JP4716771B2 - Sludge treatment apparatus and sludge treatment method using the same - Google Patents

Sludge treatment apparatus and sludge treatment method using the same Download PDF

Info

Publication number
JP4716771B2
JP4716771B2 JP2005104722A JP2005104722A JP4716771B2 JP 4716771 B2 JP4716771 B2 JP 4716771B2 JP 2005104722 A JP2005104722 A JP 2005104722A JP 2005104722 A JP2005104722 A JP 2005104722A JP 4716771 B2 JP4716771 B2 JP 4716771B2
Authority
JP
Japan
Prior art keywords
tower
insoluble component
storage tank
valve
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104722A
Other languages
Japanese (ja)
Other versions
JP2006281096A (en
Inventor
省二郎 大隅
啓 冨士谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005104722A priority Critical patent/JP4716771B2/en
Publication of JP2006281096A publication Critical patent/JP2006281096A/en
Application granted granted Critical
Publication of JP4716771B2 publication Critical patent/JP4716771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生物処理工程等から発生する余剰汚泥を処理する技術に関する。   The present invention relates to a technique for treating surplus sludge generated from a biological treatment process or the like.

従来、食品工場から発生する余剰汚泥の量を削減するために、湿式酸化処理で汚泥を可溶化及び酸化分解させ、分解されずに残った有機成分を生物で分解させる技術が試みられてきた。しかし、この方法では、湿式酸化処理の際に有機物の重合等が起こって液が黒褐色に着色し、この着色成分は生物分解によっても分解することが困難なため、処理液が着色してしまうという問題があった。   Conventionally, in order to reduce the amount of excess sludge generated from a food factory, a technique has been attempted in which sludge is solubilized and oxidatively decomposed by wet oxidation treatment, and organic components remaining without being decomposed are decomposed by living organisms. However, in this method, polymerization of organic substances occurs during the wet oxidation process, and the liquid is colored black-brown. This coloring component is difficult to decompose even by biodegradation, so that the processing liquid is colored. There was a problem.

また、湿式酸化処理の反応塔に触媒を充填し、汚泥を直接触媒湿式酸化処理することが試みられた。この方法では、短期的には着色成分までも分解することができ、良好な分解性能が得られ、発生する余剰汚泥量を削減することができる。しかし、余剰汚泥には触媒表面に付着するカルシウムやリン等の金属成分が含まれているため、短期間で触媒の活性が劣化してしまい、長期間にわたって良好な処理性能を維持することが不可能であった。   In addition, an attempt has been made to fill a catalyst in a reaction tower for wet oxidation treatment and to perform catalytic wet oxidation treatment of sludge directly. In this method, even colored components can be decomposed in a short period of time, good decomposition performance can be obtained, and the amount of generated excess sludge can be reduced. However, surplus sludge contains metal components such as calcium and phosphorus adhering to the catalyst surface, so the activity of the catalyst deteriorates in a short period of time, and it is impossible to maintain good treatment performance for a long period of time. It was possible.

また、高濃度に有機物を含む汚泥を触媒湿式酸化処理するに先立ち、汚泥に凝集剤(例、硫酸アルミニウム等のアルミ塩、塩化第二鉄等の鉄塩など)を添加する方法も考えられ得る(例えば、特許文献1)。しかし、十分に分離するためには過剰の凝集剤の添加が必要である、汚泥中の本来可溶化されて酸化処理されるべき有機物までも凝集沈殿させるため汚泥の発生量が増加する、さらに、分離後の可溶化上澄み液には凝集剤が残存するため触媒湿式酸化法のような後処理プロセスに悪影響を与える等の改善すべき点があった。   In addition, a flocculant (eg, aluminum salt such as aluminum sulfate, iron salt such as ferric chloride, etc.) may be added to the sludge prior to catalytic wet oxidation treatment of sludge containing organic substances at a high concentration. (For example, patent document 1). However, it is necessary to add an excess flocculant in order to sufficiently separate, and the amount of sludge generated increases because the organic matter that should be originally solubilized and oxidized in the sludge is also coagulated and precipitated. Since the flocculant remains in the solubilized supernatant after separation, there are points to be improved such as adversely affecting a post-treatment process such as a catalytic wet oxidation method.

さらに、上記の課題を解決するために、まず湿式酸化により汚泥を可溶化及び酸化分解させた後、一旦温度圧力を下げて金属成分を酸化物として湿式酸化処理液から分離し、次に再度温度・圧力を上昇させて触媒湿式酸化処理を行うという方法が考えられたが、このような方法では触媒湿式酸化条件まで温度を上昇させる操作を2回行う必要があるため、処理に多大なエネルギーが必要となるという問題があった。
特開平3−26400号公報 特開平10−118403号公報 特開平10−118404号公報 特開平10−118405号公報
Further, in order to solve the above problems, first, sludge is solubilized and oxidatively decomposed by wet oxidation, and then the temperature and pressure are lowered to separate the metal component from the wet oxidation treatment liquid as an oxide, and then the temperature is again measured. -A method of increasing the pressure to perform catalytic wet oxidation treatment has been considered, but in such a method, it is necessary to perform the operation of raising the temperature up to the catalytic wet oxidation condition twice, so a great deal of energy is required for the processing. There was a problem that it was necessary.
JP-A-3-26400 JP 10-118403 A JP 10-118404 A JP-A-10-118405

本発明は、生物処理工程等から発生する余剰汚泥を、可溶化処理(水熱処理)で減量化し、得られた可溶化液を効率的かつ安定的に触媒湿式酸化処理する装置、及び該装置を用いた処理方法を提供することを目的とする。   The present invention reduces the amount of surplus sludge generated from a biological treatment process or the like by solubilization treatment (hydrothermal treatment), and efficiently and stably performs catalytic wet oxidation treatment of the obtained solubilized liquid, and the device It aims at providing the processing method used.

本発明者は、上記の様な技術の現状に鑑みて鋭意研究を行った。その結果、生物処理工程等から発生する余剰汚泥を、可溶化塔にて可溶化液と金属成分を主とする不溶成分とし、塔内の圧力を実質的に減じることなく該不溶成分を排出し、該可溶化液を触媒湿式酸化処理することにより、上記の課題を解決できることを見出した。かかる知見に基づき、さらに検討を重ねて本発明を完成するに至った。   The present inventor has conducted earnest research in view of the current state of the technology as described above. As a result, surplus sludge generated from the biological treatment process or the like is made into an insoluble component mainly composed of a solubilizing liquid and a metal component in the solubilizing tower, and the insoluble component is discharged without substantially reducing the pressure in the tower. The present inventors have found that the above-described problems can be solved by subjecting the solubilized solution to a catalytic wet oxidation treatment. Based on this knowledge, further studies have been made and the present invention has been completed.

すなわち、本発明は、下記の汚泥の処理装置及びそれを用いた汚泥の処理方法等を提供するものである。   That is, the present invention provides the following sludge treatment apparatus and sludge treatment method using the same.

項1.塔内の圧力を実質的に下げることなく不溶成分を抜き出す機構2を備えた汚泥を可溶化する可溶化塔1を有する汚泥の処理装置。   Item 1. The sludge processing apparatus which has the solubilization tower 1 which solubilizes the sludge provided with the mechanism 2 which extracts an insoluble component, without substantially reducing the pressure in a tower.

項2.前記不溶成分を抜き出す機構2が、該可溶化塔1の下部に有するバルブ5及び該バルブ5に連結された不溶成分貯留タンク4を含むものであり、該不溶成分貯留タンク4の下部には不溶成分を排出する排出バルブ6を有し、該不溶成分貯留タンク4の上部には該不溶成分貯留タンク4内を調圧できる調圧バルブ7を有し、さらに該不溶成分貯留タンク4には水を供給する水供給バルブ8を有する項1に記載の汚泥の処理装置。   Item 2. The mechanism 2 for extracting the insoluble component includes a valve 5 provided at the lower part of the solubilizing tower 1 and an insoluble component storage tank 4 connected to the valve 5, and is insoluble at the lower part of the insoluble component storage tank 4. The insoluble component storage tank 4 has a discharge valve 6 for discharging components, a pressure adjusting valve 7 for adjusting the pressure in the insoluble component storage tank 4 above the insoluble component storage tank 4, and the insoluble component storage tank 4 with water Item 2. The sludge treatment apparatus according to Item 1, comprising a water supply valve 8 for supplying water.

項3.さらに前記不溶成分貯留タンク4が前記可溶化塔1と配管9で連結され、該配管9には該不溶成分貯留タンク4から該可溶化塔1へ可溶化液を循環させる循環ポンプ10を有する項2に記載の汚泥の処理装置。   Item 3. Further, the insoluble component storage tank 4 is connected to the solubilization tower 1 by a pipe 9, and the pipe 9 has a circulation pump 10 for circulating a solubilized liquid from the insoluble component storage tank 4 to the solubilization tower 1. 2. The sludge treatment apparatus according to 2.

項4.前記可溶化塔1が、汚泥を温度100℃〜300℃程度で液相を保持できる圧力下で可溶化処理する塔である項1、2又は3に記載の汚泥の処理装置。   Item 4. Item 4. The sludge treatment apparatus according to Item 1, 2, or 3, wherein the solubilization tower 1 is a tower that solubilizes sludge under a pressure capable of maintaining a liquid phase at a temperature of about 100 ° C to 300 ° C.

項5.さらに前記可溶化塔1からの可溶化液を触媒湿式酸化する触媒湿式酸化反応塔3を有する項1〜4のいずれかに記載の汚泥の処理装置。   Item 5. Item 5. The sludge treatment apparatus according to any one of Items 1 to 4, further comprising a catalytic wet oxidation reaction tower 3 that performs catalytic wet oxidation of the solubilized liquid from the solubilization tower 1.

項6.さらに前記可溶化塔1と前記触媒湿式酸化反応塔3との間に、担体を充填した担体塔11を有する項5に記載の汚泥の処理装置。   Item 6. Item 6. The sludge treatment apparatus according to Item 5, further comprising a carrier tower 11 filled with a carrier between the solubilization tower 1 and the catalytic wet oxidation reaction tower 3.

項7.前記項1〜6のいずれかに記載の汚泥の処理装置を用いた汚泥の処理方法であって、汚泥を該可溶化塔1にて水熱処理して可溶化液と不溶成分に分離した後、該可溶化塔1における水熱処理の圧力を実質的に下げることなく、該不溶成分を該可溶化塔1から抜き出すことを特徴とする汚泥の処理方法。   Item 7. A method for treating sludge using the sludge treatment apparatus according to any one of Items 1 to 6, wherein the sludge is hydrothermally treated in the solubilization tower 1 and separated into a solubilized liquid and an insoluble component, A method for treating sludge, wherein the insoluble component is extracted from the solubilization tower 1 without substantially reducing the hydrothermal treatment pressure in the solubilization tower 1.

項8.前記項2〜6のいずれかに記載の汚泥の処理装置を用いた汚泥の処理方法であって、汚泥を該可溶化塔1にて水熱処理して可溶化液と不溶成分に分離した後、該可溶化塔1における水熱処理の圧力を実質的に下げることなく、下記(1)〜(3)の工程により該不溶成分を該可溶化塔1から抜き出すことを特徴とする汚泥の処理方法:
(1)排出バルブ6、調圧バルブ7及び水供給バルブ8を閉じて水で充填された不溶成分貯留タンク4に、バルブ5を開いて、可溶化塔1の不溶成分を抜き出す工程、
(2)バルブ5を閉じた後、排出バルブ6を開き、その後調圧バルブ7を開いて不溶成分貯留タンク4の不溶成分を排出する工程、及び
(3)排出バルブ6を閉じた後、水供給バルブ8を開いて不溶成分貯留タンク4に水を充填する工程。
Item 8. A method for treating sludge using the sludge treatment apparatus according to any one of Items 2 to 6, wherein the sludge is hydrothermally treated in the solubilization tower 1 to be separated into a solubilized liquid and an insoluble component, A method for treating sludge, wherein the insoluble components are extracted from the solubilizing tower 1 by the following steps (1) to (3) without substantially lowering the hydrothermal treatment pressure in the solubilizing tower 1:
(1) A step of opening the valve 5 to the insoluble component storage tank 4 filled with water by closing the discharge valve 6, the pressure regulating valve 7 and the water supply valve 8, and extracting the insoluble component of the solubilizing tower 1.
(2) After closing the valve 5, the discharge valve 6 is opened, and then the pressure regulating valve 7 is opened to discharge the insoluble components in the insoluble component storage tank 4, and (3) the water is discharged after the discharge valve 6 is closed. A step of opening the supply valve 8 and filling the insoluble component storage tank 4 with water.

項9.前記項5又は6に記載の汚泥の処理装置を用いた汚泥の処理方法であって、汚泥を該可溶化塔1にて水熱処理して可溶化液と不溶成分に分離した後、該可溶化塔1における水熱処理の圧力を実質的に下げることなく、下記(1)〜(3)の工程により該不溶成分を該可溶化塔1から抜き出し、
(1)排出バルブ6、調圧バルブ7及び水供給バルブ8を閉じて水で充填された不溶成分貯留タンク4に、バルブ5を開いて、可溶化塔1の不溶成分を抜き出す工程、
(2)バルブ5を閉じた後、排出バルブ6を開き、その後調圧バルブ7を開いて不溶成分貯留タンク4の不溶成分を排出する工程、及び
(3)排出バルブ6を閉じた後、水供給バルブ8を開いて不溶成分貯留タンク4に水を充填する工程、
該可溶化液を触媒湿式酸化反応塔3で触媒湿式酸化することを特徴とする汚泥の処理方法。
Item 9. 7. A method for treating sludge using the sludge treatment apparatus according to item 5 or 6, wherein the sludge is hydrothermally treated in the solubilization tower 1 to be separated into a solubilized liquid and an insoluble component, and then solubilized. Without substantially lowering the hydrothermal pressure in the tower 1, the insoluble components are extracted from the solubilizing tower 1 by the following steps (1) to (3).
(1) A step of opening the valve 5 to the insoluble component storage tank 4 filled with water by closing the discharge valve 6, the pressure regulating valve 7 and the water supply valve 8, and extracting the insoluble component of the solubilizing tower 1.
(2) After closing the valve 5, the discharge valve 6 is opened, and then the pressure regulating valve 7 is opened to discharge the insoluble components in the insoluble component storage tank 4, and (3) the water is discharged after the discharge valve 6 is closed. Opening the supply valve 8 to fill the insoluble component storage tank 4 with water,
A method for treating sludge, wherein the solubilized solution is subjected to catalytic wet oxidation in a catalytic wet oxidation reaction tower 3.

以下、本発明を詳細に説明する。
I.汚泥
本発明の処理対象となる汚泥は、主として排水の生物処理プロセスから発生する余剰汚泥であり、後述する湿式酸化触媒に吸着又は付着してその活性を低下させる成分(以下、「触媒失活成分」とも呼ぶ)や固形状有機物等を含む汚泥である。具体的には、食品工場、飲料水工場、ビール工場等の工業排水の生物処理プロセスから発生する余剰汚泥、下水処理場から発生する余剰汚泥、家庭や飲食店等から発生する生ゴミなどが挙げられる。触媒失活成分としては、例えば、Mg、Al、Si、P、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Cd等の金属又はその塩、特に、P、Ca、Mg、Fe、Al、Ni、Cu等の金属又はその塩が例示される。
II.汚泥の処理装置
本発明の汚泥の処理装置を、その一実施態様である図1〜図3を用いて具体的に説明するが、これに限定されるものではない。
Hereinafter, the present invention will be described in detail.
I. Sludge The sludge to be treated in the present invention is surplus sludge mainly generated from the biological treatment process of wastewater, and is a component that adsorbs or adheres to a wet oxidation catalyst described later to reduce its activity (hereinafter referred to as “catalyst deactivation component”). Or sludge containing solid organic matter. Specific examples include surplus sludge generated from biological treatment processes of industrial wastewater from food factories, drinking water factories, beer factories, etc., surplus sludge generated from sewage treatment plants, and garbage generated from households and restaurants. It is done. Examples of the catalyst deactivating component include Mg, Al, Si, P, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and other metals or salts thereof, in particular, P, Ca, Mg. , Fe, Al, Ni, Cu and other metals or salts thereof.
II. Sludge treatment apparatus The sludge treatment apparatus of the present invention will be specifically described with reference to FIGS. 1 to 3 as one embodiment thereof, but is not limited thereto.

本発明の汚泥の処理装置は、汚泥を可溶化する可溶化塔1において、該可溶化塔1が該可溶化塔1内の圧力を実質的に下げることなく該可溶化塔1から不溶成分を抜き出す機構2(以下、「不溶成分抜き出し機構2」とも呼ぶ。)を有していることを特徴とする(図1)。   In the sludge treatment apparatus of the present invention, in the solubilization tower 1 for solubilizing sludge, the solubilization tower 1 removes insoluble components from the solubilization tower 1 without substantially reducing the pressure in the solubilization tower 1. It has a mechanism 2 for extracting (hereinafter also referred to as “insoluble component extracting mechanism 2”) (FIG. 1).

本発明の汚泥の処理装置は、さらに可溶化塔1からの可溶化液を触媒湿式酸化する触媒湿式酸化反応塔3を有していてもよく、さらに該可溶化塔1と該触媒湿式酸化反応塔3との間に、可溶化塔1から排出される可溶化液中の不溶成分を吸着させる担体を充填した担体塔11を設けてもよい。   The sludge treatment apparatus of the present invention may further include a catalytic wet oxidation reaction tower 3 that performs catalytic wet oxidation of the solubilized liquid from the solubilization tower 1, and further includes the solubilization tower 1 and the catalytic wet oxidation reaction. A carrier tower 11 filled with a carrier that adsorbs insoluble components in the solubilized liquid discharged from the solubilizing tower 1 may be provided between the tower 3 and the tower 3.

可溶化塔1における汚泥の水熱処理では、汚泥中の有機物は可溶化され可溶化液となるが、金属塩等を主とする触媒失活成分等は不溶成分として沈殿する。   In the hydrothermal treatment of the sludge in the solubilization tower 1, the organic matter in the sludge is solubilized to become a solubilized liquid, but the catalyst deactivation component such as a metal salt is precipitated as an insoluble component.

可溶化塔1は、汚泥の水熱反応が可能な形状及び材質を有していれば特に限定はない。形状は通常円筒状であり、材質はステンレス、ハステロイ、チタン等が用いられる。可溶化塔1は、通常内部が空間を有する空塔であり、可溶化塔1の下部には汚泥を導入する汚泥導入口1aを、その上部には汚泥が可溶化された可溶化液を排出する排出口1bを有している。また、可溶化塔1の下部の形状は、沈殿する不溶成分の抜き出しが容易になるように円錐状の傾斜を有しているものが好ましい。   The solubilization tower 1 is not particularly limited as long as it has a shape and material capable of hydrothermal reaction of sludge. The shape is usually cylindrical, and the material is stainless steel, hastelloy, titanium or the like. The solubilizing tower 1 is usually an empty tower having a space inside, and a sludge inlet 1a for introducing sludge is provided at the lower part of the solubilizing tower 1, and a solubilized liquid in which the sludge is solubilized is discharged at the upper part. It has a discharge port 1b. Moreover, the shape of the lower part of the solubilization tower 1 has what has a conical inclination so that the extraction of the insoluble component which precipitates may become easy.

ここで、「可溶化塔1内の圧力を実質的に下げることなく可溶化塔1から不溶成分を抜き出す機構」とは、可溶化塔1が連続して可溶化処理(水熱処理)できる程度の圧力に維持された状態で、可溶化塔1から不溶成分を抜き出す装置を意味する。具体的には、不溶成分を抜き出す過程において、可溶化塔1内の圧力が0.5〜11MPa程度に維持されていればよい。   Here, the “mechanism for extracting insoluble components from the solubilizing tower 1 without substantially lowering the pressure in the solubilizing tower 1” means that the solubilizing tower 1 can be continuously solubilized (hydrothermal treatment). It means an apparatus for extracting insoluble components from the solubilizing tower 1 while being maintained at a pressure. Specifically, in the process of extracting the insoluble component, the pressure in the solubilizing tower 1 may be maintained at about 0.5 to 11 MPa.

かかる機構2の具体例としては、図2に示すような装置が例示される。可溶化塔1の下部に有するバルブ5及び該バルブ5に連結された不溶成分貯留タンク4を含む装置からなる。なお、該不溶成分抜き出し機構2を備えた可溶化塔1を、汚泥減量化装置と呼ぶこともある。   A specific example of the mechanism 2 is an apparatus as shown in FIG. The apparatus includes a valve 5 provided at the lower portion of the solubilizing tower 1 and an insoluble component storage tank 4 connected to the valve 5. In addition, the solubilization tower 1 provided with this insoluble component extraction mechanism 2 may be called a sludge reduction device.

不溶成分貯留タンク4内は水で充填されており、可溶化塔1の下部のバルブ5から引き抜かれた不溶成分が一旦タンク4内に貯蔵され、再度可溶化液の上澄みと不溶成分の沈殿物に分離される。不溶成分貯留タンク4の上部には、該不溶成分貯留タンク4内を調圧できる調圧バルブ7を有しており、不溶成分貯留タンク4には、タンク内に水を供給する水供給バルブ8を有している。さらに不溶成分貯留タンク4は、該タンク4から可溶化塔1へ可溶化液を循環させる循環ポンプ10を有する配管9で可溶化塔1と連結されていてもよい。   The insoluble component storage tank 4 is filled with water, and the insoluble component extracted from the valve 5 at the bottom of the solubilization tower 1 is once stored in the tank 4, and the supernatant of the solubilized liquid and the precipitate of the insoluble component are again stored. Separated. A pressure regulating valve 7 capable of regulating the inside of the insoluble component storage tank 4 is provided above the insoluble component storage tank 4, and the water supply valve 8 for supplying water into the tank is provided in the insoluble component storage tank 4. have. Further, the insoluble component storage tank 4 may be connected to the solubilization tower 1 by a pipe 9 having a circulation pump 10 for circulating the solubilized liquid from the tank 4 to the solubilization tower 1.

本発明の汚泥の処理装置が触媒湿式酸化反応塔3を有する場合、可溶化塔1の排出口1bは、配管1cにより触媒湿式酸化反応塔3に連結される(図1)。触媒湿式酸化反応塔3には、酸化分解するための触媒が充填されており、また、触媒湿式酸化に必要な酸素源を供給できる機構を有している。本発明の汚泥の処理装置には、触媒湿式酸化反応塔3は1個又は2個以上設けてもよく、2個以上設ける場合には並列に配置させるのが好ましい。並列にすると、運転を停止することなく交互に反応塔を洗浄することができ、またメンテナンスの面でも効率的である。   When the sludge treatment apparatus of the present invention has the catalytic wet oxidation reaction tower 3, the outlet 1b of the solubilization tower 1 is connected to the catalytic wet oxidation reaction tower 3 by a pipe 1c (FIG. 1). The catalyst wet oxidation reaction tower 3 is filled with a catalyst for oxidative decomposition, and has a mechanism capable of supplying an oxygen source necessary for catalytic wet oxidation. One or two or more catalyst wet oxidation reaction towers 3 may be provided in the sludge treatment apparatus of the present invention, and when two or more catalyst wet oxidation reaction towers 3 are provided, they are preferably arranged in parallel. When parallel, the reaction tower can be washed alternately without stopping operation, and it is also efficient in terms of maintenance.

また、可溶化塔1と触媒湿式酸化反応塔3の間には、担体を充填した担体塔11を設けてもよい(図3)。担体塔11は、塔内に酸素源を供給できる機構を有していても良い。この担体塔11を設けることにより、触媒失活成分が効果的に担体に吸着されて可溶化液から除かれるため、より効率的かつ安定的な触媒湿式酸化が可能となり、洗浄なしに長期に渡る運転も可能となる。担体塔11の設置は、任意であるが、1個又は2個以上設けてもよく、2個以上設ける場合には並列に配置させるのが好ましい。並列にすると、反応塔の場合と同じように、運転を停止することなく交互に担体塔11を洗浄することができ、またメンテナンスの面でも効率的である。   Further, a support tower 11 filled with a support may be provided between the solubilization tower 1 and the catalytic wet oxidation reaction tower 3 (FIG. 3). The support tower 11 may have a mechanism capable of supplying an oxygen source into the tower. By providing this carrier tower 11, the catalyst deactivation component is effectively adsorbed on the carrier and removed from the solubilized liquid, so that more efficient and stable catalyst wet oxidation is possible, and it is possible for a long time without washing. Driving is also possible. Installation of the carrier tower 11 is optional, but one or two or more may be provided, and when two or more are provided, they are preferably arranged in parallel. When parallel, as in the case of the reaction tower, the support tower 11 can be washed alternately without stopping the operation, and it is also efficient in terms of maintenance.

なお、図1〜3には具体的に示していないが、汚泥の処理装置には必要に応じ熱交換器、加熱器、加圧器等を設けても良い。
III.汚泥の処理方法
以下、図1〜図3を参照しつつ、本発明の汚泥の処理方法について詳細に説明する。
Although not specifically shown in FIGS. 1 to 3, the sludge treatment apparatus may be provided with a heat exchanger, a heater, a pressurizer, or the like as necessary.
III. Sludge Treatment Method Hereinafter, the sludge treatment method of the present invention will be described in detail with reference to FIGS.

本発明の汚泥の処理方法は、可溶化塔1で汚泥を水熱処理して可溶化液と不溶成分に分離し、該可溶化塔1内の圧力を実質的に下げることなく、該可溶化塔1の不溶成分を抜き出すことを特徴とする(図1)。本発明の汚泥の処理方法は、さらに、該可溶化塔1で得られた可溶化液を触媒湿式酸化反応塔3に導入して触媒湿式酸化処理する方法も含まれる。   In the sludge treatment method of the present invention, the sludge is hydrothermally treated in the solubilizing tower 1 to be separated into a solubilizing liquid and an insoluble component, and the solubilizing tower 1 is substantially reduced without lowering the pressure in the solubilizing tower 1. 1 insoluble components are extracted (FIG. 1). The sludge treatment method of the present invention further includes a method of introducing the solubilized liquid obtained in the solubilization tower 1 into the catalyst wet oxidation reaction tower 3 and performing the catalyst wet oxidation treatment.

可溶化塔での水熱処理
可溶化塔1における熱水処理に供される汚泥は、上記に例示されたものであれば特に限定はないが、具体的には、例えば、汚泥中の有機物濃度(TOD濃度)が10000〜100000 mg/L程度(好ましくは、20000〜75000 mg/L程度)であればよい。
The sludge used for the hydrothermal treatment in the hydrothermal treatment solubilization tower 1 in the solubilization tower is not particularly limited as long as it is exemplified above. Specifically, for example, the organic substance concentration in the sludge ( The TOD concentration may be about 10,000 to 10,000 mg / L (preferably about 20,000 to 75000 mg / L).

上記の汚泥は、通常、昇圧されて及び/又は加熱されて可溶化塔1に導入される。例えば、含水汚泥は、昇圧ポンプにより所定の圧力まで昇圧し、次いで熱交換器により100℃以上の温度に加熱した後、可溶化塔1に供給される。   The sludge is usually pressurized and / or heated and introduced into the solubilizing tower 1. For example, the water-containing sludge is pressurized to a predetermined pressure by a booster pump, and then heated to a temperature of 100 ° C. or higher by a heat exchanger, and then supplied to the solubilizing tower 1.

可溶化塔1における水熱処理条件は、汚泥の温度が、通常100〜300℃程度、より好ましくは150〜270℃程度であり、液相を保持できる圧力下で処理される。反応時の温度が高い程、汚泥の分解率が高まり、反応器内での含水廃棄物の滞留時間も短縮される。反応時の圧力は、所定温度において含水汚泥が液相を保持し得る圧力以上であれば良く、例えば、0.5〜11MPa程度、好ましくは1〜9MPa程度である。   The hydrothermal treatment conditions in the solubilizing tower 1 are that the temperature of sludge is usually about 100 to 300 ° C., more preferably about 150 to 270 ° C., and the treatment is performed under a pressure capable of maintaining the liquid phase. The higher the temperature during the reaction, the higher the sludge decomposition rate and the shorter the residence time of the hydrated waste in the reactor. The pressure at the time of reaction should just be more than the pressure which a water-containing sludge can hold | maintain a liquid phase at predetermined temperature, for example, is about 0.5-11 MPa, Preferably it is about 1-9 MPa.

具体的には、温度が150〜200℃程度の時は圧力が1.5〜4.5MPa程度であり、温度が200〜270℃程度の時は圧力が4.5〜9MPa程度である。なお、滞留時間は、通常、1分〜2時間程度、好ましくは10分〜1時間程度である。   Specifically, when the temperature is about 150 to 200 ° C., the pressure is about 1.5 to 4.5 MPa, and when the temperature is about 200 to 270 ° C., the pressure is about 4.5 to 9 MPa. The residence time is usually about 1 minute to 2 hours, preferably about 10 minutes to 1 hour.

なお、可溶化塔1における可溶化処理では、空気、酸素等の気体状の酸素源を導入しないのが好ましい。気体状の酸素源を導入すると、可溶化液の排出時に、塔内で生じた金属塩等の不溶成分が酸素と一緒に可溶化塔1から排出され、後反応の触媒湿式酸化処理に悪影響を与えるからである。   In the solubilization treatment in the solubilization tower 1, it is preferable not to introduce a gaseous oxygen source such as air or oxygen. When a gaseous oxygen source is introduced, insoluble components such as metal salts generated in the tower are discharged together with oxygen from the solubilizing tower 1 when the solubilizing liquid is discharged, which adversely affects the catalytic wet oxidation treatment of the post reaction. Because it gives.

可溶化塔1では、汚泥が水熱処理されて、塔内で可溶化液の上澄みと不溶成分の沈殿物が生じる。ここで、可溶化塔1で生じる不溶成分とは、主として金属塩等の触媒失活成分を含む成分である。また、可溶化塔1で得られる「可溶化液」とは、上記の可溶化された汚泥中の有機物が、メッシュ1μmのフィルタを通過し得る程度の微細な懸濁状態にあることを意味する。可溶化液の浮遊性懸濁物質濃度(SS濃度)は、例えば、0〜10000mg/L程度であればよい。   In the solubilization tower 1, the sludge is hydrothermally treated to produce a supernatant of the solubilized liquid and a precipitate of insoluble components in the tower. Here, the insoluble component generated in the solubilizing tower 1 is a component mainly containing a catalyst deactivating component such as a metal salt. The “solubilizing solution” obtained in the solubilizing tower 1 means that the organic matter in the solubilized sludge is in a fine suspended state that can pass through a filter of 1 μm mesh. . The suspended suspension concentration (SS concentration) of the solubilized solution may be, for example, about 0 to 10,000 mg / L.

ここで、可溶化塔1における汚泥の水熱処理により、汚泥中の有機物は可溶化され可溶化液となるが、金属塩等を主とする触媒失活成分等は不溶成分として沈殿する。可溶化塔1において、汚泥中の有機物がほぼ可溶化され、最終的に抜き出されるのは金属塩等の不溶成分である。これにより不溶成分である最終汚泥が大幅に減量化される。   Here, by the hydrothermal treatment of the sludge in the solubilization tower 1, the organic matter in the sludge is solubilized to become a solubilized liquid, but the catalyst deactivation component such as a metal salt is precipitated as an insoluble component. In the solubilization tower 1, the organic matter in the sludge is almost solubilized and finally extracted is an insoluble component such as a metal salt. As a result, the final sludge, which is an insoluble component, is greatly reduced.

可溶化塔1に沈殿した不溶成分は、可溶化塔1内の圧力を実質的に下げることなく、下記(1)〜(3)の工程により可溶化塔1から抜き取られる(図2を参照)。
(1)排出バルブ6、調圧バルブ7及び水供給バルブ8を閉じて水で充填された不溶成分貯留タンク4に、バルブ5を開いて、可溶化塔1の不溶成分を抜き出す工程、
(2)バルブ5を閉じた後、排出バルブ6を開き、その後調圧バルブ7を開いて不溶成分貯留タンク4の不溶成分を排出する工程、及び
(3)排出バルブ6を閉じた後、水供給バルブ8を開いて不溶成分貯留タンク4に水を充填する工程。
The insoluble component precipitated in the solubilization tower 1 is extracted from the solubilization tower 1 by the following steps (1) to (3) without substantially reducing the pressure in the solubilization tower 1 (see FIG. 2). .
(1) A step of opening the valve 5 to the insoluble component storage tank 4 filled with water by closing the discharge valve 6, the pressure regulating valve 7 and the water supply valve 8, and extracting the insoluble component of the solubilizing tower 1.
(2) After closing the valve 5, the discharge valve 6 is opened, and then the pressure regulating valve 7 is opened to discharge the insoluble components in the insoluble component storage tank 4, and (3) the water is discharged after the discharge valve 6 is closed. A step of opening the supply valve 8 and filling the insoluble component storage tank 4 with water.

さらに、必要に応じて、可溶化塔1から不溶成分貯留タンク4に不溶成分を抜き出す工程(1)において、不溶成分貯留タンク4に存在する可溶化液を、循環ポンプ10により配管9を経て可溶化塔1へ循環させてもよい。これにより、不溶成分貯留タンク4内の圧力を可溶化塔1より低くすることができるため不溶成分の抜き取りが容易になる。   Further, if necessary, in the step (1) of extracting insoluble components from the solubilizing tower 1 to the insoluble component storage tank 4, the solubilized liquid present in the insoluble component storage tank 4 can be passed through the pipe 9 by the circulation pump 10. You may circulate to the solubilization tower 1. Thereby, since the pressure in the insoluble component storage tank 4 can be made lower than the solubilization tower 1, extraction of an insoluble component becomes easy.

また、上記の可溶化塔1から不溶成分を抜き取る(1)〜(3)の工程は、繰り返して行うことができる。この繰り返し工程を採用することにより、可溶化塔1内の圧力を実質的に下げることなく不溶成分を抜き取ることが可能となる。   Moreover, the process of (1)-(3) which extracts an insoluble component from said solubilization tower 1 can be performed repeatedly. By adopting this repeating step, it becomes possible to extract insoluble components without substantially reducing the pressure in the solubilizing tower 1.

かかる抜き取り工程により、可溶化塔1から不溶成分が効率的に除かれるため、可溶化液中の触媒失活成分等を大きく低減することができる。これにより、後の触媒湿式酸化処理の触媒失活が大幅に低減され、洗浄工程を減らして長期の触媒湿式酸化処理が可能となる。   By this extraction step, insoluble components are efficiently removed from the solubilization tower 1, so that the catalyst deactivation components and the like in the solubilized liquid can be greatly reduced. As a result, the catalyst deactivation of the subsequent catalytic wet oxidation process is greatly reduced, and the cleaning process is reduced, and a long-term catalytic wet oxidation process becomes possible.

可溶化塔1の排出口1bにおける可溶化液中の有機物濃度(TOD濃度)が10000〜100000mg/L程度(好ましくは、20000〜75000mg/L程度)となる。また、可溶化液中の触媒失活成分である金属成分全体の濃度は、200mg/L程度以下、好ましくは100mg/L程度以下、より好ましくは50mg/Lにまで低減される。   The organic substance concentration (TOD concentration) in the solubilized liquid at the outlet 1b of the solubilization tower 1 is about 10,000 to 100,000 mg / L (preferably, about 20,000 to 75,000 mg / L). Further, the concentration of the entire metal component which is the catalyst deactivating component in the solubilized solution is reduced to about 200 mg / L or less, preferably about 100 mg / L or less, more preferably 50 mg / L.

触媒湿式酸化処理
続いて、可溶化塔1の排出口1bから排出された可溶化液は、触媒湿式酸化反応塔3に導入されて酸化処理される。なお、必要に応じ、可溶化液を反応塔3に導入する前に、熱交換器や加熱器を設けて可溶化液を加熱しても良い。
Following catalytic wet oxidation treatment, solubilized solution discharged from the solubilization column 1 of the outlet 1b is oxidized is introduced into the catalytic wet oxidation reaction column 3. If necessary, before introducing the solubilizing liquid into the reaction tower 3, a heat exchanger or a heater may be provided to heat the solubilizing liquid.

本発明における触媒湿式酸化は、いずれも公知の反応条件を用いて実施できる。   The catalytic wet oxidation in the present invention can be carried out using known reaction conditions.

触媒湿式酸化反応塔には触媒が充填されている。該触媒の触媒活性成分として、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、イリジウム、白金、銅、金およびタングステンならびにこれら金属の水に不溶性乃至難溶性の化合物からなる群から選ばれた少なくとも1種以上が充填される。或いは、さらに触媒活性成分として金属La、Ce、Teを混合した複合系触媒が用いられる。   The catalyst wet oxidation reaction tower is packed with a catalyst. The catalytically active component of the catalyst is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold and tungsten, and water-insoluble or hardly soluble compounds of these metals. More than seeds are filled. Alternatively, a composite catalyst in which metals La, Ce, and Te are further mixed as a catalytically active component is used.

触媒担体としては、アルミナ、シリカ、ジルコニア、チタニア、これら金属酸化物を含む複合金属酸化物(アルミナ−シリカ、アルミナ−シリカ−ジルコニア、チタニア−ジルコニアなど)から選ばれた少なくとも1種以上が用いられる。或いは、さらに金属La、Ce、Te等を混合した複合系担体が用いられる。   As the catalyst carrier, at least one selected from alumina, silica, zirconia, titania, and composite metal oxides containing these metal oxides (alumina-silica, alumina-silica-zirconia, titania-zirconia, etc.) is used. . Alternatively, a composite carrier in which metal La, Ce, Te or the like is further mixed is used.

また、触媒湿式酸化に用いられる担持触媒は、特に限定されず、球状、ペレット状、円柱状、破砕片状、粉末状、ハニカム状などが挙げられる。この様な担持触媒を充填使用する場合の反応塔容積は、固定床の場合には、液の空間速度が0.5〜10hr-1程度、より好ましくは1〜5hr-1程度となる様にするのが良い。固定床で使用する担持触媒の大きさは、球状、ペレット状、円柱状、破砕片状、粉末状などの場合には、通常3〜50mm程度、より好ましくは4〜25mm程度である。 The supported catalyst used for the catalyst wet oxidation is not particularly limited, and examples thereof include a spherical shape, a pellet shape, a cylindrical shape, a crushed piece shape, a powder shape, and a honeycomb shape. Reactor volume when filled using such supported catalysts, in the case of a fixed bed, the spatial velocity 0.5~10Hr -1 order of the liquid, more preferably to such a degree 1~5Hr -1 Is good. The size of the supported catalyst used in the fixed bed is usually about 3 to 50 mm, more preferably about 4 to 25 mm in the case of a spherical shape, a pellet shape, a cylindrical shape, a crushed piece shape, a powder shape and the like.

担体又は触媒(担持触媒)の物性値としては、充填密度:1.2g/ml以上、比表面積:10m2/g以上、細孔容積:0.10ml/g以上、圧壊強度:100N以上が好ましい。 The physical properties of the support or catalyst (supported catalyst) are preferably a packing density of 1.2 g / ml or more, a specific surface area of 10 m 2 / g or more, a pore volume of 0.10 ml / g or more, and a crushing strength of 100 N or more.

また、触媒をハニカム状担体に担持して使用する場合のハニカム構造体としては、開口部が四角形、六角形、円形など任意の形状のものが使用される。単位容積当たりの面積、開口率なども特に限定されるものではないが、通常単位容積当りの面積として200〜800m2/m3程度、開口率40〜80%程度のものを使用すればよい。ハニカム構造体の材質としても、上記と同様の金属酸化物および金属が例示され、耐久性に優れたジルコニア、チタニアおよびチタニア−ジルコニアがより好ましい。 In addition, as a honeycomb structure when the catalyst is supported on a honeycomb-shaped carrier, an opening having an arbitrary shape such as a square, a hexagon, or a circle is used. The area per unit volume, the aperture ratio, and the like are not particularly limited, but usually an area per unit volume of about 200 to 800 m 2 / m 3 and an aperture ratio of about 40 to 80% may be used. Examples of the material of the honeycomb structure include metal oxides and metals similar to those described above, and zirconia, titania and titania-zirconia having excellent durability are more preferable.

担体に対する触媒活性成分の担持量は、通常0.05〜25重量%程度、より好ましくは0.3〜3重量%程度である。   The amount of the catalytically active component supported on the carrier is usually about 0.05 to 25% by weight, more preferably about 0.3 to 3% by weight.

触媒湿式酸化処理は、反応塔3内の温度が100℃以上であり、圧力が、0.5MPa以上、さらに1MPa以上であって、被処理廃水が反応温度において液相を保持し得る圧力以上であれば良い。ここに、「液相を保持し得る圧力」とは、所与の反応温度および酸素含有ガス送入量の条件下に平衡的に求められる液体(廃水)量、水蒸気量および気体量(水蒸気を除く塔内気体量)において、水蒸気量が60%以下(より好ましくは50%以下)であって、反応塔内が実質的に液相に保持される圧力をいう。   In the catalytic wet oxidation treatment, the temperature in the reaction tower 3 is 100 ° C. or more, the pressure is 0.5 MPa or more, further 1 MPa or more, and the waste water to be treated is more than the pressure that can maintain the liquid phase at the reaction temperature. It ’s fine. Here, the “pressure at which the liquid phase can be maintained” refers to the amount of liquid (waste water), water vapor, and gas (steam The amount of water vapor is 60% or less (more preferably 50% or less) and the pressure inside the reaction tower is substantially maintained in the liquid phase.

特に、温度が100〜300℃程度、特に150〜270℃程度、圧力が1〜11MPa程度、特に1〜9MPa程度で行う場合が好適である。   In particular, the case where the temperature is about 100 to 300 ° C., particularly about 150 to 270 ° C., and the pressure is about 1 to 11 MPa, particularly about 1 to 9 MPa is preferable.

反応塔に供給される酸素量は、窒素化合物、有機性物質、無機性物質等を無害の生成物にまで分解するに必要な理論酸素量以上であり、より好ましくは理論酸素量の1〜3倍量程度であり、特に好ましくは理論酸素量の1.05〜1.5倍量程度である。   The amount of oxygen supplied to the reaction tower is not less than the theoretical oxygen amount necessary for decomposing nitrogen compounds, organic substances, inorganic substances, etc. into harmless products, more preferably 1 to 3 of the theoretical oxygen amount. The amount is about twice the amount, and particularly preferably about 1.05 to 1.5 times the theoretical oxygen amount.

酸素源としては、空気、酸素富化空気(選択性酸素透過膜を使用して得られた酸素富化空気、空気−酸素混合物、空気をPSA装置で処理することにより得られた酸素富化空気など)、酸素、ならびに廃水処理条件下に酸素を発生し得る物質(O3、H2O2など)を使用することができる。 Examples of the oxygen source include air, oxygen-enriched air (oxygen-enriched air obtained using a selective oxygen-permeable membrane, air-oxygen mixture, and oxygen-enriched air obtained by treating air with a PSA apparatus. Etc.), oxygen, and substances capable of generating oxygen under wastewater treatment conditions (O 3 , H 2 O 2, etc.) can be used.

なお、本発明において、「理論酸素量」とは、「廃水中の窒素化合物、有機性物質および無機性物質(被処理成分)を無害の生成物(N2、H2OおよびCO2)にまで分解するに必要な酸素量」を意味する。理論酸素量は、処理対象である廃水中の被処理成分を分析し、それらの分解に必要な酸素量を算出することにより、容易に決定しうる。実用的には、経験と実験とに基き、いくつかのパラメーターを用いて、高い精度で理論酸素量を近似的に算出する関係式を見出すことができる。この様な関係式の一例は、特公昭58-27999号公報に記載されている。 In the present invention, “theoretical oxygen amount” means “nitrogen compounds, organic substances and inorganic substances (treated components) in wastewater into harmless products (N 2 , H 2 O and CO 2 ). Means the amount of oxygen necessary for decomposition. The theoretical oxygen amount can be easily determined by analyzing the components to be treated in the wastewater to be treated and calculating the amount of oxygen necessary for their decomposition. Practically, it is possible to find a relational expression for approximately calculating the theoretical oxygen amount with high accuracy using several parameters based on experience and experiment. An example of such a relational expression is described in Japanese Patent Publication No. 58-27999.

冬季などにおいて熱放散などにより反応時に所定の反応温度を維持できない場合或いは所定の温度までの昇温を必要とする場合などには、熱媒油循環(図示せず)又は外部からの燃料による加熱(図示せず)等による加熱器により昇温したり、或いは蒸気発生器(図示せず)からの蒸気を用いることができる。また、触媒湿式酸化反応塔に高圧蒸気を直接供給することもできる。   When the predetermined reaction temperature cannot be maintained during the reaction due to heat dissipation in winter, etc., or when it is necessary to raise the temperature to the predetermined temperature, heating medium oil circulation (not shown) or heating with external fuel The temperature can be raised by a heater (not shown) or the like, or steam from a steam generator (not shown) can be used. It is also possible to supply high-pressure steam directly to the catalytic wet oxidation reaction tower.

また、スタートアップに際しては、反応塔内温度を所定温度とするために、反応塔に直接蒸気を送入しての昇温の他、所定温度到達後メタノール等の易分解性物質を分解させることによる反応熱を利用した昇温等により昇温することもできる。   In addition, at the time of start-up, in order to set the temperature in the reaction tower to a predetermined temperature, in addition to raising the temperature by directly sending steam to the reaction tower, by decomposing easily decomposable substances such as methanol after reaching the predetermined temperature The temperature can also be raised by raising the temperature using reaction heat or the like.

なお、必要に応じて熱交換器を設けても良く、触媒湿式酸化反応塔3からの高温の気液相を循環させて熱回収を行うことができる。例えば、触媒湿式酸化反応処理後の気液分離後の液相を処理前の汚泥に加えて、可溶化塔1の水熱処理に適した汚泥の濃度に調整してもよい。   A heat exchanger may be provided as necessary, and heat recovery can be performed by circulating a high-temperature gas-liquid phase from the catalyst wet oxidation reaction tower 3. For example, the liquid phase after the gas-liquid separation after the catalytic wet oxidation reaction treatment may be added to the sludge before the treatment to adjust the concentration of sludge suitable for the hydrothermal treatment of the solubilizing tower 1.

担体塔での処理
また、可溶化塔1と触媒湿式酸化反応塔3の間に、必要に応じ担体が充填された担体塔11を設け、該可溶化塔1の可溶化液を担体塔11で処理した後、前記触媒湿式酸化反応塔3に導入してもよい。
Treatment in a carrier tower In addition, a carrier tower 11 filled with a carrier is provided between the solubilization tower 1 and the catalyst wet oxidation reaction tower 3 as necessary, and the solubilized liquid of the solubilization tower 1 is transferred to the carrier tower 11. After the treatment, the catalyst may be introduced into the wet oxidation reaction tower 3.

担体塔11に充填される担持は、アルミナ、シリカ、ジルコニア、チタニア、これら金属酸化物を含む複合金属酸化物(アルミナ−シリカ、アルミナ−シリカ−ジルコニア、チタニア−ジルコニアなど)から選ばれた少なくとも1種以上が用いられる。   The support packed in the carrier tower 11 is at least one selected from alumina, silica, zirconia, titania, and composite metal oxides containing these metal oxides (alumina-silica, alumina-silica-zirconia, titania-zirconia, etc.). More than seeds are used.

担体の形状は、特に限定されず、球状、ペレット状、円柱状、破砕片状、粉末状、ハニカム状などが挙げられる。担体塔11の容積は、固定床の場合には、液の空間速度が0.5〜10hr-1程度、より好ましくは1〜5hr-1程度となる様にするのが良い。固定床で使用する担持触媒の大きさは、球状、ペレット状、円柱状、破砕片状、粉末状などの場合には、通常3〜50mm程度、より好ましくは4〜25mm程度である。 The shape of the carrier is not particularly limited, and examples thereof include a spherical shape, a pellet shape, a columnar shape, a crushed piece shape, a powder shape, and a honeycomb shape. In the case of a fixed bed, the volume of the support tower 11 is such that the liquid space velocity is about 0.5 to 10 hr −1 , more preferably about 1 to 5 hr −1 . The size of the supported catalyst used in the fixed bed is usually about 3 to 50 mm, more preferably about 4 to 25 mm in the case of a spherical shape, a pellet shape, a cylindrical shape, a crushed piece shape, a powder shape and the like.

担体の物性値としては、充填密度:1.2g/ml以上、比表面積:10m2/g以上、細孔容積:0.10ml/g以上、圧壊強度:100N以上が好ましい。 As physical properties of the carrier, packing density: 1.2 g / ml or more, specific surface area: 10 m 2 / g or more, pore volume: 0.10 ml / g or more, crushing strength: 100 N or more are preferable.

この担体塔11を設けることにより、触媒失活成分が効果的に担体に吸着されて可溶化液から除かれるため、より効率的かつ安定的な触媒湿式酸化処理が可能となり、洗浄なしに長期に渡る運転も可能となる。担体塔11で処理された可溶化液中の触媒失活成分である金属成分全体の濃度は、50mg/L程度以下、好ましくは10mg/L程度以下にまで低減される。   By providing this carrier tower 11, the catalyst deactivation component is effectively adsorbed on the carrier and removed from the solubilized liquid, so that more efficient and stable catalyst wet oxidation treatment is possible, and long-term without washing. Crossing operation is also possible. The concentration of the entire metal component, which is a catalyst deactivation component, in the solubilized liquid treated in the support tower 11 is reduced to about 50 mg / L or less, preferably about 10 mg / L or less.

担体塔11の設置は、任意であるが、1個又は2個以上設けてもよく、2個以上設ける場合には並列に配置させるのが好ましい。2以上を並列にすると、反応塔の場合と同じように、運転を停止することなくそのうちの1塔以上を処理に使用し、残りの塔を洗浄することができ、メンテナンスの面でも効率的である。   Installation of the carrier tower 11 is optional, but one or two or more may be provided, and when two or more are provided, they are preferably arranged in parallel. When two or more are arranged in parallel, as in the case of the reaction tower, one or more of them can be used for processing without stopping the operation, and the remaining towers can be washed, which is also efficient in terms of maintenance. is there.

ここで、担体塔11の温度は100℃以上、圧力は0.5MPa以上、さらに1MPa以上の条件で行われる。特に、温度が100〜300℃程度、特に150〜270℃程度、圧力が1〜11MPa程度、特に1〜9MPa程度で行う場合が好ましい。   Here, the temperature of the carrier tower 11 is 100 ° C. or higher, the pressure is 0.5 MPa or higher, and further 1 MPa or higher. In particular, it is preferable that the temperature is about 100 to 300 ° C, particularly about 150 to 270 ° C, and the pressure is about 1 to 11 MPa, particularly about 1 to 9 MPa.

担体塔11は、塔内に酸素源を供給できる機構を有していてもよく、この場合酸素源としては、空気、酸素富化空気(選択性酸素透過膜を使用して得られた酸素富化空気、空気−酸素混合物、空気をPSA装置で処理することにより得られた酸素富化空気など)、酸素、ならびに廃水処理条件下に酸素を発生し得る物質(O3、H2O2など)を使用することができる。 The support tower 11 may have a mechanism capable of supplying an oxygen source into the tower. In this case, as the oxygen source, air, oxygen-enriched air (oxygen-rich obtained using a selective oxygen-permeable membrane) is used. of air, air - oxygen mixture, such as oxygen-enriched air obtained by treating with an air PSA unit), oxygen, and the substance capable of generating oxygen in wastewater treatment conditions (O 3, H 2 O 2, etc. ) Can be used.

この担体塔11を設けることにより、触媒失活成分が効果的に担体に吸着されて可溶化液から除かれるため、より効率的かつ安定的な触媒湿式酸化処理が可能となり、洗浄なしに長期に渡る運転も可能となる。担体塔11の設置は、任意であるが、1個又は2個以上設けてもよく、2個以上設ける場合には並列に配置させるのが好ましい。2以上を並列にすると、運転を停止することなくそのうちの1塔以上を廃水処理に使用し、残りの塔を洗浄することができ、メンテナンスの面でも効率的である。   By providing this carrier tower 11, the catalyst deactivation component is effectively adsorbed on the carrier and removed from the solubilized liquid, so that more efficient and stable catalyst wet oxidation treatment is possible, and long-term without washing. Crossing operation is also possible. Installation of the carrier tower 11 is optional, but one or two or more may be provided, and when two or more are provided, they are preferably arranged in parallel. When two or more are arranged in parallel, one or more of the towers can be used for wastewater treatment without stopping the operation, and the remaining towers can be washed, which is also efficient in terms of maintenance.

以上のように、本発明の汚泥の処理方法(少なくとも、可溶化塔及び触媒湿式酸化反応塔で処理する方法)によれば、その処理条件にもよるが、通常処理液中の有機物濃度(TOD濃度)を0〜5000mg/L程度(好ましくは、0〜1000mg/L程度)のレベルまで低減させることができる。   As described above, according to the sludge treatment method of the present invention (at least, the treatment method using the solubilization tower and the catalytic wet oxidation reaction tower), although depending on the treatment conditions, the organic substance concentration (TOD) in the normal treatment liquid Concentration) can be reduced to a level of about 0 to 5000 mg / L (preferably about 0 to 100 mg / L).

本発明の汚泥の処理方法では、汚泥を一旦可溶化処理(水熱処理)に付して有機物のほとんどを可溶化させ、金属塩等の触媒失活成分を主とする不溶成分の沈殿を生じさせる。そのため不溶成分からなる最終汚泥を大幅に減量化することができる。   In the sludge treatment method of the present invention, the sludge is once subjected to a solubilization treatment (hydrothermal treatment) so as to solubilize most of the organic matter, thereby causing precipitation of insoluble components mainly including catalyst deactivation components such as metal salts. . Therefore, the final sludge composed of insoluble components can be greatly reduced.

また、本発明の汚泥の処理方法では、可溶化塔にて圧力の損失なく水熱処理を連続的に行いながら、可溶化塔1の底部に沈殿した不溶成分を引き抜くものであり、回分式で水熱反応を行い不溶成分を除去する場合に比べて、処理速度が飛躍的に向上し、かつ、再加熱や再加圧が不要であるため必要なエネルギー量を格段に低減できる。しかも、触媒湿式酸化に供される前に、触媒の活性に悪影響を与える金属塩等の不溶成分をほとんど除去できるため、効率的かつ安定的に触媒湿式酸化処理を行える。特に、担体塔を設けた場合はこの効果は顕著である。   Further, in the sludge treatment method of the present invention, the insoluble components precipitated at the bottom of the solubilization tower 1 are extracted while continuously performing hydrothermal treatment without any loss of pressure in the solubilization tower. Compared with the case where a thermal reaction is performed to remove insoluble components, the processing speed is dramatically improved, and the reheat and repressurization are unnecessary, so that the required energy amount can be significantly reduced. In addition, since it is possible to remove almost all insoluble components such as metal salts that adversely affect the activity of the catalyst before being subjected to catalytic wet oxidation, the catalytic wet oxidation treatment can be performed efficiently and stably. In particular, when a carrier tower is provided, this effect is remarkable.

以下に実施例及び比較例を示して本発明の特徴とするところを一層明確にするが、本発明は実施例に限定されるものではない。   Examples and comparative examples are shown below to further clarify the features of the present invention, but the present invention is not limited to the examples.

なお、以下の実施例及び比較例において使用した汚泥中の有機物濃度は10227mg/L、金属成分の濃度はトータルで350mg/L(P:72 mg/L、Ca:150 mg/L、Mg:51 mg/L、Fe:77 mg/L)であった。   In addition, the organic substance density | concentration in the sludge used in the following Example and comparative example is 10227 mg / L, and the density | concentration of a metal component is 350 mg / L in total (P: 72 mg / L, Ca: 150 mg / L, Mg: 51 mg / L, Fe: 77 mg / L).

比較例及び実施例における可溶化塔1の条件は以下の通りであった。   The conditions of the solubilization tower 1 in the comparative examples and examples were as follows.

・温度:240℃
・圧力:5MPa
・流速:2L/hr
比較例及び実施例における触媒湿式酸化反応塔3(必要に応じ担体塔11)の条件は以下の通りであった。
・ Temperature: 240 ℃
・ Pressure: 5MPa
・ Flow rate: 2L / hr
The conditions of the catalyst wet oxidation reaction tower 3 (comparative to the support tower 11 if necessary) in the comparative examples and examples were as follows.

・温度:240℃
・圧力:5MPa
・流速:2L/hr
・空気量:理論酸素量の1.5倍、空気コンプレッサにより供給
また、可溶化塔1及び触媒湿式酸化反応塔3の装置サイズは次の通りであった。
・ Temperature: 240 ℃
・ Pressure: 5MPa
・ Flow rate: 2L / hr
-Air amount: 1.5 times the theoretical oxygen amount, supplied by an air compressor The apparatus sizes of the solubilization tower 1 and the catalytic wet oxidation reaction tower 3 were as follows.

・可溶化塔1:容量1.7L
・触媒湿式酸化反応塔3:容量0.9L、触媒充填量0.6L
・担体塔11:容量0.9L、担体充填量0.6L
実施例1
図1及び2に示すように、可溶化塔1の下部に有するバルブ5に連結された不溶成分貯留タンク4を有する可溶化塔1を用いて汚泥を可溶化し、その後可溶化液を触媒湿式酸化反応塔3で処理した。
・ Solubilization tower 1: Capacity 1.7L
・ Catalyst wet oxidation reaction tower 3: Capacity 0.9L, catalyst loading 0.6L
-Carrier tower 11: capacity 0.9L, carrier loading 0.6L
Example 1
As shown in FIGS. 1 and 2, sludge is solubilized using a solubilizing tower 1 having an insoluble component storage tank 4 connected to a valve 5 provided at the lower part of the solubilizing tower 1, and the solubilized liquid is then wetted with a catalyst. The treatment was carried out in the oxidation reaction tower 3.

なお、該不溶成分貯留タンク4の下部には不溶成分を排出する排出バルブ6を有し、該不溶成分貯留タンク4の上部には該不溶成分貯留タンク4内を調圧できる調圧バルブ7を有し、さらに該不溶成分貯留タンク4には水を供給する水供給バルブ8を有する。   The insoluble component storage tank 4 has a discharge valve 6 for discharging insoluble components at the bottom, and a pressure regulating valve 7 for adjusting the pressure in the insoluble component storage tank 4 at the top of the insoluble component storage tank 4. Furthermore, the insoluble component storage tank 4 has a water supply valve 8 for supplying water.

上記の装置を用いて、可溶化塔1における水熱処理の圧力を実質的に下げることなく、(1)排出バルブ6、調圧バルブ7及び水供給バルブ8を閉じて水で充填された不溶成分貯留タンク4に、バルブ5を開いて、可溶化塔1の不溶成分を導入し、(2)バルブ5を閉じた後、排出バルブ6を開き、その後調圧バルブ7を開いて不溶成分貯留タンク4の不溶成分を抜き出し、(3)排出バルブ6を閉じた後、水供給バルブ8を開いて不溶成分貯留タンク4に水を充填する工程を繰り返して、該可溶化塔1から不溶成分を引き抜きながら汚泥を処理した。また、必要に応じて、可溶化塔1と不溶成分貯留タンク4をつなぐ配管9中のポンプ10を動作させることにより、不溶成分貯留タンク4への不溶成分の沈降を促した。   (1) The insoluble component filled with water by closing the discharge valve 6, the pressure regulating valve 7 and the water supply valve 8 without substantially reducing the hydrothermal treatment pressure in the solubilization tower 1 using the above-described apparatus. Open the valve 5 to the storage tank 4 to introduce the insoluble components of the solubilization tower 1. (2) After closing the valve 5, open the discharge valve 6 and then open the pressure regulating valve 7 to open the insoluble component storage tank. 4 (3) After the discharge valve 6 is closed, the water supply valve 8 is opened and the insoluble component storage tank 4 is filled with water, and the insoluble component is extracted from the solubilization tower 1. While treating the sludge. Moreover, the sedimentation of the insoluble component to the insoluble component storage tank 4 was promoted by operating the pump 10 in the pipe 9 connecting the solubilization tower 1 and the insoluble component storage tank 4 as necessary.

この処理における累計運転時間と有機物濃度の関係を、表1及び図4に示す。   The relationship between the cumulative operation time and the organic substance concentration in this process is shown in Table 1 and FIG.

Figure 0004716771
Figure 0004716771

これより、処理水中の有機物濃度は初期から310時間後まで1560mg/L以下で維持されており、効率的に触媒湿式酸化が進行し、しかも触媒が失活していないことが確認された。   From this, it was confirmed that the organic substance concentration in the treated water was maintained at 1560 mg / L or less from the initial stage to 310 hours later, and that the catalytic wet oxidation proceeded efficiently and that the catalyst was not deactivated.

実施例2
実施例1の装置及び操作に加えて、可溶化塔1と触媒湿式酸化反応塔3の間に担体塔11を設けて実施例1と同様に汚泥を処理した。
Example 2
In addition to the apparatus and operation of Example 1, a support tower 11 was provided between the solubilization tower 1 and the catalytic wet oxidation reaction tower 3 to treat sludge in the same manner as in Example 1.

可溶化塔1、担体塔11及び触媒湿式酸化反応塔3の各出口における各金属成分濃度は、表2に示す通りとなった。   The concentrations of the metal components at the outlets of the solubilization tower 1, the support tower 11, and the catalyst wet oxidation reaction tower 3 are as shown in Table 2.

Figure 0004716771
Figure 0004716771

すなわち、可溶化塔1の出口で72mg/Lあった金属成分濃度が、担体塔11の出口では0mg/Lとなり、触媒湿式酸化反応塔3へ金属成分が流入しないことから、触媒の寿命を大幅に延長することが可能となった。なお、この実験の際、処理水中の有機物濃度は1380mg/Lであった。   That is, the metal component concentration of 72 mg / L at the outlet of the solubilization tower 1 becomes 0 mg / L at the outlet of the support tower 11, and the metal component does not flow into the catalytic wet oxidation reaction tower 3, greatly extending the life of the catalyst. It became possible to extend to. In this experiment, the concentration of organic substances in the treated water was 1380 mg / L.

比較例1
図5に示すように、触媒湿式酸化反応塔3へ直接汚泥を投入して処理した以外は、実施例1と同様に処理したところ、6時間後に処理水中の有機物濃度が7300mg/Lとなり、処理液の色が褐色となり、懸濁物質が多量に流出した。
Comparative Example 1
As shown in FIG. 5, the same treatment as in Example 1 was carried out except that the sludge was directly fed into the catalytic wet oxidation reaction tower 3, and after 6 hours, the organic matter concentration in the treated water became 7300 mg / L. The color of the liquid became brown, and a large amount of suspended solids flowed out.

比較例2
図6に示すように、不溶成分を引き抜く機構のない可溶化塔1で汚泥を可溶化した以外は、実施例1と同様に処理したところ、15時間後に処理水中の有機物濃度が6800mg/Lとなり、処理液の色が褐色となり、懸濁物質が多量に流出した。
Comparative Example 2
As shown in FIG. 6, except that the sludge was solubilized in the solubilizing tower 1 without a mechanism for extracting insoluble components, the same treatment as in Example 1 was carried out, and the organic matter concentration in the treated water became 6800 mg / L after 15 hours. As a result, the color of the treatment liquid became brown, and a large amount of suspended solids flowed out.


不溶成分引き抜き機構2を有する可溶化塔1及び触媒湿式酸化反応塔3からなる本発明の汚泥処理装置の模式図である。1 is a schematic view of a sludge treatment apparatus of the present invention comprising a solubilization tower 1 having an insoluble component extraction mechanism 2 and a catalytic wet oxidation reaction tower 3. FIG. 本発明の不溶成分引き抜き機構2の模式図である。It is a schematic diagram of the insoluble component extraction mechanism 2 of this invention. 不溶成分引き抜き機構2を有する可溶化塔1、担体塔11、及び触媒湿式酸化反応塔3からなる本発明の汚泥処理装置の模式図である。1 is a schematic diagram of a sludge treatment apparatus of the present invention comprising a solubilization tower 1 having an insoluble component extraction mechanism 2, a support tower 11, and a catalytic wet oxidation reaction tower 3. FIG. 実施例1で測定した処理水中の有機物濃度の推移を示すグラフである。3 is a graph showing the transition of organic substance concentration in treated water measured in Example 1. FIG. 比較例1で用いた汚泥処理装置の模式図である。2 is a schematic diagram of a sludge treatment apparatus used in Comparative Example 1. FIG. 比較例2で用いた汚泥処理装置の模式図である。It is a schematic diagram of the sludge treatment apparatus used in Comparative Example 2.

符号の説明Explanation of symbols

1:可溶化塔
1a:汚泥導入口
1b:可溶化液排出口
1c:配管
1d:配管
2:不溶成分引き抜き機構
3:触媒湿式酸化反応塔
4:不溶成分貯留タンク
5:バルブ
6:排出バルブ
7:調圧バルブ
8:水供給バルブ
9:配管
10:循環ポンプ
11:担体塔
1: solubilization tower 1a: sludge inlet 1b: solubilization liquid outlet 1c: pipe 1d: pipe 2: insoluble component extraction mechanism 3: catalyst wet oxidation reaction tower 4: insoluble component storage tank 5: valve 6: discharge valve 7 : Pressure regulating valve 8: Water supply valve 9: Pipe 10: Circulation pump 11: Carrier tower

Claims (7)

塔内の圧力を実質的に下げることなく不溶成分を抜き出す機構2を備え、気体状の酸素源を導入しないで汚泥を可溶化する可溶化塔1を有する汚泥の処理装置であって、
前記不溶成分を抜き出す機構2が、該可溶化塔1の下部に有するバルブ5及び該バルブ5に連結された不溶成分貯留タンク4を含むものであり、該不溶成分貯留タンク4の下部には不溶成分を排出する排出バルブ6を有し、該不溶成分貯留タンク4の上部には該不溶成分貯留タンク4内を調圧できる調圧バルブ7を有し、さらに該不溶成分貯留タンク4には水を供給する水供給バルブ8を有し、
さらに前記不溶成分貯留タンク4が前記可溶化塔1と配管9で連結され、該配管9には該不溶成分貯留タンク4から該可溶化塔1へ可溶化液を循環させる循環ポンプ10を有する汚泥の処理装置。
A sludge treatment apparatus comprising a mechanism 2 for extracting insoluble components without substantially lowering the pressure in the tower, and having a solubilizing tower 1 for solubilizing sludge without introducing a gaseous oxygen source,
The mechanism 2 for extracting the insoluble component includes a valve 5 provided at the lower part of the solubilizing tower 1 and an insoluble component storage tank 4 connected to the valve 5, and is insoluble at the lower part of the insoluble component storage tank 4. The insoluble component storage tank 4 has a discharge valve 6 for discharging components, a pressure adjusting valve 7 for adjusting the pressure in the insoluble component storage tank 4 above the insoluble component storage tank 4, and the insoluble component storage tank 4 with water A water supply valve 8 for supplying
Further, the insoluble component storage tank 4 is connected to the solubilization tower 1 by a pipe 9, and the sludge having a circulation pump 10 for circulating the solubilized liquid from the insoluble component storage tank 4 to the solubilization tower 1 in the pipe 9. Processing equipment.
前記可溶化塔1が、汚泥を温度100℃〜300℃で液相を保持できる圧力下で可溶化処理する塔である請求項1に記載の汚泥の処理装置。 The sludge treatment apparatus according to claim 1, wherein the solubilization tower 1 is a tower for solubilizing sludge under a pressure capable of maintaining a liquid phase at a temperature of 100C to 300C. さらに前記可溶化塔1からの可溶化液を触媒湿式酸化する触媒湿式酸化反応塔3を有する請求項1又は2に記載の汚泥の処理装置。 Furthermore, the sludge processing apparatus of Claim 1 or 2 which has the catalyst wet oxidation reaction tower 3 which carries out the catalyst wet oxidation of the solubilization liquid from the said solubilization tower 1. さらに前記可溶化塔1と前記触媒湿式酸化反応塔3との間に、担体を充填した担体塔11を有する請求項に記載の汚泥の処理装置。 The sludge treatment apparatus according to claim 3 , further comprising a support tower 11 filled with a support between the solubilization tower 1 and the catalytic wet oxidation reaction tower 3. 前記請求項1〜のいずれかに記載の汚泥の処理装置を用いた汚泥の処理方法であって、
気体状の酸素源を導入せずに汚泥を該可溶化塔1にて水熱処理して可溶化液と不溶成分に分離した後、該可溶化塔1における水熱処理の圧力を実質的に下げることなく、下記(1)〜(3)の工程により該不溶成分を該可溶化塔1から抜き出すことを特徴とする汚泥の処理方法:
(1)排出バルブ6、調圧バルブ7及び水供給バルブ8を閉じて水で充填された不溶成分貯留タンク4に、バルブ5を開いて、可溶化塔1の不溶成分を抜き出す工程、
(2)バルブ5を閉じた後、排出バルブ6を開き、その後調圧バルブ7を開いて不溶成分貯留タンク4の不溶成分を排出する工程、及び
(3)排出バルブ6を閉じた後、水供給バルブ8を開いて不溶成分貯留タンク4に水を充填する工程。
A sludge treatment method using the sludge treatment apparatus according to any one of claims 1 to 4 ,
The sludge is hydrothermally treated in the solubilizing tower 1 without introducing a gaseous oxygen source and separated into a solubilized liquid and an insoluble component, and then the hydrothermal pressure in the solubilizing tower 1 is substantially lowered. Without removing the insoluble component from the solubilization tower 1 by the following steps (1) to (3):
(1) A step of opening the valve 5 to the insoluble component storage tank 4 filled with water by closing the discharge valve 6, the pressure regulating valve 7 and the water supply valve 8, and extracting the insoluble component of the solubilizing tower 1.
(2) After closing the valve 5, the discharge valve 6 is opened, and then the pressure regulating valve 7 is opened to discharge the insoluble components in the insoluble component storage tank 4, and (3) the water is discharged after the discharge valve 6 is closed. A step of opening the supply valve 8 and filling the insoluble component storage tank 4 with water.
前記請求項3又は4に記載の汚泥の処理装置を用いた汚泥の処理方法であって、
気体状の酸素源を導入せずに汚泥を該可溶化塔1にて水熱処理して可溶化液と不溶成分に分離した後、該可溶化塔1における水熱処理の圧力を実質的に下げることなく、下記(1)〜(3)の工程により該不溶成分を該可溶化塔1から抜き出し、
(1)排出バルブ6、調圧バルブ7及び水供給バルブ8を閉じて水で充填された不溶成分貯留タンク4に、バルブ5を開いて、可溶化塔1の不溶成分を抜き出す工程、
(2)バルブ5を閉じた後、排出バルブ6を開き、その後調圧バルブ7を開いて不溶成分貯留タンク4の不溶成分を排出する工程、及び
(3)排出バルブ6を閉じた後、水供給バルブ8を開いて不溶成分貯留タンク4に水を充填する工程、
該可溶化液を触媒湿式酸化反応塔3で触媒湿式酸化すること、
を特徴とする汚泥の処理方法。
A sludge treatment method using the sludge treatment apparatus according to claim 3 or 4 ,
The sludge is hydrothermally treated in the solubilizing tower 1 without introducing a gaseous oxygen source and separated into a solubilized liquid and an insoluble component, and then the hydrothermal pressure in the solubilizing tower 1 is substantially lowered. Without extracting the insoluble component from the solubilization tower 1 by the following steps (1) to (3),
(1) A step of opening the valve 5 to the insoluble component storage tank 4 filled with water by closing the discharge valve 6, the pressure regulating valve 7 and the water supply valve 8, and extracting the insoluble component of the solubilizing tower 1.
(2) After closing the valve 5, the discharge valve 6 is opened, and then the pressure regulating valve 7 is opened to discharge the insoluble components in the insoluble component storage tank 4, and (3) after the discharge valve 6 is closed, Opening the supply valve 8 to fill the insoluble component storage tank 4 with water,
Catalytic wet oxidation of the solubilized liquid in the catalytic wet oxidation reaction tower 3;
A method for treating sludge.
塔内の圧力を実質的に下げることなく不溶成分を抜き出す機構2を備えた汚泥を可溶化する可溶化塔1を有する汚泥の処理装置であって、
前記不溶成分を抜き出す機構2が、該可溶化塔1の下部に有するバルブ5及び該バルブ5に連結された不溶成分貯留タンク4を含むものであり、該不溶成分貯留タンク4の下部には不溶成分を排出する排出バルブ6を有し、該不溶成分貯留タンク4の上部には該不溶成分貯留タンク4内を調圧できる調圧バルブ7を有し、さらに該不溶成分貯留タンク4には水を供給する水供給バルブ8を有し、
前記不溶成分貯留タンク4が前記可溶化塔1と配管9で連結され、前記配管9には前記不溶成分貯留タンク4から前記可溶化塔1へ可溶化液を循環させる循環ポンプ10を有すること、
を特徴とする汚泥の処理装置。
A sludge treatment apparatus having a solubilizing tower 1 for solubilizing sludge provided with a mechanism 2 for extracting insoluble components without substantially reducing the pressure in the tower,
The mechanism 2 for extracting the insoluble component includes a valve 5 provided at the lower part of the solubilizing tower 1 and an insoluble component storage tank 4 connected to the valve 5, and is insoluble at the lower part of the insoluble component storage tank 4. The insoluble component storage tank 4 has a discharge valve 6 for discharging components, a pressure adjusting valve 7 for adjusting the pressure in the insoluble component storage tank 4 above the insoluble component storage tank 4, and the insoluble component storage tank 4 with water A water supply valve 8 for supplying
The insoluble component storage tank 4 is connected to the solubilization tower 1 by a pipe 9, and the pipe 9 has a circulation pump 10 for circulating a solubilizing liquid from the insoluble component storage tank 4 to the solubilization tower 1;
Sludge treatment equipment characterized by
JP2005104722A 2005-03-31 2005-03-31 Sludge treatment apparatus and sludge treatment method using the same Expired - Fee Related JP4716771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104722A JP4716771B2 (en) 2005-03-31 2005-03-31 Sludge treatment apparatus and sludge treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104722A JP4716771B2 (en) 2005-03-31 2005-03-31 Sludge treatment apparatus and sludge treatment method using the same

Publications (2)

Publication Number Publication Date
JP2006281096A JP2006281096A (en) 2006-10-19
JP4716771B2 true JP4716771B2 (en) 2011-07-06

Family

ID=37403554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104722A Expired - Fee Related JP4716771B2 (en) 2005-03-31 2005-03-31 Sludge treatment apparatus and sludge treatment method using the same

Country Status (1)

Country Link
JP (1) JP4716771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865938A (en) * 2017-03-31 2017-06-20 彭丽 A kind of processing method of sludge CWO

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136095A (en) * 2001-11-05 2003-05-13 Toshiba Corp Organic matter treatment system and method for discharging residual solid from the system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528023B2 (en) * 1996-01-26 2004-05-17 大阪瓦斯株式会社 How to treat wet waste
JP3165884B2 (en) * 1996-01-26 2001-05-14 大阪瓦斯株式会社 Simultaneous treatment of organic solid waste and liquid waste
JP3887941B2 (en) * 1998-04-14 2007-02-28 石川島播磨重工業株式会社 Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP2000254479A (en) * 1999-03-09 2000-09-19 Osaka Gas Co Ltd Method of feeding solid matter into pressure vessel and device therefor
JP2002028613A (en) * 2000-07-19 2002-01-29 Tokyokoki Seizosho Ltd High temperature high pressure submerged oxidation decomposition device
JP4164658B2 (en) * 2003-03-31 2008-10-15 大阪瓦斯株式会社 Method for producing fuel gas
JP2004298818A (en) * 2003-04-01 2004-10-28 Tokyo Gas Co Ltd Pretreatment method and apparatus therefor in supercritical water treatment of organic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136095A (en) * 2001-11-05 2003-05-13 Toshiba Corp Organic matter treatment system and method for discharging residual solid from the system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865938A (en) * 2017-03-31 2017-06-20 彭丽 A kind of processing method of sludge CWO
CN106865938B (en) * 2017-03-31 2020-06-09 彭丽 Treatment method for catalytic wet oxidation of sludge

Also Published As

Publication number Publication date
JP2006281096A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
AU2009232346B2 (en) Catalytic wet oxidation systems and methods
US8501011B2 (en) Wet air oxidation process using recycled catalyst
JPH0377691A (en) Treatment of waste water
CN102897894B (en) Combined unit type equipment for treating industrial wastewater by ozone catalyzing method
JP5446400B2 (en) Hydrogen peroxide water treatment equipment
CN109264845A (en) A kind of device and method of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
JPH0741250B2 (en) How to treat water with ozone
JP4703227B2 (en) Wastewater treatment method
JP4716771B2 (en) Sludge treatment apparatus and sludge treatment method using the same
JP2018203546A (en) Porous functional material, and production method and production apparatus thereof
CN202912756U (en) Combined-unit type industrial wastewater treatment equipment by using catalytic ozone method
JP3528023B2 (en) How to treat wet waste
JP2005246215A (en) Sludge treatment method
US9193613B2 (en) pH control to enable homogeneous catalytic wet air oxidation
CN209128117U (en) A kind of device of reverse osmosis concentrated water organic matter and ammonia nitrogen removal simultaneously
WO2014149908A1 (en) pH CONTROL TO ENABLE HOMOGENEOUS CATALYTIC WET AIR OXIDATION
JPS62132589A (en) Wet oxidation treatment of waste water
CN105330089A (en) Waste water treatment equipment
JP4223706B2 (en) Wastewater treatment method
JPH0454515B2 (en)
JPH0523678A (en) Waste water treatment
JP3272714B2 (en) Wastewater treatment method
JPS62132591A (en) Wet oxidation treatment of waste water
JP2001254087A (en) Method of producing fuel gas
JPS62132590A (en) Wet oxidation treatment of waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees