JP4715022B2 - Method for producing zinc oxide sinter or zinc oxide briquette - Google Patents

Method for producing zinc oxide sinter or zinc oxide briquette Download PDF

Info

Publication number
JP4715022B2
JP4715022B2 JP2001136340A JP2001136340A JP4715022B2 JP 4715022 B2 JP4715022 B2 JP 4715022B2 JP 2001136340 A JP2001136340 A JP 2001136340A JP 2001136340 A JP2001136340 A JP 2001136340A JP 4715022 B2 JP4715022 B2 JP 4715022B2
Authority
JP
Japan
Prior art keywords
zinc oxide
fluorine
sinter
crude
briquette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001136340A
Other languages
Japanese (ja)
Other versions
JP2002326814A (en
Inventor
公昭 宇都宮
寿春 杉浦
哲也 越野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001136340A priority Critical patent/JP4715022B2/en
Publication of JP2002326814A publication Critical patent/JP2002326814A/en
Application granted granted Critical
Publication of JP4715022B2 publication Critical patent/JP4715022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法に関し、特に、鉄鋼業の高炉、電気炉等で発生する鉄鋼ダストから回収される粗酸化亜鉛から、酸化亜鉛焼鉱または酸化亜鉛団鉱を製造する方法において、フッ素成分を効果的に除去する方法に関する。
【0002】
【従来の技術】
鉄鋼業における高炉や電気炉から発生する鉄鋼ダスト等から回収された粗酸化亜鉛等には、その主成分である酸化亜鉛や酸化鉛以外に、塩素およびフッ素等のハロゲン成分が相当量含有されており、従来からこの粗酸化亜鉛中におけるハロゲン成分を除去し、低ハロゲン含有率の酸化亜鉛焼鉱または酸化亜鉛団鉱を製造している。
【0003】
図2に、従来の粗酸化亜鉛処理工程のフローチャートを示す。
【0004】
この酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法において、粗酸化亜鉛に湿式処理を施すことでハロゲン化物を除去して、乾燥加熱炉にて焼成および造粒を行う。
【0005】
鉄鋼ダスト等から回収される粗酸化亜鉛中には、8〜18質量%程度の塩素および0〜5質量%程度のフッ素等のハロゲンを、塩素化合物またはフッ素化合物等のハロゲン化物として含有している。従って、これらのハロゲン化物やその他の不純物は、NaCO3、Na(OH)2あるいはその他の薬剤を用いる湿式処理を施すことで除去する。
【0006】
粗酸化亜鉛に湿式処理を施すことにより除去されたハロゲン化物は、工程液中に濃縮されており、工程液中には粗酸化亜鉛から極微量溶出した亜鉛および/または鉛成分も含有している。この亜鉛および/または鉛成分を、工程液から回収する方法として、消石灰を用いて工程液のpHを調整することにより、亜鉛化合物あるいは鉛化合物として析出させる中和処理方法がある。
【0007】
この中和処理方法で回収された亜鉛化合物あるいは鉛化合物を含有する中和処理澱物は、粗酸化亜鉛に湿式処理を施して得られる酸化亜鉛スラリーと共に、乾燥加熱炉にて焼成および造粒を行い、酸化亜鉛焼鉱または酸化亜鉛団鉱に固定させる方法が一般的に行われている。
【0008】
しかし、中和処理方法においては、工程液中のフッ素成分も、CaF2あるいはその他のカルシウム/フッ素化合物を形成し析出し、中和澱物中に含有され回収される。従って、酸化亜鉛焼鉱または酸化亜鉛団鉱のフッ素含有率が上昇する問題がある。
【0009】
【発明が解決しようとする課題】
本発明の方法は、フッ素含有率の低い酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法は、焼成・造粒工程の前処理として、粗酸化亜鉛を還元炉に石灰石および還元剤と共に装入することにより、フッ素成分を還元物残渣または還元スラグ内に固定する。
【0011】
【発明の実施の形態】
本発明の実施の形態について以下に、詳述する。
【0012】
本発明の酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法は、図1のフローチャートに示すように、以下の各工程からなる。
【0013】
鉄鋼ダストから回収された粗酸化亜鉛を還元剤とともに還元炉に装入して還元する。
【0014】
還元炉には、ロータリーキルン等の固気反応を利用した還元焙焼炉、あるいは装入物を溶解させて液気反応を利用した還元溶融炉等が利用できる。
【0015】
コークス、石炭等の還元剤の装入では、必要に応じて石灰石や硅石等の溶剤や、亜鉛等を含有する鉄鋼ダスト等の原料を同時に装入してもよい。還元剤の配合比率は、還元炉に装入する装入物の5〜30質量%であり、必要に応じて装入する溶剤は、還元炉に装入する装入物の30質量%以下である。
【0016】
また、溶剤として石灰石を用いる場合には、還元炉に装入する前に、粗酸化亜鉛と石灰石とを混合および/または造粒等の前処理を施すこともできる。
【0017】
還元炉に装入された粗酸化亜鉛は、還元炉内で粗酸化亜鉛中に含有する亜鉛あるいは鉛等の重金属化合物が揮発し、ダストとして回収される。ここで、粗酸化亜鉛中に含有しているフッ素以外のハロゲン成分はダストに混入するが、フッ素成分は、CaF2あるいはカルシウム/フッ素化合物の形態のものが多く、これらは、還元雰囲気では揮発分解はほとんど生じない性状であり、還元炉から産出される還元物残渣あるいは還元スラグ中に固定される。
【0018】
溶剤として、石灰石を添加した場合においては、フッ素成分がカルシウム/フッ素化合物の形態でなくても、石灰石とフッ素成分との反応により、カルシウム/フッ素化合物を形成し、還元炉から産出される還元物残渣あるいは還元スラグ中に固定される。
【0019】
還元炉内で揮発し、回収された亜鉛等の金属化合物は、フッ素成分の低減された粗酸化亜鉛として回収される。
【0020】
これ以降は、従来方法と同様にして、湿式処理を施すことで塩素成分等の不純物を除去後、乾燥加熱炉にて焼成・造粒を行うことで、低フッ素品位の酸化亜鉛焼鉱または酸化亜鉛団鉱として生産される。
【0021】
(実施例)
本発明の一実施例について、以下に説明する。
【0022】
参考例
(1)前処理工程
鉄鋼ダストから回収された粗酸化亜鉛を、粉状コークスと共に装入した。
【0023】
還元炉には、鉄鋼ダストから亜鉛を回収するのに用いられている還元焙焼用の回転炉を用いた。
【0024】
この際用いた粗酸化亜鉛のZn、Pb、F、Cl成分を表1に示す。
【0025】
【表1】

Figure 0004715022
【0026】
該回転炉は、外径35m、長さ50mであり、排出端側に重油燃焼バーナーを備える。粉状コークスは粗酸化亜鉛に対し、20質量%程度になるように添加した。還元炉にて重金属化合物等の回収後、産出された還元物残渣中のフッ素品位は、3.5質量%程度であり、還元物残渣へのフッ素固定率は80%以上であった。
【0027】
還元物残渣中のZn、Pb、F成分品位を表2に示す。
【0028】
【表2】
Figure 0004715022
【0029】
還元炉から回収された低フッ素品位の粗酸化亜鉛の主な成分品位を表3に示す。塩素が依然として含まれていることが明らかである。
【0030】
【表3】
Figure 0004715022
【0031】
(2)湿式処理工程
還元炉からダストとして回収された粗酸化亜鉛は、フッ素が低減しており、湿式処理を施すことにより、塩素等の不純物を除去した。
【0032】
(3)第1固液分離工程
該湿式処理工程で得られる酸化亜鉛スラリーを、酸化亜鉛ケーキと分離液に分離する。
【0033】
(4)中和処理工程
前記分離液に、消石灰を用いて中和処理を行った。
【0034】
(5)第2固液分離工程
中和処理にて得られた亜鉛および鉛成分を含む中和澱物は、シックナーを用いて固液分離を行った。固液分離後、圧搾型の脱水機を用いて中和澱物ケーキとした。
【0035】
(6)焼成・造粒工程
第1固液分離工程で得られる酸化亜鉛ケーキに、還元工程で得られるZn・Pb金属化合物を添加して、乾燥加熱炉にて焼成・造粒を行うことにより、フッ素品位の低い酸化亜鉛焼鉱を得た。
【0036】
低フッ素品位の粗酸化亜鉛から製造した酸化亜鉛焼鉱の主な成分品位を表4に示す。塩素が低減していることが明らかである。
【0037】
【表4】
Figure 0004715022
【0038】
[実施例
(1)前処理工程鉄鋼ダストから回収された粗酸化亜鉛を、鉄鋼ダスト、粉状コークス、粉状石灰石と共に装入した。
【0039】
還元炉には、参考例と同じ還元焙焼用の回転炉を用いた。
【0040】
この際用いた粗酸化亜鉛の主な成分を表5に示す。
【0041】
【表5】
Figure 0004715022
【0042】
この際用いた鉄鋼ダストの主な主成分を表6に示す。
【0043】
【表6】
Figure 0004715022
【0044】
粗酸化亜鉛の添加量は鉄鋼ダストに対し、12質量%程度とし、粉状コークスは鉄鋼ダストと粗酸化亜鉛の統合量に対し、20質量%程度になるように、粉状石灰石は回転炉装入物の総合品位でCaO/SiO2重量比が1.8程度になるように調整し添加した。還元焙焼炉にて重金属化合物等の回収後、産出された還元物残渣中のフッ素品位は、1.6質量%程度であり、還元物残渣中のフッ素固定率は70%程度であった。
【0045】
還元物残渣中の主な成分品位を表7に示す。
【0046】
【表7】
Figure 0004715022
【0047】
還元炉から回収された低フッ素品位の粗酸化亜鉛の主な成分品位を表8に示す。
【0048】
【表8】
Figure 0004715022
【0049】
(2)湿式処理工程
還元炉から回収されたフッ素を低減させた粗酸化亜鉛は、湿式処理を施すことにより、塩素等の不純物を除去した。
【0050】
(3)第1固液分離工程
該湿式処理工程で得られる酸化亜鉛スラリーを、酸化亜鉛ケーキと分離液に分離する。
【0051】
(4)中和処理工程
前記分離液に、消石灰を用いて中和処理を行った。
【0052】
(5)第2固液分離工程
中和処理にて得られた亜鉛および鉛成分を含む中和澱物は、シックナーを用いて固液分離を行った。固液分離後、圧搾型の脱水機を用いて中和澱物ケーキとした。
【0053】
(6)焼成・造粒工程
第1固液分離工程で得られる酸化亜鉛ケーキに、還元工程で得られる重金属化合物を添加して、乾燥加熱炉にて焼成・造粒を行うことにより、フッ素品位の低い酸化亜鉛焼鉱を得た。
【0054】
低フッ素品位の粗酸化亜鉛から製造した酸化亜鉛焼鉱の主な成分品位を表9に示す。
【0055】
【表9】
Figure 0004715022
【0056】
【発明の効果】
以上、説明した通り、本発明の酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法により、還元炉から産出される還元物残渣または還元スラグ中にフッ素成分を固定することができ、還元炉にて揮発・回収される粗酸化亜鉛のフッ素を低減することができる。
【0057】
また、粗酸化亜鉛中のフッ素品位を低減させることで、湿式処理を施して他のハロゲン成分を除去し、乾燥加熱炉から得られる酸化亜鉛焼鉱または酸化亜鉛団鉱のハロゲン品位を低減させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例を示すフローチャートである。
【図2】 従来の粗酸化亜鉛処理工程を示すフローチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing zinc oxide sinter or zinc oxide ore, and in particular, from zinc oxide recovered from steel dust generated in blast furnaces, electric furnaces, etc. in the steel industry, zinc oxide sinter or zinc oxide group. The present invention relates to a method for effectively removing a fluorine component in a method for producing ore.
[0002]
[Prior art]
Crude zinc oxide recovered from steel dust generated from blast furnaces and electric furnaces in the steel industry contains a substantial amount of halogen components such as chlorine and fluorine in addition to zinc oxide and lead oxide. Conventionally, the halogen component in the crude zinc oxide is removed to produce zinc oxide sinter or zinc oxide briquette with a low halogen content.
[0003]
FIG. 2 shows a flowchart of a conventional crude zinc oxide treatment process.
[0004]
In this method for producing zinc oxide sinter or zinc oxide briquette, the crude zinc oxide is subjected to a wet treatment to remove halides, and then fired and granulated in a dry heating furnace.
[0005]
The crude zinc oxide recovered from steel dust or the like contains about 8 to 18% by mass of chlorine and about 0 to 5% by mass of halogen such as fluorine as chlorine compounds or halides such as fluorine compounds. . Therefore, these halides and other impurities are removed by applying a wet process using NaCO 3 , Na (OH) 2 or other chemicals.
[0006]
The halide removed by wet treatment of the crude zinc oxide is concentrated in the process liquid, and the process liquid also contains zinc and / or lead components that are eluted in a trace amount from the crude zinc oxide. . As a method for recovering the zinc and / or lead component from the process liquid, there is a neutralization treatment method in which the pH of the process liquid is adjusted using slaked lime to precipitate it as a zinc compound or a lead compound.
[0007]
The neutralized starch containing the zinc compound or lead compound recovered by this neutralization method is baked and granulated in a dry heating furnace together with a zinc oxide slurry obtained by subjecting crude zinc oxide to a wet treatment. Generally, a method of performing and fixing to zinc oxide sinter or zinc oxide briquette is performed.
[0008]
However, in the neutralization treatment method, the fluorine component in the process liquid also forms CaF 2 or other calcium / fluorine compounds, precipitates, and is contained and recovered in the neutralized starch. Therefore, there is a problem that the fluorine content of zinc oxide sinter or zinc oxide briquette increases.
[0009]
[Problems to be solved by the invention]
An object of the method of the present invention is to provide a method for producing zinc oxide sinter or zinc oxide briquette having a low fluorine content.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the method for producing zinc oxide sinter or zinc oxide briquette of the present invention charges crude zinc oxide together with limestone and a reducing agent as a pretreatment for the firing and granulation step. As a result, the fluorine component is fixed in the reduced product residue or reduced slag.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below.
[0012]
The method for producing zinc oxide sinter or zinc oxide briquette of the present invention includes the following steps as shown in the flowchart of FIG.
[0013]
Crude zinc oxide recovered from steel dust is charged into a reduction furnace together with a reducing agent for reduction.
[0014]
As the reduction furnace, a reduction roasting furnace using a solid-gas reaction such as a rotary kiln, or a reduction melting furnace using a liquid-gas reaction by dissolving a charge can be used.
[0015]
When charging a reducing agent such as coke or coal, a raw material such as a solvent such as limestone or meteorite or steel dust containing zinc or the like may be simultaneously charged as necessary. The mixing ratio of the reducing agent is 5 to 30% by mass of the charge charged in the reduction furnace, and the solvent charged as required is 30% by mass or less of the charge charged in the reduction furnace. is there.
[0016]
Moreover, when using limestone as a solvent, before charging into the reduction furnace, pretreatment such as mixing and / or granulation of crude zinc oxide and limestone can be performed.
[0017]
The crude zinc oxide charged in the reduction furnace is recovered as dust by the evaporation of heavy metal compounds such as zinc or lead contained in the crude zinc oxide in the reduction furnace. Here, halogen components other than fluorine contained in the crude zinc oxide are mixed in the dust, but the fluorine components are often in the form of CaF 2 or calcium / fluorine compounds, and these are volatile decomposition in a reducing atmosphere. Is a property that hardly occurs and is fixed in the reductant residue or reducing slag produced from the reduction furnace.
[0018]
When limestone is added as a solvent, even if the fluorine component is not in the form of calcium / fluorine compound, it forms a calcium / fluorine compound by the reaction between limestone and the fluorine component and is produced from the reduction furnace. Fixed in residue or reduced slag.
[0019]
Metal compounds such as zinc that have been volatilized and recovered in the reduction furnace are recovered as crude zinc oxide with a reduced fluorine component.
[0020]
After this, in the same way as the conventional method, after removing impurities such as chlorine components by wet treatment, firing and granulation in a dry heating furnace, low zinc grade zinc oxide or oxidized Produced as zinc ore.
[0021]
(Example)
One embodiment of the present invention will be described below.
[0022]
[ Reference example ]
(1) Pretreatment process The crude zinc oxide recovered from the steel dust was charged together with the powdery coke.
[0023]
As the reduction furnace, a rotary furnace for reduction roasting used for recovering zinc from steel dust was used.
[0024]
Table 1 shows the Zn, Pb, F, and Cl components of the crude zinc oxide used at this time.
[0025]
[Table 1]
Figure 0004715022
[0026]
The rotary furnace has an outer diameter of 35 m and a length of 50 m, and is equipped with a heavy oil combustion burner on the discharge end side. Powdered coke was added so as to be about 20% by mass with respect to the crude zinc oxide. After recovery of heavy metal compounds and the like in the reduction furnace, the fluorine quality in the produced reductant residue was about 3.5% by mass, and the fluorine fixation rate to the reductant residue was 80% or more.
[0027]
Table 2 shows the grades of Zn, Pb, and F components in the reductate residue.
[0028]
[Table 2]
Figure 0004715022
[0029]
Table 3 shows the main component grades of low-fluorine grade crude zinc oxide recovered from the reduction furnace. It is clear that chlorine is still included.
[0030]
[Table 3]
Figure 0004715022
[0031]
(2) Wet treatment process The crude zinc oxide recovered as dust from the reducing furnace has reduced fluorine, and impurities such as chlorine were removed by wet treatment.
[0032]
(3) First solid-liquid separation step The zinc oxide slurry obtained in the wet treatment step is separated into a zinc oxide cake and a separation liquid.
[0033]
(4) Neutralization treatment process The said separation liquid was neutralized using slaked lime.
[0034]
(5) Second solid-liquid separation step The neutralized starch containing zinc and lead components obtained in the neutralization treatment was subjected to solid-liquid separation using a thickener. After solid-liquid separation, a neutralized starch cake was obtained using a compression-type dehydrator.
[0035]
(6) Firing / granulation step By adding the Zn / Pb metal compound obtained in the reduction step to the zinc oxide cake obtained in the first solid / liquid separation step, and firing / granulation in a dry heating furnace. A zinc oxide sinter with low fluorine quality was obtained.
[0036]
Table 4 shows the main component grades of zinc oxide sinter produced from low-fluorine grade crude zinc oxide. It is clear that chlorine is reduced.
[0037]
[Table 4]
Figure 0004715022
[0038]
[Example 1 ]
(1) Pretreatment process The crude zinc oxide recovered from steel dust was charged together with steel dust, powdered coke, and powdered limestone.
[0039]
The same reduction roasting rotary furnace as the reference example was used for the reduction furnace.
[0040]
Table 5 shows the main components of the crude zinc oxide used at this time.
[0041]
[Table 5]
Figure 0004715022
[0042]
Table 6 shows the main components of the steel dust used at this time.
[0043]
[Table 6]
Figure 0004715022
[0044]
The amount of coarse zinc oxide added is about 12% by mass with respect to steel dust, and the amount of powdered coke is about 20% by mass with respect to the integrated amount of steel dust and crude zinc oxide. Adjustment was made so that the CaO / SiO 2 weight ratio was about 1.8 in terms of the overall quality of the contents. After recovery of heavy metal compounds and the like in a reduction roasting furnace, the fluorine quality in the produced reductant residue was about 1.6% by mass, and the fluorine fixation rate in the reductant residue was about 70%.
[0045]
Table 7 shows the main component qualities in the reduced product residue.
[0046]
[Table 7]
Figure 0004715022
[0047]
Table 8 shows the main component grades of the low-fluorine grade crude zinc oxide recovered from the reduction furnace.
[0048]
[Table 8]
Figure 0004715022
[0049]
(2) Wet treatment process The crude zinc oxide with reduced fluorine recovered from the reduction furnace removed impurities such as chlorine by wet treatment.
[0050]
(3) First solid-liquid separation step The zinc oxide slurry obtained in the wet treatment step is separated into a zinc oxide cake and a separation liquid.
[0051]
(4) Neutralization treatment process The said separation liquid was neutralized using slaked lime.
[0052]
(5) Second solid-liquid separation step The neutralized starch containing zinc and lead components obtained in the neutralization treatment was subjected to solid-liquid separation using a thickener. After solid-liquid separation, a neutralized starch cake was obtained using a compression-type dehydrator.
[0053]
(6) Firing and granulation process Fluorine quality by adding the heavy metal compound obtained in the reduction process to the zinc oxide cake obtained in the first solid-liquid separation process and firing and granulating in a dry heating furnace. A low zinc oxide sinter was obtained.
[0054]
Table 9 shows the main component grades of zinc oxide sinter produced from low-fluorine grade crude zinc oxide.
[0055]
[Table 9]
Figure 0004715022
[0056]
【The invention's effect】
As described above, according to the method for producing zinc oxide sinter or zinc oxide briquette of the present invention, the fluorine component can be fixed in the reductant residue or reduced slag produced from the reduction furnace. The fluorine of the crude zinc oxide that is volatilized and recovered can be reduced.
[0057]
In addition, by reducing the fluorine quality in the crude zinc oxide, other halogen components are removed by wet treatment, and the halogen quality of zinc oxide sinter or zinc oxide briquette obtained from a drying furnace is reduced. Can do.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of the present invention.
FIG. 2 is a flowchart showing a conventional crude zinc oxide treatment process.

Claims (1)

粗酸化亜鉛から酸化亜鉛焼鉱または酸化亜鉛団鉱を得る工程の前処理として、粗酸化亜鉛を還元炉に石灰石および還元剤と共に装入することにより、フッ素成分を還元物残渣または還元スラグ内にカルシウム/フッ素化合物として固定することを特徴とする酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法。As a pretreatment for obtaining zinc oxide sinter or zinc oxide ore from crude zinc oxide, the fluorine component is put into the reductant residue or reduced slag by charging the crude zinc oxide together with limestone and reducing agent into the reduction furnace. A method for producing a zinc oxide calcined or zinc oxide briquette characterized by fixing as a calcium / fluorine compound.
JP2001136340A 2001-05-07 2001-05-07 Method for producing zinc oxide sinter or zinc oxide briquette Expired - Lifetime JP4715022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136340A JP4715022B2 (en) 2001-05-07 2001-05-07 Method for producing zinc oxide sinter or zinc oxide briquette

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136340A JP4715022B2 (en) 2001-05-07 2001-05-07 Method for producing zinc oxide sinter or zinc oxide briquette

Publications (2)

Publication Number Publication Date
JP2002326814A JP2002326814A (en) 2002-11-12
JP4715022B2 true JP4715022B2 (en) 2011-07-06

Family

ID=18983635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136340A Expired - Lifetime JP4715022B2 (en) 2001-05-07 2001-05-07 Method for producing zinc oxide sinter or zinc oxide briquette

Country Status (1)

Country Link
JP (1) JP4715022B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565354B2 (en) * 2011-03-23 2014-08-06 住友金属鉱山株式会社 Method for producing zinc oxide sinter
JP6836148B2 (en) * 2017-01-10 2021-02-24 住友金属鉱山株式会社 Treatment method of dioxin-containing exhaust gas
CN115612860B (en) * 2022-10-26 2023-09-19 云南驰宏资源综合利用有限公司 Leaching method of high-silicon zinc roasted ore

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147421A (en) * 1974-05-18 1975-11-26
JPS63117911A (en) * 1986-11-07 1988-05-21 Yasuhiro Inazaki Method and device for producing zinc white from steel making flue dust
JPH042734A (en) * 1990-04-20 1992-01-07 Sumitomo Heavy Ind Ltd Method for recovering valuable metal from zinc-containing dust
JPH07126762A (en) * 1993-11-05 1995-05-16 Sumitomo Metal Mining Co Ltd Production of crude zinc oxide sinter
JPH07268500A (en) * 1994-03-31 1995-10-17 Sumitomo Chem Co Ltd Treatment of steel making dust
JPH07316677A (en) * 1994-05-23 1995-12-05 Nikko Aen Kk Method for recovering valuable metal from steelmaking dust
JPH07316679A (en) * 1994-05-31 1995-12-05 Nikko Aen Kk Treatment of raw material containing zinc and fluorine
JPH09157762A (en) * 1995-12-11 1997-06-17 Sumitomo Metal Mining Co Ltd Production of crude zinc oxide sintered ore
JP2000128530A (en) * 1998-10-30 2000-05-09 Mitsui Mining & Smelting Co Ltd Treatment of crude zinc oxide powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147421A (en) * 1974-05-18 1975-11-26
JPS63117911A (en) * 1986-11-07 1988-05-21 Yasuhiro Inazaki Method and device for producing zinc white from steel making flue dust
JPH042734A (en) * 1990-04-20 1992-01-07 Sumitomo Heavy Ind Ltd Method for recovering valuable metal from zinc-containing dust
JPH07126762A (en) * 1993-11-05 1995-05-16 Sumitomo Metal Mining Co Ltd Production of crude zinc oxide sinter
JPH07268500A (en) * 1994-03-31 1995-10-17 Sumitomo Chem Co Ltd Treatment of steel making dust
JPH07316677A (en) * 1994-05-23 1995-12-05 Nikko Aen Kk Method for recovering valuable metal from steelmaking dust
JPH07316679A (en) * 1994-05-31 1995-12-05 Nikko Aen Kk Treatment of raw material containing zinc and fluorine
JPH09157762A (en) * 1995-12-11 1997-06-17 Sumitomo Metal Mining Co Ltd Production of crude zinc oxide sintered ore
JP2000128530A (en) * 1998-10-30 2000-05-09 Mitsui Mining & Smelting Co Ltd Treatment of crude zinc oxide powder

Also Published As

Publication number Publication date
JP2002326814A (en) 2002-11-12

Similar Documents

Publication Publication Date Title
US5667553A (en) Methods for recycling electric arc furnace dust
US5496392A (en) Method of recycling industrial waste
US8012437B2 (en) Process for separating iron from other metals in iron containing feed stocks
JP6094467B2 (en) Method for producing zinc oxide ore
CN107699698A (en) The method for handling copper ashes
JP4506017B2 (en) Method for producing zinc oxide sinter or zinc oxide briquette
JP5904089B2 (en) Method for producing zinc oxide ore
JP4715022B2 (en) Method for producing zinc oxide sinter or zinc oxide briquette
JP7151404B2 (en) Method for producing zinc oxide ore
US20040261577A1 (en) Mechanical separation of volatile metals at high temperatures
JP6094468B2 (en) Method for producing zinc oxide ore
US5198200A (en) Process for the recovery of values from secondary aluminum dross
JP6123930B2 (en) Method for producing zinc oxide ore
JPH0247529B2 (en)
JP2002332529A (en) Method for removing fluorine from crude zinc oxide
EP0776377B1 (en) Sulphate agglomeration
JP7183502B2 (en) Method for producing zinc oxide ore
JP2022103730A (en) Method for producing zinc oxide ore
EP4012058B1 (en) Pyro-metallurgical process in a rotary kiln
JP2005305244A (en) Treating method of substance containing heavy metals
JP7415629B2 (en) Method for producing zinc oxide ore
JPH05202436A (en) Method for recovering high-grade metal zinc from steel making dust
JPS5924102B2 (en) How to add cement to steel dust
JP2023055525A (en) Method for producing iron-containing clinker
KR101863916B1 (en) Composition of Steelmaking Flux for Desulfurization and Deoxidation Using By-proudut of Magnesium Smelting Process and Waste By-product of Aluminum Smelting Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

EXPY Cancellation because of completion of term