JP4721207B2 - Runoff sediment observation system, runoff sediment measurement device, and sediment separator - Google Patents

Runoff sediment observation system, runoff sediment measurement device, and sediment separator Download PDF

Info

Publication number
JP4721207B2
JP4721207B2 JP2001092558A JP2001092558A JP4721207B2 JP 4721207 B2 JP4721207 B2 JP 4721207B2 JP 2001092558 A JP2001092558 A JP 2001092558A JP 2001092558 A JP2001092558 A JP 2001092558A JP 4721207 B2 JP4721207 B2 JP 4721207B2
Authority
JP
Japan
Prior art keywords
water
sediment
earth
sand
river
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001092558A
Other languages
Japanese (ja)
Other versions
JP2002286534A (en
Inventor
真 浦
寿久 深谷
実 下井田
秀治 浜名
康二 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Air Survey Co Ltd
Original Assignee
Asia Air Survey Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Air Survey Co Ltd filed Critical Asia Air Survey Co Ltd
Priority to JP2001092558A priority Critical patent/JP4721207B2/en
Publication of JP2002286534A publication Critical patent/JP2002286534A/en
Application granted granted Critical
Publication of JP4721207B2 publication Critical patent/JP4721207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は流出土砂観測システム、流出土砂測定装置、及び土砂分離装置に関し、特に、河川から流出する土砂の量・質・流出パターンをモニタリングするための流出土砂観測システム、流出土砂測定装置、及び土砂分離装置に関する。
【0002】
【従来の技術】
河川の土砂量の測定に関しては従来から種々の方法が試みられている。それらの方法は、(a)土砂採取器、(b)土砂測定装置によるものに大別される。
【0003】
土砂採取器による方法は、バケツや箱などの採取器を用いて主に人力で土砂を採取するものであり、簡便・確実に観測できる利点があるが、洪水時に水深別の計測や、河床の凹凸がある場所や流れが激しい場所では安定採取が難しく、また、観測実施には多くの労力と危険が伴い、洪水特性にあわせた連続的な観測は困難な場合が多い。
【0004】
これに対し、土砂測定装置による方法は、河道に固定式の取水孔を設けて河川水と土砂を導水し、何らかの測定装置によって土砂重量の時間的な変化を連続測定しようとする試みである。既存技術は、採取土砂の時間的な重量変化は連続計測できるものの、採取土砂をもたらす導水流量を計測できないため土砂濃度は観測できず、そのため、河川の全断面を通過する土砂量に換算する際に推算が多くなる。また、現状では水深別の計測はできず、さらに、有人観測の要素が多く無人連続観測には至っていない。
【0005】
【発明が解決しようとする課題】
流域に降った雨水は地表や渓流の土砂を浸食しながら河川に流出し、河川では河道内のある場所では浸食し、ある場所では堆積し、それらの現象を非定常に繰り返しながら河川を流下して海洋に流出する。このような水と土砂の流出や堆積の永続的な繰り返しによって河川や海岸の自然地形が形成され、地形や流水の自然環境にあわせて動植物は生存環境を形成し、それらの要素が相互に影響を及ぼしあって形成された環境の上に人類を含む多様な生物の生存基盤や社会基盤が保持されている。
【0006】
現在の社会環境や社会基盤を健全に発展させるために治水・利水などの事業が行われるが、事業の進展の半面で、ダム堆砂、河床の低下や堆積による構造物への弊害、海岸浸食、土砂災害や洪水災害などの土砂移動に関する問題が顕在化する傾向にある。流域における雨水と土砂の移動は、環境の形成と人間の活動に深く関わった自然現象であるため、河川や海岸の環境を保全しつつ治水・利水に効果的な河川管理を行うには、流砂系における土砂の管理が必要と認識されている。
【0007】
しかるに、日本の河川においては、どれだけの土砂が流域で生産され、それがどのように河川を移動するかに関してのデータは殆どない。すなわち、流域における土砂移動の実態はほとんど把握されておらず、その解明のために土砂移動のモニタリング技術が必要とされている。
【0008】
土砂モニタリングには、洪水時・平常時に河川を流下する土砂の量、土砂の質、流下パターンを流域全体で迅速に精度良く把握して土砂の流出特性を知る技術が必要である。土砂の流出特性を知るには、河川の流量・流出土砂量の計測や測量などの直接的なモニタリング手法に、ヘリコプター、GPS、GISなどを組み合わせた広域的・間接的なモニタリングシステムの開発が必要とされている。
【0009】
ところが、従来の流砂観測は人力による採取観測か、もしくは土砂測定装置を用いても有人観測の要素の多いシステムであり、土砂量の把握が必要な洪水時などには危険が伴うので観測できず、これを解決するものではなかった。
【0010】
そこで、本発明は、河川を流下する土砂重量と土砂濃度を、河川の水深別に自動的に連続的にモニタリングすることができる流出土砂観測システム、流出土砂測定装置、及び土砂分離装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記目的を解決するために、請求項1記載の発明は、土砂を運搬する河川(1)に設けられた砂防ダム(2)を介して取り込んだ河川水中の流出土砂を観測する流出土砂観測システム(100)であって、
前記砂防ダム(2)の袖部(2S)に少なくとも一以上設置され、水と土砂とを含む前記河川水を取水する取水孔(3)と、
前記取水孔(3)に接続された導水管(4)と、
前記導水管(4)の下流側に設けられ、前記導水管(4)から放出された前記河川水の進行方向への衝撃力を減勢する衝撃緩衝装置(20)と、
前記衝撃緩衝装置(20)の下流側に設けられ、前記衝撃緩衝装置(20)により進行方向への衝撃力を減勢された前記河川水から前記水と前記土砂とを分離する回転自在な回転式フルイ(51)を有する土砂分離装置(5)と、
前記土砂分離装置(5)で分離された前記土砂を蓄積し、蓄積した土砂重量を測定する土砂重量測定装置(6)と、
前記土砂分離装置(5)で分離された前記水の濁度を測定する濁度測定装置(7)と、
前記土砂分離装置(5)分離された前記水の水量を測定する水量測定装置(8)と、
前記土砂重量測定装置(6)、前記濁度測定装置(7)、及び前記水量測定装置(8)の各測定結果をデータ処理して、前記河川水の水量に応じた土砂運搬量を算出して連続的に記録するデータ処理装置(9)と、
を備えことを特徴とする流出土砂観測システム(100)である
【0012】
また、請求項2記載の発明は、請求項1記載の流出土砂観測システム(100)において、
前記土砂分離装置(5)は、前記回転式フルイ(51)がモータ(56)を介して回転可能に設置され、且つ、前記回転式フルイ(51)により前記河川水から分離された前記水の帰水路(54)に水車(55)が設けられており、停電時に前記水車(55)の駆動力により前記回転式フルイ(51)が回転駆動できるように構成されていることを特徴とする流出土砂観測システム(100)である
【0013】
また、請求項3記載の発明は、請求項1記載の流出土砂観測システム(100)において、
前記土砂分離装置(5)は、前記回転式フルイ(51)により前記河川水から分離された前記水の帰水路(54)に水車(55)が設けられていると共に、前記水車の回転軸(57)に発電機が連結されており、停電時に前記発電機によって自家発電した電力を前記データ処理装置(9)に供給するように構成されていることを特徴とする流出土砂観測システム(100)である
【0014】
また、請求項4記載の発明は、装置内部に取り込まれる水と土砂を含む流出土砂を測定する流出土砂測定装置(10)であって、
前記装置内部の入口部に設けられ、前記入口部から取り込まれる前記流出土砂の進行方向への衝撃力を減勢する衝撃緩衝装置(20)と、
前記衝撃緩衝装置(20)の下流側に設けられ、前記衝撃緩衝装置(20)により進行方向への衝撃力を減勢された前記流出土砂から前記水と前記土砂とを分離する回転自在な回転式フルイ(51)を有する土砂分離装置(5)と、
前記土砂分離装置(5)で分離された前記土砂を蓄積し、蓄積した土砂重量を測定する土砂重量測定装置(6)と、
前記土砂分離装置(5)で分離された前記水の濁度を測定する濁度測定装置(7)と、
前記土砂分離装置(5)で分離された前記水の水量を測定する水量測定装置(8)と、
を備えたことを特徴とする流出土砂測定装置(10)である
【0015】
また、請求項5記載の発明は、請求項4記載の流出土砂測定装置(10)において、
前記土砂分離装置(5)は、前記回転式フルイ(51)がモータ(56)を介して回転可能に設置され、且つ、前記回転式フルイ(51)により前記流出土砂から分離された前記水の帰水路(54)に水車(55)が設けられており、停電時に前記水車(55)の駆動力により前記回転式フルイ(51)が回転駆動できるように構成されていることを特徴とする流出土砂測定装置(10)である
【0016】
また、請求項6記載の発明は、請求項4記載の流出土砂測定装置(10)において、
前記土砂分離装置(5)は、前記回転式フルイ(51)により前記流出土砂から分離された前記水の帰水路(54)に水車(55)が設けられていると共に、前記水車の回転軸(57)に発電機が連結されており、前記発電機によって自家発電した電力が得られるように構成されていることを特徴とする流出土砂測定装置(10)である
【0017】
更に、請求項7記載の発明は、装置内部に取り込まれる河川水又は流出土砂から水と土砂とを分離する土砂分離装置(5)であって、
前記装置内部に回転式フルイ(51)がモータ(56)を介して回転自在に設置され、且つ、前記回転式フルイ(51)により前記河川水又は前記流出土砂から分離された前記水の帰水路(54)に水車(55)が設けられており、停電時に前記水車(55)の駆動力により前記回転式フルイ(51)が回転駆動できるように構成されていることを特徴とする土砂分離装置(5)である
【0018】
そして、上述した本発明によれば、通常時、洪水時にかかわらず、河川が運ぶ土砂量を土砂濃度と共に自動的に計測できる。また、河川を流れる水を用いて水車により発電することが可能であるので、停電時でも回転式フルイ(トロンメル)を回転駆動させることができると共に、水車を介して発電機によって自家発電した電力を利用してデータ処理装置によりデータの取得を継続させることができ、土砂量と水量の連続計測と記録が可能である。よって、日本の河川における土砂運搬量を計測することにより、流出土砂と海岸浸食・河床変動や河川環境などとの関わり、ダム堆砂や河川災害などを予測する基礎データの取得が可能となり、治水・利水と環境保護の両方が重要視される今後の河川管理への貢献度が大である。
【0019】
【発明の実施の形態】
以下添付図面を用いて本発明の実施の形態を詳細に説明する。
【0020】
図1は本発明の一実施の形態の流出土砂観測システム100の全体構成を示す全体構成図である。
【0021】
この実施の形態の流出土砂観測システム100では、図1(a) に示すように、河川1に設けられた砂防ダム2の主堤の一方の岸、例えば、岸の袖部2Sに取水孔3を設けている。この取水孔3は、水深別に3ケ所に設けられた取水孔3A,3B,3Cから構成した。図1(b) に示すように、取水孔3Aは河底から1mの位置に設け、開口部の形状は円形とした。取水孔3Bは河底から0.5mの位置に設け、開口部の形状は円形とした。また、取水孔3Cは河底と同位置(0m)に設け、開口部の形状は楕円形とした。取水孔3A,3B,3Cにはそれぞれ導水管4A,4B,4Cを接続している。
【0022】
取水孔3A,3B,3Cから採取された河川水(土砂を含む水)はそれぞれ導水管4A,4B,4Cによって砂防ダム2の下流側の左岸に設置した流出土砂測定装置10まで導かれるようにした。この流出土砂測定装置10は、3本の導水管4A,4B,4Cによって導かれた河川水から土砂と水とを分離する3台の土砂分離装置5A,5B,5C、この土砂分離装置5A,5B,5Cによって河川水から分離された土砂の重量を測定する土砂重量測定装置6A,6B,6C、土砂分離装置5A,5B,5Cによって土砂が除かれた水の濁度を測定する濁度測定装置7、濁度を測定した水の水量の総量を測定する水量測定装置8、及び、土砂重量測定装置6と濁度測定装置7と水量測定装置8によって測定されたデータを処理して河川の土砂流量を測定するデータ処理装置9とから構成した。
【0023】
ここで、図1(a) に示した実施の形態の流出土砂観測システム100を構成する各部材について個々にその構成を詳細に説明する。
【0024】
(1)取水孔3
河川水を取り込む取水孔3は、河川の流向を考慮して河道断面を通過する土砂濃度の平均的な位置に水深方向に複数箇所設置することが望ましい。しかしながら、川幅が50m程度の川では、任意の位置に設置することは困難であるため、取水孔の設置位置は砂防ダム岸袖部付近とし、取水孔の高さを変えて上段、中段、および下段の3箇所に設置した。図1(b) で説明したように、上段、中段、および下段の取水孔3A,3B,3Cの位置は、河川底からの高さがそれぞれ1.0m、0.5m、および0mとして水深別の流出土砂を採取できる構造とした。
【0025】
そして、上段と中段の取水孔3A,3Bは砂防ダム2の袖部2Sに円形に開口させ、砂防ダム2の水通し部には導水管4A,4Bを水平に設置し、下段の取水孔3Cに接続する導水管4Cは河床に下向きに設置し、河床を転動、滑動する土砂(砂礫)を落とし込む構造とした。なお、取水孔3A,3B,3Cに続く砂防ダム2の内部の導水部分をコンクリートで形成し、導水管4A,4B,4Cは砂防ダム2の外側に接続するようにしても良い。また、3つの取水孔3A,3B,3Cには、流木と大礫の侵入を防止するためのフィルタとして、10cm×10cmの網目のフィルタ(図示せず)を取り付けた。よって、この実施の形態において計測対象とする土砂に含まれる礫の最大径は10cm未満である。
【0026】
(2)導水管4
図1(a) で説明したように、各取水孔3A,3B,3Cから流出土砂測定装置10までの間には、各取水孔3A,3B,3Cから採取した河川水をそれぞれ独立に導く導水管4A,4B,4Cを設置した。各導水管4A,4B,4Cは河道内の土砂や流砂を流出土砂測定装置10に導くため、管内で土砂が停止、堆積せず、加速がつかず、短時間、短距離で導水することが望ましい。このため、上段と中段の取水孔3A,3Bに接続する導水管4A,4Bは管径を20cmとし、下段の取水孔3Cに接続する導水管4Cの管径は25cmとした。各導水管4A,4B,4Cの設置経路は、取水孔3A,3B,3Cと流出土砂測定装置10までの高低差が少なく、砂防ダム2の主堤と流出土砂測定装置10との間に副堰堤が2箇所に存在する場合のことも考慮して、河道内にL字型擁壁を建設し、擁壁の内側に導水管4A,4B,4Cを設置した。そして、導水管4A,4B,4C内で砂礫がスムーズに流れるように、縦断勾配が5°〜10°を確保できる管路線型として取水孔3A,3B,3Cから流出土砂測定装置10まで流出土砂を導く構造とした。
【0027】
更に、図2(a) に示すように、導水管4(4A,4B,4C)の途中には、導水管4の折損を防止するために柔軟なフレキシブルジョイント4Fを要部に設けると共に、導水管4内に砂礫や流木が詰まった場合の修復を考慮して、導水管4の要所ごとに点検部40を設け、導水管4を要所で開管できる構造とした。
【0028】
図2(b) は点検部40の一実施の形態の構成を示すものである。この実施の形態の点検部40は、筒部42の両端に設けたフランジ41で導水管4に接続するようにし、筒部42の側面に点検口44を開口させると共に、この点検口44を矩形枠43で筒部42の側方に引き出した。そして、矩形枠43の自由端部にはフランジ45を形成し、常時はこのフランジ45に点検蓋46を密着させて点検口44を封止するようにした。点検蓋46のフランジ45への取付手段としてはボルトとナットを使用すれば良いが、ここでは図示していない。
【0029】
なお、点検口44には矩形枠43を設けず、湾曲した点検蓋を直接筒部42に取り付けて点検口44を封止するようにするようにしても良い。この点検部40により、導水管4ないに土砂や流木の詰まりが発生してもそれを除去することができる。
【0030】
(3)流出土砂測定装置10
各取水孔3A,3B,3Cから導水管4A,4B,4Cを通じて導かれた河川水は、流出土砂測定装置10において土砂と水に分離する。流出土砂測定装置10は、図3に示すように、導水管4A,4B,4C(以後符号は4で代表させる)に接続する土砂分離装置5A,5B,5C(以後符号は5で代表させる)後述の図6で示すように土砂分離装置5に内蔵した土砂重量測定装置6A,6B,6C(以後符号は6で代表させる)、濁度測定装置7、水量測定装置8、及びデータ処理装置(図示せず)とから構成した。これらの装置は流出土砂測定装置10のベース10Bの上に設置し、ベース10Bの上には土砂分離装置5で分離された水を濁度測定装置7に導く帰還水路11、水量測定装置8で水量を測定した水を土砂分離装置5の方に折り返すUターン部12、Uターン部12から水を土砂分離装置5の下部に導く排水路13、及び、土砂分離装置5で分離された土砂を、排水路13からの水の力で河川1に戻す傾斜放水路14を設置する。15は傾斜放水路14の開口を示している。
【0031】
ここでは、この流出土砂測定装置10の詳細な構成を、河川水の移動経路に従って順に説明する。まず、流出土砂測定装置10の河川水の入口部に設けた土砂分離装置5の構成を図4を用いて説明する。
【0032】
(a)インパクトボックス20
土砂分離装置5の河川水の入口部に設けたものであり、導水管4から流出する河川水に含まれる土砂の、土砂分離装置5に対する衝撃力を減勢する衝撃緩衝装置である。導水管4から放出された土砂を含む河川水は、土砂分離装置5に入る前にこのインパクトボックス20に設けられた衝撃吸収板21に当たり、土砂分離装置5に入る。この結果、河川水に含まれる土砂は衝撃吸収板21に当たった衝撃で進行方向への衝撃力が緩和され、ガイド部22に導かれてインパクトボックス20の下部に流下して土砂分離装置5に入る。また、インパクトボックス20はトロンメル51に取り付けたので、インパクトボックス20に加わる衝撃力を利用してトロンメル51に衝撃を連続して与え、トロンメル51の内部に付着する微細土砂を振り落とすことができる。
【0033】
(b) トロンメル(モータで回転する円筒形回転式フルイ)51
土砂分離装置5の入口部に設けたものであり、河川水に含まれる土砂と水とを分離するものである。トロンメル51は0.5mmの目のフルイ網を円筒形に形成したものであり、モータ56によって回転する回転軸52に取り付けたものである。モータ56や回転軸52は土砂分離装置5のフレーム50に取り付けてある。また、回転軸52は土砂混じりの河川水が進む方向に水平方向から地面に向かって下向きに傾斜させてある。従って、トロンメル51に進入した河川水は、直径が0.5mm以上の土砂をトロンメル51の中に残したまま、水(0.5mm未満の直径の流砂を含む濁水)がトロンメル51から下に落下し、トロンメル51の上には直径が0.5mm以上の土砂が残る。トロンメル51の内部に残った土砂は、トロンメル51の回転軸52が前方に向かって下に傾斜しており、トロンメル51がモータ56によって回転しているので、トロンメル51の先端部に押し出されて落下する。
【0034】
上記したロンメル51は、通常は商用電力によるモータ56で駆動し、停電時は水車55によって自力駆動するように構成されている。この処置は、土砂の観測中に停電などでモータタ56が止まると、回転式フルイ内に土砂が流入し続けるが排出されないためにフルイが破損する危険性が高いが、この対策として、停電時においても、水車の駆動力によって回転させることで土砂を排出し、フルイの破損を防いで観測が継続できる仕組みとしたものである。
【0035】
また、前記水車55の回転を発電機に連絡(or連結)することにより、自家発電した電力をパソコンなどのデータ処理装置に供給し、停電時でも観測機器の制御と記録が可能となるシステムである。
【0036】
(c) 水車55と発電機
トロンメル51の下方には、トロンメル51によって分離された水を受ける樋53を設け、樋53で集めた水は帰水路(帰水管)54によって帰還水路11に戻す。帰水路54の途中には水車55を設け、帰水路54を流れる水で回転させる。水車55の回転軸57は延長してその先にVベルト58をかけ渡してトロンメル(回転式フルイ51の回転軸52に連絡してトロンメル51を駆動し、商用電源の停電時でもトロンメル51を駆動させ土砂の分離を継続することができる。なお、水車の回転を発電機(図示しない)に連結することにより、自家発電した電力をパソコンなどのデータ処理装置に供給し、停電時でも観測制御と記録が継続できる仕組みとした。
【0037】
(d) 反転式回転バケット61とロードセル63
トロンメル51から円筒軸方向の下方に押し出された土砂は、トロンメル51の下方に設けた反転式回転バケット(以下、回転バケットと記す)61に溜まる。この回転バケット61はフレーム60に回転軸62で取り付けてあり、フレーム60と回転バケット61の両方の重量は、フレーム60の上部に取り付けたロードセル63によって計測する。回転バケット61はその中に溜まった土砂の量が一定重量に達すると反転し、中に溜まっている土砂を排出すると同時にその時刻を記録する。ロードセル63による重量の時間変化と回転バケット61の反転時刻はデータ処理装置9に送られるようにし、他の観測データと共にデータ処理装置9に記録する。
【0038】
回転バケット61が反転する土砂の蓄積重量は、例えば、最下段の取水孔3Cに対応する回転バケット61の反転重量を50kg、最上段と中断の取水孔3A、3Bに対応する回転バケット61の反転重量を30kgに設定した。回転バケット61が反転して排出される土砂は、フレーム60の下部に土砂流下ガイド64を設けて後述するパーシャルフリュームによる流量計測後の帰還水の排水路13内に落下させ、帰還水と共に河川に戻す。
【0039】
(e) 土砂採取装置16
なお、回転バケット61に蓄えられた土砂の粒度を分析すれば、河川掃流砂の粒度分布を把握することができる。そこで、この実施の形態では、粒度分析用の土砂サンプルを簡便に採取できるように、回転バケット61から土砂が排出される地点に土砂採取装置として手動台車16を配置した。従って、有人測定を行う際は、この手動台車16を使用して回転バケット61から排出された土砂を採取すれば、土砂の重量、容積観測に並行して粒度分析を行うことができる。無人測定の場合は土砂の重量と容積測定のみである。]
【0040】
次に、図4に示したように構成された土砂分離装置5から排出された水の濁度と水量を測定する河川水の濁度測定装置7と水量測定装置8の構成を図3に戻って説明する。
【0041】
(f) 濁度測定装置7
濁度測定装置7は流出土砂測定装置10のベース10B上に、土砂分離装置5に隣接させて設ける。濁度測定装置7は帰還水路11に接続する貯水部70、貯水部70の中に設けた濁度計71及び整流板72とから構成する。土砂分離装置5で分離された水は帰還水路11を通って濁度測定装置7の貯水部70に入る。貯水部70に設けた複数個の整流板72は、帰還水路11から貯水部70に流入した水が乱れずにスムーズに流れる作用をする。貯水部70の底部に設けた濁度計71は、貯水部70に溜まった穏やかな水の濁度を測定する。
【0042】
濁度計71は、計測対象とする濁水が高濁度のケースを想定して、測定濃度は0〜30,000ppmの高濃度濁度センサを用いる。高濃度濁度センサには、水温、電気伝導度センサを併設し、濁度データと同時に濁水の水温と電気伝導度とを記録する。濁度計データは濁水の浮遊砂濃度を直接計測するものではないので、浮遊砂濃度は予め測定して得られている「計測濁度−浮遊砂量」の特性データから計算によって求めることができる。
【0043】
(g) 水量測定装置8
流出土砂測定装置10では、河川水から分離した土砂の重量は前述の土砂重量測定装置6で計測できるが、土砂濃度(含有土砂量グラム/リットル)に換算するには、河川断面の水位、流量とは別に、計測した土砂重量をもたらす導水管4内の流量を計測する必要がある。導水管4内の流量(流速)測定は、導水管4の内部にピトー管などの計器を設置できれば簡便に測定できるが、導水管4内は土砂まじりの河川水が高速で流送されるので、センサが破壊される可能性が高い。管外から管内流量を超音波などで計測することも考えられるが、この場合は管内が満水状態であることが条件であり、空気が混ざっていたり、土砂が含まれると超音波が阻害されて計測できない。
【0044】
そこで、本発明では、3本の導水管4によって導かれ、土砂分離装置5で分離されて帰還水路11を流れる水の合計流量を計測する。この実施の形態では、水量測定装置8は濁度測定装置7に隣接させて設け、濁度測定装置7の貯水部70から流出した水をパーシャルフリューム80と水位計81を用いて計測するようにした。パーシャルフリューム80は、例えば、最小測定流量が0.031t/s、最大測定流量が0.456t/sのものを使用することができる。
【0045】
なお、この計測に加えて、中断、下段の導水管4B,4Cに超音波式の管内液体流量計を設置して計測精度を向上させるようにしても良い。
【0046】
(h) 排水路13と傾斜放水路14
水量測定装置8で流量を測定した水は、ベース部1Bに設けたUターン部12によってその流れの方向を反転させ、排水路13を通じて土砂重量測定装置の全ての回転バケット61の直下まで導く。そして、3台の土砂分離装置5A,5B,5Cの直下には、この排水路13に接続する傾斜放水路14を設ける。傾斜放水路14は、図5に示すように、土砂分離装置5の下の地面に傾斜して設けたものであり、放水口15が河川1に面している。
【0047】
よって、土砂分離装置5で分離された土砂は、回転バケット61で重量を計測された後に回転バケット61の下部に落下し、排水路13内に堆積するので、排水路13を流れてきた水により押し流し、傾斜放水路14を通じて放水口15から河川1に戻すようにする。
【0048】
(i) データ処理装置
複数の土砂重量測定装置6、濁度測定装置7、および水量測定装置8の測定結果はデータ処理装置に送り、ここでデータ処理して、この河川の水量に応じた土砂運搬量を算出して連続的に記録する。即ち、この実施の形態では、土砂重量測定装置の回転バケット61に溜まる土砂の時間的変化と回転バケット61の反転した時刻、濁度測定装置7によって計測された水の濁度、及び、水量測定装置8で計測された水量を記録する。この場合、回転バケット61の土砂の重量は常時ロードセル63で測定され、ロードセル63のデータはデータ処理装置9によって監視し、一定時間間隔で記録を内蔵する。また、回転バケット61に接続した不図示のカウンタは、回転バケット61が回転する毎に信号をデータ処理装置9に送り、その時刻をファイル番号とする全記録をファイルしておく。
【0049】
データ処理装置9制御プログラムは濁度計データ、河川水位、流速等も常時監視しており、濁度計の浮遊砂濃度が設定値になると自動採取装置を作動あるいは中断するように命令するように構成する。
【0050】
このデータ処理装置9は、計測用コンピュータ、無停電装置等から構成し、入力データは16チャネル、信号出力は4チャネルのように設定し、このコンピュータ1台で3台の土砂重量測定装置6、濁度測定装置7、水温、管内流量、河川水位、流速データを取り込んで制御することが可能なように構成する。
【0051】
図6は以上説明した本発明の流出土砂観測システムの測定項目・測定方法の流れをまとめて示すブロック図である。この図において破線で囲まれたブロックは、本発明の流出土砂観測システム以外の作業を示すものである。なお、この図では、河川水に含まれる土砂を全て流砂と記載してあるが、同じ意味である。
【0052】
【発明の効果】
以上説明したように、本発明に係る流出土砂観測システム、流出土砂測定装置、及び土砂分離装置によれば、通常時、洪水時にかかわらず、河川が運ぶ土砂量を自動的に計測することができる。また、水車によりトロンメルを自力回転させることが可能であるので、停電時でも稼働でき、パソコン等のデータ処理装置への電力供給も行えるので、連続計測と記録が可能である。よって、日本の河川における土砂運搬量を計測することにより、流出土砂と海岸浸食・河床変動や河川環境などとの関わり、ダム堆砂や河川災害などを予測する基礎データの取得が可能となり、治水・利水と環境保護の両方が重要視される今後の河川管理への貢献度が大である。
【図面の簡単な説明】
【図1】(a) は本発明の流出土砂観測システムの一実施の形態の全体構成を示す構成図、(b) は取水孔の形状と河床からの位置を示す説明図である。
【図2】(a) は本発明の流出土砂観測システムに用いられる導水管の配置図、(b) は導水管の所定箇所に設ける点検蓋の構成を示す組立斜視図である。
【図3】本発明の流出土砂観測システムに用いられる流出土砂測定装置の主要部分の構成を示す平面視説明図である。
【図4】本発明の流出土砂観測システムに用いられる流出土砂測定装置の正面視説明図である。
【図5】図4のX−X線における断面説明図である。
【図6】本発明の流出土砂観測システムの測定項目・測定方法の流れを示すブロック図である。
【符号の説明】
河川砂防ダム、 3,3A,3B,3C取水孔
4,4A,4B,4C導水管 5,5A,5B,5C土砂分離装置
6,6A,6B,6C土砂重量測定装置濁度測定装置水量測定装置
データ処理装置 10…流出土砂測定装置 11帰還水路 13排水路
14傾斜放水路 16手動台車 20…衝撃緩衝装置(インパクトボックス)、
40点検部 44点検口 46点検蓋
51…回転式フルイ(トロンメル)、 54帰水路 55水車
61回転バケット 63ロードセル 70貯水部 71濁度計
80パーシャルフリューム 81水位計、100…流出土砂観測システム。
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a runoff sediment observation system., Runoff sediment measuring device,as well asSediment separationWith regard to the equipment, in particular, a runoff sediment observation system for monitoring the quantity, quality, and runoff pattern of sediment runoff from rivers., Runoff sediment measuring device,as well asSediment separationRelates to the device.
[0002]
[Prior art]
  Various methods have been tried to measure the amount of sediment in rivers. Those methods are(A)Sediment collector,(B)It is roughly classified into those using earth and sand measuring devices.
[0003]
  The method using a sediment collector is mainly to collect soil and sand manually by using a collector such as a bucket or box, and has the advantage that it can be observed easily and reliably. Stable sampling is difficult in places with unevenness or where the flow is intense, and it is often difficult to perform continuous observations according to the flood characteristics because it involves a lot of labor and danger.
[0004]
  On the other hand, the method using the earth and sand measuring device is an attempt to continuously measure a temporal change in the weight of the earth and sand with some measuring device by providing a fixed intake hole in the river channel to guide river water and earth and sand. Although the existing technology can continuously measure the change in weight of the collected sediment over time, it cannot measure the sediment concentration because it cannot measure the water flow rate that brings the collected sediment, so when converting to the amount of sediment that passes through the entire section of the river. There are many estimates. Moreover, at present, measurement by depth is not possible, and there are many elements of manned observation and unattended continuous observation has not been achieved.
[0005]
[Problems to be solved by the invention]
  Rainwater that falls in the basin flows into the river while eroding the earth and sand of the mountain stream, and in the river, it erodes in some places in the river channel, accumulates in some places, and flows down the river while repeating these phenomena unsteadily. To the ocean. Natural terrain of rivers and coasts is formed by the continuous repetition of water and sediment runoff and sedimentation, and animals and plants form a living environment according to the terrain and the natural environment of the flowing water. The living infrastructure and social infrastructure of various organisms including mankind are maintained on the environment that is formed through the interaction.
[0006]
  In order to develop the current social environment and social infrastructure in a sound manner, projects such as flood control and water use are carried out. However, in the halfway of the progress of the project, damage to structures due to dam sedimentation, riverbed degradation and accumulation, coastal erosion, etc. Problems related to earth and sand movement such as earth and sand disasters and flood disasters tend to become apparent. Since the movement of rainwater and sediment in the basin is a natural phenomenon that is deeply related to the formation of the environment and human activities, in order to manage the river and the coastal environment effectively, It is recognized that sediment management in the system is necessary.
[0007]
  However, in Japanese rivers, there is little data on how much sediment is produced in the basin and how it moves through the river. In other words, little is known about the actual situation of sediment movement in the basin, and in order to elucidate it, monitoring technology for sediment movement is required.
[0008]
  Sediment monitoring requires technology to know the sediment discharge characteristics by quickly and accurately grasping the amount of sediment, the quality of the sediment, and the flow pattern during the flood and normal times throughout the basin. In order to know the sediment runoff characteristics, it is necessary to develop a wide-area and indirect monitoring system that combines helicopters, GPS, GIS, etc. with direct monitoring methods such as measurement and surveying of river flow and sediment flow. It is said that.
[0009]
  However, conventional sand flow observation is a system that has many elements of manned observation even if it is collected by human power or using a sediment measurement device, and it cannot be observed because it is dangerous in the event of a flood that requires understanding of the amount of sediment. , This was not the solution.
[0010]
  Accordingly, the present invention provides a runoff sediment observation system capable of automatically and continuously monitoring the sediment weight and sediment concentration flowing down a river according to the river depth., Outflow soilSand measuring device, andSediment separationThe object is to provide a device.
[0011]
[Means for Solving the Problems]
  In order to solve the above-mentioned object, the invention according to claim 1 is provided in a river (1) for carrying earth and sand.IsSabo dam (2)In river water taken in throughObserve outflow sedimentRunoff sediment observationsystem(100)Because
  AboveOn the sleeve (2S) of the Sabo Dam (2)At least one or moreInstallationAnd including water and earth and sandA water intake hole (3) for taking river water;
  AboveIntake hole (3)ConnectionGuidedA water pipe (4),
  AboveProvided on the downstream side of the water conduit (4),AboveReleased from the conduit (4)AboveRiver waterAn impact shock absorber (20) for reducing the impact force in the traveling direction of
  The river water provided on the downstream side of the impact buffering device (20) and reduced in impact force in the traveling direction by the impact buffering device (20)FromAbovewater andAboveSeparates from earth and sandHas a rotatable rotary sieve (51)Earth and sand separator (5),
  Separated by the earth and sand separator (5)AboveA sediment weight measuring device (6) for accumulating sediment and measuring the accumulated sediment weight;
  Separated by the earth and sand separator (5)AboveA turbidity measuring device (7) for measuring the turbidity of water;
  The earth and sand separator (5)soIsolatedAboveWater volume measuring device (8) that measures the volume of waterWhen,
  Each measurement result of the earth and sand weight measuring device (6), the turbidity measuring device (7), and the water amount measuring device (8) is data-processed to calculate the amount of sediment transport according to the amount of river water. A data processing device (9) for continuous recording,
WithTheWith featuresIt is a runoff sediment observation system (100).
[0012]
  Also,The invention according to claim 2In the runoff sediment observation system (100) according to claim 1,
  The earth and sand separator (5) is configured such that the rotary sieve (51) is rotatably installed via a motor (56) and the water separated from the river water by the rotary sieve (51). A water wheel (55) is provided in the water return channel (54), and is configured such that the rotary screen (51) can be driven to rotate by the driving force of the water wheel (55) in the event of a power failure.And characterized byIt is a runoff sediment observation system (100).
[0013]
  Also,The invention described in claim 3In the runoff sediment observation system (100) according to claim 1,
  The earth and sand separator (5) includes a water wheel (55) provided in a water return channel (54) separated from the river water by the rotary sieve (51), and a rotating shaft ( 57) is connected to a generator, and is configured to supply the data processing device (9) with the power generated by the generator in the event of a power failure.It is characterized by beingIt is a runoff sediment observation system (100).
[0014]
  Also,The invention according to claim 4Contains water and earth and sand taken into the deviceSpilled sedimentMeasurementDoRunoff sediment measurementapparatus(10)Because
  An impact cushioning device (20) provided at an inlet portion inside the device, for reducing the impact force in the traveling direction of the outflow earth and sand taken in from the inlet portion;
  A rotatable rotation provided on the downstream side of the shock absorbing device (20) and separating the water and the sand from the outflowing soil whose impact force in the traveling direction is reduced by the shock absorbing device (20). An earth and sand separator (5) having the formula sieve (51);
  An earth and sand weight measuring device (6) for accumulating the earth and sand separated by the earth and sand separator (5) and measuring the accumulated earth and sand weight;
  A turbidity measuring device (7) for measuring the turbidity of the water separated by the earth and sand separating device (5);
  A water amount measuring device (8) for measuring the amount of water separated by the earth and sand separator (5);
WithWith featuresIt is a runoff sediment measurement device (10).
[0015]
  Also,The invention according to claim 5In the runoff sediment measuring apparatus (10) according to claim 4,
  The earth and sand separator (5) is configured such that the rotary sieve (51) is rotatably installed via a motor (56), and the water separated from the outflow earth and sand by the rotary sieve (51). A water wheel (55) is provided in the water return channel (54), and the rotary sieve (51) is driven to rotate by the driving force of the water wheel (55) in the event of a power failure.It is configured to be able toIt is a runoff sediment measurement device (10).
[0016]
  Further, the invention described in claim 6In the runoff sediment measuring apparatus (10) according to claim 4,
  The earth and sand separator (5) includes a water wheel (55) provided in a water return channel (54) separated from the outflow earth and sand by the rotary sieve (51), and a rotating shaft ( 57) is connected to a generator, and is configured to obtain electric power generated in-house by the generator.It is characterized by beingIt is a runoff sediment measurement device (10).
[0017]
  Furthermore,The invention described in claim 7Separation of water and sediment from river water or runoff sediment taken into the deviceEarth and sandSeparationapparatus(5)Because
  A rotary sieve (51) is rotatably installed in the apparatus via a motor (56), and the water return channel is separated from the river water or the outflow sediment by the rotary sieve (51). (54) is provided with a water wheel (55), and is configured such that the rotary sieve (51) can be driven to rotate by the driving force of the water wheel (55) in the event of a power failure.And characterized byIt is the earth and sand separator (5).
[0018]
  According to the present invention described above, the amount of sediment carried by the river can be automatically measured together with the sediment concentration regardless of whether it is normal or flooding. In addition, it is possible to generate electricity with water turbines using the water flowing through the river, so even during a power outageWhile being able to rotationally drive a rotary sieve (Trommel),Through the water wheelUsing the power generated by the generator and using the data processing deviceData acquisition can be continued, and sediment volume and water volume can be continuously measured and recorded. Therefore, by measuring the amount of sediment transported in rivers in Japan, it is possible to obtain basic data to predict the relationship between runoff sediment and coastal erosion, riverbed fluctuation, river environment, dam sedimentation, river disasters, etc.・ Contribution to future river management where both water use and environmental protection are important.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
  FIG. 1 is an overall configuration diagram showing an overall configuration of a runoff sediment observation system 100 according to an embodiment of the present invention.
[0021]
  In the runoff sediment observation system 100 of this embodiment, as shown in FIG. 1 (a), one bank of the main dam of the sabo dam 2 provided in the river 1, for example,rightThe water intake hole 3 is provided in the shore sleeve part 2S. This water intake hole 3 was composed of water intake holes 3A, 3B, 3C provided at three locations according to the water depth. As shown in FIG. 1 (b), the intake hole 3A was provided at a position 1 m from the riverbed, and the shape of the opening was circular. The intake hole 3B was provided at a position 0.5 m from the riverbed, and the shape of the opening was circular. The intake hole 3C was provided at the same position (0 m) as the riverbed, and the shape of the opening was an ellipse. Water conduits 4A, 4B, and 4C are connected to the water intake holes 3A, 3B, and 3C, respectively.
[0022]
  River water (water containing earth and sand) collected from the intake holes 3A, 3B, 3C was installed on the left bank downstream of the sabo dam 2 by water conduits 4A, 4B, 4C, respectively.SedimentIt was made to guide to the measuring device 10. thisSedimentThe measuring device 10 includes three earth and sand separators 5A, 5B and 5C for separating earth and sand from river water guided by three water conduits 4A, 4B and 4C, and these earth and sand separators 5A, 5B and 5C. A turbidity measuring device 7 for measuring the turbidity of the water from which the sediment has been removed by the sediment separating devices 5A, 5B, 5C; The water volume measuring device 8 for measuring the total amount of water whose turbidity was measured, and the data measured by the sediment weight measuring device 6, the turbidity measuring device 7 and the water volume measuring device 8 are processed to obtain the sediment flow rate of the river. It comprised from the data processor 9 to measure.
[0023]
  Here, the configuration of each member constituting the runoff sediment observation system 100 of the embodiment shown in FIG. 1 (a) will be described in detail.
[0024]
  (1) Water intake hole 3
  It is desirable to install a plurality of intake holes 3 for taking river water in the water depth direction at an average position of the sediment concentration passing through the river channel cross section in consideration of the river flow direction. However, in a river with a river width of about 50m, it is difficult to install it at an arbitrary position.3Is located at Sabo DamrightIn the vicinity of the shore sleeve, intake hole3Were installed at three locations, the upper, middle, and lower stages. As explained in Fig. 1 (b), the positions of the upper, middle, and lower intake holes 3A, 3B, and 3C are the heights from the river bottom.1.0m, 0.5m, and0It was set as the structure which can collect the outflow sediment according to water depth as m.
[0025]
  The upper and middle intake holes 3A and 3B are opened circularly in the sleeve portion 2S of the sabo dam 2, and the water conduits 4A and 4B are horizontally installed in the water passage portion of the sabo dam 2, and the lower intake hole 3C. The water conduit 4C connected to the bottom of the river is installed on the river bed, and the structure is designed to drop earth and sand (sand gravel) that rolls and slides on the river bed. In addition, the water guide part inside the sabo dam 2 following the water intake holes 3A, 3B, 3C may be formed of concrete, and the water guide pipes 4A, 4B, 4C may be connected to the outside of the sabo dam 2. In addition, a filter (not shown) having a mesh size of 10 cm × 10 cm was attached to the three intake holes 3A, 3B, 3C as a filter for preventing intrusion of driftwood and gravel. Therefore, in this embodiment, the maximum diameter of gravel contained in the earth and sand to be measured is less than 10 cm.
[0026]
  (2) Water conduit 4
  As explained in FIG. 1 (a), from each intake hole 3A, 3B, 3C.SedimentBetween the measuring devices 10, water conduits 4A, 4B, and 4C for independently guiding river water collected from the intake holes 3A, 3B, and 3C were installed. Each conduit 4A, 4B, 4C is used to remove earth and sand in the river channelSedimentIn order to guide to the measuring apparatus 10, it is desirable that the earth and sand do not stop and accumulate in the pipe, cannot accelerate, and conduct water in a short time and in a short distance. For this reason, the pipe diameters of the water guide pipes 4A and 4B connected to the upper and middle intake holes 3A and 3B are 20 cm, and the pipe diameter of the water guide pipe 4C connected to the lower water intake holes 3C is 25 cm. The installation paths of the water conduits 4A, 4B, 4C are the intake holes 3A, 3B, 3C andSedimentThere is little difference in elevation to the measuring device 10, and the main bank of the sabo dam 2SedimentConsidering the case where there are two sub-dams between the measuring device 10 and the L-shaped retaining wall in the river channel, the water conduits 4A, 4B and 4C were installed inside the retaining wall. . And so that the gravel flows smoothly in the water guide pipes 4A, 4B, 4C, the drainage sediment from the intake holes 3A, 3B, 3C to the sediment sediment measurement device 10 as a pipe line type that can ensure a vertical gradient of 5 ° to 10 °. The structure that leads
[0027]
  Furthermore, as shown in FIG.4 (In the middle of 4A, 4B, 4C), a flexible flexible joint 4F is provided in the main part to prevent breakage of the water guide pipe 4, and repair in case of gravel or driftwood clogging in the water guide pipe 4 is considered. Thus, an inspection section 40 is provided at each important point of the water conduit 4 so that the water conduit 4 can be opened at the critical point.
[0028]
  FIG. 2B shows a configuration of an embodiment of the inspection unit 40. The inspection part 40 of this embodiment is connected to the water conduit 4 with flanges 41 provided at both ends of the cylinder part 42, and opens an inspection port 44 on the side surface of the cylinder part 42, and the inspection port 44 is rectangular. The frame 43 was pulled out to the side of the cylinder part 42. And the flange 45 was formed in the free end part of the rectangular frame 43, and the inspection lid | cover 46 was always stuck to this flange 45, and the inspection port 44 was sealed. Bolts and nuts may be used as means for attaching the inspection lid 46 to the flange 45, but are not shown here.
[0029]
  The inspection port 44 may not be provided with the rectangular frame 43, and a curved inspection lid may be directly attached to the cylinder portion 42 to seal the inspection port 44. Even if clogging of earth and sand or driftwood occurs in the water guide pipe 4, it can be removed by the inspection unit 40.
[0030]
  (3) Sediment measurement device 10
    The river water guided from the water intake holes 3A, 3B, 3C through the water conduits 4A, 4B, 4C is separated into sediment and water in the outflow sediment measurement device 10. As shown in FIG. 3, the runoff sediment measuring apparatus 10 is connected to the water conduits 4A, 4B, 4C (hereinafter, the symbol is represented by 4), and the sediment separators 5A, 5B, 5C (hereinafter, the symbol is represented by 5).When,As shown in FIG.Sediment weight measuring devices 6A, 6B, 6C built in the sediment separating device 5 (hereinafter, the symbol is represented by 6)When, Turbidity measuring device 7WhenWater volume measuring device 8WhenAnd a data processing device (not shown). These devices are installed on the base 10B of the outflow sediment measuring device 10, and on the base 10B, there are a return water channel 11 and a water amount measuring device 8 for leading the water separated by the sediment separating device 5 to the turbidity measuring device 7. The U-turn part 12 that turns back the water whose amount has been measured toward the earth and sand separator 5, the drainage channel 13 that leads the water from the U-turn part 12 to the lower part of the earth and sand separator 5, and the earth and sand separated by the earth and sand separator 5 An inclined drainage channel 14 that returns to the river 1 with the power of water from the drainage channel 13 is installed. Reference numeral 15 denotes an opening of the inclined water discharge channel 14.
[0031]
  Here, the detailed structure of this outflow sediment measurement apparatus 10 is demonstrated in order according to the movement path | route of river water. First, the structure of the sediment separator 5 provided at the river water inlet of the runoff sediment measuring apparatus 10 will be described with reference to FIG.
[0032]
  (a) Impact box 20
  The shock absorber is provided at the inlet of river water of the earth and sand separator 5 and reduces the impact force of the earth and sand contained in the river water flowing out from the water conduit 4 against the earth and sand separator 5. The river water including the earth and sand discharged from the water conduit 4 hits the impact absorbing plate 21 provided in the impact box 20 before entering the earth and sand separator 5 and enters the earth and sand separator 5. As a result, the earth and sand contained in the river water is reduced in impact force in the traveling direction due to the impact on the impact absorbing plate 21, guided to the guide portion 22, and flows down to the lower portion of the impact box 20 to the earth and sand separator 5. enter. Further, since the impact box 20 is attached to the trommel 51, the impact force applied to the impact box 20 can be continuously applied to the trommel 51, and the fine earth and sand adhering to the inside of the trommel 51 can be shaken off.
[0033]
  (b) Trommel (cylindrical rotary sieve rotating with motor) 51
  It is provided at the entrance of the earth and sand separator 5 and separates earth and sand contained in river water. The trommel 51 is formed by forming a 0.5 mm mesh screen in a cylindrical shape, and is attached to a rotating shaft 52 that is rotated by a motor 56. The motor 56 and the rotating shaft 52 are attached to the frame 50 of the earth and sand separator 5. The rotating shaft 52 is inclined downward from the horizontal direction toward the ground in the direction in which river water mixed with earth and sand travels. Therefore, the river water that has entered the trommel 51 has water (turbid water containing liquid sand having a diameter of less than 0.5 mm) falling down from the trommel 51 while leaving the sediment with a diameter of 0.5 mm or more in the trommel 51. However, earth and sand with a diameter of 0.5 mm or more remain on the trommel 51. The earth and sand remaining in the trommel 51 is pushed down to the front end of the trommel 51 and dropped because the rotation shaft 52 of the trommel 51 is inclined downward and the trommel 51 is rotated by the motor 56. To do.
[0034]
  AboveGThe Rommel 51 is usually powered by commercial power.56In case of a power outage55It is comprised so that it may drive by itself. This measure may be caused by a power failure during observation of earth and sand.56If the cease operation stops, the sediment will continue to flow into the rotary sieve, but it will not be discharged, so there is a high risk of damage to the sieve.However, as a countermeasure, the sediment is discharged by rotating it with the driving force of the turbine. In addition, the mechanism is such that observation can be continued while preventing damage to the screen.
[0035]
  Also, the water wheel55By connecting (or connecting) the rotation of the power generator to the generator, the power generated by the home is used as a data processing device such as a personal computer.9It is a system that can control and record observation equipment even during a power failure.
[0036]
  (c) Water wheel 55 and generator
  A trough 53 for receiving water separated by the trommel 51 is provided below the trrommel 51, and the water collected by the trough 53 is returned to the return water channel 11 by a return channel (return pipe) 54. A water wheel 55 is provided in the middle of the return channel 54 and is rotated by the water flowing through the return channel 54. The rotating shaft 57 of the water wheel 55 is extended and a V-belt 58 is passed over it.Trommel (Rotating sieve)Contact the 51 rotary shaft 52Trommel51, even during a commercial power failureTrommel 51To separate the sediment. In addition, by connecting the rotation of the water turbine to a generator (not shown), the power generated in-house was supplied to a data processing device such as a personal computer so that observation control and recording could be continued even during a power failure.
[0037]
  (d) Inverting rotating bucket 61 and load cell 63
  The earth and sand pushed out from the trommel 51 in the cylindrical axial direction is a reversing rotary bucket provided under the trommel 51.(Hereafter referred to as rotating bucket)Accumulate at 61. The rotating bucket 61 is attached to the frame 60 with a rotating shaft 62, and the weight of both the frame 60 and the rotating bucket 61 is measured by a load cell 63 attached to the upper part of the frame 60. The rotating bucket 61 reverses when the amount of sediment accumulated therein reaches a certain weight, and discharges the sediment accumulated therein and simultaneously records the time. The time change in weight by the load cell 63 and the inversion time of the rotating bucket 61 are sent to the data processing device 9 and recorded in the data processing device 9 together with other observation data.
[0038]
  The accumulated weight of earth and sand to which the rotating bucket 61 is reversed is, for example, 50 kg of the rotating weight of the rotating bucket 61 corresponding to the lowermost intake hole 3C, and the inverted weight of the rotating bucket 61 corresponding to the uppermost and interrupted intake holes 3A and 3B. The weight was set at 30 kg. The earth and sand discharged by reversing the rotating bucket 61 is provided in the lower part of the frame 60 by a sediment flow guide 64 and dropped into the return water drainage channel 13 after the flow measurement by the partial flume described later, and into the river together with the return water. return.
[0039]
  (e) Sediment collection device 16
  In addition, if the particle size of the earth and sand stored in the rotating bucket 61 is analyzed, the particle size distribution of river stream sand can be grasped. Therefore, in this embodiment, the manual carriage 16 is disposed as a sediment collecting device at a point where the sediment is discharged from the rotating bucket 61 so that a sediment sample for particle size analysis can be easily collected. Therefore, when performing the manned measurement, if the earth and sand discharged from the rotating bucket 61 is collected using the manual cart 16, the particle size analysis can be performed in parallel with the observation of the weight and volume of the earth and sand. In the case of unattended measurement, only soil weight and volume are measured. ]
[0040]
  Next, FIG.Pointing out toungueThe configuration of the turbidity measuring device 7 and the water content measuring device 8 for measuring the turbidity and the amount of water discharged from the earth and sand separator 5 configured as described above will be described with reference to FIG.
[0041]
  (f) Turbidity measuring device 7
  Turbidity measuring device 7SedimentOn the base 10 </ b> B of the measuring device 10, it is provided adjacent to the earth and sand separator 5. The turbidity measuring device 7 includes a water reservoir 70 connected to the return water channel 11, a turbidimeter 71 and a rectifying plate 72 provided in the water reservoir 70. The water separated by the earth and sand separator 5 enters the water reservoir 70 of the turbidity measuring device 7 through the return water channel 11. The plurality of rectifying plates 72 provided in the water reservoir 70 act to smoothly flow the water flowing into the water reservoir 70 from the return water channel 11 without being disturbed. A turbidimeter 71 provided at the bottom of the water storage unit 70 measures the turbidity of gentle water accumulated in the water storage unit 70.
[0042]
  The turbidimeter 71 uses a high-concentration turbidity sensor having a measured concentration of 0 to 30,000 ppm, assuming that the turbid water to be measured has high turbidity. The high-concentration turbidity sensor is equipped with a water temperature and electrical conductivity sensor, and the turbidity water temperature and electrical conductivity are recorded simultaneously with the turbidity data. Turbidimeter data does not directly measure suspended sediment concentration of turbid water, so suspended sediment concentration can be obtained by calculation from the characteristic data of “Measured Turbidity—Suspended Sand” obtained in advance. .
[0043]
  (g) Water volume measuring device 8
  SedimentIn the measuring device 10, the weight of the sediment separated from the river water can be measured by the sediment weight measuring device 6 described above, but in order to convert it to the sediment concentration (gram of contained sand / gram), what is the water level and flow rate of the river cross section? Separately, it is necessary to measure the flow rate in the water conduit 4 that causes the measured sediment weight. The flow rate (velocity) in the water conduit 4 can be easily measured if an instrument such as a Pitot tube can be installed inside the water conduit 4, but earth and sand surrounding river water is sent at high speed in the water conduit 4. The sensor is likely to be destroyed. It is conceivable to measure the flow rate inside the tube with ultrasonic waves from outside the tube, but in this case the condition is that the inside of the tube is full, and if the air is mixed or soil is contained, the ultrasonic wave is inhibited. Cannot measure.
[0044]
  Therefore, in the present invention, the total flow rate of water guided by the three water conduits 4 and separated by the earth and sand separator 5 and flowing through the return water channel 11 is measured. In this embodiment, the water amount measuring device 8 is provided adjacent to the turbidity measuring device 7, and the water flowing out from the water storage unit 70 of the turbidity measuring device 7 is measured using the partial flume 80 and the water level meter 81. did. For example, a partial flume 80 having a minimum measurement flow rate of 0.031 t / s and a maximum measurement flow rate of 0.456 t / s can be used.
[0045]
  In addition to this measurement, an ultrasonic type in-pipe liquid flow meter may be installed in the suspended and lower water conduits 4B and 4C to improve the measurement accuracy.
[0046]
  (h) Drainage channel 13 and inclined drainage channel 14
  The water whose flow rate has been measured by the water amount measuring device 8 is reversed in the direction of flow by the U-turn portion 12 provided in the base portion 1B, and the earth and sand are passed through the drainage channel 13.Weight measurementapparatus6To all of the rotating buckets 61. An inclined water discharge channel 14 connected to the drainage channel 13 is provided immediately below the three earth and sand separators 5A, 5B, and 5C. As shown in FIG. 5, the inclined water discharge channel 14 is provided to be inclined on the ground below the earth and sand separator 5, and the water discharge port 15 faces the river 1.
[0047]
  Therefore, since the earth and sand separated by the earth and sand separator 5 are measured by the rotary bucket 61 and fall to the lower part of the rotary bucket 61 and accumulate in the drainage channel 13, the water flowing through the drainage channel 13 The water is washed away and returned to the river 1 from the outlet 15 through the inclined outlet channel 14.
[0048]
  (i) Data processing device9
    The measurement results of the plurality of earth and sand weight measuring devices 6, the turbidity measuring device 7, and the water amount measuring device 8 are data processing devices.9The data is processed here, and the amount of sediment transport according to the amount of water in this river is calculated and recorded continuously. That is, in this embodiment, earth and sandWeight measurementapparatus6The time change of the earth and sand collected in the rotating bucket 61, the time when the rotating bucket 61 is reversed, the turbidity of water measured by the turbidity measuring device 7, and the amount of water measured by the water amount measuring device 8 are recorded. In this case, the weight of earth and sand in the rotating bucket 61 is always the load cell.63Measured at the load cell63These data are monitored by the data processor 9 and records are built in at regular time intervals. Also connected to the rotating bucket 61Not shownEach time the rotating bucket 61 rotates, the counter sends a signal to the data processing device 9 and files all records with the time as the file number.
[0049]
  Data processing device 9ofThe control program constantly monitors turbidimeter data, river water level, flow velocity, etc., and is configured to instruct the automatic sampling device to be activated or interrupted when the suspended sediment concentration of the turbidimeter reaches a set value.
[0050]
  This data processing device 9 is composed of a measurement computer, an uninterruptible device, etc., and the input data is set to 16 channels and the signal output is set to 4 channels. The turbidity measuring device 7, water temperature, pipe flow rate, river water level, and flow velocity data can be taken in and controlled.
[0051]
  FIG. 6 is a block diagram collectively showing the flow of the measurement items / measurement method of the runoff sediment observation system of the present invention described above. In this figure, the blocks surrounded by broken lines indicate operations other than the runoff sediment observation system of the present invention. In addition, in this figure, although all the earth and sand contained in river water are described as flowing sand, it has the same meaning.
[0052]
【The invention's effect】
  As explained above, the present inventionPertaining toRunoff sediment observation system, Runoff sediment measuring device,as well asSediment separationAccording to the device, the amount of sediment carried by the river can be automatically measured regardless of whether it is normal or flooding. In addition, since the trommel can be rotated by a water turbine by itself, it can be operated even during a power failure and power can be supplied to a data processing device such as a personal computer, so that continuous measurement and recording are possible. Therefore, by measuring the amount of sediment transported in rivers in Japan, it is possible to obtain basic data to predict the relationship between runoff sediment and coastal erosion, riverbed fluctuation, river environment, dam sedimentation, river disasters, etc.・ Contribution to future river management where both water use and environmental protection are important.
[Brief description of the drawings]
FIG. 1A is a configuration diagram showing the overall configuration of an embodiment of a runoff sediment observation system of the present invention, and FIG. 1B is an explanatory diagram showing the shape of intake holes and the position from a river bed.
FIG. 2A is an arrangement view of a water conduit used in the runoff sediment observation system of the present invention, and FIG. 2B is an assembly perspective view showing a configuration of an inspection lid provided at a predetermined position of the water conduit.
FIG. 3 is an explanatory plan view showing the configuration of the main part of the runoff sediment measuring apparatus used in the runoff sediment observation system of the present invention.
FIG. 4 is a front view explanatory diagram of a runoff sediment measuring apparatus used in the runoff sediment observation system of the present invention.
FIG. 5 is a cross-sectional explanatory view taken along line XX in FIG. 4;
FIG. 6 is a block diagram showing a flow of measurement items / measurement method of the runoff sediment observation system of the present invention.
[Explanation of symbols]
  1...River,  2...Sabo dam, 3, 3A, 3B, 3C...Intake hole,
  4, 4A, 4B, 4C...Water conduit,  5, 5A, 5B, 5C...Sediment separator,
  6,6A, 6B, 6C...Sediment weight measuring device,  7...Turbidity measuring device,  8...Water volume measuring device,
  9...Data processing device,  10... Spilled sedimentmeasuring device,  11...Return waterway,  13...Drainage channel,
  14...Inclined spillway,  16...Manual cart,  20... Impact shock absorber (Impact box),
  40...Inspection department,  44...inspection door,  46...Inspection lid,
  51... rotary screen (Trommel),  54...Return channel,  55...Water wheel,
  61...Rotating bucket,  63...Load cell,  70...Water reservoir,  71...Turbidimeter,
  80...Partial flume,  81...Water level indicator100 ... Sediment observation system.

Claims (7)

土砂を運搬する河川(1)に設けられた砂防ダム(2)を介して取り込んだ河川水中の流出土砂を観測する流出土砂観測システム(100)であって、
前記砂防ダム(2)の袖部(2S)に少なくとも一以上設置され、水と土砂とを含む前記河川水を取水する取水孔(3)と、
前記取水孔(3)に接続された導水管(4)と、
前記導水管(4)の下流側に設けられ、前記導水管(4)から放出された前記河川水の進行方向への衝撃力を減勢する衝撃緩衝装置(20)と、
前記衝撃緩衝装置(20)の下流側に設けられ、前記衝撃緩衝装置(20)により進行方向への衝撃力を減勢された前記河川水から前記水と前記土砂とを分離する回転自在な回転式フルイ(51)を有する土砂分離装置(5)と、
前記土砂分離装置(5)で分離された前記土砂を蓄積し、蓄積した土砂重量を測定する土砂重量測定装置(6)と、
前記土砂分離装置(5)で分離された前記水の濁度を測定する濁度測定装置(7)と、
前記土砂分離装置(5)分離された前記水の水量を測定する水量測定装置(8)と、
前記土砂重量測定装置(6)、前記濁度測定装置(7)、及び前記水量測定装置(8)の各測定結果をデータ処理して、前記河川水の水量に応じた土砂運搬量を算出して連続的に記録するデータ処理装置(9)と、
を備えことを特徴とする流出土砂観測システム(100)
A runoff sediment observation system (100) for observing runoff sediment in river water taken through a sabo dam (2) provided in a river (1) carrying sediment,
At least one or more sleeves (2S) of the sabo dam (2), and a water intake hole (3) for taking in the river water including water and earth and sand ;
The intake hole (3) to the connected electrical water pipe (4),
Disposed downstream of the water conduit (4), the shock absorbing device for the energy dissipation of the impact force to the released traveling direction of the river water from the water conduit (4) and (20),
The shock absorbing device provided on the downstream side of (20), rotatable rotation separating the sediment and the water from the river water, which is de-energized the impact force in the traveling direction by the shock-absorbing device (20) An earth and sand separator (5) having the formula sieve (51) ;
Accumulates the sediment separated by the soil separator (5), sediment weight measuring device for measuring the accumulated sediment weight (6),
A turbidimeter (7) for measuring the turbidity of the separated the water in the soil separating apparatus (5),
A water amount measuring device (8) for measuring the amount of water separated the water in the soil separating apparatus (5),
Each measurement result of the earth and sand weight measuring device (6), the turbidity measuring device (7), and the water amount measuring device (8) is data-processed to calculate the amount of sediment transport according to the amount of river water. A data processing device (9) for continuous recording,
Sediment observation system characterized by comprising a (100).
前記土砂分離装置(5)は、前記回転式フルイ(51)がモータ(56)を介して回転可能に設置され、且つ、前記回転式フルイ(51)により前記河川水から分離された前記水の帰水路(54)に水車(55)が設けられており、停電時に前記水車(55)の駆動力により前記回転式フルイ(51)が回転駆動できるように構成されていることを特徴とする請求項1記載の流出土砂観測システム(100) The earth and sand separator (5) is configured such that the rotary sieve (51) is rotatably installed via a motor (56) and the water separated from the river water by the rotary sieve (51). and water wheel (55) is provided in the return water passage (54), wherein said rotary sieve by the driving force of the water wheel (55) in the event of a power failure (51) is characterized that you have been configured to be rotated The runoff sediment observation system according to Item 1 (100) . 前記土砂分離装置(5)は、前記回転式フルイ(51)により前記河川水から分離された前記水の帰水路(54)に水車(55)が設けられていると共に、前記水車の回転軸(57)に発電機が連結されており、停電時に前記発電機によって自家発電した電力を前記データ処理装置(9)に供給するように構成されていることを特徴とする請求項1記載の流出土砂観測システム(100) The earth and sand separator (5) includes a water wheel (55) provided in a water return channel (54) separated from the river water by the rotary sieve (51), and a rotating shaft ( 57. The outflow according to claim 1 , wherein a generator is connected to 57) and is configured to supply the data processing device (9) with power generated by the generator in the event of a power failure. Sediment observation system (100) . 装置内部に取り込まれる水と土砂を含む流出土砂を測定する流出土砂測定装置(10)であって、
前記装置内部の入口部に設けられ、前記入口部から取り込まれる前記流出土砂の進行方向への衝撃力を減勢する衝撃緩衝装置(20)と、
前記衝撃緩衝装置(20)の下流側に設けられ、前記衝撃緩衝装置(20)により進行方向への衝撃力を減勢された前記流出土砂から前記水と前記土砂とを分離する回転自在な回転式フルイ(51)を有する土砂分離装置(5)と、
前記土砂分離装置(5)で分離された前記土砂を蓄積し、蓄積した土砂重量を測定する土砂重量測定装置(6)と、
前記土砂分離装置(5)で分離された前記水の濁度を測定する濁度測定装置(7)と、
前記土砂分離装置(5)で分離された前記水の水量を測定する水量測定装置(8)と、
を備えたことを特徴とする流出土砂測定装置(10)
An outflow sediment measuring device (10) for measuring outflow sediment containing water and earth and sand taken into the apparatus,
An impact cushioning device (20) provided at an inlet portion inside the device, for reducing the impact force in the traveling direction of the outflow earth and sand taken in from the inlet portion;
A rotatable rotation provided on the downstream side of the shock absorbing device (20) and separating the water and the sand from the outflowing soil whose impact force in the traveling direction is reduced by the shock absorbing device (20). An earth and sand separator (5) having the formula sieve (51);
An earth and sand weight measuring device (6) for accumulating the earth and sand separated by the earth and sand separator (5) and measuring the accumulated earth and sand weight;
A turbidity measuring device (7) for measuring the turbidity of the water separated by the earth and sand separating device (5);
A water amount measuring device (8) for measuring the amount of water separated by the earth and sand separator (5);
Sediment measuring apparatus characterized by having a (10).
前記土砂分離装置(5)は、前記回転式フルイ(51)がモータ(56)を介して回転可能に設置され、且つ、前記回転式フルイ(51)により前記流出土砂から分離された前記水の帰水路(54)に水車(55)が設けられており、停電時に前記水車(55)の駆動力により前記回転式フルイ(51)が回転駆動できるように構成されていることを特徴とする請求項4記載の流出土砂測定装置(10) The earth and sand separator (5) is configured such that the rotary sieve (51) is rotatably installed via a motor (56), and the water separated from the outflow sediment by the rotary sieve (51). return water passage (54) water wheel (55) is provided, wherein, wherein the rotary sieve (51) is configured to be rotated by a driving force of the hydraulic turbine during a power failure (55) Item 10. The outflow sediment measuring apparatus according to item 4 . 前記土砂分離装置(5)は、前記回転式フルイ(51)により前記流出土砂から分離された前記水の帰水路(54)に水車(55)が設けられていると共に、前記水車の回転軸(57)に発電機が連結されており、前記発電機によって自家発電した電力が得られるように構成されていることを特徴とする請求項4記載の流出土砂測定装置(10) The earth and sand separator (5) includes a water wheel (55) provided in a water return channel (54) separated from the outflow earth and sand by the rotary sieve (51), and a rotating shaft ( 57) A runoff sediment measuring device (10) according to claim 4 , wherein a generator is connected to 57), and the power generated by the generator is self-generated . 装置内部に取り込まれる河川水又は流出土砂から水と土砂とを分離する土砂分離装置(5)であって、
前記装置内部に回転式フルイ(51)がモータ(56)を介して回転自在に設置され、且つ、前記回転式フルイ(51)により前記河川水又は前記流出土砂から分離された前記水の帰水路(54)に水車(55)が設けられており、停電時に前記水車(55)の駆動力により前記回転式フルイ(51)が回転駆動できるように構成されていることを特徴とする土砂分離装置(5)
An earth and sand separator (5) for separating water and earth and sand from river water or outflow earth and sand taken into the apparatus,
A rotary sieve (51) is rotatably installed in the apparatus via a motor (56), and the water return channel is separated from the river water or the outflow sediment by the rotary sieve (51). to (54) and the water wheel (55) is provided, sediment separating apparatus in which the rotary sieve by the driving force of the water wheel (55) in the event of a power failure (51) is characterized that you have been configured to be rotated (5)
JP2001092558A 2001-03-28 2001-03-28 Runoff sediment observation system, runoff sediment measurement device, and sediment separator Expired - Lifetime JP4721207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092558A JP4721207B2 (en) 2001-03-28 2001-03-28 Runoff sediment observation system, runoff sediment measurement device, and sediment separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092558A JP4721207B2 (en) 2001-03-28 2001-03-28 Runoff sediment observation system, runoff sediment measurement device, and sediment separator

Publications (2)

Publication Number Publication Date
JP2002286534A JP2002286534A (en) 2002-10-03
JP4721207B2 true JP4721207B2 (en) 2011-07-13

Family

ID=18947000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092558A Expired - Lifetime JP4721207B2 (en) 2001-03-28 2001-03-28 Runoff sediment observation system, runoff sediment measurement device, and sediment separator

Country Status (1)

Country Link
JP (1) JP4721207B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085085A (en) * 2018-08-20 2018-12-25 临沂大学 A kind of water sand is prominent to gush water sand separation and metering device in pilot system
KR20190019655A (en) * 2017-08-18 2019-02-27 벽산엔지니어링주식회사 Automatic measuring unit for monitoring apparatus of erosion of topsoil
CN110887953A (en) * 2019-11-25 2020-03-17 清华大学 Continuous adjustable approximate-arc differential settlement mechanical device in geotechnical centrifuge model
CN110987600A (en) * 2019-11-25 2020-04-10 清华大学 Continuously adjustable trapezoidal or conical non-uniform settlement control equipment in geotechnical centrifugal model

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514730B2 (en) * 2006-05-09 2010-07-28 財団法人建設技術研究所 Method and apparatus for estimating particle size distribution of liquid sand
JP2008026139A (en) * 2006-07-20 2008-02-07 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport Floating sand collector
KR101221645B1 (en) * 2010-01-18 2013-01-28 주식회사 티제이 Filtering device for all sides dam on slope
KR101563660B1 (en) 2013-12-30 2015-10-28 강원대학교산학협력단 A Earth and Sand Collection Unit for Monitoring Leaking Sand
CN105823805A (en) * 2016-05-07 2016-08-03 江西汇水科技有限公司 Runoff sediment concentration measuring equipment system and measuring method thereof
CN108007815A (en) * 2017-12-06 2018-05-08 淮阴师范学院 Unattended runoff silt content detection device and system
CN109975518B (en) * 2019-04-22 2024-02-09 福建工程学院 Physical test device and test method for simulating sandy soil debris flow
KR102471781B1 (en) * 2021-06-01 2022-11-28 주식회사 하이드로봇테크앤리서치 Automatic measuring device for settling velocity of non-cohesive particle mixtures
CN113884404A (en) * 2021-08-22 2022-01-04 武汉新烽光电股份有限公司 Method and device for measuring sediment content of river channel
CN115060859B (en) * 2022-04-27 2024-02-13 中国科学院南京土壤研究所 Runoff sediment content measuring method and measuring device thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180255A (en) * 1988-01-13 1989-07-18 Toa Harbor Works Co Ltd Classifier for dredged sediment
JPH0390839A (en) * 1989-09-01 1991-04-16 Tokyo Electric Power Co Inc:The Method and instrument for measuring turbidity
JPH0835924A (en) * 1994-07-21 1996-02-06 Tobishima Corp Method and apparatus for measuring properties of muddy water
JPH08257317A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Treatment of dredging soil
JPH10239141A (en) * 1997-02-24 1998-09-11 Toyo Constr Co Ltd Device and method for metering material for construction and ground improvement method
JP2000129644A (en) * 1998-10-29 2000-05-09 Kurimoto Ltd Flood control water quality conservation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180255A (en) * 1988-01-13 1989-07-18 Toa Harbor Works Co Ltd Classifier for dredged sediment
JPH0390839A (en) * 1989-09-01 1991-04-16 Tokyo Electric Power Co Inc:The Method and instrument for measuring turbidity
JPH0835924A (en) * 1994-07-21 1996-02-06 Tobishima Corp Method and apparatus for measuring properties of muddy water
JPH08257317A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Treatment of dredging soil
JPH10239141A (en) * 1997-02-24 1998-09-11 Toyo Constr Co Ltd Device and method for metering material for construction and ground improvement method
JP2000129644A (en) * 1998-10-29 2000-05-09 Kurimoto Ltd Flood control water quality conservation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190019655A (en) * 2017-08-18 2019-02-27 벽산엔지니어링주식회사 Automatic measuring unit for monitoring apparatus of erosion of topsoil
KR102010308B1 (en) 2017-08-18 2019-08-13 벽산엔지니어링주식회사 Automatic measuring unit for monitoring apparatus of erosion of topsoil
CN109085085A (en) * 2018-08-20 2018-12-25 临沂大学 A kind of water sand is prominent to gush water sand separation and metering device in pilot system
CN109085085B (en) * 2018-08-20 2020-11-06 临沂大学 Water sand separation and metering device in water sand gushing test system
CN110887953A (en) * 2019-11-25 2020-03-17 清华大学 Continuous adjustable approximate-arc differential settlement mechanical device in geotechnical centrifuge model
CN110987600A (en) * 2019-11-25 2020-04-10 清华大学 Continuously adjustable trapezoidal or conical non-uniform settlement control equipment in geotechnical centrifugal model
CN110987600B (en) * 2019-11-25 2020-12-08 清华大学 Continuously adjustable trapezoidal or conical non-uniform settlement control equipment in geotechnical centrifugal model
CN110887953B (en) * 2019-11-25 2021-01-15 清华大学 Continuous adjustable approximate-arc differential settlement mechanical device in geotechnical centrifuge model

Also Published As

Publication number Publication date
JP2002286534A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4721207B2 (en) Runoff sediment observation system, runoff sediment measurement device, and sediment separator
Edwards et al. Field methods for measurement of fluvial sediment
CN204282493U (en) Intelligence cuts dirty part flow arrangement
Kantoush et al. Evaluation of sediment bypass efficiency by flow field and sediment concentration monitoring techniques
Webster et al. Sediment resuspension within a microtidal estuary/embayment and the implication to channel management
CN105571819B (en) For defeated voice acquisition system, harvester and its method for arranging for moving observation of boulder and cobble
CN111765934A (en) Drainage pipe flow monitoring device
KR101304128B1 (en) Rainwater collection and filtration equipment without power
JP4339199B2 (en) Water intake control method and water intake control system for flow-type hydroelectric power plant
Mizuyama et al. Measurement of bed load with the use of hydrophones in mountain torrents
JP4539842B2 (en) Flow measuring device
CN115110491B (en) Alarming device for debris flow monitoring and early warning
US10316505B2 (en) Stormwater siphon cube
CN212904035U (en) Automatic water sampling system of formula of sinking surface water
JP2007247284A (en) Operation management system of screen in confluent type conduit
US11686417B2 (en) Apparatus for autonomous pipeline assessment
CN206928266U (en) River floating oil stain intercepting collection system
Koshiba et al. Field experiment of bedload transport rate measurement at sediment bypass tunnel
CN111501679A (en) Automatic device of decontaminating before power station trash rack
CN218848172U (en) A slide cartridge for installing horizontal ADCP
Sawagashira et al. Sedimentation control effect and environmental impact of sediment bypass in Miwa Dam Redevelopment Project
Zamora Assessment of Sediment Handling Strategies in the Regulation Pond of El Canadá Hydropower Plant, Guatemala-Processing and analyzing sediment information collected in situ
CN216816674U (en) Runoff and sediment monitoring device for runoff plot
Allison et al. Gross pollutant and sediment traps
Towler et al. Fishway Inspection Guidelines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term