JP4716340B2 - Vehicle travel control method - Google Patents

Vehicle travel control method Download PDF

Info

Publication number
JP4716340B2
JP4716340B2 JP2009150386A JP2009150386A JP4716340B2 JP 4716340 B2 JP4716340 B2 JP 4716340B2 JP 2009150386 A JP2009150386 A JP 2009150386A JP 2009150386 A JP2009150386 A JP 2009150386A JP 4716340 B2 JP4716340 B2 JP 4716340B2
Authority
JP
Japan
Prior art keywords
vehicle
distance
traveling
speed
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009150386A
Other languages
Japanese (ja)
Other versions
JP2011005920A (en
JP2011005920A5 (en
Inventor
渡邉雅弘
Original Assignee
渡邉 雅弘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 渡邉 雅弘 filed Critical 渡邉 雅弘
Priority to JP2009150386A priority Critical patent/JP4716340B2/en
Publication of JP2011005920A publication Critical patent/JP2011005920A/en
Publication of JP2011005920A5 publication Critical patent/JP2011005920A5/ja
Application granted granted Critical
Publication of JP4716340B2 publication Critical patent/JP4716340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本願発明は、車両走行の省エネルギー化、排出ガス量低減化、のための、車両の有する運動エネルギーを最大限に活用した車両走行制御方法に関する。   The present invention relates to a vehicle travel control method that maximizes the use of kinetic energy of a vehicle for energy saving of vehicle travel and reduction of exhaust gas amount.

前方車両への適切な追従走行制御方法として、自車両の車速に応じて前方車両との間の最小車間距離および最大車間距離を設定し、前方車両との車間距離が最小車間距離より小さくなった時には惰性走行を開始し、車間距離が最大車間距離よりも大きくなった時には駆動力の発生を開始することによって、前方車両との車間距離を最小車間距離〜最大車間距離に保ったエネルギー消費量および排出ガス量の少ない効率的な追従走行を行う方法が提案されている(特許文献1)。   As an appropriate follow-up driving control method for the preceding vehicle, the minimum inter-vehicle distance and the maximum inter-vehicle distance with the preceding vehicle are set according to the speed of the host vehicle, and the inter-vehicle distance with the preceding vehicle is smaller than the minimum inter-vehicle distance. In some cases, coasting is started, and when the inter-vehicle distance becomes greater than the maximum inter-vehicle distance, the generation of driving force is started, thereby maintaining the inter-vehicle distance with the preceding vehicle from the minimum inter-vehicle distance to the maximum inter-vehicle distance and A method of performing efficient follow-up traveling with a small amount of exhaust gas has been proposed (Patent Document 1).

但し上記方法においては、定速走行から追従走行への移行時の制御方法が明確ではなく、また追従走行中においても上記のごとき車間距離条件において惰性走行あるいは駆動力の発生を各々開始しても、惰性走行あるいは駆動力の発生時点の前方車両との相対速度によっては前方車両との車間距離は前記特許文献に記載されている最小車間距離よりも短くあるいは最大車間距離よりも長くなることもあり、その結果車間距離変動幅が大きくなってしまう問題がある。   However, in the above method, the control method at the time of transition from the constant speed traveling to the following traveling is not clear, and even during the following traveling, even if the inertial traveling or the generation of the driving force is started under the above-mentioned inter-vehicle distance conditions, respectively. Depending on the relative speed with the preceding vehicle at the time of inertial driving or when the driving force is generated, the inter-vehicle distance to the preceding vehicle may be shorter than the minimum inter-vehicle distance described in the patent document or longer than the maximum inter-vehicle distance. As a result, there is a problem that the fluctuation range of the inter-vehicle distance becomes large.

ここで、惰性走行とは、エンジン、モーター等の車両駆動力発生動作を停止する、あるいはエンジン、モーター等の車両駆動力を駆動輪への伝達を停止する、ことによってその時点で車両の有している運動エネルギーのみで車両を走行させることをいう。 Here, coasting means stopping the vehicle driving force generation operation of the engine, motor, etc., or stopping the vehicle driving force, such as the engine, motor, etc., from being transmitted to the drive wheels. It means that the vehicle is driven only by the kinetic energy.

特開2007−291919JP2007-291919A 特開2006−031573JP 2006-031573 A 特開2007−233962JP2007-233962

本願発明は、定速走行中の車両が前方車両を検知した後ブレーキを使わずに安全かつ効率的に追従走行に移行する方法、および追従走行移行後は安全車間距離を確保しかつ車間距離変動幅を最小に保ちつつ前方車両との相対速度範囲を所定範囲内に保って走行する方法、を提案するものである。 The present invention relates to a method in which a vehicle traveling at a constant speed detects a preceding vehicle and then shifts to the following travel safely and efficiently without using a brake, and a safe inter-vehicle distance is secured after the transition to the following traveling and the inter-vehicle distance fluctuation proposes a method, it travels while maintaining a relative velocity range to the preceding vehicle within a predetermined range while keeping the width to a minimum.

エンジン/モーターハイブリッド車の省エネルギー性能は、減速時回生ブレーキで車両の有する運動エネルギーを回生し、発進・加速時に前記回生したエネルギーを効率的に活用するところにある。しかし減速時車両の運動エネルギーを回生しても、減速によって失われる運動エネルギーは回生効率分しか回生できない。したがって、減速時車両の有している運動エネルギーを最も効率よく利用する方法は、運動エネルギーを回生して利用するのではなく、直接車両走行に利用する、すなわち惰性走行を行うことである。   The energy saving performance of the engine / motor hybrid vehicle is that the kinetic energy of the vehicle is regenerated by the regenerative braking at the time of deceleration, and the regenerated energy is efficiently used at the start and acceleration. However, even if the kinetic energy of the vehicle at the time of deceleration is regenerated, the kinetic energy lost by the deceleration can be regenerated only for the regenerative efficiency. Therefore, the most efficient method of using the kinetic energy possessed by the vehicle during deceleration is not to regenerate and use the kinetic energy, but to use it directly for vehicle travel, that is, to perform inertial travel.

したがって本願発明における走行制御方法においては、定速走行から追従走行への移行および移行後の追従走行の実行に際しては、加速は極力緩加速を行い、減速は、安全上やむを得ない場合を除いて極力ブレーキ(回生ブレーキを含む)を使用せず、車両の有している運動エネルギーを最大限活用し惰性走行による緩やかな減速を行う。 Therefore, in the travel control method according to the present invention, when performing the transition from the constant speed travel to the follow-up travel and the follow-up travel after the transition, the acceleration is performed as slowly as possible, and the deceleration is performed as much as possible except in the case of safety. The brakes (including regenerative brakes) are not used, and the vehicle's kinetic energy is utilized to the fullest to achieve a slow deceleration by inertial running.

また、渋滞中の走行においては、自車両停止時前方車両との車間距離が自車両の発進・加速による走行距離およびその後の惰性走行による走行距離の和に相当する車間距離以上に達した時発進・加速を開始することによって「発進・加速・(定速走行)・減速・停止」1サイクルでの走行距離を、従来の渋滞走行時に比べて拡大し、その結果として停止状態からの発進・加速頻度を低減するとともに減速は極力惰性走行によって行うAlso, when traveling in a traffic jam, start when the distance between the vehicle and the vehicle ahead when the vehicle stops is greater than the vehicle distance corresponding to the sum of the distance traveled by the start / acceleration of the vehicle and the distance traveled by inertial travel thereafter.・ By starting acceleration, the mileage in one cycle of “start / acceleration / (constant speed running) / deceleration / stop” is increased compared to the time of conventional traffic congestion, and as a result, starting / acceleration from a stopped state Reduce the frequency and reduce the speed by coasting as much as possible .

先ず、速度Vsで走行中の自車が前方距離Lの地点に速度Va (但し、Vs>Vaとする)で走行する前方車両を検知した場合の本願発明による追従走行移行方法および追従走行移行後の走行方法について図1を用いて説明する。
図1において、自車両11は速度Va で走行する前方車両12に対し、安全車間距離
L1(Va)、(数1)で示される惰性走行距離最大値L2(Va)、(数2)で示される緩加速度走行距離L3(Va)最大値、および(数3)で示される相対速度許容範囲、で設定される追従走行領域13(但し、追従走行領域13は、(数3)で示される相対速度範囲と(数7)で示される車間距離範囲で設定される惰性追従走行領域14と、(数3)で示される相対速度範囲と(数8)で示される車間距離範囲で設定される緩加速度追従走行領域15で構成される。惰性追従走行領域14と緩加速度追従走行領域15の境界となる(数9)で示される車間距離を境界車間距離16と称する。)を設定し、自車が前方車両との車間距離L、自車速度Vsで走行中の現時点から惰性走行減速度(−αi)で惰性走行を開始した後、前方車両との相対速度VrがVr=0となる時点で前方車両との予測車間距離L’が(数4)を満足するか否かを演算・判定する。但し、予測車間距離L’は(数5)で算出される。
First, the following traveling transition method according to the present invention and after the following traveling transition when the vehicle traveling at the speed Vs detects a forward vehicle traveling at a speed Va (where Vs> Va ) at a point of the forward distance L. The traveling method will be described with reference to FIG.
In FIG. 1, the host vehicle 11 is represented by the maximum distance L1 (Va) and the maximum inertial distance L2 (Va) expressed by (Equation 1) with respect to the preceding vehicle 12 traveling at the speed Va. slow acceleration travel distance L3 (Va) maximum value, and (Equation 3) relative velocity allowable range represented by the following travel region 13 in the set, (however, the follow-up run area 13, the relative represented by (Equation 3) Inertia following travel region 14 set in the speed range and the inter-vehicle distance range shown in (Equation 7) , the relative speed range shown in (Equation 3) , and the slow speed set in the inter-vehicle distance range shown in (Equation 8). It is composed of an acceleration following traveling region 15. An inter-vehicle distance indicated by (Equation 9) serving as a boundary between the inertia following traveling region 14 and the slow acceleration following traveling region 15 is referred to as a boundary inter-vehicle distance 16). Is traveling at a distance L between the vehicle ahead and the vehicle speed Vs After starting inertial traveling at inertial deceleration (−αi) from the present time, the predicted inter-vehicle distance L ′ with the preceding vehicle satisfies (Equation 4) when the relative speed Vr with the preceding vehicle becomes Vr = 0. It is calculated and determined whether or not. However, the predicted inter-vehicle distance L ′ is calculated by (Equation 5).

ここで、安全車間距離L1(Va)は、速度Vaで走行する前方車両に速度Vaで追従走行する自車両が緊急時安全に停止できる最小車間距離、
惰性走行距離L2(Va)は、速度Vaで走行する前方車両との相対速度Vr=+Vr0で走行中の自車両が、減速度(−αi)の惰性走行に移行して後相対速度Vr=0になるまでの間に前方車両に接近する相対走行距離、
緩加速度走行距離L3(Va)は、速度Vaで走行する前方車両との相対速度Vr=−Vr0で走行中の自車両が、緩加速度αaの加速走行に移行して後相対速度Vr=0になるまでの間に前方車両から離遠する相対走行距離、
である。
Here, the safe inter-vehicle distance L1 (Va) is the minimum inter-vehicle distance at which the host vehicle that follows the vehicle traveling at the speed Va can safely stop in the event of an emergency.
The inertial travel distance L2 (Va) is determined by the relative speed Vr = 0 after the host vehicle traveling at the relative speed Vr = + Vr0 with the preceding vehicle traveling at the speed Va shifts to the inertial travel at the deceleration (−αi). Relative mileage approaching the vehicle ahead, until
The slow acceleration travel distance L3 (Va) is set to the relative speed Vr = 0 after the host vehicle traveling at the relative speed Vr = −Vr0 with the preceding vehicle traveling at the speed Va shifts to the acceleration travel at the slow acceleration αa. Relative mileage away from the vehicle ahead,
It is.

(数1)
L2(Va)=Vr0 2 /(2・αi)
(Equation 1)
L2 (Va) = Vr0 2 /(2.αi)

(数2)
L3(Va)=Vr0 2 /(2・αa)
(Equation 2)
L3 (Va) = Vr0 2 /(2.αa)

(数3)
−Vr0≦Vr≦Vr0
(Equation 3)
−Vr0 ≦ Vr ≦ Vr0

(数4)
L1(Va)≦L’ ≦L1(Va)+L2(Va)+L3(Va)
(Equation 4)
L1 (Va) ≤L'≤L1 (Va) + L2 (Va) + L3 (Va)

(数5)
L’ =L−{(Vs −Va)2/(2・αi)}
(Equation 5)
L ′ = L − {(Vs−Va) 2 / (2 · αi)}

上記判定の結果、予測車間距離L’ が(数4)を満足した場合は、自車は現時点から惰性走行によって前記追従走行領域に到達可能であるとして追従走行領域に向けての惰性走行を開始する。
予測車間距離L’(Va) が(数4)を満足しない場合は、その時点の自車速度Vsで一定時間Ti あるいは一定走行距離Di 走行を行った後、改めてその時点での車間距離L、自車速度Vs、前方車両速度Va を検知して上記(数1)〜(数5)を用いての追従走行領域の設定、惰性走行による追従走行領域への到達可否の判定を、追従走行領域到達可となるまで繰り返してのち追従走行領域に向けての惰性走行を開始する。
If the predicted inter-vehicle distance L ′ satisfies (Expression 4) as a result of the above determination, the vehicle starts inertial traveling toward the following traveling region on the assumption that the vehicle can reach the following traveling region by inertial traveling from the present time. To do.
If the predicted inter-vehicle distance L ′ (Va) does not satisfy (Equation 4), after traveling for a certain time Ti or a certain travel distance Di at the current vehicle speed Vs, the inter-vehicle distance L, The following traveling region is determined by detecting the own vehicle speed Vs and the forward vehicle speed Va and setting the following traveling region using the above (Equation 1) to (Equation 5) and determining whether or not the following traveling region can be reached by inertial traveling. It repeats until it becomes reachable, and then starts inertial traveling toward the following traveling region.

追従走行領域に向けての惰性走行開始後、自車−前方車両間相対速度VrがVr =0となった時点で自車−前方車両車間距離Lが(数6)を満足した場合、自車は追従走行領域に入ったとして追従走行移行動作は終了する。 When the vehicle-to-front vehicle relative speed Vr reaches Vr = 0 after the inertial traveling toward the following traveling region starts, the vehicle-to-front vehicle distance L satisfies (Expression 6). If the vehicle has entered the follow-up running region, the follow-up running transition operation ends.

(数6)
L1(Va)≦L≦L1(Va)+L2(Va)+L3(Va)
(Equation 6)
L1 (Va) ≦ L ≦ L1 (Va) + L2 (Va) + L3 (Va)

次に、上記によって追従走行への移行を終了した時点で自車と前方車両の車間距離Lが(数7)を満足する状態である場合は減速度(−αi)での惰性走行を継続する。
また追従走行への移行を終了した時点で自車と前方車両の車間距離Lが(数8)を満足する場合は緩加速度αaの緩加速度走行をおこなう。
Next, if the distance L between the host vehicle and the preceding vehicle satisfies the equation (7) at the time when the transition to the follow-up running is completed as described above, the inertial running at the deceleration (−αi) is continued. .
Further, when the distance L between the host vehicle and the preceding vehicle satisfies (Expression 8) when the transition to the follow-up traveling is completed, the vehicle travels at a slow acceleration with a slow acceleration αa.

即ち、追従走行に移行終了後の追従走行領域13において、惰性追従走行領域14で惰性走行中相対速度VrがVr=0なる状態を経由した後惰性走行中車間距離Lが(数9)に示す距離(境界車間距離)に拡大あるいは相対速度Vrが(数10)に示す速度に減少した場合は惰性走行から緩加速度αaの緩加速度走行に、
また、緩加速度追従走行領域15で緩加速度走行中相対速度VrがVr=0なる状態を経由した後車間距離Lが(数8)の状態から(数9)に示す距離(境界車間距離)に短縮あるいは相対速度Vrが(数11)に示す速度に増加した場合は緩加速度走行から減速度αi の惰性走行に、
各々移行する。
以上のごとく惰性追従走行領域14、緩加速度追従走行領域15への移行を車間距離境界車間距離に達するごとに繰り返し行うことによって自車は急加速・急減速無し(ブレーキ無しでの減速)での安全でかつ効率的な前方車両走行速度に対応した追従走行を行うことができる。
That is, in the follow-up running region 13 after the transition to the follow -up running, the inter-vehicle distance L during the inertial running through the state in which the inertial running relative speed Vr is Vr = 0 in the inertia following follow-up region 14 is shown in (Equation 9). If the distance (boundary inter-vehicle distance) is increased or the relative speed Vr is reduced to the speed shown in ( Equation 10), from inertial running to slow acceleration running with slow acceleration αa,
In addition, the following inter-vehicle distance L from the state of (Equation 8) to the distance (boundary inter-vehicle distance) after passing through the state where the relative speed Vr during the slow acceleration traveling in the slow acceleration following traveling region 15 is Vr = 0. When the speed is shortened or the relative speed Vr is increased to the speed shown in ( Equation 11), from slow acceleration running to inertia running with deceleration αi,
Migrate each.
As described above, by repeating the transition to the inertia following traveling region 14 and the slow acceleration following traveling region 15 every time the inter-vehicle distance L boundary inter-vehicle distance is reached, the vehicle can be accelerated and decelerated without deceleration ( deceleration without brake) . It is possible to perform follow-up traveling corresponding to the safe and efficient forward vehicle traveling speed.

(数7)
L1(Va)≦L<L1(Va)+L2 (Va)
(Equation 7)
L1 (Va) ≦ L <L1 (Va) + L2 (Va)

(数8)
L1(Va)+L2(Va)<L ≦L1(Va)+L2(Va) +L3(Va)
(Equation 8)
L1 (Va) + L2 (Va) <L ≦ L1 (Va) + L2 (Va) + L3 (Va)

(数9)
L=L1(Va)+L2 (Va)
(Equation 9)
L = L1 (Va) + L2 (Va)

(数10)
Vr=−Vr0
(Equation 10)
Vr = -Vr0

(数11)
Vr=+Vr0
(Equation 11)
Vr = + Vr0

追従走行中、前方車両との相対速度VrがVr=0に達した時点の車間距離が(数7)および(数8)を満足しない場合、すなわち(数12)あるいは(数13)を満足する場合は、ともに前方車両速度Vaの大幅変動等によって、エラーが起きたとして、(数12)を満足する場合はブレーキによって車間距離LをL>L1(Va)となるまで拡大してのち、また、(数13)を満足する場合は緩加速度走行によって車間距離LをL<L1(Va)
+L2(Va)+L3(Va)にまで縮小してのち、各々上記追従走行を行う。
During follow-up driving, if the inter-vehicle distance L does not satisfy (Equation 7) and (Equation 8) when the relative speed Vr with the preceding vehicle reaches Vr = 0, that is, (Equation 12) or (Equation 13) is satisfied. In the case where an error occurs due to a large fluctuation in the forward vehicle speed Va , etc., if (Equation 12) is satisfied, the inter-vehicle distance L is increased by the brake until L> L1 (Va). Further, when (Equation 13) is satisfied, the inter-vehicle distance L is set to L <L1 (Va) by slow acceleration traveling.
After reducing to + L2 (Va) + L3 (Va), the following running is performed.

(数12)
L <L1(Va)
(Equation 12)
L <L1 (Va)

(数13)
L>L1(Va)+L2(Va)+L3(Va)
(Equation 13)
L> L1 (Va) + L2 (Va) + L3 (Va)

上記においては惰性走行時の減速度(−αi)は、前方車両速度Vaに対応して一定としているが、実際には走行する道路状態(道路勾配、道路面状況等)によって変化する。この補正に関しては、例えば車両に搭載するカーナビゲーションシステムの地図データベースに減速度補正係数を道路ごとに保持し、それを用いて補正する方法がある。 In the above description, the deceleration (−αi) during coasting is constant corresponding to the forward vehicle speed Va , but actually varies depending on the road conditions (road gradient, road surface condition, etc.). With regard to this correction, for example, there is a method in which a deceleration correction coefficient is held for each road in a map database of a car navigation system mounted on a vehicle and is corrected using the same.

以上、定速走行中前方車両を検知した後追従走行に移行し、追従走行を継続する方法を説明したが、この考え方は渋滞中車両の省エネルギー走行にも適用できる。
即ち、速度Vsで走行中の自車両から距離Lの地点に停止中あるいは低速(速度Va)で走行中の前方車両、但しVs>Va、Va≦Va0、を検知した場合、前記追従走行の場合と同様の追従走行領域の設定・判定および追従走行領域に向けての走行を行い、その結果自車両は前方車両に対して相対速度Vr がVr=0になる時点で車間距離Lが前記(数6)を満足する距離範囲内に到達する。
As described above, the method of shifting to the follow-up running after detecting the front vehicle during the constant speed running and continuing the follow-up running has been described, but this concept can also be applied to the energy-saving running of the vehicle in the traffic jam.
That is, when the vehicle ahead is stopped at a point of a distance L from the host vehicle traveling at the speed Vs or traveling at a low speed (speed Va) , provided that Vs> Va, Va ≦ Va0, The following traveling region is set and determined and traveling toward the following traveling region is performed. As a result, when the relative speed Vr of the host vehicle becomes Vr = 0 with respect to the preceding vehicle, the inter-vehicle distance L is A distance within the range satisfying 6) is reached.

その後の惰性走行中あるいは停止中の自車においては、前方車両の移動によって車間距離Lが(数13)に拡大するまで待って、自車速度Vsが(数14)に達するまで緩加速度αaで発進・加速を行う。
その後前方車両との車間距離Lが(数9)の距離に縮小(接近)するまで前記(数14)の速度で定速走行し、車間距離Lが(数9)の距離まで接近した時点で緩加速度走行を減速度(−αi )での惰性走行に切り替えて走行する。
惰性走行移行後は、車間距離が安全車間距離L1になるまで、あるいは自車速Vsが0あるいは極低速になるまで惰性走行を継続して停止する。
After that, in the coasting vehicle that is running or stopped, the vehicle waits until the inter-vehicle distance L increases to (Equation 13) due to the movement of the vehicle ahead, and the vehicle speed Vs reaches ( Equation 14) at a slow acceleration αa. It intends line the start and acceleration.
Thereafter, the vehicle travels at a constant speed at the speed of (Equation 14) until the inter-vehicle distance L with the preceding vehicle is reduced (approached) to the distance of (Equation 9), and when the inter-vehicle distance L approaches the distance of (Equation 9). The vehicle travels by switching the slow acceleration traveling to the inertial traveling at the deceleration (−αi).
After shifting to inertial traveling, inertial traveling is continued and stopped until the inter-vehicle distance L reaches the safe inter-vehicle distance L1 , or until the host vehicle speed Vs becomes zero or extremely low.

(数14)
Vs =Va +Vr0
(Equation 14)
Vs = Va + Vr0

上記惰性走行中あるいは自車速Vsがごく小さくなって停止後、前方車両が移動して車間距離が再び(数13)まで拡大した場合再度前記発進・加速および惰性走行を行い、これを渋滞離脱まで(即ち前方車両速度Va がVa>Va0となるまで)繰り返す。 During the inertial running or when the host vehicle speed Vs becomes very small and stops, the vehicle ahead moves and the inter-vehicle distance increases again to (Equation 13). Repeat (that is, until the forward vehicle speed Va becomes Va> Va0).

ここで渋滞走行における発進・加速を開始する条件としての(数13)に示す車間距離Lは、通常の渋滞走行時の発進・加速開始時の車間距離より大きくなるようにL2(Va) +L3(Va)即ち、前方走行車速度Va が(数15)を満足する場合の許容相対速度Vr0、を設定する。 Here, the inter-vehicle distance L shown in (Equation 13) as a condition for starting and accelerating in traffic jam traveling is L2 (Va) + L3 so as to be larger than the inter-vehicle distance at the start and acceleration start in normal traffic jam travel. (Va) That is, the allowable relative speed Vr0 when the forward traveling vehicle speed Va satisfies (Expression 15) is set.

(数15)
0≦Va ≦Va0
(Equation 15)
0 ≦ Va ≦ Va0

上記のごとく渋滞走行を行うことによって、従来の渋滞走行時よりも発進・加速頻度、減速およびブレーキ使用頻度が少なく、かつ「発進・加速・(定速走行)・減速」1サイクルの渋滞走行における走行距離が長くなることから、通常の渋滞時の走行に比して省エネルギー化・排出ガス量削減化が可能となる。 By performing the traffic jam as described above, the start / acceleration frequency, deceleration and brake usage frequency is less than in the conventional traffic jam run, and "start / acceleration / (constant speed running) / deceleration" Since the travel distance becomes longer, it is possible to save energy and reduce the amount of exhaust gas as compared with the travel during normal traffic congestion.

本願発明によって、一般道路あるいは自動車専用道において、前方車両を検知してのちの追従走行への移行、および追従走行移行後の追従走行の継続、を安全かつ効率的に行うことができ、車両のエネルギー回生機能有無にかかわらず、車両の省エネルギーおよび排出ガス量削減走行に大きく寄与することができる。特に特許文献2、特許文献3等に示す「交差点無停止走行制御システム」における前方車両への追従走行に有効である。 According to the present invention, it is possible to safely and efficiently perform the transition to the follow-up running after detecting the preceding vehicle and the continuation of the follow-up run after the follow-up run transition on the ordinary road or the exclusive road for automobiles. Regardless of the presence or absence of the energy regeneration function, it can greatly contribute to the energy saving and emission reduction driving of the vehicle. In particular, this is effective for following traveling to the preceding vehicle in the “intersection non-stop traveling control system” shown in Patent Document 2, Patent Document 3, and the like.

また、本願発明の追従方法を応用した渋滞走行によって、従来の渋滞走行時におけるよりも少ない頻度で発進・加速・減速の繰り返し走行を行うことができ、また減速は原則的にはブレーキによる減速を行なわずに惰性走行による減速を行うことによって、省エネルギーかつ排出ガス量を低減した渋滞走行が可能になる。 Also, the traffic congestion running an application of the tracking method of the present invention, it is possible to perform the repeated running of the starting and acceleration and deceleration less frequently than definitive when conventional traffic jam traveling and the deceleration by the brake to decelerate principle By performing deceleration by coasting without performing it, it is possible to travel in a traffic jam that saves energy and reduces the amount of exhaust gas.

本願発明による追従走行の基本的考え方説明図、Basic concept explanatory diagram of follow-up running according to the present invention, 本願発明のACC(Adaptive Cruise Control)装置機能構成例その1、ACC (Adaptive Cruise Control) device functional configuration example 1 of the present invention, 本願発明のACC(Adaptive Cruise Control)装置機能構成例その2、ACC (Adaptive Cruise Control) device functional configuration example 2 of the present invention, 本願発明による追従走行制御手順例、Follow-up running control procedure example according to the present invention, 本願発明による渋滞走行制御手順例、Example of traffic congestion control procedure according to the present invention,

本願発明の実施は基本的にはACC(Adaptive Cruise Control)装置の改良で可能である。また従来のACC装置の構成要素の一つであるレーダ機能に代えて、あるいは加えて、自車位置特定機能たとえばGPS受信機及び車車間通信機能を設ける方法もある。 The present invention can be basically implemented by improving an ACC (Adaptive Cruise Control) apparatus. Further, instead of or in addition to the radar function which is one of the components of the conventional ACC device, there is a method of providing a vehicle position specifying function such as a GPS receiver and a vehicle-to-vehicle communication function.

以下実施例1にレーダ方式ACC装置による本願発明実施例を、実施例2に車車間通信方式ACC装置による本願発明実施例を、各々示す。 The first embodiment of the present invention using a radar ACC device is shown in the first embodiment, and the second embodiment of the present invention using a vehicle-to-vehicle communication ACC device is shown in a second embodiment.

レーダ方式ACC装置機能図を図2に、図2中の演算制御部22における追従走行制御手順例を図4に、また渋滞走行制御手順例を図5に、各々示す。
図2において、
20は、レーダ21および演算制御部22で構成されるACC装置、
21は、自車両から前方車両までの距離Lおよび自車速度Vsに対する前方車両の相対速度Vr を検知するレーダ、
22は、レーダ21出力である自車両から前方車両までの距離L情報および自車速度Vsに対する前方車両の相対速度Vr情報、自車両から得られる自車速度Vs 情報、ドライバーが設定する自車両走行に際しての設定速度情報および走行制御有無情報、から自車両走行のための速度制御情報、車両駆動/惰性走行制御情報を自車両の駆動力出力機構・駆動力伝達機構・制動制御機構に対して出力する演算制御部、
である。
A radar system ACC device functional diagram is shown in FIG. 2, an example of a follow-up running control procedure in the arithmetic control unit 22 in FIG. 2 is shown in FIG. 4, and an example of a traffic jam running control procedure is shown in FIG.
In FIG.
20 is an ACC device composed of a radar 21 and an arithmetic control unit 22;
21 is a radar that detects the relative speed Vr of the front vehicle with respect to the distance L from the own vehicle to the preceding vehicle and the own vehicle speed Vs;
Reference numeral 22 denotes a radar 21 output distance L information from the own vehicle to the preceding vehicle, relative speed Vr information of the preceding vehicle with respect to the own vehicle speed Vs, own vehicle speed Vs information obtained from the own vehicle, and own vehicle travel set by the driver. The speed control information for driving the vehicle and the vehicle driving / inertia driving control information are output to the driving force output mechanism / driving force transmission mechanism / braking control mechanism of the own vehicle from the set speed information and the traveling control presence / absence information at the time Arithmetic control unit,
It is.

図2中の演算制御部における追従走行への移行および追従走行継続のための車両走行制御手順を図4に示す。
図4において、
401は、走行制御手順開始点、
402は、ドライバーからの走行制御を開始するか否かの指示の有無を判断する走行制御開始判定処理、
403は、処理402で走行制御指示があると判定した後、レーダ検知距離範囲内前方に車両があるか否かを判定する前方車両有無判定処理、
404は、処理403で前方車両無しと判定した場合、あらかじめACC装置に設定されている定速走行速度で車両を走行させる定速走行処理、
FIG. 4 shows a vehicle travel control procedure for transition to follow-up running and continuation of follow-up running in the arithmetic control unit in FIG.
In FIG.
401 is the starting point of the travel control procedure,
402 is a travel control start determination process for determining whether or not there is an instruction on whether or not to start the travel control from the driver;
403 is a front vehicle presence / absence determination process for determining whether or not there is a vehicle ahead in the radar detection distance range after determining that there is a travel control instruction in process 402;
404 is a constant speed traveling process for causing the vehicle to travel at a constant speed traveling speed set in advance in the ACC device when it is determined in step 403 that there is no preceding vehicle.

405は、処理403で前方車両有と判定した場合、前方車両までの車間距離、相対速度Vr、および自車速度Vsを検知して、自車速と相対速度から前方車両速度VaVa
=Vs−Vr(但し、自車に前方車両が接近する場合:Vr>0、離遠していく場合:Vr<0、)より算出した後、前方車両速度Vaに対応する安全車間距離L1、惰性走行距離L2を前記(数1)から、緩加速度走行距離L3を(数3)から、各々設定して、追従走行領域(車間距離範囲L1〜L1+L2+L3、相対速度範囲−Vr0〜+Vr0で定まる領域)を設定する追従走行領域設定処理1、
406は、自車両、前方車両の現状下で、自車両が惰性走行を行った場合相対速度Vr=0時点で前記追従走行領域に到達可能か否かを判定する追従走行移行可否判定処理、
407は、処理406で、追従走行移行不可と判定した場合に一定時間(あるいは一定距離)現状の通常走行を継続する通常走行継続処理、
If it is determined in step 403 that there is a front vehicle, 405 detects the inter-vehicle distance L 1 to the front vehicle, the relative speed Vr , and the own vehicle speed Vs , and determines the forward vehicle speed Va from the own vehicle speed and the relative speed as Va.
= Vs−Vr (However, when the vehicle ahead approaches the vehicle: Vr > 0, when moving away: Vr <0,), the safety inter-vehicle distance L1 corresponding to the vehicle speed Va ahead, The inertial traveling distance L2 is set from the above ( Equation 1) and the slow acceleration traveling distance L3 is set from the ( Equation 3), respectively, and the following traveling range (inter-vehicle distance range : L1 to L1 + L2 + L3 , relative speed range : −Vr0 to + Vr0 ) Follow-up running area setting process 1 for setting
406 is a follow-up traveling transition determination process for determining whether the following travel region can be reached at a relative speed Vr = 0 when the host vehicle is coasting under the current conditions of the host vehicle and the preceding vehicle.
Reference numeral 407 denotes a normal travel continuation process in which the current normal travel is continued for a certain period of time (or a certain distance) when it is determined in the process 406 that the follow-up travel transition is impossible.

408は、処理406で追従走行移行可と判定した場合、その時点の自車速度Vsから惰性走行に移行する惰性走行開始処理、
409は、処理408で惰性走行開始して後、処理405と同様前方車両との車間距離、前方車両速度Va、自車速度Vsを検知・演算し、追従走行領域を設定する追従走行領域設定処理2、
410は、現時点で、自車両と前方車両との車間距離L≧L1であるか否か、すなわち安全車間距離以上であるか否かを判定する、安全車間距離判定処理、
411は、処理410で車間距離が安全車間距離未満であると判定した場合は、安全車間距離を確保するため直ちに、制動処理(この場合は、回生ブレーキあるいは摩擦ブレーキを使用する)を行う制動処理、
412は、相対速度VrVr=0になったか否か、すなわち自車が追従走行領域内に入ったか否かを判定するタイミングに達したか否かを判定する相対速度0判定処理、
In step 406, when it is determined in step 406 that it is possible to shift to follow-up traveling, inertial traveling start processing for shifting from the current vehicle speed Vs to inertial traveling,
In step 409, after starting inertial traveling in step 408, the following traveling region setting for detecting and calculating the inter-vehicle distance L 1 with the preceding vehicle, the forward vehicle speed Va , and the host vehicle speed Vs and setting the following traveling region is the same as in step 405. Process 2,
410 is a safe inter-vehicle distance determination process for determining whether or not the inter-vehicle distance L between the host vehicle and the preceding vehicle is L ≧ L1, that is, whether the inter-vehicle distance is equal to or greater than the safe inter-vehicle distance.
In step 411, when it is determined in the process 410 that the inter-vehicle distance L is less than the safe inter-vehicle distance, a braking process (in this case, using a regenerative brake or a friction brake) is performed immediately to secure the safe inter-vehicle distance. processing,
412 is a relative speed 0 determination process for determining whether or not the relative speed Vr has reached Vr = 0, that is, whether or not it has reached a timing for determining whether or not the vehicle has entered the following traveling region.

413は、以降追従走行処理を行うか、渋滞走行を行うかを判定する渋滞走行判定処理502(本図には示さず、図5に示す)へ移行のための結合子
414は、図5渋滞走行判定処理502において判定の結果渋滞走行を行わないと判定された場合に処理415に移行する結合子
415は、現状自車両が惰性追従走行領域中、すなわち車間距離が(数7)を、また相対速度Vrが(数3)を、満足する領域中にあるか否かを判定する惰性追従走行領域判定処理、
416は、現状自車両が緩加速度追従走行領域中、すなわち車間距離が(数8)を、また相対速度Vrが(数3)を 満足する領域中、にあるか否かを判定する緩加速度追従走行領域判定処理、
Reference numeral 413 denotes a connector A for shifting to a traffic jam determination process 502 (not shown in this figure but shown in FIG. 5) for determining whether to perform a follow-up driving process or a traffic jam.
414 is a connector B that shifts to the process 415 when it is determined in the traffic jam determination process 502 in FIG.
Reference numeral 415 denotes an inertial follow-up running in which it is determined whether or not the current vehicle is in an inertial follow-up running region, that is, whether the inter-vehicle distance L is in the region that satisfies ( Expression 7) and the relative speed Vr is in ( Expression 3). Area determination processing,
416 is a slow acceleration that determines whether or not the current vehicle is in the slow acceleration following travel region, that is, the inter-vehicle distance L is in (Expression 8) and the relative speed Vr is in the region of satisfying ( Expression 3). Follow-up travel area determination process,

417は、処理415において惰性追従走行領域にあると判定された場合、惰性走行を行う惰性走行処理、
418は、処理417で惰性走行を行って後、処理405あるいは処理409と同様前方車両との車間距離、前方車両速度Va、自車速度Vsを検知・演算し、追従走行領域を設定する追従走行領域設定処理3、
419は、処理418の結果、自車両は惰性走行から緩加速度走行に移行すべき状態に達したか否かを(数9)および(数10)より判定する緩加速度走行移行判定処理、
417 is an inertia running process for performing inertia running when it is determined in the process 415 that the vehicle is in the inertia following running area;
Step 418 detects and calculates the inter-vehicle distance L 1 , the forward vehicle speed Va , and the own vehicle speed Vs with the preceding vehicle after performing inertial traveling in Step 417, and sets the following traveling region. Travel area setting process 3,
419 is a slow acceleration travel transition determination process in which it is determined from (Equation 9) and (Equation 10) whether or not the vehicle has reached a state where it should transition from inertial travel to slow acceleration travel as a result of the process 418.

420は、処理416において緩加速度追従走行領域にあると判定された場合、緩加速度走行を行う惰性走行処理、
421は、処理420で緩加速度走行を行って後、処理405、処理409あるいは処理418と同様前方車両との車間距離、前方車両速度Va、自車速度Vsを検知・演算し、追従走行領域を設定する追従走行領域設定処理4、
422は、処理421の結果、自車両は緩加速度走行から惰性走行に移行すべき状態に達したか否かを(数9)および(数11)から判定する惰性走行移行判定処理、
である。
420 is an inertia running process that performs a slow acceleration running when it is determined in the slow acceleration following running area in the process 416;
421, after performing slow acceleration traveling in the process 420, detects and calculates the inter-vehicle distance L , the forward vehicle speed Va , the host vehicle speed Vs with the preceding vehicle in the same manner as the process 405, 409, or 418, and follows the traveling region. Follow-up running area setting process 4 for setting
422 is an inertia traveling transition determination process for determining whether or not the vehicle has reached a state where it should transition from the slow acceleration traveling to the inertia traveling as a result of the processing 421, from (Equation 9) and (Equation 11);
It is.

次に、図2中の演算制御部における渋滞走行の車両走行制御手順を図5に示す。
図5において、
501は、図4に示す結合子(処理413)に接続する結合子
502は、自車両が渋滞走行すべき状況にあるか追従走行すべき状況にあるかの判定を、前方車両速度Vaが(数15)を満足するか否かで判定する渋滞走行判定処理、
503は、処理502の判定の結果、自車両は渋滞走行ではなく追従走行すべき状況にあると判定した場合に図4の結合子(処理414)経由処理415に移行する結合子
Next, FIG. 5 shows a vehicle travel control procedure for traffic congestion in the arithmetic control unit in FIG.
In FIG.
501, connector A to be connected to connector A (process 413) shown in FIG. 4,
502 is a traffic congestion determination process for determining whether the host vehicle is in a traffic congestion driving condition or a tracking driving condition depending on whether the forward vehicle speed Va satisfies ( Expression 15);
503 is a connector B that shifts to the process 415 via the connector B (process 414) in FIG. 4 when it is determined that the host vehicle is not in a traffic jam and should follow the vehicle as a result of the determination in the process 502.

504は、処理502において自車両は渋滞走行すべき状況にあると判定した場合、車間距離が(数13)を満足するか否か、すなわち緩加速度走行を開始すべきか否かを判定する緩加速走行開始判定処理、
505は、処理504で緩加速度走行開始と判定した場合に、緩加速度αaでの緩加速度走行を開始する緩加速度走行開始処理、
If it is determined in step 502 that the host vehicle is in a situation where the vehicle should be congested, 504 determines whether or not the inter-vehicle distance L satisfies (Equation 13), that is, whether or not the slow acceleration traveling should be started. Acceleration running start determination processing,
505 is a slow acceleration running start process for starting slow acceleration running at the slow acceleration αa when it is determined that the slow acceleration running is started in the process 504;

506は、処理504において車間距離が(数13)を満足しないと判定した場合に、車間距離が(数9)まで短縮したか否かから緩加速度走行継続あるいは(数14)に示される自車速度Vsでの定速走行継続を判定する緩加速走行継続判定処理、
507は、処理506で緩加速度走行継続と判定した場合には、自車速度Vsが(数14)を満足するまで緩加速度αaの緩加速度走行を、あるいは自車速度Vsが(数14)を満足した後は(数14)に示される速度での定速走行を、各々行う緩加速度走行継続処理、
If it is determined in the process 504 that the inter-vehicle distance L does not satisfy (Equation 13), whether or not the inter-vehicle distance L has been shortened to (Equation 9) indicates whether or not the slow acceleration continuation is continued or (Equation 14). Gradual acceleration travel continuation determination process for determining continuation of constant speed travel at own vehicle speed Vs
If it is determined in step 506 that the slow acceleration running is continued, the vehicle accords with the slow acceleration αa until the own vehicle speed Vs satisfies (Expression 14), or the own vehicle speed Vs satisfies (Expression 14). After the satisfaction, a slow acceleration running continuation process in which constant speed running at the speed shown in (Formula 14) is performed,

508は、車間距離が(数7)に示される距離までに縮小したか否かから惰性走行可否の判定をする惰性走行判定処理、
509は、処理508で惰性走行と判定した場合には、減速度(−αi )での惰性走行を行う惰性走行処理、
510は、処理508で車間距離が安全車間距離L1未満になった((数12)を満足した)と判定された場合、安全のためのブレーキによる制動を行う制動処理、
511は、処理505、507、509、510、の後前方車両との車間距離、前方車両速度Va、自車速度Vsを検知・演算し、追従走行領域を設定する追従走行領域設定処理5、
である。
以上のごとき制御により、従来の追従走行あるいは渋滞走行に比して惰性走行を有効活用した、ブレーキ使用頻度の少ない、その結果としてのエネルギー消費量および排出ガス量の少ない、走行が可能になる。
508 is an inertial traveling determination process for determining whether inertial traveling is possible or not based on whether or not the inter-vehicle distance L is reduced to the distance shown in (Equation 7);
509 is an inertial traveling process for performing inertial traveling at a deceleration (−αi) when the inertial traveling is determined in the process 508;
510 is a braking process for performing braking with a brake for safety when it is determined in the process 508 that the inter-vehicle distance L is less than the safe inter-vehicle distance L1 (the expression (12) is satisfied);
511, the processing 505,507,509,510, after inter-vehicle distance L to the preceding vehicle, the preceding vehicle speed Va, and detection and computing the vehicle speed Vs, the follow-up run area setting process sets a follow-up running region 5 ,
It is.
By the control as described above, it is possible to travel with less frequent use of the brake and less energy consumption and less exhaust gas as compared with the conventional follow-up traveling or traffic jam traveling, which effectively uses inertial traveling .

車車間通信方式ACC装置機能図を図3に、示す。
図3において、
30は、車車間通信装置31、GPS受信機33、および演算制御部32で構成されるACC装置、
31は、自車両と前方車両の間で通信を行い、前方車両の走行速度Vaおよび前方車両の位置情報を得る車車間通信装置、
33は、自車両の位置を特定するGPS受信機であり、本GPS受信機での自車位置特定は前方車両の位置特定と同期して行う必要がある。
32は、車車間通信装置31出力である前方車両走行速度Vaおよび前方車両位置情報、GPS受信機33出力である自車位置情報、および自車両の有する自車速度Vs情報、から自車両―前方車両間距離Lおよび相対速度Vr (Vr =Vs−Vaより算出)を算出すること以外は前記実施例1の演算制御部22におけると同様な演算処理および各種情報の入出力を行う演算制御部、
である。
The inter-vehicle communication system ACC device functional diagram is shown in FIG.
In FIG.
30 is an ACC device composed of an inter-vehicle communication device 31, a GPS receiver 33, and an arithmetic control unit 32;
31 is an inter-vehicle communication device that performs communication between the host vehicle and the preceding vehicle, and obtains the traveling speed Va of the preceding vehicle and the position information of the preceding vehicle,
Reference numeral 33 denotes a GPS receiver that identifies the position of the host vehicle. The position of the host vehicle by the GPS receiver needs to be synchronized with the position of the preceding vehicle.
32, from the front vehicle traveling speed Va and the front vehicle position information which are the outputs of the inter-vehicle communication device 31; the own vehicle position information which is the output of the GPS receiver 33; and the own vehicle speed Vs information which the own vehicle has; except that calculates the inter-vehicle distance L and the relative velocity Vr (calculated from Vr = Vs-Va), the calculation control unit that inputs and outputs similar processing and various information as in the arithmetic control section 22 of the first embodiment ,
It is.

また上記車車間通信方式ACC装置演算制御部32における処理手順は、前記のとおり、車車間通信によって得られる前方車両の速度Va情報と自車速度Vs情報から相対速度情報Vrを得ること、および車車間通信によって得られる前方車両位置情報と前記前方車両位置情報獲得と同期して獲得した自車位置情報から車間距離情報を得ること、以外はまったくレーダ方式ACC装置演算制御部22と同様であるのでここでの説明は省略する。 In addition, as described above, the processing procedure in the inter-vehicle communication system ACC device calculation control unit 32 obtains the relative speed information Vr from the speed Va information and the own vehicle speed Vs information obtained by the inter-vehicle communication, and the vehicle Except for obtaining the inter-vehicle distance information L from the front vehicle position information obtained by the inter-vehicle communication and the own vehicle position information acquired in synchronization with the acquisition of the front vehicle position information, it is completely the same as the radar system ACC device calculation control unit 22. Therefore, explanation here is omitted.

以上述べたごとく本願発明による車両走行制御方法によって、通常走行中の車両の前方車両へのスムーズで効率的な追従走行移行、前方車両に対する追従走行開始後の安定・安全・効率的走行、および渋滞走行時の発進・加速および制動頻度の低減による安全でエネルギー消費の少ない走行、が可能となり車両の省エネルギー、排出ガス削減に大きな効果をもたらすことができる。
特に本願発明による単独走行から追従走行への移行、移行後の追従走行方法は、交差点無停止走行制御システム(交差点信号状態遷移タイミング情報等から車両の走行速度を制御して交差点を青信号無停止で通過するシステム、特許文献2、3を参照されたい)における前方車両追従移行および追従走行時において有効である。
As described above, the vehicle travel control method according to the present invention allows smooth and efficient follow-up transition of a vehicle in normal travel to the front vehicle, stable, safe and efficient travel after the start of follow-up for the front vehicle, and congestion. Secure less driving energy consumption due to reduction of starting and acceleration and braking frequency during running, can and become a vehicle for energy conservation, it is possible to bring about a great effect in reducing emissions.
In particular, according to the present invention, the transition from isolated traveling to following traveling, the following traveling method after the transition, is the intersection non-stop traveling control system (controls the vehicle traveling speed from the intersection signal state transition timing information, etc. This is effective during forward vehicle following transition and following traveling in a passing system (see Patent Documents 2 and 3).

11:自車両
12:前方車両
13:追従走行領域
14:惰性追従走行領域
15:緩加速度追従走行領域
16:境界車間距離
L:自車両−前方車両車間距離
Vs:自車速度、
Va:前方車両速度、
Va0:渋滞走行時の前方車両速度許容最大値、
Vr:自車−前方車両相対速度(>0:離遠しつつあるとき、<0:接近しつつあるとき)、
αi(Va)、αi:前方車両速度Vaに対応する惰性走行減速度絶対値、
αa:緩加速度、
Vr0(Va)、Vr0:追従走行領域における前方車両速度Vaに対応する自車−前方車両許容相対速度最大値、
L1(Va)、L1:前方車両速度Vaに対応する自車−前方車両間安全車間距離
L2(Va)、L2:前方車両速度Vaに対応する、(数1)で示される、惰性走行距離最大値、惰性走行領域車間距離、
L3(Va)、L3:前方車両速度Vaに対応する、(数2)で示される、緩加速度走行距離最大値、緩加速度走行領域車間距離、
L1+L2:境界車間距離、
L’:予測車間距離、
11: Own vehicle 12: Forward vehicle 13: Follow-up travel region 14: Inertia follow-up travel region 15: Slow acceleration follow-up travel region 16: Distance between boundary vehicles L: Distance between own vehicle and forward vehicle Vs: Own vehicle speed,
Va: Front vehicle speed,
Va0: Maximum allowable vehicle speed in front of a vehicle in traffic
Vr: host vehicle-front vehicle relative speed (> 0: when moving away, <0: when approaching),
αi (Va), αi: inertial running deceleration absolute value corresponding to the forward vehicle speed Va,
αa: slow acceleration,
Vr0 (Va), Vr0: own vehicle-front vehicle allowable relative speed maximum value corresponding to the forward vehicle speed Va in the following traveling region,
L1 (Va), L1: Maximum vehicle-to-front vehicle distance Va corresponding to the forward vehicle speed Va L2 (Va), L2: Front vehicle speed Va corresponding to the forward vehicle speed Va Value, inertial driving range, inter-vehicle distance,
L3 (Va), L3: corresponding to the forward vehicle speed Va, the slow acceleration travel distance maximum value, the slow acceleration travel area inter-vehicle distance shown in (Equation 2),
L1 + L2: Boundary distance between vehicles
L ′: Estimated inter-vehicle distance,

Claims (2)

自車−前方走行車両の間に、前方車両速度Vaに対応した自車−前方車両間相対速度許
容範囲(−Vr0≦Vr≦Vr0)、自車−前方車両間追従走行車間距離範囲(L1≦L≦L1
+L2+L3)、で設定される追従走行領域を設け、前記追従走行領域内の境界車間距離
(L=L1+L2)において惰性走行から緩加速走行、あるいは緩加速走行から惰性走行、
への移行を交互に繰り返し行うことによって前方車両走行速度に対応した前方車両への
追従走行を行うことを特徴とする車両走行制御方法。
ここで、
L:自車両−前方車両車間距離、
Va:前方車両速度、
Vr:自車−前方車両相対速度、
Vr0: 追従走行領域における前方車両速度aに対応する自車−前方車両許容相対
速度最大値、
L1:前方車両速度Vaに対応する自車−前方車両間安全車間距離、
L2:前方車両速度Vaに対応する、惰性走行距離最大値、
L2=Vr0 2 /(2・αi)
L3:前方車両速度Vaに対応する、緩加速度走行距離最大値、
L3=Vr0 2 /(2・αa)
L1 +L2:境界車間距離、
αi:惰性走行減速度絶対値、
αa:緩加速度、
である。
Between the own vehicle and the forward traveling vehicle, the allowable relative speed range between the own vehicle and the forward vehicle corresponding to the forward vehicle speed Va (−Vr0 ≦ Vr ≦ Vr0 ), and the following traveling distance range between the own vehicle and the preceding vehicle (L1 ≦ L ≦ L1
+ L2 + L3), and a boundary traveling distance (L = L1 + L2) in the following traveling region is set, and inertial traveling to slow acceleration traveling, or slow acceleration traveling to inertial traveling,
A vehicle travel control method characterized by performing a follow-up travel to a forward vehicle corresponding to the forward vehicle travel speed by alternately and repeatedly performing the shift to step (a).
here,
L: Distance between own vehicle and forward vehicle,
Va: Front vehicle speed,
Vr: host vehicle-front vehicle relative speed,
Vr0: own vehicle-front vehicle allowable relative speed maximum value corresponding to the forward vehicle speed Va in the following traveling region,
L1: A safe inter-vehicle distance between the host vehicle and the preceding vehicle corresponding to the preceding vehicle speed Va,
L2: Maximum coasting distance corresponding to the forward vehicle speed Va ,
L2 = Vr0 2 /(2.αi)
L3: Maximum slow acceleration travel distance corresponding to the forward vehicle speed Va ,
L3 = Vr0 2 /(2.αa)
L1 + L2: Boundary distance between vehicles
αi: Inertia travel deceleration absolute value,
αa: slow acceleration,
It is.
自車の通常走行状態から追従走行領域への惰性走行による到達可否の判定を、通常走行
一定時間毎あるいは一定走行距離毎に可となるまで繰り返し行い、可となった時点から追
従走行領域に向けて惰性走行を行い、惰性走行中前方車両との車間距離Lが
L1≦L≦L1+L2+L3の範囲内で自車−前方車両相対速度VrがVr=0、となった時
点で追従走行領域への移行を終了したとすることを特徴とする請求項1記載の車両走行制
御方法。
The determination of whether or not the vehicle can reach the following driving area from the normal driving state by inertial driving is repeated until it becomes possible every normal driving every fixed time or every fixed driving distance. When the vehicle is coasting , the distance L between the vehicle and the vehicle ahead is
L1 ≦ L ≦ L1 + L2 + L3 range with the vehicle in - vehicle travel of the forward vehicle relative speed Vr is Vr = 0, to have been completed the transition to follow-up running region when it becomes in claim 1, wherein Control method.
JP2009150386A 2009-06-25 2009-06-25 Vehicle travel control method Active JP4716340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150386A JP4716340B2 (en) 2009-06-25 2009-06-25 Vehicle travel control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150386A JP4716340B2 (en) 2009-06-25 2009-06-25 Vehicle travel control method

Publications (3)

Publication Number Publication Date
JP2011005920A JP2011005920A (en) 2011-01-13
JP2011005920A5 JP2011005920A5 (en) 2011-02-24
JP4716340B2 true JP4716340B2 (en) 2011-07-06

Family

ID=43563126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150386A Active JP4716340B2 (en) 2009-06-25 2009-06-25 Vehicle travel control method

Country Status (1)

Country Link
JP (1) JP4716340B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089103B2 (en) 2013-05-31 2017-03-01 日立オートモティブシステムズ株式会社 Vehicle control apparatus and vehicle control method
JP6106758B2 (en) * 2013-09-26 2017-04-05 日立オートモティブシステムズ株式会社 Vehicle control device
KR101551092B1 (en) 2014-05-15 2015-09-07 현대자동차주식회사 Apparatus for controlling speed of vehicle using image and method thereof
KR101836675B1 (en) 2016-07-29 2018-04-20 현대자동차주식회사 Control method for coasting of automotive
KR102483014B1 (en) * 2016-09-21 2022-12-30 현대모비스 주식회사 Method for controlling braking through estimating coasting deceleration
KR102496636B1 (en) * 2016-11-25 2023-02-07 현대자동차주식회사 Apparatus for controlling a coasting in hybrid vehicle and method thereof
US10906547B2 (en) 2018-11-28 2021-02-02 Hyundai Motor Company Controlling engine idle sailing in a vehicle using relative vehicle speed
WO2023026707A1 (en) * 2021-08-25 2023-03-02 株式会社デンソー Vehicle control device and vehicle control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104993A (en) * 1991-10-15 1993-04-27 Toyota Motor Corp Run control device for vehicle
JPH10338056A (en) * 1997-06-10 1998-12-22 Nissan Motor Co Ltd Vehicular follow-up running control device
JP2004010003A (en) * 2002-06-11 2004-01-15 Toyota Motor Corp Travel control device
JP2007291919A (en) * 2006-04-24 2007-11-08 Toyota Motor Corp Travel control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104993A (en) * 1991-10-15 1993-04-27 Toyota Motor Corp Run control device for vehicle
JPH10338056A (en) * 1997-06-10 1998-12-22 Nissan Motor Co Ltd Vehicular follow-up running control device
JP2004010003A (en) * 2002-06-11 2004-01-15 Toyota Motor Corp Travel control device
JP2007291919A (en) * 2006-04-24 2007-11-08 Toyota Motor Corp Travel control device for vehicle

Also Published As

Publication number Publication date
JP2011005920A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP4716340B2 (en) Vehicle travel control method
JP4646334B2 (en) Vehicle travel control method
US10239526B2 (en) Adaptive cruise control system
JP2010093947A (en) Vehicle running control method
JP4639320B2 (en) Moving body movement pattern calculation apparatus and method
US9969391B2 (en) Vehicle travel control apparatus
WO2017204006A1 (en) Vehicle control device
JP6286192B2 (en) Drive control device for moving body
JP4793886B2 (en) Vehicle travel control method
JP4581988B2 (en) Control device for hybrid vehicle
JP2013226945A (en) Vehicle traveling control method
JP2017022911A (en) Vehicular control apparatus
JP2017128167A (en) Vehicle control device
JP2011225103A (en) Vehicle traveling control method
WO2011121700A1 (en) Vehicle control device
JP2019059474A (en) Hybrid vehicle control device
JP2011005920A5 (en)
JP7190345B2 (en) Vehicle motion control device and method
JP2013089136A (en) Road shape estimation device of vehicle, and vehicle travel control device including the same
US10024878B2 (en) Decelerating factor estimating device
JPWO2013099011A1 (en) Deceleration factor estimation device
JP2017081353A (en) Electric car control device
JPWO2014192360A1 (en) Vehicle control device
JP2010143551A (en) Driving assistance system
JP6495793B2 (en) Control device and control method for electric vehicle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Ref document number: 4716340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250