed at a magnification of 2000 for each position of the plate thickness 1 / 8t, 1 / 4t, 1 / 2t, 3 / 4t, and 7 / 8t, and 20 fields of view were measured for each specimen. Based on the obtained images, the area ratio of each structure, the average crystal grain size of polygonal ferrite, and the number of cementites having a grain size of 0.2 μm or more in the polygonal ferrite grains are investigated by image processing. Area ratio, martensite area ratio, pearlite area ratio, bainite area ratio, austenite area ratio, average grain size of polygonal ferrite, grain size in the total number (α) of polygonal ferrite The ratio (α C / α) of the number (α C ) of polygonal ferrite containing 5 or more cementites of 0.2 μm or more was obtained by arithmetic calculation. The average crystal grain size of polygonal ferrite was measured according to JIS G0552.

<めっきの目付量および合金化度>
鋼板から25mmφの試料片を採取し、0.5Vol%インヒビター(商品名:朝日化学製「イビット710N」)を含有した10%HCl水溶液でめっき層を溶解し、得られた溶液をICP法で分析することによりめっき層の組成分析を行った。得られた各成分の濃度からめっきの目付量および合金化度を算出した。
<Amount of plating and degree of alloying>
A 25 mmφ sample piece was taken from the steel plate, the plating layer was dissolved with a 10% HCl aqueous solution containing 0.5 Vol% inhibitor (trade name: “Ibit 710N” manufactured by Asahi Chemical), and the obtained solution was analyzed by the ICP method. As a result, the composition of the plating layer was analyzed. The basis weight of plating and the degree of alloying were calculated from the concentration of each component obtained.

<引張り特性>
得られた鋼板の引張り特性を引張り試験により評価した。各鋼板の圧延直角方向からJIS 5号引張試験を採取した。試験方法はJIS Z2241に準じた。降伏点YP、引張強さTS、伸びElを測定した。
<Tensile properties>
The tensile properties of the obtained steel sheet were evaluated by a tensile test. A JIS No. 5 tensile test was taken from the direction perpendicular to the rolling of each steel plate. The test method conformed to JIS Z2241. Yield point YP, tensile strength TS, and elongation El were measured.

その後、熱間プレス試験装置を用いて、得られた熱間圧延鋼板、冷間圧延鋼板、溶融めっき鋼板、または合金化溶融めっき鋼板に対して、図1に示す条件にて熱間プレス(ハット成形)を実施した。熱間プレスは、鋼板を加熱炉内で鋼板表面温度900℃に到達させ、その温度にて4分間保持し、加熱炉より取り出し、すぐさま冷却装置付きの金型にて熱間プレスを実施し、成形と同時に焼入れ処理を実施した。   Thereafter, using a hot press test apparatus, the obtained hot-rolled steel sheet, cold-rolled steel sheet, hot-dip galvanized steel sheet, or alloyed hot-dip galvanized steel sheet was hot-pressed (hat) under the conditions shown in FIG. Molding). In the hot press, the steel plate reaches a steel plate surface temperature of 900 ° C. in a heating furnace, is held at that temperature for 4 minutes, is taken out of the heating furnace, and immediately hot-pressed with a mold with a cooling device, A quenching process was performed simultaneously with the molding.

熱間プレス用の試験片サイズは板厚2.0mm×幅120mm×長さ320mmとし、熱間プレス成形条件は成形高さ70mmとした。熱間プレスの開始温度は約900℃であった。金型に設けた冷却装置は水冷式であり、冷却速度は約50℃/秒であり、冷却終了温度は室温であった。   The size of the test piece for hot pressing was plate thickness 2.0 mm × width 120 mm × length 320 mm, and the hot press forming condition was forming height 70 mm. The starting temperature of hot pressing was about 900 ° C. The cooling device provided in the mold was water-cooled, the cooling rate was about 50 ° C./second, and the cooling end temperature was room temperature.

得られた熱間プレス成形品(鋼板部材)に対して、硬度のばらつきと靱性と次のようにして調査した。試験結果は表5にまとめて示す。
<熱間プレス鋼板部材の硬度のばらつき>
硬度はビッカース硬度計で測定した。測定荷重は98kNであった。熱間プレスにより得られた部材から、図2に示すようにマイクロカッターで切断して試料を採取した。切断個所は図中の(1)、(2)、(3)の3箇所とし、各位置から硬度測定用試料を5個採取した。各試料の板厚断面1/4t位置においてn=3の断面硬度を測定した。測定方法はJIS Z2244に準拠した。各部材についてこうして得られた45のビッカース硬度値(Hv)の最大値ならびに最小値から、ビッカース硬度の差(ΔHv)を求めた。
The obtained hot press-formed product (steel plate member) was examined for hardness variation and toughness as follows. The test results are summarized in Table 5.
<Hardness variation of hot-pressed steel sheet member>
The hardness was measured with a Vickers hardness meter. The measurement load was 98 kN. A sample was collected from the member obtained by hot pressing by cutting with a microcutter as shown in FIG. There were three cutting points (1), (2), and (3) in the figure, and five samples for hardness measurement were taken from each position. The cross-sectional hardness of n = 3 was measured at the position of 1/4 t of the plate thickness cross section of each sample. The measuring method was based on JIS Z2244. The difference (ΔHv) in Vickers hardness was determined from the maximum value and the minimum value of 45 Vickers hardness values (Hv) thus obtained for each member.

<熱間プレス後部材の靭性>
得られた熱間プレス鋼板部材の靭性を、部材から切り出したシャルピー試験片に対してシャルピー衝撃試験を実施することにより調査した。試験片の切り出し位置は図2に示す通りである。得られた試験片5枚を重ね合わせてビス止めをし、合計板厚10mmの試験片とした。試験片形状は、JIS Z2202に記載されているVノッチシャルピー試験片とした。試験方法は、JIS Z2242に記載されている方法に準じ、−120℃温度における吸収エネルギーを調査した。
<Toughness of members after hot pressing>
The toughness of the obtained hot-pressed steel sheet member was investigated by performing a Charpy impact test on the Charpy test piece cut out from the member. The cut-out position of the test piece is as shown in FIG. Five test pieces obtained were overlapped and screwed to obtain a test piece having a total thickness of 10 mm. The specimen shape was a V-notch Charpy specimen described in JIS Z2202. The test method investigated the absorbed energy at -120 degreeC temperature according to the method described in JISZ2242.

<熱間プレス後部材の引張り特性>
得られた熱間プレス鋼板部材からJIS 13B号引張試験を採取した。試験片の切り出し位置は図2に示す通りである。切断個所は図中の(4)である。試験方法はJIS Z2241に準じた。引張強さTSを測定した。
<Tensile properties of hot-pressed parts>
A JIS No. 13B tensile test was collected from the obtained hot-pressed steel sheet member. The cut-out position of the test piece is as shown in FIG. The cutting point is (4) in the figure. The test method conformed to JIS Z2241. Tensile strength TS was measured.

Figure 0004725415
Figure 0004725415

Figure 0004725415
Figure 0004725415

Figure 0004725415
Figure 0004725415

Figure 0004725415
Figure 0004725415

Figure 0004725415
Figure 0004725415

上の表1〜5からわかるように、本発明に従った鋼組成および製造条件で製造された供試材No.1〜25は、熱間プレス鋼板部材のシャルピー衝撃試験において−120℃での吸収エネルギーが42〜79J/cm2と十分な高さであり、靭性に優れていた。発明例のうち、No.4〜5、7〜14、22は、鋼板断面における鋼組織において、ポリゴナルフェライトの面積率が30%以上であり、そのポリゴナルフェライトの平均結晶粒径が25μm以下、ポリゴナルフェライトが0.6≦αC/αを満たし、残部組織においてマルテンサイトが30%以下であるため、熱間プレス鋼板部材硬度のばらつきが10Hv以下と小さくなった。そのため熱間プレス鋼板部材のシャルピー衝撃試験において−120℃での吸収エネルギーが60〜79J/cm2と特に高く、靭性が一層優れていた。 As can be seen from Tables 1 to 5 above, specimens Nos. 1 to 25 produced with the steel composition and production conditions according to the present invention were measured at −120 ° C. in a Charpy impact test of a hot-pressed steel sheet member. The absorbed energy was 42-79 J / cm 2 and a sufficient height, and the toughness was excellent. Among the inventive examples, Nos. 4 to 5, 7 to 14 and 22 have an area ratio of polygonal ferrite of 30% or more in the steel structure in the steel sheet cross section, and the average crystal grain size of the polygonal ferrite is 25 μm or less. Since the polygonal ferrite satisfies 0.6 ≦ α C / α and the martensite is 30% or less in the remaining structure, the variation in the hardness of the hot pressed steel sheet member is reduced to 10 Hv or less. Therefore, in the Charpy impact test of the hot pressed steel sheet member, the absorbed energy at −120 ° C. was particularly high as 60 to 79 J / cm 2 and the toughness was further excellent.

供試材No.26〜30の比較例を見ると、No.26は、連続鋳造の際の溶鋼加熱温度が液相線温度から2℃と低かったため、鋼板の清浄度が0.1%と悪化した。そのため、熱間プレス鋼板部材のシャルピー衝撃試験における−120℃での吸収エネルギーは20J/cm2と低く、靱性が不十分であった。 When the comparative example of test material No. 26-30 is seen, since the molten steel heating temperature in the case of continuous casting was as low as 2 degreeC from liquidus temperature, the cleanliness of a steel plate is 0.1%. It got worse. Therefore, the absorbed energy at −120 ° C. in the Charpy impact test of the hot pressed steel sheet member was as low as 20 J / cm 2 and the toughness was insufficient.

No.27は、連続鋳造の際の単位時間当たりの溶鋼鋳込み量が6.5ton/分と本発明における上限を超えたため、鋼板の清浄度が0.12%と悪化した。そのため、熱間プレス後部材のシャルピー衝撃試験における−120℃での吸収エネルギーは21J/cm2と低く、靱性が低かった。 In No. 27, the amount of molten steel cast per unit time during continuous casting was 6.5 ton / min, which exceeded the upper limit in the present invention, and the cleanliness of the steel sheet deteriorated to 0.12%. Therefore, the absorbed energy at −120 ° C. in the Charpy impact test of the member after hot pressing was as low as 21 J / cm 2 and the toughness was low.

No.28は、連続鋳造の際に中心偏析低減処理を実施しなかったため、Pの偏析度αが1.7、Sの偏析度βが1.7と、いずれも本発明における上限を超えた。熱間プレス鋼板部材のシャルピー衝撃試験における−120℃での吸収エネルギーは14J/cm2と非常に低く、靱性が悪化した。硬度のばらつきは36Hvと大きかった。 No. 28 was not subjected to the center segregation reduction treatment during continuous casting, so the P segregation degree α was 1.7 and the S segregation degree β was 1.7, both exceeding the upper limit in the present invention. . The absorbed energy at −120 ° C. in the Charpy impact test of the hot-pressed steel sheet member was as extremely low as 14 J / cm 2 and the toughness was deteriorated. The variation in hardness was as large as 36 Hv.

No.29は、連続鋳造の際に中心偏析低減処理を実施しなかったため、Pの偏析度αが1.8と本発明における上限を超えた。熱間プレス鋼板部材のシャルピー衝撃試験における−120℃での吸収エネルギーは22J/cm2と、靱性が不十分であった。 No. 29 did not perform the center segregation reduction treatment during continuous casting, and therefore the P segregation degree α exceeded the upper limit in the present invention, which was 1.8. The absorbed energy at −120 ° C. in a Charpy impact test of a hot-pressed steel sheet member was 22 J / cm 2 and the toughness was insufficient.

No.30は、連続鋳造の際に中心偏析低減処理を実施しなかったため、Sの偏析度αが1.8と本発明における上限を超えた。熱間プレス鋼板部材のシャルピー衝撃試験における−120℃での吸収エネルギーは15J/cm2と非常に低く、靱性が悪化した。硬度のばらつきは36Hvと大きかった。 No. 30 did not perform the center segregation reduction treatment during continuous casting, so the segregation degree α of S exceeded 1.8, the upper limit in the present invention. The absorbed energy at −120 ° C. in the Charpy impact test of the hot-pressed steel sheet member was very low at 15 J / cm 2 and the toughness deteriorated. The variation in hardness was as large as 36 Hv.

実施例で熱間プレスとして実施したハット成形の条件を示す模式図である。It is a schematic diagram which shows the conditions of hat shaping implemented as a hot press in an Example. 図2(a)および(b)は、それぞれ実施例において熱間プレスにより得られたハット成形品からビッカース硬度測定用試料(1)、(2)、(3)、シャルピー衝撃試験片、および引張り試験片(4)を採取する位置を示す説明図である。Figures 2 (a) and 2 (b) show the Vickers hardness measurement samples (1), (2), (3), Charpy impact test pieces, and tension from the hat molded products obtained by hot pressing in the examples. It is explanatory drawing which shows the position which extract | collects a test piece (4).

Claims (12)

質量%で、C:0.09〜0.60%、Si:2.0%以下、Mn:0.5〜3.5%、P:0.10%以下、S:0.05%以下、Al:0.005〜2.0%、およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、清浄度が0.08%以下、下記式(1)で規定されるPの偏析度αが1.6以下、下記式(2)で規定されるSの偏析度βが1.6以下であり、かつ熱間プレス後の強度が1080MPa以上であることを特徴とする熱間プレス用鋼板。
α=[板厚中心部での最大P濃度(質量%)]/[表面から板厚の1/4深さ位置での平均P濃度(質量%)] ・・・ (1)
β=[板厚中心部での最大S濃度(質量%)]/[表面から板厚の1/4深さ位置での平均S濃度(質量%)] ・・・ (2)
In mass%, C: 0.09 to 0.60%, Si: 2.0% or less, Mn: 0.5 to 3.5%, P: 0.10% or less, S: 0.05% or less, Al: 0.005 to 2.0%, and N: 0.01% or less, with the balance being a chemical composition consisting of Fe and impurities, cleanliness of 0.08% or less, the following formula (1) The segregation degree α of P defined by the formula (1) is 1.6 or less, the segregation degree β of S defined by the following formula (2) is 1.6 or less, and the strength after hot pressing is 1080 MPa or more. A steel sheet for hot pressing characterized by
α = [maximum P concentration (mass%) at the thickness center portion] / [average P concentration (mass%) at the 1/4 depth position of the thickness from the surface] (1)
β = [maximum S concentration (mass%) at the thickness center portion] / [average S concentration (mass%) at the 1/4 depth position of the thickness from the surface] (2)
前記化学組成が、Feの一部に代えて、質量%で、Ti:0.2%以下、Nb:0.2%以下、およびV:1.0%以下からなる群から選ばれた1種または2種以上を含有する請求項1に記載の熱間プレス用鋼板。   The chemical composition is one selected from the group consisting of Ti: 0.2% or less, Nb: 0.2% or less, and V: 1.0% or less in mass% instead of part of Fe. Or the steel plate for hot presses of Claim 1 containing 2 or more types. 前記化学組成が、Feの一部に代えて、質量%で、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下、およびB:0.01%以下からなる群から選ばれた1種または2種以上を含有する請求項1または2に記載の熱間プレス用鋼板。   The chemical composition is, in place of part of Fe, in mass%, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: A steel sheet for hot pressing according to claim 1 or 2, comprising one or more selected from the group consisting of 0.01% or less. 前記化学組成が、Feの一部に代えて、質量%で、Ca:0.01%以下、Mg:0.01%以下、およびREM:0.1%以下からなる群から選ばれた1種または2種以上を含有する請求項1〜3のいずれかに記載の熱間プレス用鋼板。   The chemical composition is one selected from the group consisting of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.1% or less in mass% instead of part of Fe. Or the steel plate for hot presses in any one of Claims 1-3 containing 2 or more types. 面積%で、ポリゴナルフェライトが30%以上、マルテンサイトが30%以下である鋼組織を有し、前記ポリゴナルフェライトの平均結晶粒径が25μm以下、前記ポリゴナルフェライトに占める、粒径0.2μm以上のセメンタイトを粒内に5個以上含有するポリゴナルフェライトの個数割合が0.6以上である請求項1〜4のいずれかに記載の熱間プレス用鋼板。   It has a steel structure in which polygonal ferrite is 30% or more and martensite is 30% or less in area%, the average crystal grain size of the polygonal ferrite is 25 μm or less, and the grain size of the polygonal ferrite is 0. The steel sheet for hot pressing according to any one of claims 1 to 4, wherein the number ratio of polygonal ferrite containing 5 or more cementites of 2 µm or more in the grain is 0.6 or more. 表面にめっき層を備える請求項1〜5のいずれかに記載の熱間プレス用鋼板。   The steel plate for hot press according to any one of claims 1 to 5, wherein a plating layer is provided on the surface. 請求項1〜4のいずれかに記載の化学組成を有する溶鋼を、溶鋼の加熱温度を液相線温度から5℃以上高い温度かつ単位時間当たりの溶鋼鋳込み量を6ton/分以下とし、さらに鋳片が完全凝固する前に中心偏析低減処理を施す連続鋳造法によりスラブとなし、前記スラブを圧延することを特徴とする熱間プレス用鋼板の製造方法。   The molten steel having the chemical composition according to any one of claims 1 to 4, wherein the heating temperature of the molten steel is higher than the liquidus temperature by 5 ° C or more, and the molten steel casting amount per unit time is 6 ton / min or less. A method for producing a steel sheet for hot pressing, characterized in that a slab is formed by a continuous casting method in which a center segregation reduction treatment is performed before the piece is completely solidified, and the slab is rolled. 請求項7に記載のスラブに熱間圧延を施し、熱間圧延完了後に100℃/秒以下の平均冷却速度で冷却し、500℃以上の温度で巻き取って熱間圧延鋼板となし、前記熱間圧延鋼板をスケール除去処理後、20%以上の圧下率で冷間圧延を施して冷間圧延鋼板となし、前記冷間圧延鋼板に(Ac点−100℃)以上、Ac点未満の温度範囲で5秒間以上、500秒間以下保持する焼鈍を施し、次いで1℃/秒以上の平均冷却速度で350〜700℃の温度域まで冷却することを特徴とする、熱間プレス用鋼板の製造方法。 The slab according to claim 7 is hot-rolled, cooled at an average cooling rate of 100 ° C./second or less after completion of hot rolling, wound at a temperature of 500 ° C. or more to form a hot-rolled steel sheet, and the heat After the scale removal treatment of the cold-rolled steel sheet, it is cold-rolled at a reduction rate of 20% or more to form a cold-rolled steel sheet, and the cold-rolled steel sheet is (Ac 1 point-100 ° C.) or more and less than Ac 3 points. Manufacturing of a steel sheet for hot pressing, characterized by annealing at a temperature range of 5 seconds to 500 seconds and then cooling to a temperature range of 350 to 700 ° C. at an average cooling rate of 1 ° C./second or more. Method. 請求項7または8の製造方法にて得られた熱間プレス用鋼板の表面にめっき処理を施すことを特徴とする熱間プレス用鋼板の製造方法。   The manufacturing method of the steel plate for hot press characterized by performing a plating process on the surface of the steel plate for hot press obtained by the manufacturing method of Claim 7 or 8. 請求項1〜4のいずれかに記載の化学組成を有し、清浄度が0.08%以下、下記式(1)で規定されるPの偏析度αが1.6以下、下記式(2)で規定されるSの偏析度βが1.6以下であり、かつ引張強さが1080MPa以上であることを特徴とする熱間プレス鋼板部材。
α=[板厚中心部での最大P濃度(質量%)]/[表面から板厚の1/4深さ位置での平均P濃度(質量%)] ・・・ (1)
β=[板厚中心部での最大S濃度(質量%)]/[表面から板厚の1/4深さ位置での平均S濃度(質量%)] ・・・ (2)
The chemical composition according to claim 1, the cleanliness is 0.08% or less, the segregation degree α of P defined by the following formula (1) is 1.6 or less, and the following formula (2 A hot-pressed steel sheet member having a segregation degree β of S defined by) of 1.6 or less and a tensile strength of 1080 MPa or more.
α = [maximum P concentration (mass%) at the thickness center portion] / [average P concentration (mass%) at the 1/4 depth position of the thickness from the surface] (1)
β = [maximum S concentration (mass%) at the thickness center portion] / [average S concentration (mass%) at the 1/4 depth position of the thickness from the surface] (2)
表面にめっき層を備えることを特徴とする請求項10に記載の熱間プレス鋼板部材。   The hot-pressed steel sheet member according to claim 10, further comprising a plating layer on the surface. 請求項1〜6のいずれかに記載の熱間プレス用鋼板を、Ac点超、1100℃以下に加熱したのちに、Ar点以上の温度でプレスを開始し、10℃/秒以上の冷却速度で350℃以下の温度域まで冷却する熱間プレスを施すことを特徴とする、熱間プレス鋼板部材の製造方法。 After heating the steel sheet for hot press according to any one of claims 1 to 6 to more than Ac 3 point and 1100 ° C or less, pressing is started at a temperature of Ar 3 point or more, and 10 ° C / second or more is started. A method for producing a hot-pressed steel sheet member, characterized by performing a hot press for cooling to a temperature range of 350 ° C. or lower at a cooling rate.
JP2006142672A 2006-05-23 2006-05-23 Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof Active JP4725415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142672A JP4725415B2 (en) 2006-05-23 2006-05-23 Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142672A JP4725415B2 (en) 2006-05-23 2006-05-23 Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof

Publications (2)

Publication Number Publication Date
JP2007314817A JP2007314817A (en) 2007-12-06
JP4725415B2 true JP4725415B2 (en) 2011-07-13

Family

ID=38848952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142672A Active JP4725415B2 (en) 2006-05-23 2006-05-23 Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof

Country Status (1)

Country Link
JP (1) JP4725415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632240B (en) * 2017-01-17 2018-08-11 新日鐵住金股份有限公司 Hot stamping formed body and method of manufacturing same

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006771B3 (en) * 2008-01-30 2009-09-10 Thyssenkrupp Steel Ag A method of manufacturing a component from a steel product provided with an Al-Si coating and an intermediate of such a method
JP5131844B2 (en) * 2008-08-12 2013-01-30 新日鐵住金株式会社 Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-pressed steel sheet member
JP5347395B2 (en) * 2008-09-12 2013-11-20 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5347392B2 (en) * 2008-09-12 2013-11-20 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5347393B2 (en) * 2008-09-12 2013-11-20 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5347394B2 (en) * 2008-09-12 2013-11-20 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5126846B2 (en) * 2008-10-15 2013-01-23 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5316026B2 (en) * 2009-01-28 2013-10-16 Jfeスチール株式会社 Die quench steel plate with excellent hot punchability
JP5304269B2 (en) * 2009-01-28 2013-10-02 Jfeスチール株式会社 Steel plate for die quench
JP5369714B2 (en) * 2009-01-28 2013-12-18 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5316028B2 (en) * 2009-01-28 2013-10-16 Jfeスチール株式会社 Die quench steel plate with excellent hot punchability
JP5316025B2 (en) * 2009-01-28 2013-10-16 Jfeスチール株式会社 Die quench steel plate with excellent hot punchability
JP5316027B2 (en) * 2009-01-28 2013-10-16 Jfeスチール株式会社 Die quench steel plate with excellent hot punchability
JP5369712B2 (en) * 2009-01-28 2013-12-18 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5387073B2 (en) * 2009-03-16 2014-01-15 新日鐵住金株式会社 Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
EP2290133B1 (en) * 2009-08-25 2012-04-18 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating and steel component
JP5493812B2 (en) * 2009-12-16 2014-05-14 新日鐵住金株式会社 Method and apparatus for producing drawn products made of galvannealed steel sheet
JP4883240B1 (en) * 2010-08-04 2012-02-22 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
JP5598157B2 (en) * 2010-08-20 2014-10-01 新日鐵住金株式会社 Steel sheet for hot press excellent in delayed fracture resistance and collision safety and method for producing the same
KR20130055016A (en) * 2010-09-16 2013-05-27 신닛테츠스미킨 카부시키카이샤 Molded member and manufacturing method thereof
WO2012053636A1 (en) 2010-10-22 2012-04-26 新日本製鐵株式会社 Process for producing hot stamp molded article, and hot stamp molded article
US9896736B2 (en) 2010-10-22 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
EP2631307B1 (en) * 2010-10-22 2019-04-03 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for manufacturing steel sheet
DE102011001140A1 (en) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
RU2560890C2 (en) * 2011-03-18 2015-08-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Steel plate of hot-stamped product and method of its manufacturing
MX351086B (en) * 2011-04-27 2017-09-29 Nippon Steel & Sumitomo Metal Corp Steel sheet for hot stamping members and method for producing same.
KR102059052B1 (en) * 2011-05-13 2019-12-24 닛폰세이테츠 가부시키가이샤 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
JP5618917B2 (en) * 2011-06-23 2014-11-05 株式会社神戸製鋼所 Machine structural steel for cold working, method for producing the same, and machine structural parts
JP5866871B2 (en) * 2011-08-29 2016-02-24 Jfeスチール株式会社 Hot press forming method for hot rolled steel sheet
BR112014017113B1 (en) * 2012-01-13 2019-03-26 Nippon Steel & Sumitomo Metal Corporation HOT STAMPED STEEL AND METHOD FOR PRODUCING THE SAME
US9605329B2 (en) 2012-01-13 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and manufacturing method thereof
EP2803748B1 (en) * 2012-01-13 2018-03-14 Nippon Steel & Sumitomo Metal Corporation Hot stamp molded article, and method for producing hot stamp molded article
JP5545414B2 (en) * 2012-01-13 2014-07-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing cold rolled steel sheet
EP2832884B1 (en) * 2012-03-30 2019-08-14 voestalpine Stahl GmbH Hot-dip galvanized steel sheet for press forming with excellent cold workability, in-mold hardenability, and surface property, and process for producing same
CN104520460B (en) 2012-08-06 2016-08-24 新日铁住金株式会社 Cold-rolled steel sheet, its manufacture method and heat stamping and shaping body
JP5835624B2 (en) * 2012-08-21 2015-12-24 新日鐵住金株式会社 Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
CN104583445B (en) * 2012-08-28 2016-10-19 新日铁住金株式会社 Steel plate
KR101439658B1 (en) 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439690B1 (en) 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439688B1 (en) 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
JP5727061B2 (en) * 2013-02-26 2015-06-03 東亜工業株式会社 Manufacturing method for vehicle body side structure and vehicle body side structure
CN105051228B (en) * 2013-03-19 2017-04-12 杰富意钢铁株式会社 Full hard cold-rolled steel sheet and process for manufacturing same
JP5852690B2 (en) 2013-04-26 2016-02-03 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamping
US10384254B2 (en) 2013-07-02 2019-08-20 Jfe Steel Corporation Method of manufacturing hot-pressed member
JP6062353B2 (en) * 2013-12-12 2017-01-18 株式会社神戸製鋼所 Steel sheet for hot press
PL3124637T3 (en) * 2014-03-26 2020-03-31 Nippon Steel Corporation High-strength hot-formed steel sheet member
ES2753390T3 (en) * 2014-05-15 2020-04-08 Nippon Steel Corp Hot formed steel plate element
MY189189A (en) * 2015-02-19 2022-01-31 Nippon Steel Corp Abstract method of spot welding
EP3438316B1 (en) 2016-03-29 2022-03-09 JFE Steel Corporation Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor
MX2019011409A (en) * 2017-03-30 2019-11-28 Nippon Steel Corp Welded joint manufacturing method, and welded joint.
WO2019003448A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
WO2019003445A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-press member and method for producing same, and cold-rolled steel sheet for hot pressing
WO2019003450A1 (en) 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
WO2019003447A1 (en) * 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
CN110714169A (en) * 2018-07-11 2020-01-21 上海永烨冶金科技发展有限公司 Method for preparing calcium-iron alloy punch forming product
ES2967098T3 (en) * 2018-12-18 2024-04-26 Arcelormittal Pressure-hardened part with high resistance to delayed fracture and a manufacturing procedure for the same
US11795520B2 (en) 2019-02-22 2023-10-24 Jfe Steel Corporation Hot-pressed member, method for manufacturing the same, and method for manufacturing steel sheet for hot-pressed member
JP7436825B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
JP7436822B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
JP7436823B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
JP7436824B2 (en) 2020-03-26 2024-02-22 日本製鉄株式会社 Steel plate for hot stamped parts and its manufacturing method
JP7477750B2 (en) 2020-03-26 2024-05-02 日本製鉄株式会社 Hot stamped parts and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192256A (en) * 1995-01-12 1996-07-30 Nippon Steel Corp Continuous casting method
JP3610883B2 (en) * 2000-05-30 2005-01-19 住友金属工業株式会社 Method for producing high-tensile steel sheet with excellent bendability
JP2003231915A (en) * 2002-02-08 2003-08-19 Jfe Steel Kk Press hardening method
JP2005126733A (en) * 2003-10-21 2005-05-19 Nippon Steel Corp Steel sheet for hot press having excellent hot workability, and automotive member
JP4673558B2 (en) * 2004-01-26 2011-04-20 新日本製鐵株式会社 Hot press molding method and automotive member excellent in productivity
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4288216B2 (en) * 2004-09-06 2009-07-01 新日本製鐵株式会社 Hot-press steel sheet having excellent hydrogen embrittlement resistance, automotive member and method for producing the same
JP2006104546A (en) * 2004-10-08 2006-04-20 Nippon Steel Corp High strength automobile member and hot pressing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632240B (en) * 2017-01-17 2018-08-11 新日鐵住金股份有限公司 Hot stamping formed body and method of manufacturing same

Also Published As

Publication number Publication date
JP2007314817A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4725415B2 (en) Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof
KR101837883B1 (en) High-strength hot-formed steel sheet member
JP5732906B2 (en) Hot-pressed steel, hot-pressed steel and hot-pressed steel manufacturing method
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP5541428B1 (en) steel sheet
JP6315087B2 (en) Hot forming steel plate
WO2010150919A1 (en) High-strength molten zinc-plated steel sheet and process for production thereof
WO2019003541A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP5071173B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2019003539A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP6801818B2 (en) Steel sheets, members and their manufacturing methods
JP2008308732A (en) Hardened steel plate member, steel plate for hardening, and their manufacturing methods
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP2018090893A (en) Process for manufacturing hot-rolled steel plate and process for manufacturing cold-rolled full hard steel plate
JP2013216936A (en) Hot-dip galvannealed hot-rolled steel sheet and production method thereof
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
US11795520B2 (en) Hot-pressed member, method for manufacturing the same, and method for manufacturing steel sheet for hot-pressed member
WO2023162190A1 (en) Steel sheet, member, methods for manufacturing same, method for manufacturing hot-rolled steel sheet for cold-rolled steel sheet, and method for manufacturing cold-rolled steel sheet
WO2023162381A1 (en) Steel sheet, member, methods for producing these, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing cold-rolled steel sheet
CN117751205A (en) Steel sheet and method for producing same
JPWO2020204027A1 (en) Hot stamp molded products and their manufacturing methods
JP2013060644A (en) Thin steel sheet excellent in workability, plated thin steel sheet, and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Ref document number: 4725415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350