JP4717328B2 - A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules - Google Patents

A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules Download PDF

Info

Publication number
JP4717328B2
JP4717328B2 JP2003058359A JP2003058359A JP4717328B2 JP 4717328 B2 JP4717328 B2 JP 4717328B2 JP 2003058359 A JP2003058359 A JP 2003058359A JP 2003058359 A JP2003058359 A JP 2003058359A JP 4717328 B2 JP4717328 B2 JP 4717328B2
Authority
JP
Japan
Prior art keywords
sheet
filter medium
fibrous structure
air filter
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003058359A
Other languages
Japanese (ja)
Other versions
JP2004268283A (en
Inventor
正 佐藤
智彦 楚山
康二 数森
高臣 小林
崇 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Kishu Paper Co Ltd
Original Assignee
Hokuetsu Kishu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Kishu Paper Co Ltd filed Critical Hokuetsu Kishu Paper Co Ltd
Priority to JP2003058359A priority Critical patent/JP4717328B2/en
Publication of JP2004268283A publication Critical patent/JP2004268283A/en
Application granted granted Critical
Publication of JP4717328B2 publication Critical patent/JP4717328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Laminated Bodies (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工業用クリーンルーム内で製造製品に影響を与えるガス、あるいはビル、住居、病院・検査施設等を始めとするあらゆる閉鎖居住空間において人間に嫌悪感を与える悪臭ガス、人間に健康被害を与えうるガスなど、問題となるガス(気体分子)を除去するために用いられるシート形状の繊維状構造物であるエアフィルタ用濾材に関するものである。
【0002】
【従来の技術】
近年の半導体の微細化、高集積化にともない、クリーンルーム中に浮遊する粒子状汚染物質だけでなく、気体状態で存在する分子状汚染物質についても問題視されてきている。分子状汚染物質も、粒子状汚染物質と同様にシリコンウエハ上に吸着して、製品歩留まりを低下させるという問題を引き起こすのである。シリコンウエハ上に吸着する分子状汚染物質の中でも、プラスチックの添加剤として用いられているフタル酸ジブチル(DBP)やフタル酸ジオクチル(DOP)等のフタル酸エステル類は、たとえその存在量が微量であっても、シリコンウエハ上に選択的に吸着することから、特に問題視されている。
【0003】
また、ビル、住居、病院・検査施設等を始めとするあらゆる閉鎖居住空間で、シックビル症候群、シックハウス症候群、化学物質過敏症、内分泌撹乱物質によるホルモン異常などが近年問題となっており、その原因として建築材、家具、衣類、化粧品等から発生するガス状微量化学物質が挙げられている。さらに様々な悪臭物質に対する低減要望も市場ニーズとしてある。
【0004】
従来、クリーンルーム中の分子状汚染物質や閉鎖居住空間のガス状微量化学物質や悪臭物質を除去するために、粉末状活性炭を担持させた濾材(例えば、特許文献1)や、イオン交換樹脂と活性炭の粉粒体を担持させた濾材(例えば、特許文献2)、紙支持体の少なくとも一方の面に光触媒分解能を有する酸化チタン層を担持させた紙(例えば、特許文献3)のような、吸着材、光触媒を利用したシート、濾材、エアフィルタが広く用いられている。
【0005】
これら吸着材、光触媒は、空気中に存在するさまざまな気体分子を吸着あるいは分解するため、目的とする気体分子のみを重点的に除去することは非常に難しい。そのため、吸着材は、使用環境によっては目的以外の気体分子のみ吸着され、期待される性能を十分に発揮することなく寿命が来てしまうことがある。また、酸化チタン光触媒は、気体成分によっては分解後、有毒な成分へと変化し新たな問題を引き起こす場合がある。
【0006】
さらに、これら吸着材、光触媒は、粉体状であることが多く、加工時や使用時にシートから脱落・飛散することを防止するため、シート基材中あるいは基材上にバインダーで接着して担持させている場合が多い。しかし、必要な接着力を確保するには相当量のバインダーが必要であるが、バインダー量を増やすとバインダーに吸着材、光触媒が覆われて吸着・分解性能が低下する大きな問題がある。
【0007】
エアフィルタとして使用する場合、粉末状吸着材は、それ自体に粒子状の浮遊粉塵を除去する能力はないため、これらを用いたケミカルフィルタとは別に浮遊粉塵を除去するエアフィルタを使用する必要がある。そこで、ケミカルフィルタに粒子除去機能を持たせる目的で、活性炭繊維やイオン交換繊維等の繊維状吸着材を利用した濾材(例えば、特許文献4および特許文献5)も提案されているが、繊維状吸着材の量を増やすと十分な粉塵除去性能が得られなくなる。また、仮に十分な粉塵除去性能を持たせることが可能であっても、これら繊維状吸着材を用いて特定の分子を重点的に除去することは、前述の粉末状吸着材の場合と同様に非常に難しい。
【0008】
近年、特定の分子を選択的に捕捉する材料として、分子インプリント法を用いたポリマーが注目されており、特に液相中における選択的分子捕捉の例が多数提案されている(例えば、特許文献6)。しかし、これを気相中の気体分子捕捉に使用した例は殆んど無く、唯一、芳香物質を保持し悪臭物質を捕捉するポリマーが提案されている(特許文献7)。しかしこれは、粉体状のポリマーであって、吸着用材料、エアフィルタなど様々な用途へ展開していくには前出の脱落・飛散の問題が同様にあった。
【0009】
一方、用途が多岐に渡る気体分子吸着用材料は、シート形状していることが大変都合良く、単板シートは押入れなどの隙間吸着剤、壁紙、カーテンなどに使用でき、また吸着面積を稼ぐためシートをジャバラに折るプリーツ加工をして使用する場合がある。さらに、シートをコルゲート加工するなどして、ハニカム状(蜂の巣状)に成型して使用する場合もある。
【0010】
しかし、目的気体分子を選択的に除去し、かつ吸着材の脱落・飛散が全くなく、さらにシート形状をした気体分子吸着材料はこれまでに無く、この様な材料が求められている。
【0011】
【特許文献1】
特開2001−317000号公報
【0012】
【特許文献2】
特開2002−248308号公報
【0013】
【特許文献3】
特開平8−120594号公報
【0014】
【特許文献4】
特開平11−47552号公報
【0015】
【特許文献5】
特開2001−300218号公報
【0016】
【特許文献6】
特開2000−342943号公報
【0017】
【特許文献7】
特開平11−240916号公報
【0018】
【特許文献8】
特開平11−315150号公報
【0019】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、特定の気体分子を選択的に除去し、かつ吸着材の脱落・飛散が全くなく、さらに後加工性、使用性に優れた気体吸着機能を有したシート形状の繊維状構造物であるエアフィルタ用濾材を提供することである。
【0020】
【課題を解決するための手段】
本発明者はこの課題が、分子インプリント法を利用して鋳型分子の認識部位が形成されている、バインダー機能を有するポリマー皮膜がシート形状の繊維状構造物の繊維上に担持していることを特徴とする、気体分子吸着機能を有するシート形状の繊維状構造物であるエアフィルタ用濾材によって解決できることを見出した。ここで担持とは、ポリマーがシート形状の繊維状構造物の繊維上に脱落・飛散なく強固に付着した状態を言う。
【0021】
【発明の実施の形態】
本発明の有利な実施態様においては、シート形状の繊維状構造物が紙、不織布、織布など、特に主体繊維が極細ガラス繊維である繊維状構造物であるエアフィルタ用濾材である。
【0022】
本発明を以下に更に詳細に説明する。
【0023】
本発明における分子インプリント法は、ポリマーの組織化を利用した方法である。まず、鋳型分子と結合可能な官能基を有するポリマー樹脂溶液と鋳型分子を混合する。次に、この溶液から溶媒を除去することでポリマー皮膜を形成させる。この段階では、鋳型分子はポリマー皮膜中にポリマー中の官能基と結合した形で存在している。こうして得られたポリマー皮膜から鋳型分子を除去することで、ポリマー皮膜中に鋳型分子の認識部位が形成される。こうして鋳型分子を選択的に吸着除去可能なインプリントポリマー皮膜を得ることができる。
【0024】
また、ポリマー皮膜の原材料モノマーからインプリントポリマー皮膜を形成させることも可能である。即ち、モノマーと鋳型分子を混合し、これを重合させポリマー皮膜を得る。鋳型分子を除去する工程は前述と同様である。
【0025】
本発明は、気体分子の選択的吸着能を有したインプリントポリマー皮膜に、同時にバインダー機能を持たせて、インプリントポリマー皮膜を所定のシート形状の繊維状構造物の基材中あるいは基材上に担持させたものである。これまでの吸着材は、それ自身バインダー機能を持っておらずシート形状の繊維状構造物の基材(以下、単にシート基材と略す。)から脱落・飛散するので別にバインダーが必要であり、これが吸着性能低下の原因であった。本発明のインプリントポリマー皮膜はこの様な問題が無く、全く新規のものである。
【0026】
本発明で用いられるポリマー樹脂は、バインダーとして基材と接着する機能を持つものの中から選択される。また、バインダーとして機能すると同時に、水素結合やイオン結合などの相互作用によって鋳型分子と結合可能となるような官能基を、ポリマーの主鎖または側鎖として有している必要がある。これら官能基としては、水酸基、カルボキシル基、カルボニル基、アミノ基等が挙げられる。ポリマー樹脂の種類としては、アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。また、モノマーを原材料とする場合は、目的のポリマー皮膜を形成するために重合すべく、選択されたモノマーが用いられる。
【0027】
捕捉対象である鋳型分子としては、クリーンルーム汚染物質であるフタル酸エステル、リン酸エステル、フェノール系化合物等や、その他、居住環境に存在しシックハウス症候群を引き起こすとして問題視されているホルムアルデヒド、トルエン、キシレン等、捕捉目的に合わせて選ぶことができる。
【0028】
また、所定のシート基材とは、紙、織布(織物)、不織布等、上記ポリマー樹脂と接着可能なものであれば、自由に選択することが可能であり、後加工や使用時の目的・形状などの観点から選ばれる。
【0029】
また、紙、織布、不織布であれば、ポリマー樹脂を基材内部まで浸透させて基材全体にインプリントポリマー皮膜を形成させる場合がある。この場合、インプリントポリマー皮膜をシート基材の主体繊維どうしの接着するバインダーとしても使用することが可能である。即ち、紙、不織布の主体繊維、例えば、有機化合繊や無機繊維はパルプのようにそれ自体に自己接着機能が無いものが多く、繊維間を結合させるバインダーを必要とするケースが多々あるが、本発明のインプリントポリマー皮膜はバインダー機能を有するため、他のバインダーを併用しないことが可能である。これは、繊維状構造物であるエアフィルタ濾材には有効で、濾材本来の繊維部での浮遊粉塵除去だけでなく、バインダー皮膜部で目的気体分子を除去する特性を同時に兼ね備えた濾材をつくることが可能となる。
【0030】
吸着特性の観点では、繊維状構造物の場合フィルムと異なり、繊維1本1本の表面積の総計で基材の比表面積が大きくなるので、基材全体にインプリントポリマー皮膜を形成させる方法であれば、各繊維上に皮膜層を形成させることができ、この結果、皮膜層の総表面積を大きくし気体分子吸着量を増加させることができる。
【0031】
紙、織布、不織布など繊維構造体の主体繊維としては、無機繊維、天然繊維、有機合成繊維などの中から自由に選ぶことができ、特に極細ガラス繊維は繊維経が非常に細く、比表面積が大きいので、不織布の主体繊維として使用することはより効果的である。また、シート形状の繊維状構造物は通気性があり濾過抵抗が少ないので、エアフィルタ用濾材の原材料としてはより好ましいものである。
【0032】
本発明のシート形状の繊維状構造物であるエアフィルタ用濾材の製造方法としては、特に限定はしないが、例えば、シート基材に鋳型分子とポリマー樹脂との混合溶液(以下、バインダー液と称する)をロール塗工処理、または浸漬、スプレー等の含浸処理を行う方法や、あるいは湿式抄造法で紙、不織布のシート形状の繊維状構造物に形成をさせる場合、主体繊維を離解したスラリー中にバインダー液を添加してシート形状化する方法(内添法)が挙げられる。これらは、既存の設備でも十分製造可能である。モノマーと鋳型分子の混合液からスタートする場合は、塗工、含浸方法は前述と同じであるが、その後に重合工程が必要である。次工程のポリマー皮膜を形成させる方法としては、鋳型分子が揮発しない条件において溶媒を揮発させて乾燥皮膜を形成する方法、ポリマー樹脂の溶解度が低い溶媒に浸して相転移させて皮膜を形成する方法等が挙げられる。また、ポリマー皮膜中の鋳型分子を除去する方法としては、溶媒を用いて洗浄除去する方法、減圧や加熱などにより揮発除去する方法等が挙げられる。シート基材に対するインプリントポリマー皮膜の付着量は、同皮膜の吸着特性に応じて設計される。
【0033】
本発明の気体分子吸着用シート形状の構造物であるエアフィルタ用濾材は、先述のとおり、シート形状しているため加工性や使用勝手が良く、単板シート形状構造物は押入れなどの隙間用吸着剤、吸着性能を有した壁紙、カーテンなどや、シート形状構造物をプリーツ加工したり、ハニカム状に成型してエアフィルタ用途に使用することができる。
【0034】
【実施例】
次に、実施例および比較例により本発明をより具体的に説明するが、本発明はこれにより何ら限定されるものではない。
【0035】
実施例1:
平均繊維径0.65μmの極細ガラス繊維60重量%、平均繊維径2.70μmの極細ガラス繊維35重量%、平均繊維径6μmのチョップドガラス繊維5重量%を、濃度0.5%、硫酸酸性pH2.5でパルパーで離解した。次いで、手抄装置を用いて抄紙して湿紙を得た。次に、水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))と、鋳型分子となるフタル酸ジメチル(試薬一級、製造元:和光純薬工業(株)、以下DMPと略す)を有効成分重量比で100/5となるように混合したバインダー液を湿紙に付与し、その後ドライヤーで50℃×30分間乾燥した。次に、この濾材をエタノールで洗浄し、DMPを除去した。こうして、目付重量70g/m2、バインダー付着量5.5重量%の濾材を得た。
【0036】
比較例1:
平均繊維径0.65μmの極細ガラス繊維60重量%、平均繊維径2.70μmの極細ガラス繊維35重量%、平均繊維径6μmのチョップドガラス繊維5重量%を、実施例1と同様にして抄紙し、得られた湿紙に、水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))のみをバインダー液として付与し、ドライヤーで50℃×30分間乾燥した。その後、条件を同一にするために、実施例1と同様のエタノール洗浄を行い、目付重量70g/m2、バインダー付着量5.5重量%の濾材を得た。
【0037】
得られた濾材の圧力損失、捕集効率の評価は、下記の方法によって行った。
【0038】
圧力損失は、有効面積100cm2の濾材に面風速5.3cm/秒で通風した時の差圧を微差圧計を用いて測定した。
【0039】
DOP捕集効率は、ラスキンノズルで発生させた多分散DOP粒子を含む空気を、有効面積100cm2の濾材に面風速5.3cm/秒で通過させた時のDOP捕集効率をレーザーパーティクルカウンターを用いて測定した。なお、対象粒径は0.3〜0.4μmとした。
【0040】
吸着性能の評価は、まず、濾材とDMPを密閉したデシケーター中に共存させ、23℃×2時間静置してDMPを気相吸着させた。次いで、濾材をHe気流中で100℃および200℃で加熱して濾材からDMPを脱着させ、これを捕集濃縮し、ガスクロマトグラフ質量分析計に導入してDMP脱着量を測定し、各温度における濾材1gあたりのDMP脱着量の比較を行った。
【0041】
実施例1および比較例1の評価結果を表1に示す。
【0042】
【表1】

Figure 0004717328
バインダーポリマーにインプリント処理を施した実施例1においては、DOP捕集効率はインプリント処理を施していない比較例1と同様に高く、エアフィルタ用濾材として十分なレベルにある。
【0043】
DMP脱着量を比較すると、100℃加熱においては、実施例1と比較例1ではほとんど差がない。一方、200℃加熱においては、実施例1の方が脱着量が多い。この場合において、100℃加熱での脱着量は、濾材表面に弱く吸着したDMPの量であり、また、200℃加熱での脱着量は、濾材表面に弱く吸着したDMPの量と、インプリントによって形成されたDMP認識部位に強く吸着したDMPの量の合計とみなすことができる。すなわち、実施例1で見られる100℃加熱と200℃加熱での脱着量の差2.4mg/gはDMP認識部位に強く吸着して取り込まれたDMP量を示しており、よって、インプリント法によってDMP認識部位が形成されていることを示している。
【0044】
参考例2:
水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))と、鋳型分子となるフタル酸ジメチル(試薬一級、製造元:和光純薬工業(株))を有効成分重量比で100/5となるように混合した液を、PET樹脂フィルム(商品名:ルミラーT、製造元:東レ(株)、厚さ75μm)に塗工量5g/mとなるように塗工し、その後ドライヤーで50℃×30分間乾燥した。次に、このフィルムをエタノールで洗浄し、DMPを除去し、塗工PETフィルムを得た。
【0045】
比較例2:
実施例1と同様にして、水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))のみをPET樹脂フィルム(商品名:ルミラーT、製造元:東レ(株)、厚さ75μm)に塗工量5g/mとなるように塗工し、ドライヤーで50℃×30分間乾燥した。その後、条件を同一にするために、参考例2と同様のエタノールで洗浄し、塗工PETフィルムを得た。
【0046】
得られた塗工PETフィルムについて、実施例1でおこなったのと同様にして吸着性能の評価を行い、フィルム1m2あたりのDMP脱着量の比較を行った。
【0047】
参考例2および比較例2の評価結果を表2に示す。
【0048】
【表2】
Figure 0004717328
参考例2においても、実施例1の場合と同様にして、DMP認識部位が形成されたことを示す、200℃で加熱した時と100℃で加熱した時の脱着量の差が確認された。
【0049】
【発明の効果】
以上の説明のとおり、本発明のシート形状の繊維状構造物によれば、特定の分子気体を選択的に除去し、かつ吸着材の脱落・飛散が全くなく、さらに後加工性、使用性に優れた気体分子吸着機能を有したシート形状の繊維状構造物を、またこれをエアフィルタに展開した場合、粉塵除去機能にさらに気体分子吸着機能を付加させたシート形状の繊維状構造物であるエアフィルタ濾材を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to gas that affects manufactured products in industrial clean rooms, or malodorous gas that causes disgust to humans in any enclosed living space such as buildings, houses, hospitals, inspection facilities, etc. The present invention relates to a filter medium for an air filter which is a sheet- like fibrous structure used for removing problematic gas (gas molecules) such as gas that can be given.
[0002]
[Prior art]
With recent miniaturization and higher integration of semiconductors, not only particulate contaminants floating in a clean room but also molecular contaminants existing in a gaseous state have been regarded as problems. Molecular contaminants are also adsorbed onto the silicon wafer in the same way as particulate contaminants, causing the problem of reduced product yield. Among molecular contaminants adsorbed on silicon wafers, phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), which are used as plastic additives, are present in trace amounts. Even if it exists, it is regarded as a particular problem because it is selectively adsorbed on the silicon wafer.
[0003]
In addition, in all closed living spaces including buildings, houses, hospitals and laboratory facilities, sick building syndrome, sick house syndrome, chemical hypersensitivity, hormone abnormalities due to endocrine disrupting substances, etc. have become a problem in recent years. Gaseous trace chemical substances generated from building materials, furniture, clothing, cosmetics, etc. are mentioned. Furthermore, there are market demands for reduction of various malodorous substances.
[0004]
Conventionally, in order to remove molecular pollutants in clean rooms, gaseous trace chemicals and odorous substances in enclosed living spaces, filter media carrying powdered activated carbon (for example, Patent Document 1), ion exchange resins and activated carbon Such as a filter medium (for example, Patent Document 2) supporting a granular material, and a paper (for example, Patent Document 3) supporting a titanium oxide layer having a photocatalytic resolution on at least one surface of a paper support. Materials, sheets using photocatalysts, filter media, and air filters are widely used.
[0005]
Since these adsorbents and photocatalysts adsorb or decompose various gas molecules existing in the air, it is very difficult to focus on removing only the target gas molecules. For this reason, the adsorbent may be adsorbed only by gas molecules other than the target depending on the use environment, and the lifetime may be reached without sufficiently achieving the expected performance. Moreover, a titanium oxide photocatalyst may change to a toxic component after decomposition | disassembly depending on a gaseous component, and may cause a new problem.
[0006]
In addition, these adsorbents and photocatalysts are often in the form of powder, and are supported by bonding with a binder in or on the sheet base material to prevent it from falling off or scattering from the sheet during processing or use. In many cases. However, a considerable amount of binder is required to secure the necessary adhesive force. However, if the amount of the binder is increased, there is a serious problem that the adsorbent and the photocatalyst are covered with the binder and the adsorption / decomposition performance deteriorates.
[0007]
When used as an air filter, the powder adsorbent itself does not have the ability to remove particulate suspended dust. Therefore, it is necessary to use an air filter that removes suspended dust separately from the chemical filter using these. is there. Therefore, filter media (for example, Patent Document 4 and Patent Document 5) using fibrous adsorbents such as activated carbon fibers and ion exchange fibers have been proposed for the purpose of giving the chemical filter a particle removal function. If the amount of adsorbent is increased, sufficient dust removal performance cannot be obtained. In addition, even if it is possible to provide sufficient dust removal performance, it is possible to remove specific molecules using these fibrous adsorbents in the same way as in the case of the above-mentioned powdered adsorbents. very difficult.
[0008]
In recent years, a polymer using a molecular imprint method has attracted attention as a material for selectively capturing a specific molecule, and many examples of selective molecular trapping in a liquid phase have been proposed (for example, patent documents). 6). However, there are almost no examples in which this is used for trapping gas molecules in the gas phase, and only a polymer that retains fragrance and traps malodorous substances has been proposed (Patent Document 7). However, this is a powdery polymer, and there are the same problems of dropping and scattering as described above in order to develop it for various uses such as adsorption materials and air filters.
[0009]
On the other hand, materials for adsorbing gas molecules that have a wide variety of uses are very convenient in the form of sheets, and single-sheet sheets can be used for gap adsorbents such as closets, wallpaper, curtains, etc., and to increase the adsorption area In some cases, the sheet is used after being pleated by folding it into bellows. Further, the sheet may be used after being formed into a honeycomb shape (honeycomb shape) by corrugating the sheet.
[0010]
However, the target gas molecules are selectively removed and the adsorbent is not dropped or scattered at all, and there is no sheet-shaped gas molecule adsorbing material so far, and such a material is required.
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-317000
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-248308
[Patent Document 3]
JP-A-8-120594 gazette
[Patent Document 4]
Japanese Patent Laid-Open No. 11-47552
[Patent Document 5]
Japanese Patent Laid-Open No. 2001-300218
[Patent Document 6]
Japanese Patent Laid-Open No. 2000-342943
[Patent Document 7]
Japanese Patent Laid-Open No. 11-240916
[Patent Document 8]
Japanese Patent Laid-Open No. 11-315150
[Problems to be solved by the invention]
The problem to be solved by the present invention is a sheet shape having a gas adsorbing function that selectively removes specific gas molecules, has no drop-off / scattering of the adsorbent, and has excellent post-workability and usability. It is providing the filter medium for air filters which is the fibrous structure of this.
[0020]
[Means for Solving the Problems]
The present inventor found that this problem is that a polymer film having a binder function in which a template molecule recognition site is formed using a molecular imprint method is supported on the fiber of a sheet-like fibrous structure. It has been found that this can be solved by a filter medium for an air filter that is a sheet- like fibrous structure having a gas molecule adsorption function. Here, the term “support” refers to a state in which the polymer is firmly attached to the fibers of the sheet- like fibrous structure without dropping or scattering.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In a preferred embodiment of the present invention, the fibrous structure is a sheet of paper shape, a nonwoven fabric, etc. fabric is a filter medium for an air filter in particular fibrous structures main fiber is ultrafine glass fibers.
[0022]
The present invention is described in further detail below.
[0023]
The molecular imprinting method in the present invention is a method utilizing the organization of polymers. First, a polymer resin solution having a functional group capable of binding to a template molecule and the template molecule are mixed. Next, a polymer film is formed by removing the solvent from the solution. At this stage, the template molecule is present in the polymer film in a form bound to the functional group in the polymer. By removing the template molecule from the polymer film thus obtained, a recognition site for the template molecule is formed in the polymer film. Thus, an imprinted polymer film that can selectively adsorb and remove template molecules can be obtained.
[0024]
It is also possible to form an imprinted polymer film from the raw material monomer of the polymer film. That is, a monomer and a template molecule are mixed and polymerized to obtain a polymer film. The step of removing the template molecule is the same as described above.
[0025]
In the present invention, an imprint polymer film having a selective adsorption ability of gas molecules is provided with a binder function at the same time, and the imprint polymer film is placed in or on a substrate of a fibrous structure having a predetermined sheet shape. It is carried on. Conventional adsorbents do not have a binder function per se, but fall off and scatter from the base material of the sheet- like fibrous structure (hereinafter simply abbreviated as sheet base material), so a separate binder is required. This was the cause of the decrease in adsorption performance. The imprinted polymer film of the present invention does not have such a problem and is completely new.
[0026]
The polymer resin used in the present invention is selected from those having a function of adhering to a substrate as a binder. Moreover, it is necessary to have a functional group as a main chain or a side chain of the polymer that functions as a binder and can be bonded to the template molecule by an interaction such as a hydrogen bond or an ionic bond. Examples of these functional groups include a hydroxyl group, a carboxyl group, a carbonyl group, and an amino group. Examples of the polymer resin include acrylic resin, nylon resin, urethane resin, and polyester resin. When a monomer is used as a raw material, a selected monomer is used for polymerization in order to form a target polymer film.
[0027]
The template molecules to be captured include phthalate esters, phosphate esters, phenolic compounds, etc., which are clean room contaminants, and other formaldehyde, toluene, and xylene that are present in the living environment and cause problems with sick house syndrome. Etc. can be selected according to the purpose of capture.
[0028]
The predetermined sheet substrate, paper, woven fabric (woven), non-woven cloth or the like, as long as it can be bonded with the polymer resin, it is possible to freely select, post-processing and use during Ru is selected from the viewpoint of purpose and shape of.
[0029]
Also, paper, woven fabric, if nonwoven, may be formed the imprinted polymer film on the entire substrate by permeate port Rimmer resin to the interior base material. In this case, the imprint polymer film can also be used as a binder for bonding the main fibers of the sheet substrate. That is, the main fibers of paper and non-woven fabrics, for example, organic synthetic fibers and inorganic fibers are often those that do not have a self-adhesive function, such as pulp, and there are many cases that require a binder that bonds the fibers. Since the imprint polymer film of the present invention has a binder function, it is possible not to use another binder in combination. This is effective for filter media for air filters, which are fibrous structures, and creates filter media that has the characteristics of removing target gas molecules at the binder film part as well as removing suspended dust from the original fiber part of the filter medium. It becomes possible.
[0030]
From the viewpoint of adsorption characteristics, unlike a film in the case of a fibrous structure, the total surface area of each fiber increases the specific surface area of the base material, so that an imprint polymer film can be formed on the entire base material. For example, a coating layer can be formed on each fiber. As a result, the total surface area of the coating layer can be increased and the amount of gas molecule adsorption can be increased.
[0031]
The main fiber of the fiber structure such as paper, woven fabric, and non-woven fabric can be freely selected from inorganic fiber, natural fiber, organic synthetic fiber, etc. Especially ultra fine glass fiber has a very thin fiber diameter and specific surface area. Therefore, it is more effective to use it as the main fiber of the nonwoven fabric. Moreover, fibrous structures of the sheet-shaped because there filtration resistance is less breathability, are those more preferred as the raw material of the filter medium for an air filter.
[0032]
The method for producing a filter medium for an air filter that is a sheet- like fibrous structure of the present invention is not particularly limited. For example, a mixed solution of mold molecules and a polymer resin (hereinafter referred to as a binder liquid) is used on a sheet substrate. ) In the slurry in which the main fibers are disaggregated when forming a sheet- like fibrous structure of paper or nonwoven fabric by a roll coating treatment or a method of impregnation treatment such as dipping or spraying, or a wet papermaking method. A method of adding a binder solution to form a sheet (internal addition method) can be mentioned. These can be sufficiently manufactured even with existing equipment. When starting from a mixture of monomers and template molecules, the coating and impregnation methods are the same as described above, but a polymerization step is required after that. As a method for forming a polymer film in the next step, a method of forming a dry film by volatilizing the solvent under conditions where the template molecule does not volatilize, a method of forming a film by immersing in a solvent having a low solubility of the polymer resin and performing phase transition Etc. Examples of the method for removing the template molecules in the polymer film include a method for washing and removing using a solvent, a method for removing by volatilization by reducing pressure or heating, and the like. The amount of the imprint polymer film attached to the sheet substrate is designed according to the adsorption characteristics of the film.
[0033]
Medium for an air filter are structures of the gas molecules adsorbing sheet form of the present invention, as described above, since the sheet form processability and used without permission well, gaps, such as veneer sheet-shaped structure is closet Adsorbent, wallpaper having an adsorption performance, curtains, etc., and sheet- shaped structures can be pleated or formed into a honeycomb shape for use in air filters.
[0034]
【Example】
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0035]
Example 1:
60% by weight of ultrafine glass fiber having an average fiber diameter of 0.65 μm, 35% by weight of ultrafine glass fiber having an average fiber diameter of 2.70 μm, 5% by weight of chopped glass fiber having an average fiber diameter of 6 μm, concentration 0.5%, sulfuric acid pH 2 .5 disassembled with a pulper. Next, a wet paper was obtained by paper making using a hand-drawing apparatus. Next, water-based urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink Chemical Co., Ltd.) and dimethyl phthalate as a template molecule (first grade reagent, manufacturer: Wako Pure Chemical Industries, Ltd.) A binder solution in which the weight ratio of DMP was abbreviated to 100/5 was applied to the wet paper and then dried with a dryer at 50 ° C. for 30 minutes. Next, this filter medium was washed with ethanol to remove DMP. Thus, a filter medium having a weight per unit area of 70 g / m 2 and a binder adhesion amount of 5.5% by weight was obtained.
[0036]
Comparative Example 1:
In the same manner as in Example 1, 60% by weight of ultrafine glass fiber having an average fiber diameter of 0.65 μm, 35% by weight of ultrafine glass fiber having an average fiber diameter of 2.70 μm, and 5% by weight of chopped glass fiber having an average fiber diameter of 6 μm were produced. Then, only the water-based urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink & Chemicals, Inc.) was applied as a binder liquid to the obtained wet paper, and dried with a dryer at 50 ° C. for 30 minutes. Thereafter, in order to make the conditions the same, the same ethanol washing as in Example 1 was performed to obtain a filter medium with a weight per unit area of 70 g / m 2 and a binder adhesion amount of 5.5% by weight.
[0037]
Evaluation of pressure loss and collection efficiency of the obtained filter medium was performed by the following methods.
[0038]
The pressure loss was measured using a micro differential pressure gauge when the pressure loss was passed through a filter medium having an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec.
[0039]
The DOP collection efficiency is measured using the laser particle counter when the air containing polydisperse DOP particles generated by the Ruskin nozzle is passed through a filter medium with an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec. And measured. The target particle size was 0.3 to 0.4 μm.
[0040]
For the evaluation of the adsorption performance, first, the filter medium and DMP were allowed to coexist in a sealed desiccator and allowed to stand at 23 ° C. for 2 hours to adsorb DMP in a gas phase. Next, the filter medium is heated at 100 ° C. and 200 ° C. in a He stream to desorb DMP from the filter medium, collected and concentrated, introduced into a gas chromatograph mass spectrometer, and measured for the amount of DMP desorption. The amount of DMP desorbed per 1 g of filter medium was compared.
[0041]
The evaluation results of Example 1 and Comparative Example 1 are shown in Table 1.
[0042]
[Table 1]
Figure 0004717328
In Example 1 in which the imprint process was performed on the binder polymer, the DOP collection efficiency was high as in Comparative Example 1 in which the imprint process was not performed, and it was at a level sufficient as a filter medium for air filters.
[0043]
Comparing the amount of DMP desorption, there is almost no difference between Example 1 and Comparative Example 1 at 100 ° C. heating. On the other hand, in the heating at 200 ° C., the amount of desorption in Example 1 is larger. In this case, the amount of desorption when heated at 100 ° C. is the amount of DMP weakly adsorbed on the surface of the filter medium, and the amount of desorption when heated at 200 ° C. is determined by the amount of DMP weakly adsorbed on the surface of the filter medium and imprinting. This can be regarded as the total amount of DMP strongly adsorbed to the formed DMP recognition site. That is, the 2.4 mg / g difference in desorption amount between heating at 100 ° C. and heating at 200 ° C. seen in Example 1 indicates the amount of DMP that is strongly adsorbed and incorporated into the DMP recognition site. Indicates that a DMP recognition site is formed.
[0044]
Reference example 2:
Aqueous urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink & Chemicals, Inc.) and dimethyl phthalate (first grade reagent, manufacturer: Wako Pure Chemical Industries, Ltd.) as the template molecule The liquid mixed so as to have a ratio of 100/5 was applied to a PET resin film (trade name: Lumirror T, manufacturer: Toray Industries, Inc., thickness 75 μm) so that the coating amount was 5 g / m 2. Then, it was dried with a dryer at 50 ° C. for 30 minutes. Next, this film was washed with ethanol, DMP was removed, and a coated PET film was obtained.
[0045]
Comparative Example 2:
In the same manner as in Example 1, only a water-based urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink & Chemicals, Inc.) was used as a PET resin film (trade name: Lumirror T, manufacturer: Toray Industries, Inc.) (Thickness 75 μm) was applied so that the coating amount was 5 g / m 2 and dried with a dryer at 50 ° C. for 30 minutes. Then, in order to make conditions the same, it wash | cleaned with the ethanol similar to the reference example 2, and obtained coating PET film.
[0046]
About the obtained coated PET film, the adsorption performance was evaluated in the same manner as in Example 1, and the amount of DMP desorbed per m 2 of film was compared.
[0047]
The evaluation results of Reference Example 2 and Comparative Example 2 are shown in Table 2.
[0048]
[Table 2]
Figure 0004717328
In Reference Example 2, as in Example 1, a difference in the amount of desorption between heating at 200 ° C. and heating at 100 ° C., indicating that a DMP recognition site was formed, was confirmed.
[0049]
【The invention's effect】
As described above, according to the sheet- like fibrous structure of the present invention, the specific molecular gas is selectively removed, and the adsorbent is not dropped or scattered at all. Further, the post-processability and usability are improved. When a sheet- like fibrous structure having an excellent gas molecule adsorption function is deployed on an air filter, it is a sheet-like fibrous structure in which a gas molecule adsorption function is further added to the dust removal function. A filter medium for an air filter can be provided.

Claims (4)

分子インプリント法を利用して鋳型分子の認識部位が形成されている、バインダー機能を有するポリマー皮膜がシート形状の繊維状構造物の繊維上に担持していることを特徴とする、気体分子吸着機能を有するシート形状の繊維状構造物であるエアフィルタ用濾材Gas molecule adsorption, characterized in that a polymer film having a binder function, in which a template molecule recognition site is formed using a molecular imprint method, is supported on the fiber of a sheet-like fibrous structure A filter medium for an air filter, which is a sheet- like fibrous structure having a function. 前記シート形状の繊維状構造物が紙、不織布、織布であることを特徴とする、請求項1に記載のエアフィルタ用濾材Wherein the fibrous structure of the sheet-shaped paper, a nonwoven fabric, a woven filter medium for an air filter according to claim 1. 前記繊維状構造物の主体繊維が極細ガラス繊維であることを特徴とする、請求項2記載のエアフィルタ用濾材 The filter medium for an air filter according to claim 2, wherein the main fiber of the fibrous structure is an ultrafine glass fiber. 鋳型分子と結合可能な官能基を有するポリマーの溶液と鋳型分子を混合して得られる混合溶液を前記シート形状の繊維状構造物に付着させた後、ポリマー皮膜を形成させ、次いで鋳型分子を除去し、ポリマー皮膜上に鋳型分子の認識部位を形成させたことを特徴とする、請求項1〜のいずれか一つに記載のエアフィルタ用濾材After depositing the mixed solution obtained by mixing a solution and template molecule of a polymer having a binding functional group and the template molecule to fibrous structures of the sheet-shaped, to form a polymer film, and then removing the template molecule The air filter medium according to any one of claims 1 to 3 , wherein a template molecule recognition site is formed on the polymer film.
JP2003058359A 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules Expired - Lifetime JP4717328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058359A JP4717328B2 (en) 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058359A JP4717328B2 (en) 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules

Publications (2)

Publication Number Publication Date
JP2004268283A JP2004268283A (en) 2004-09-30
JP4717328B2 true JP4717328B2 (en) 2011-07-06

Family

ID=33121485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058359A Expired - Lifetime JP4717328B2 (en) 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules

Country Status (1)

Country Link
JP (1) JP4717328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264013A (en) * 2004-03-19 2005-09-29 Japan Science & Technology Agency Polymer composition having a function of molecular recognition/capturing and manufacturing process of polymer molding using the composition
JP4584703B2 (en) * 2004-12-24 2010-11-24 北越紀州製紙株式会社 Sheet or polymer solid having molecular adsorption function, and production method thereof
KR102303906B1 (en) * 2019-08-30 2021-09-23 주식회사 아스플로 Multi-layer typed multi-functional filter and manufacturing method of the same
KR102450952B1 (en) * 2020-08-11 2022-10-04 부산대학교 산학협력단 Polymer material-based sheet including molecular imprinted polymer material layer having perforated structure, method for manufacturing the same, and device using the polymer material-based sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JPH11240916A (en) * 1997-12-16 1999-09-07 Givaudan Roure Internatl Sa Polymer
JP2002039934A (en) * 2000-07-28 2002-02-06 Ehime Prefecture Measuring method for acetaldehyde
JP2003001747A (en) * 2001-04-17 2003-01-08 Dokai Chemical Industries Co Ltd Gas adsorbing sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JPH11240916A (en) * 1997-12-16 1999-09-07 Givaudan Roure Internatl Sa Polymer
JP2002039934A (en) * 2000-07-28 2002-02-06 Ehime Prefecture Measuring method for acetaldehyde
JP2003001747A (en) * 2001-04-17 2003-01-08 Dokai Chemical Industries Co Ltd Gas adsorbing sheet

Also Published As

Publication number Publication date
JP2004268283A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
KR101321493B1 (en) Air filter which having superior effective to filtration of super fine particle and sterilization
JP5277534B2 (en) Fiber sheet, method for producing the same, and air filter
RU2394627C1 (en) Notwoven material including unltrafine or nano-size particles
Bian et al. Effective removal of particles down to 15 nm using scalable metal-organic framework-based nanofiber filters
JP2004508447A5 (en)
JP2007260603A (en) Filter unit for air cleaner
CN110465134B (en) Novel composite filtering material and preparation method thereof
KR102230448B1 (en) Non-woven fabric filter for reducing particulate matter and Method for preparing the same
JP2021513429A (en) Multipurpose composite gas filter
JP2006281212A (en) Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article
JP2010253409A (en) Gas adsorbent, filter medium using the same and air filter
JP2009178670A (en) Filter medium of air filter and air filter for air cleaning device
JP4717328B2 (en) A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules
Zhang et al. Mitigating the relative humidity effects on the simultaneous removal of VOCs and PM2. 5 of a metal–organic framework coated electret filter
TWI807276B (en) Air filtration system, antiviral face mask, coating obtained by drying of a solution and coated object
Lee et al. Multi-scale nanofiber membrane functionalized with metal-organic frameworks for efficient filtration of both PM2. 5 and CH3CHO with colorimetric NH3 detection
Sheraz et al. Electrospinning synthesis of CuBTC/TiO2/PS composite nanofiber on HEPA filter with self-cleaning property for indoor air purification
JP4541715B2 (en) Sheet with molecular adsorption function
KR101061566B1 (en) Manufacturing method of porous deodorization filter
JP2007136029A (en) Fiber sheet, its manufacturing method and air filter
RU2349368C1 (en) Filtering material for air purification and method for its production
KR101190628B1 (en) Method for preparation of porous wet air filter
Robert et al. Molecular entrapment of formaldehyde and filtering particulate matter using electrospun polyacrylonitrile/polyethylenimine nanofibers
He et al. Construction of silicone composite with controllable micro-nano structure via in-situ polymerization on fiber surface and study on SO2 adsorption performance
JP2009172500A (en) Fiber sheet having function of adsorbing molecule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250