JP4714844B2 - Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film - Google Patents

Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film Download PDF

Info

Publication number
JP4714844B2
JP4714844B2 JP2005207487A JP2005207487A JP4714844B2 JP 4714844 B2 JP4714844 B2 JP 4714844B2 JP 2005207487 A JP2005207487 A JP 2005207487A JP 2005207487 A JP2005207487 A JP 2005207487A JP 4714844 B2 JP4714844 B2 JP 4714844B2
Authority
JP
Japan
Prior art keywords
substrate
zinc oxide
film
oxide film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005207487A
Other languages
Japanese (ja)
Other versions
JP2007022851A (en
Inventor
豪慎 周
英司 細野
格 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005207487A priority Critical patent/JP4714844B2/en
Publication of JP2007022851A publication Critical patent/JP2007022851A/en
Application granted granted Critical
Publication of JP4714844B2 publication Critical patent/JP4714844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、表面積を著しく増大させることができる、基板に対して垂直な酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜及びその製造方法、同垂直なポーラス酸化亜鉛膜を備えた色素増感型太陽電池、光触媒、化学センサー又は蛍光体、並びに基板に対して垂直なポーラス酸化亜鉛膜形成用前駆体及びその製造方法に関する。   The present invention relates to a porous zinc oxide film made of a zinc oxide nanosheet perpendicular to the substrate and a method for producing the same, a dye-sensitized solar cell provided with the perpendicular zinc oxide film, which can significantly increase the surface area, The present invention relates to a photocatalyst, a chemical sensor or a phosphor, a precursor for forming a porous zinc oxide film perpendicular to a substrate, and a method for producing the same.

バンドギャップが3.3eVのn型半導体である酸化亜鉛(ZnO)は、光触媒、化学センサー、蛍光体および色素増感型太陽電池(DSC)という、多種多様な応用が期待され、数多くの学術、産業に携わる研究者によって注目されている。
特に、最近DSCの色素から酸化物半導体への電子注入が、TiO2と同様の注入プロセスであるとの報告がなされ、また、ZnOはTiO2よりも速い電子移動が可能であるとされているため、ZnOはTiO2に代わるDSC用電極としての期待が高まっている。
Zinc oxide (ZnO), an n-type semiconductor with a band gap of 3.3 eV, is expected to have a wide variety of applications such as photocatalysts, chemical sensors, phosphors, and dye-sensitized solar cells (DSCs). Attracted attention by researchers involved in
In particular, it has recently been reported that electron injection from dyes of DSC into oxide semiconductors is an injection process similar to TiO 2, and that ZnO is capable of faster electron transfer than TiO 2 . Therefore, the expectation for ZnO as a DSC electrode to replace TiO 2 is increasing.

デバイスの物理および化学特性を向上させるために、ロッドや柱、階層構造といったZnOの形態をデザインすることも注目されている。これらの目的のための結晶成長の制御は、化学溶液析出法(CBD)によって行うことができる。
CBDは溶液中の低過飽和度の領域において、基板上に金属酸化物を不均一核生成させる方法である。溶質の溶解度は溶液中での化学反応の結果として変化する。溶液が過飽和に達すると、核生成と結晶成長により固体粒子が生成する。
過飽和度(S)は過飽和溶液(C : C≧Cs)の中の、溶質の濃度の飽和溶液(Cs)への割合(C/Cs)によって定義される。Sが1に近いような低過飽和度の場合、外部表面上での不均一核生成が溶液中での均一核生成よりも優先的に起こる。
In order to improve the physical and chemical properties of devices, it is also drawing attention to design ZnO forms such as rods, pillars, and hierarchical structures. Control of crystal growth for these purposes can be performed by chemical solution deposition (CBD).
CBD is a method for heterogeneously nucleating a metal oxide on a substrate in a low supersaturation region in a solution. Solute solubility varies as a result of chemical reactions in solution. When the solution reaches supersaturation, solid particles are formed by nucleation and crystal growth.
The degree of supersaturation (S) is defined by the ratio (C / C s ) of the solute concentration to the saturated solution (C s ) in the supersaturated solution (C: C ≧ C s ). For low supersaturation levels where S is close to 1, heterogeneous nucleation on the outer surface occurs preferentially over homogeneous nucleation in solution.

近年、ナノシートやナノロッド形態を有する金属水酸化物を用いた酸化亜鉛形態の新規制御法が研究されている。(L. Poul, N. Jouini, F. Fievet, Chem. Mater. 2000, 12, 3123-3132, J. Wang, L. Gao, J. Mater. Chem. 2003, 13, 2551-2554 参照)
ナノ構造の金属水酸化物を熱分解することにより、微細構造の崩壊を起こさずにナノ構造金属酸化物を得ることができる。
結果として、得られた膜は、これまでに報告されているZnOの結晶成長プロセスによって作製された膜よりも、大きな表面積を有する。これは、ZnOの単結晶は、原子レベルでフラットな表面のために、表面積は小さいからである。
In recent years, a novel control method of a zinc oxide form using a metal hydroxide having a nanosheet or nanorod form has been studied. (See L. Poul, N. Jouini, F. Fievet, Chem. Mater. 2000, 12, 3123-3132, J. Wang, L. Gao, J. Mater. Chem. 2003, 13, 2551-2554)
By thermally decomposing the nanostructured metal hydroxide, the nanostructured metal oxide can be obtained without causing the collapse of the fine structure.
As a result, the obtained film has a larger surface area than the film prepared by the ZnO crystal growth process reported so far. This is because the single crystal of ZnO has a small surface area because of a flat surface at the atomic level.

本発明者らは以前、化学溶液中で析出させた層状金属水酸化物(LHMs)の熱分解によってナノ粒子と微細なポアによって構成された金属酸化物および金属酸化フッ化物膜の作製を報告した。
(E. Hosono, S. Fujihara, T. Kimura, H. Imai, J. Colloid Interf. Sci., 2004, 72, 391-398., E. Hosono, S. Fujihara, T. Kimura, J. Mater. Chem. 2004, 14, 881-886., E. Hosono, S. Fujihara, T. Kimura, Langmuir 2004, 20, 3769-3774、参照)
金属酸化物はシート状形態によって構成され、各シートはナノ粒子とポアによって構成されている。しかしながら、LHMsの結晶成長様式は二次元方向に限定されている。
不均一核生成のための核生成のエネルギー障壁は、核と基板との界面エネルギーが最小であるときに最も小さくなる。ガラスのようなスムースな表面上では、結晶核の最もエネルギーの低い面が基板表面に対して平行に面する場合、最も低い界面エネルギーとなると考えられる。
したがって、シート形態を持つLHMsの核は、基板に対して平行に成長する。(上記、参考文献)このため、理論的には基板上に垂直なシートを作製することは不可能であると推測される。これまで、核生成の段階から垂直なシートによって構成されている膜を作製した報告は無い。
We previously reported the preparation of metal oxides and metal oxyfluoride films composed of nanoparticles and fine pores by thermal decomposition of layered metal hydroxides (LHMs) deposited in chemical solutions. .
(E. Hosono, S. Fujihara, T. Kimura, H. Imai, J. Colloid Interf. Sci., 2004, 72, 391-398., E. Hosono, S. Fujihara, T. Kimura, J. Mater. Chem. 2004, 14, 881-886., E. Hosono, S. Fujihara, T. Kimura, Langmuir 2004, 20, 3769-3774)
The metal oxide is constituted by a sheet-like form, and each sheet is constituted by nanoparticles and pores. However, the crystal growth mode of LHMs is limited to the two-dimensional direction.
The nucleation energy barrier for inhomogeneous nucleation is smallest when the interface energy between the nucleus and the substrate is minimal. On a smooth surface such as glass, the lowest interfacial energy is considered when the surface with the lowest energy of crystal nuclei faces parallel to the substrate surface.
Therefore, the core of LHMs having a sheet form grows parallel to the substrate. For this reason, it is speculated that it is theoretically impossible to produce a vertical sheet on a substrate. So far, there has been no report of producing a film composed of a vertical sheet from the nucleation stage.

本発明は、上記の問題点を解決することを目的とし、酸化亜鉛(ZnO)の特性を向上させるために、表面積を著しく増大させることができる、酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜及びその製造方法、同ポーラス酸化亜鉛膜を備えた色素増感型太陽電池、光触媒、化学センサー又は蛍光体、並びにポーラス酸化亜鉛膜形成用前駆体及びその製造方法を提供する。   The present invention aims to solve the above-mentioned problems, and in order to improve the properties of zinc oxide (ZnO), a porous zinc oxide film made of zinc oxide nanosheets capable of remarkably increasing the surface area and its production The present invention provides a method, a dye-sensitized solar cell including the porous zinc oxide film, a photocatalyst, a chemical sensor or a phosphor, a precursor for forming a porous zinc oxide film, and a method for producing the same.

上記の課題に鑑み、酸化亜鉛ナノシートが基板に対して平行に成長させるのではなく、垂直に成長させることに成功し、酸化亜鉛の表面積を飛躍的に向上させることができるとの知見を得た。このことから、本願発明は、層状水酸化炭酸亜鉛ナノシート前駆体を使用して、基板に対して垂直である酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜を提供するものである。
なお、本願明細書で使用する「基板に対して層状水酸化炭酸亜鉛ナノシート又は酸化亜鉛ナノシート垂直である」という意味は、全部が垂直であることは勿論のこと、殆ど又は多くが「垂直」であるということを含むものである。
上記の通り、この層状水酸化炭酸亜鉛ナノシート前駆体を用いた、基板に対して垂直である構造のポーラス酸化亜鉛膜は従来存在せず、本発明において、初めて達成されたものである。そして、この基板に対して垂直である酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜を備えた材料は、特に色素増感型太陽電池、光触媒、化学センサー又は蛍光体に有用である。
In view of the above problems, the zinc oxide nanosheets were not grown parallel to the substrate, but were successfully grown vertically, and the knowledge that the surface area of zinc oxide could be dramatically improved was obtained. . Therefore, the present invention provides a porous zinc oxide film composed of zinc oxide nanosheets that are perpendicular to the substrate, using a layered zinc hydroxide carbonate nanosheet precursor.
As used herein, the meaning of “perpendicular to layered zinc hydroxide nanosheets or zinc oxide nanosheets with respect to the substrate” means that all of them are perpendicular, and most or most of them are “perpendicular”. It includes that there is.
As described above, a porous zinc oxide film having a structure perpendicular to the substrate using this layered zinc hydroxide carbonate nanosheet precursor has not existed so far and has been achieved for the first time in the present invention. And the material provided with the porous zinc oxide film | membrane which consists of a zinc oxide nanosheet perpendicular | vertical with respect to this board | substrate is especially useful for a dye-sensitized solar cell, a photocatalyst, a chemical sensor, or fluorescent substance.

基板に対して垂直である酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜を形成する場合には、亜鉛膜形成用前駆体として、基板に対して垂直である層状水酸化炭酸亜鉛ナノシートを用いるのが有効である。
この前駆体は、具体的にはZn(NO3)2・6H2Oと尿素 ((NH2)2CO)を水に溶解させて反応溶液を作製し、これをガラス基板又はF-ドープSnO2をコートした基板上で反応させることにより、不均一核生成させるとともに、基板に対して垂直である層状水酸化炭酸亜鉛ナノシートを成長させることによって得ることができる。
When forming a porous zinc oxide film composed of zinc oxide nanosheets perpendicular to the substrate, it is effective to use a layered zinc hydroxide carbonate nanosheet perpendicular to the substrate as a precursor for forming the zinc film. is there.
Specifically, this precursor is prepared by dissolving Zn (NO 3 ) 2 · 6H 2 O and urea ((NH 2 ) 2 CO) in water to prepare a reaction solution, which is used as a glass substrate or F-doped SnO. It can be obtained by growing a layered zinc hydroxide carbonate nanosheet that is heterogeneous nucleated by reacting on the substrate coated with 2 and perpendicular to the substrate.

基板に対して垂直な層状水酸化炭酸亜鉛ナノシート(前駆体)を形成した後、これを熱分解し、微細構造の崩壊を起こさずに基板に対して垂直である酸化亜鉛ナノシート形成する。これによって、表面積が著しく増加したポーラス酸化亜鉛膜を製造することができる。本発明は、この効率の良い製造方法を提供するものである。
さらに、基板に対して垂直である層状水酸化炭酸亜鉛ナノシートを成長させるに際しては、Zn(NO3)2・6H2O と 尿素 ((NH2)2CO)を水に溶解させて反応溶液を作製し、これをガラス基板又はF-ドープSnO2をコートした親水性の基板上で反応させることが特に有効である。これにより、不均一核生成させ、かつ垂直層状水酸化炭酸亜鉛ナノシートに成長させることが可能となる。
After forming a layered zinc hydroxide carbonate nanosheet (precursor) perpendicular to the substrate, it is pyrolyzed to form a zinc oxide nanosheet that is perpendicular to the substrate without causing collapse of the microstructure. Thereby, a porous zinc oxide film having a significantly increased surface area can be produced. The present invention provides this efficient manufacturing method.
Furthermore, when growing a layered zinc hydroxide carbonate nanosheet perpendicular to the substrate, Zn (NO 3 ) 2 · 6H 2 O and urea ((NH 2 ) 2 CO) are dissolved in water to form a reaction solution. It is particularly effective to prepare and react this on a glass substrate or a hydrophilic substrate coated with F-doped SnO 2 . This enables heterogeneous nucleation and growth into vertical layered zinc hydroxide carbonate nanosheets.

本発明は、上記の通り熱力学的制限に打ち勝ち、層状水酸化炭酸亜鉛(LHZC)の垂直シート膜を作製することが可能となり、さらにこのLHZC膜を熱分解することによって、基板に対してポーラスZnO膜のc軸を平行に配向させる、すなわち基板に対して垂直である酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜を作製するものである。
これにより、ZnO膜の表面積を著しく増大させることが可能となる。このようなポーラス酸化亜鉛膜は、色素増感型太陽電池(DSC)、光触媒、化学センサー又は蛍光体として有用である。例えば、ZnOを用いたDSCの中で最高レベルの変換効率を示す。
さらに、この層状水酸化炭酸亜鉛(LHZC)の垂直シート膜の作製方法は、溶液中で行うために、溶液を入れる容器の大きさを大きくするという簡易な方法で、大面積な膜を作製することができるという大きな利点を有する。
The present invention overcomes the thermodynamic limitations as described above, makes it possible to produce a layered zinc hydroxide carbonate (LHZC) vertical sheet film, and further pyrolyze the LHZC film to make it porous to the substrate. A porous zinc oxide film made of zinc oxide nanosheets with the c-axis of the ZnO film oriented in parallel, that is, perpendicular to the substrate is produced.
Thereby, the surface area of the ZnO film can be remarkably increased. Such a porous zinc oxide film is useful as a dye-sensitized solar cell (DSC), a photocatalyst, a chemical sensor, or a phosphor. For example, it shows the highest conversion efficiency among DSCs using ZnO.
Furthermore, the layered zinc hydroxide (LHZC) vertical sheet film is produced in a solution, so that a large-area film is produced by a simple method of increasing the size of a container in which the solution is placed. Has the great advantage of being able to.

以下、本発明の特徴を、図等を用いて具体的に説明する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。   Hereinafter, the features of the present invention will be specifically described with reference to the drawings. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

化学溶液析出法(CBD)のための溶液は、Zn(NO3)2・6H2Oと尿素 ((NH2)2CO)を水に溶解させて作製した。尿素/水の重量比は 1/5〜2/5、亜鉛濃度は 0.05〜0.5 mol/dm3とする。ガラス基板、ポリスチレン基板、F-ドープSnO2コート基板を析出の基板として用いた。溶液と基板をねじ口瓶に入れ60〜80°Cで12-96時間保ち、析出膜を得た。析出した膜をエタノールで洗浄し、室温にて乾燥させた後、300°〜500°Cにて1〜30分間の熱処理を行った。 A solution for chemical solution deposition (CBD) was prepared by dissolving Zn (NO 3 ) 2 · 6H 2 O and urea ((NH 2 ) 2 CO) in water. The weight ratio of urea / water is 1/5 to 2/5, and the zinc concentration is 0.05 to 0.5 mol / dm 3 . A glass substrate, polystyrene substrate, and F-doped SnO2 coated substrate were used as deposition substrates. The solution and the substrate were placed in a screw cap bottle and kept at 60 to 80 ° C. for 12 to 96 hours to obtain a deposited film. The deposited film was washed with ethanol, dried at room temperature, and then heat-treated at 300 ° C. to 500 ° C. for 1 to 30 minutes.

図1の(a)と(b)は、60°Cで48時間析出させたガラス基板上の膜と膜から剥がした粉のXRDパターンである。回折パターンはLHZC, Zn(CO3)x(OH)y・nH2O (x=0.25 and 0.4, y= 1.5 and 1.2, n= 0.25 and 0 in JCPDS No. 11-0287 and 19-1458)に非常に近く一致している。
これらのパターンから得られたLHZCはleast-squares法によって計算すると、C2/mの空間群を有し、a = 13.66, b = 6.37, c = 5.37 Å, and β = 94格子パラメーターであると分かった。
(A) and (b) of FIG. 1 are the XRD patterns of the film on the glass substrate deposited for 48 hours at 60 ° C. and the powder peeled off from the film. The diffraction pattern is LHZC, Zn (CO 3 ) x (OH) y・ nH 2 O (x = 0.25 and 0.4, y = 1.5 and 1.2, n = 0.25 and 0 in JCPDS No. 11-0287 and 19-1458). Match very close.
The LHZC obtained from these patterns is calculated by the least-squares method and has a C2 / m space group, and a = 13.66, b = 6.37, c = 5.37 Å, and β = 94 lattice parameters. It was.

層状水酸化炭酸亜鉛(LHZC)は、以下の尿素の分解反応に基づいて、炭酸イオンの生成とアンモニアイオンの生成によるpHの上昇によって作製されたと考えられる。
(NH2)2CO → NH3 + HNCO
HNCO + H+ + H2O → NH4 + + CO2
NH3 + H+ → NH4 +
CO2 + H2O → H+ + HCO3 - → 2H+ + CO3 2-
The layered zinc hydroxide carbonate (LHZC) is considered to have been produced by the pH increase due to the production of carbonate ions and ammonia ions based on the following decomposition reaction of urea.
(NH 2 ) 2 CO → NH 3 + HNCO
HNCO + H + + H 2 O → NH 4 + + CO 2
NH 3 + H + → NH 4 +
CO 2 + H 2 O → H + + HCO 3 - → 2H + + CO 3 2-

図1の(a)のXRDパターンにおいて、(200)と(002)のピーク強度が図(b)の粉と比較すると非常に小さい。さらに、(020)の強度は粉と比較すると非常に強い。
これらの結果からLHZCのaとc軸は基板表面に平行であり、b軸は基板表面に垂直であると分かる。すなわち、これによって層状水酸化炭酸亜鉛(LHZC)シートは核生成から基板から垂直に成長したことが確認できる。
図2の(a)-(d)は、ガラス基板上に生成したLHZC膜のSEM像、図2の(e)は、ポリスチレン上に生成したLHZC膜のSEM像である。
In the XRD pattern of FIG. 1 (a), the peak intensity of (200) and (002) is very small compared to the powder of FIG. Furthermore, the strength of (020) is very strong compared to powder.
From these results, it can be seen that the a and c axes of LHZC are parallel to the substrate surface and the b axis is perpendicular to the substrate surface. That is, this confirms that the layered zinc hydroxide carbonate (LHZC) sheet grew vertically from the substrate from nucleation.
2A to 2D are SEM images of the LHZC film formed on the glass substrate, and FIG. 2E is an SEM image of the LHZC film generated on polystyrene.

図2(a),(b)の析出時間12時間の析出初期段階では、LHZCシートは基板表面に垂直に生成している。傾いているシートの場合、シートの断面が基板と結合していることが分かり、シート表面は基板表面とは接触していない。
シートの厚さは20-100nmである。48時間後、垂直ナノシートは基板から垂直に成長し、図2の(d)のように垂直LHZCシート膜が作製される。
20-100nmの厚さのナノシートが自己集合し、基板表面から膜の表面まで単結晶のように成長していることが分かる。膜の全体的な厚さは約10μmである。
In the initial stage of deposition with a deposition time of 12 hours in FIGS. 2 (a) and 2 (b), the LHZC sheet is formed perpendicular to the substrate surface. In the case of an inclined sheet, it can be seen that the cross section of the sheet is bonded to the substrate, and the sheet surface is not in contact with the substrate surface.
The thickness of the sheet is 20-100 nm. After 48 hours, the vertical nanosheet grows vertically from the substrate, and a vertical LHZC sheet film is produced as shown in FIG.
It can be seen that nanosheets with a thickness of 20-100 nm self-assemble and grow like a single crystal from the substrate surface to the film surface. The overall thickness of the membrane is about 10 μm.

図2(f)は、LHZCシートのフラットな面から電子線を照射することによって得た電子線回折パターンである。[数1]と[数2]に由来されるスポットは結晶のc軸はシートの厚さ方向ではないことを示す。XRD,SEM,電子線回折より、図3(a)のように表すことができる。
ポリスチレンを基板とした場合、核生成と成長様式はガラスを基板とした場合と異なる。図2(e)に12時間析出させた膜のSEM像を示す。
ナノシートはポリスチレン表面を覆っていることが分かる。これは、我々の以前の研究と同様である。このXRDパターンは非常に薄い膜であるためにピークが非常に小さく配向性を議論するのは困難である。
FIG. 2 (f) is an electron beam diffraction pattern obtained by irradiating an electron beam from the flat surface of the LHZC sheet. The spots derived from [Equation 1] and [Equation 2] indicate that the c-axis of the crystal is not in the thickness direction of the sheet. From XRD, SEM, and electron diffraction, it can be expressed as shown in FIG.
When polystyrene is used as the substrate, the nucleation and growth modes are different from those when glass is used as the substrate. FIG. 2 (e) shows an SEM image of the film deposited for 12 hours.
It can be seen that the nanosheet covers the polystyrene surface. This is similar to our previous work. Since this XRD pattern is a very thin film, the peak is very small and it is difficult to discuss the orientation.

LHZCの核生成と成長のメカニズムを図3(b)を用いて説明する。今回の水酸化炭酸亜鉛を含み、多くの水酸化亜鉛種は疎水性表面を有する。したがって、ガラスのような親水性基板の上にはナノシートは垂直に生成する。核生成後、ナノシートは基板表面から濃度勾配によって垂直方向に成長すると考えられる。
図4(a)は、ガラス基板上に48時間析出した後、300°Cで10分間熱処理して得た膜のXRDパターンである。単相のZnOが生成していることが分かる。
このピーク強度の比は粉のパターン(JCPDSNo.36-1451)とは異なり、(002)のピークが粉のパターンよりも小さい。さらに(100)の割合は粉のパターンよりも多い。このパターン形状は吉田らによって報告されているc軸配向ZnOと同様である。(T. Yoshida, H. Minoura, Adv. Mater. 2000, 12, 1214-1217参照)
The mechanism of LHZC nucleation and growth will be described with reference to FIG. Many zinc hydroxide species, including the current zinc hydroxide carbonate, have a hydrophobic surface. Therefore, the nanosheets are formed vertically on a hydrophilic substrate such as glass. After nucleation, the nanosheets are thought to grow vertically from the substrate surface with a concentration gradient.
FIG. 4 (a) is an XRD pattern of a film obtained by depositing on a glass substrate for 48 hours and then heat-treating at 300 ° C. for 10 minutes. It can be seen that single-phase ZnO is generated.
This peak intensity ratio is different from the powder pattern (JCPDS No. 36-1451), and the (002) peak is smaller than the powder pattern. Furthermore, the proportion of (100) is greater than the powder pattern. This pattern shape is similar to the c-axis oriented ZnO reported by Yoshida et al. (See T. Yoshida, H. Minoura, Adv. Mater. 2000, 12, 1214-1217)

この、XRDパターンは、作製されたZnO膜の配向性を示す。これは、LHZC膜からZnO膜へのトポタクティックな反応に基づくものである。熱分解による層状金属水酸化物(LHMs)と金属酸化物のトポタクティックな反応は以前にも報告されている。(M.G. Kim, U. Dahmen, A.W. Searcy, J. Am. Ceram. Soc., 1988, 71, C373-C375参照)
図4の(b)と(c)は、ZnO膜のSEMとTEM像である。図2の(d)で示したLHZCのシート形態は崩壊せずに維持されている。TEMから粒子径は10-20nmであり、多くのポアが観察され、ナノ粒子とポアによって構成されるZnO膜のBET表面積は70m2/gと大きな値である。
This XRD pattern shows the orientation of the fabricated ZnO film. This is based on a topotactic reaction from the LHZC film to the ZnO film. The topotropic reaction of layered metal hydroxides (LHMs) and metal oxides by pyrolysis has been reported previously. (See MG Kim, U. Dahmen, AW Searcy, J. Am. Ceram. Soc., 1988, 71, C373-C375)
4B and 4C are SEM and TEM images of the ZnO film. The sheet form of LHZC shown in (d) of FIG. 2 is maintained without collapsing. From TEM, the particle diameter is 10-20 nm, many pores are observed, and the BET surface area of the ZnO film composed of nanoparticles and pores is as large as 70 m 2 / g.

基板として、FドープSnO2をコートした透明導電性ガラスを用いた場合、ガラス基板と同様の形態と配向を持つ、c軸が基板に平行な垂直ZnOシートによって構成された膜が得られた。
図5の(a)は、ZnO膜にN-719色素を吸着させた膜(ZnO/N-719)の拡散反射スペクトルである。紫外領域から750nm付近まで色素によるブロードな吸収が確認される。10%の低い反射率はガラス表面での反射によるものであり、ポーラスなZnOへの色素の吸着が適切に行われたことを示し、ほとんどの光はZnO/N-719によって吸収されている。
なお、色素吸着は、N-719 (0.3 mmol/dm3)のエタノール溶液にZnO膜を入れ、80°Cで15分から120分行った。
When transparent conductive glass coated with F-doped SnO 2 was used as the substrate, a film composed of a vertical ZnO sheet having the same form and orientation as the glass substrate and having a c-axis parallel to the substrate was obtained.
FIG. 5A shows a diffuse reflection spectrum of a film (ZnO / N-719) in which an N-719 dye is adsorbed on a ZnO film. Broad absorption by the dye is confirmed from the ultraviolet region to around 750 nm. The low reflectivity of 10% is due to reflection on the glass surface, indicating that the dye has been properly adsorbed onto the porous ZnO, and most of the light is absorbed by ZnO / N-719.
The dye adsorption was carried out at 80 ° C. for 15 to 120 minutes by putting a ZnO film in an ethanol solution of N-719 (0.3 mmol / dm 3 ).

図5の(b)は、ZnO/N-719を用いてDSCセルを作製し、AM1.5、100mWcm-2の光照射下で測定した光電流密度(photocurrent density)と光電圧(photovoltage)の曲線である。この曲線から短絡電流10.7mAcm-2、開放電圧0.592V、曲線因子0.63、変換効率4.0%の値が得られる。この高い変換効率は垂直ZnOナノシートの特異な形態に因るものであると考えられる。
なお、セルの製作に際しては、白金をコートしたSi基板を対極として用いてサンドイッチ型にした。
高い短絡電流はナノ粒子とメソポアによる多量の色素が表面に存在していることに因る。高い開放電圧と曲線因子を示した理由は、以下の通りと考えられる。垂直ZnOナノシートはLHZCを自己テンプレートとして、トポタクティックな反応によって作製されている。
色素増感型太陽電池の電解液として、例えば、次の組成の電解液を使用することができる。この電解液は、作製したZnO膜と対極との間に存在する。LiI (0.1 mol mol/dm3), I2 (0.05 mol/dm3), dimethylpropylimidazolium iodide (0.6 mol/dm3), and tert-butylpyridine (1 mol/dm3) in 3-methoxypropionitrile)
In Figure 5 (b) is to prepare a DSC cell with a ZnO / N-719, photocurrent density was measured under light irradiation of AM1.5,100mWcm -2 (photocurrent density) and photovoltage (photovoltage) It is a curve. From this curve, a short-circuit current of 10.7 mAcm −2 , an open-circuit voltage of 0.592 V, a fill factor of 0.63, and a conversion efficiency of 4.0% can be obtained. This high conversion efficiency is thought to be due to the unique morphology of the vertical ZnO nanosheets.
The cell was made into a sandwich type using a platinum-coated Si substrate as a counter electrode.
The high short-circuit current is due to the presence of a large amount of pigment on the surface due to nanoparticles and mesopores. The reason for showing a high open-circuit voltage and a fill factor is considered as follows. Vertical ZnO nanosheets are produced by topological reaction using LHZC as a self-template.
As an electrolytic solution for the dye-sensitized solar cell, for example, an electrolytic solution having the following composition can be used. This electrolytic solution exists between the produced ZnO film and the counter electrode. LiI (0.1 mol mol / dm 3 ), I 2 (0.05 mol / dm 3 ), dimethylpropylimidazolium iodide (0.6 mol / dm 3 ), and tert-butylpyridine (1 mol / dm 3 ) in 3-methoxypropionitrile)

本発明者らの以前の研究において、層状金属水酸化物(LHMs)の熱分解によって作製されたZnOナノシートは、熱処理によって剥がれ、より薄いシートとなった。したがって、今回も同様に、ナノシートが剥がれ、基板表面から膜の表面までのシート間の間隔が広がったと考えられる。
これにより、垂直な間隔が多数構成され、レドックス対(I-/I3 -)の拡散が容易となり、電池の抵抗が減少して色素から注入された電子の再結合が減少したと考えられる。
In our previous work, ZnO nanosheets made by thermal decomposition of layered metal hydroxides (LHMs) were peeled off by heat treatment, resulting in thinner sheets. Therefore, it is considered that the nanosheets peeled off this time as well, and the interval between the sheets from the substrate surface to the film surface widened.
As a result, a large number of vertical intervals are formed, the diffusion of the redox couple (I / I 3 ) is facilitated, the resistance of the battery is decreased, and the recombination of electrons injected from the dye is decreased.

上記の通り、LHZC膜の熱分解によって作製されたポーラスZnO膜は基板に対してc軸が平行に配向している。垂直に立っているZnOナノシート膜を用いたDSCは4.0%という変換効率を示した。この4.0%の変換効率は、ZnOを用いたDSCにおいて基準光100mWcm-2下では、これまでの中で最も高いレベルの変換効率である。 As described above, the porous ZnO film produced by thermal decomposition of the LHZC film has the c-axis oriented parallel to the substrate. DSC using vertical standing ZnO nanosheet film showed a conversion efficiency of 4.0%. This 4.0% conversion efficiency is the highest conversion efficiency to date under the reference light of 100 mWcm −2 in the DSC using ZnO.

本発明は、層状水酸化炭酸亜鉛(LHZC)の垂直シート膜を作製することが可能となり、さらにこのLHZC膜の熱分解によって、基板に対してポーラスZnO膜のc軸を平行に配向させる、すなわち基板に対して垂直である酸化亜鉛ナノシートからなるポーラス酸化亜鉛膜を得ることができる。
これによって、ZnO膜の表面積を著しく増大させることが可能となる。このようなポーラス酸化亜鉛膜は、色素増感型太陽電池(DSC)、光触媒、化学センサー又は蛍光体として有用である。
The present invention makes it possible to produce a vertical sheet film of layered zinc hydroxide carbonate (LHZC), and further, by thermal decomposition of this LHZC film, the c-axis of the porous ZnO film is oriented parallel to the substrate, that is, A porous zinc oxide film made of zinc oxide nanosheets perpendicular to the substrate can be obtained.
As a result, the surface area of the ZnO film can be remarkably increased. Such a porous zinc oxide film is useful as a dye-sensitized solar cell (DSC), a photocatalyst, a chemical sensor, or a phosphor.

ガラス基板上のLHZC膜(a)と粉状のLHZC(b)のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the LHZC film | membrane (a) on a glass substrate, and powdery LHZC (b). ガラス基板上のLHZC膜(a-d)とポリスチレン基板上のLHZCの膜(e)とガラス基板上で作製したLHZCナノシートの電子線回折スポットを示す図である。FIG. 2 is a diagram showing an electron beam diffraction spot of an LHZC film (a-d) on a glass substrate, an LHZC film (e) on a polystyrene substrate, and an LHZC nanosheet produced on the glass substrate. LHZCナノシートの配向モデル図(a)とLHZCナノシート膜の成長メカニズムを説明するモデル図(b)である。FIG. 2 is an orientation model diagram (a) of an LHZC nanosheet and a model diagram (b) illustrating a growth mechanism of the LHZC nanosheet film. ガラス基板上で作製したLHZC膜を熱処理して得られたZnO膜のXRDパターンを示す図(a)、SEM像(b)、TEM像(C)である。FIG. 4 is a diagram (a), an SEM image (b), and a TEM image (C) showing an XRD pattern of a ZnO film obtained by heat-treating an LHZC film produced on a glass substrate. ZnO/N-719膜の拡散反射スペクトル(a)と色素増感型太陽電池特性を示す電流-電圧曲線(b)である。It is a current-voltage curve (b) showing the diffuse reflection spectrum (a) of the ZnO / N-719 film and the characteristics of the dye-sensitized solar cell.

Claims (3)

Zn(NO3)2・6H2Oと尿素((NH2)2CO)を水に溶解させて反応溶液を作製し、これをガラス基板又はF-ドープSnO2をコートした基板上で反応させることにより、不均一核生成させるとともに、基板に対して垂直である層状水酸化炭酸亜鉛ナノシートを成長させることを特徴とするポーラス酸化亜鉛膜形成用前駆体の製造方法。 Zn (NO 3 ) 2 · 6H 2 O and urea ((NH 2 ) 2 CO) are dissolved in water to prepare a reaction solution, which is reacted on a glass substrate or a substrate coated with F-doped SnO 2 A method for producing a precursor for forming a porous zinc oxide film, characterized by causing heterogeneous nucleation and growing a layered zinc hydroxide carbonate nanosheet perpendicular to the substrate. 基板に対して垂直な層状水酸化炭酸亜鉛ナノシートを形成した後、これを熱分解し、微細構造の崩壊を起こさずに基板に対して垂直である酸化亜鉛ナノシートを形成することを特徴とするポーラス酸化亜鉛膜の製造方法。   A porous zinc hydroxide nanosheet that is perpendicular to a substrate is formed and then thermally decomposed to form a zinc oxide nanosheet that is perpendicular to the substrate without causing a collapse of the microstructure. A method for producing a zinc oxide film. Zn(NO3)2・6H2Oと尿素((NH2)2CO)を水に溶解させて反応溶液を作製し、これをガラス基板又はF-ドープSnO2をコートした基板上で反応させることにより、不均一核生成させるとともに、基板に対して垂直である層状水酸化炭酸亜鉛ナノシートを成長させることを特徴とする請求項記載のポーラス酸化亜鉛膜の製造方法。 Zn (NO 3 ) 2 · 6H 2 O and urea ((NH 2 ) 2 CO) are dissolved in water to prepare a reaction solution, which is reacted on a glass substrate or a substrate coated with F-doped SnO 2 3. The method for producing a porous zinc oxide film according to claim 2 , wherein a layered zinc hydroxide carbonate nanosheet that is perpendicular to the substrate is grown while heterogeneous nucleation occurs.
JP2005207487A 2005-07-15 2005-07-15 Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film Expired - Fee Related JP4714844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207487A JP4714844B2 (en) 2005-07-15 2005-07-15 Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207487A JP4714844B2 (en) 2005-07-15 2005-07-15 Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film

Publications (2)

Publication Number Publication Date
JP2007022851A JP2007022851A (en) 2007-02-01
JP4714844B2 true JP4714844B2 (en) 2011-06-29

Family

ID=37784110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207487A Expired - Fee Related JP4714844B2 (en) 2005-07-15 2005-07-15 Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film

Country Status (1)

Country Link
JP (1) JP4714844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918603A (en) * 2018-07-11 2018-11-30 山东大学 A kind of g-C of porous zinc bloom nanometer sheet carrying transition metal doping3N4The synthetic method of composite air-sensitive material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665175B2 (en) * 2007-01-09 2011-04-06 独立行政法人産業技術総合研究所 High c-axis oriented high specific surface area ZnO crystal free-standing film and method for producing the same
JP5051511B2 (en) * 2007-02-07 2012-10-17 独立行政法人産業技術総合研究所 Dye-sensitized solar cell electrode
EP1973110A3 (en) 2007-03-19 2009-04-29 Ricoh Company, Ltd. Minute structure and information recording medium
JP2008297168A (en) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology ZnO WHISKER FILM AND ITS PREPARATION METHOD
JP5176224B2 (en) * 2007-07-09 2013-04-03 独立行政法人産業技術総合研究所 Zn5 (CO3) 2 (OH) 6 crystal free-standing film and method for manufacturing the same
JP5099324B2 (en) * 2007-08-21 2012-12-19 独立行政法人産業技術総合研究所 Porous ZnO particle-bonded free-standing film and method for producing the same
CN101138716B (en) * 2007-10-19 2010-06-30 中山大学 Preparation method of zinc oxide thin film photocatalyst
JP5339372B2 (en) * 2009-11-25 2013-11-13 独立行政法人産業技術総合研究所 Hybrid film made of Zn (OH) 2 nanosheet and ZnO nanowhisker film, hybrid film made of ZnO nanosheet and ZnO nanowhisker film, and method for producing them
US8480793B2 (en) 2010-09-15 2013-07-09 Exxonmobil Research And Engineering Company Method and apparatus for removing contaminant from fluid
CN102181850B (en) * 2011-03-29 2012-07-04 北京化工大学 In-situ synthesis method for zinc oxide nano film
CN103182301A (en) * 2011-12-29 2013-07-03 吉林师范大学 Controllable growing method of hamburger shaped ZnO nano-photocatalyst
CN102983009A (en) * 2012-11-06 2013-03-20 南京大学昆山创新研究院 Flexible photo-anode of dye-sensitized solar cell based on zinc oxide nano-sheet and preparation of flexible photo-anode of dye-sensitized solar cell based on zinc oxide nano-sheet
CN104085912A (en) * 2013-04-01 2014-10-08 陈曦 Preparation method of nanometer porous energy absorbing material
CN103981572A (en) * 2014-05-28 2014-08-13 上海理工大学 Growth method of flaky nano zinc oxides
JP6671712B2 (en) * 2016-10-28 2020-03-25 神島化学工業株式会社 Oxide nanosheet and method for producing the same
CN108996540B (en) * 2018-07-27 2020-12-01 五邑大学 ZnO nanoflower and preparation method thereof
KR102494685B1 (en) * 2020-07-01 2023-01-31 한양대학교 산학협력단 Photocatalytic Filters Having Physical Entrapment of Pollutants and Method for Purifying Gaseous Medium Using the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294623A (en) * 1992-04-23 1993-11-09 Idemitsu Kosan Co Ltd Production of zinc oxide thin film
JPH05294622A (en) * 1992-04-23 1993-11-09 Idemitsu Kosan Co Ltd Production of zinc oxide oriented film
JP2002141115A (en) * 2000-11-01 2002-05-17 Canon Inc Photoelectric conversion device, its manufacturing method, and solar battery system
JP2002274847A (en) * 2001-03-16 2002-09-25 National Institute For Materials Science Method of preparing needle zinc oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294623A (en) * 1992-04-23 1993-11-09 Idemitsu Kosan Co Ltd Production of zinc oxide thin film
JPH05294622A (en) * 1992-04-23 1993-11-09 Idemitsu Kosan Co Ltd Production of zinc oxide oriented film
JP2002141115A (en) * 2000-11-01 2002-05-17 Canon Inc Photoelectric conversion device, its manufacturing method, and solar battery system
JP2002274847A (en) * 2001-03-16 2002-09-25 National Institute For Materials Science Method of preparing needle zinc oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918603A (en) * 2018-07-11 2018-11-30 山东大学 A kind of g-C of porous zinc bloom nanometer sheet carrying transition metal doping3N4The synthetic method of composite air-sensitive material

Also Published As

Publication number Publication date
JP2007022851A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4714844B2 (en) Method for producing precursor for forming porous zinc oxide film, method for producing porous zinc oxide film
Zheng et al. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting
Qiu et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting
Wang et al. Effective electron collection in highly (110)-oriented ZnO porous nanosheet framework photoanode
Tak et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion
Prakash Review on nanostructured semiconductors for dye sensitized solar cells
JP4880598B2 (en) Composite comprising acicular crystal array, method for producing the same, photoelectric conversion device, light emitting device, and capacitor
Li et al. A three-dimensional interconnected hierarchical FeOOH/TiO 2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation
CN109778223B (en) ZnO modified WO3/BiVO4Preparation method of heterojunction and application of heterojunction in photoelectrocatalysis
Choi et al. Solar-driven hydrogen evolution using a CuInS 2/CdS/ZnO heterostructure nanowire array as an efficient photoanode
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
Yang et al. Electrodeposited Cu2O on the {101} facets of TiO2 nanosheet arrays and their enhanced photoelectrochemical performance
Wu et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes
Yao et al. Vertical growth of two-dimensional TiO2 nanosheets array films and enhanced photoelectrochemical properties sensitized by CdS quantum dots
US20120152336A1 (en) Aggregate particles of titanium dioxide for solar cells
Jafarzadeh et al. Recent progresses in solar cells: Insight into hollow micro/nano–structures
US8906711B2 (en) Method for preparing titania pastes for use in dye-sensitized solar cells
Lee et al. Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells
Xin et al. Construction of BiVO4 nanosheets@ WO3 arrays heterojunction photoanodes by versatile phase transformation strategy
Tyona et al. A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures
Kong et al. Synchronous etching and W-doping for 3D CdS/ZnO/TiO2 hierarchical heterostructure photoelectrodes to significantly enhance the photoelectrochemical performance
Geng et al. V-rich Bi2S3 nanowire with efficient charge separation and transport for high-performance and robust photoelectrochemical application under visible light
Wu et al. Nanosheet-based hierarchical ZnO structure decorated with TiO 2 particles for enhanced performance in dye-sensitized solar cell
Peng et al. The construction of a single-crystalline SbSI nanorod array–WO 3 heterostructure photoanode for high PEC performance
Ayal Enhanced photocurrent of titania nanotube photoelectrode decorated with CdS nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees