JP4714839B2 - Method for producing high-performance magnetic material and sintered body thereof - Google Patents

Method for producing high-performance magnetic material and sintered body thereof Download PDF

Info

Publication number
JP4714839B2
JP4714839B2 JP2002133000A JP2002133000A JP4714839B2 JP 4714839 B2 JP4714839 B2 JP 4714839B2 JP 2002133000 A JP2002133000 A JP 2002133000A JP 2002133000 A JP2002133000 A JP 2002133000A JP 4714839 B2 JP4714839 B2 JP 4714839B2
Authority
JP
Japan
Prior art keywords
sintering
magnetic field
magnetic
anisotropy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002133000A
Other languages
Japanese (ja)
Other versions
JP2003328009A (en
Inventor
公洋 尾崎
慶三 小林
光太郎 菊池
光 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S.S.ALLOY CO.,LTD.
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
S.S.ALLOY CO.,LTD.
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.S.ALLOY CO.,LTD., National Institute of Advanced Industrial Science and Technology AIST filed Critical S.S.ALLOY CO.,LTD.
Priority to JP2002133000A priority Critical patent/JP4714839B2/en
Publication of JP2003328009A publication Critical patent/JP2003328009A/en
Application granted granted Critical
Publication of JP4714839B2 publication Critical patent/JP4714839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は磁性材料の高性能化を行う製造方法とその焼結体に関するものである。
【0002】
【従来の技術】
近年、磁性材料は様々な用途で使用されており、自動車用モーターなど大型・軽量かつ高性能な磁石材料や、通信機器のブロードバンド化に伴う高周波用の超小型コアなど高性能な軟磁性材料のように、ますますその用途が拡大することが予想できる。このような高性能な磁性材料はNd-Fe-B系やSm-Fe-N系のように希土類元素を含む材料を超急冷して作製しており、磁石にする場合には超急冷粉末を焼結したのち、外部から磁場を与えて磁化するようにしている。
【0003】
ところで、一般的に磁石の磁力を高めるためには、結晶方向を一方向にそろえることにより異方性を持たせて、その方向への磁力を高めることが行われる。従来、非希土類系の磁石の場合にはその手法として、磁場中で熱処理することにより特定方向に結晶成長させることにより異方性を発現させていた。
【0004】
しかし、超急冷によって作製する希土類系の磁石の場合、微細結晶粒であることが高い磁力を生み出しているため、熱処理をすることができず、非希土類系の磁石の場合と同様の手法を用いて異方性を発現させることができない。そのため、粉末を押し出し等によって機械的に配向させることにより異方性を発現させた後焼結する方法、あるいは磁場中で圧粉体を作製した後焼結する方法が用いられる。いずれの手法も異方性を出すプロセスと粉末を固めるプロセスの2つのプロセスが必要となる。
【0005】
【発明が解決しようとする課題】
上記のように、高性能磁性材料を製造する場合に、従来では異方性を出すプロセスと粉末を固めるプロセスの2つのプロセスを必要とし、製造工程が複雑になっていた。
【0006】
そこで、上記両プロセスを同時に行うことができれば、製造工程を簡略化することができ、これに伴って、トータルコストを低くすることができる。また、常温で圧粉体を作製する際に必要な、あるいは、異方性を出すために行う押し出しの際に必要な、大きなプレス圧力が不要になるため、省エネルギー化が可能である。さらに製品形状の複雑化等にも対応することが可能となる。
【0007】
本発明はこれらの事情に鑑み、異方性の発現と粉末の焼結を同時に行うことができて、製造工程の簡略化及び省エネルギー化が可能な製造方法を提供するとともに、これにより作製した高性能磁性材料の焼結体を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の高性能磁性材料の製造方法は、アモルファス相もしくはナノ結晶相であるTb−Dy−Fe−CrまたはSm−Fe−Nの磁性材料、または前記磁性材料を含む複合材料からなる粉末材料を用いた焼結により一定形状に成形された焼結体を製造する方法であって、前記粉末材料に、外部から磁場を与えながら電流を供給し、これにより通電焼結を行うとともにその焼結中に磁気異方性を発現させることを特徴とするものである。
【0009】
本発明の方法によると、磁性粉末あるいはそれを含む混合粉末の焼結中に外部から磁場を与えることで異方性を発現させることができ、異方性を発現させるプロセスと焼結により成形するプロセスとを同時に行うことができる。
【0010】
とくに、高性能磁性材料の原料となる粉末はその多くが超急冷法や機械的合金化法などにより作製され、ナノ結晶やアモルファス相といった非平衡な状態にある。このような非平衡状態にある磁性材料は熱を与えることで簡単に結晶成長や結晶の析出が生じる。このような結晶成長あるいは結晶析出の際に磁場を与えることで、特定の方向を向いた結晶の成長あるいは析出を起こすことができる。
【0011】
そして、結晶の成長あるいは析出が加熱によって簡単に発生するが、成長あるいは析出した結晶が大きくなりすぎると磁気特性が急激に低下するため、焼結は短時間で終了する必要がある。そのため、焼結方法は高速で昇温できる方法を採用することが要求される。この要求を満足する焼結方法として、焼結型と粉末に直接電流を流して昇温する通電焼結を行うこととし、例えばパルス電流を供給するパルス通電焼結(放電焼結)を行う。
【0012】
また、本発明の焼結体は、上記のような製造方法により得られる。すなわち、アモルファス相もしくはナノ結晶相であるTb−Dy−Fe−Crの磁性材料、または前記磁性材料を含む複合材料からなる粉末材料を用いた焼結により一定形状に成形された結体であり、前記粉末材料に、外部から磁場が与えられながら直接電流供給され、これによ通電焼結さるとともに磁気異方性が付与されているものである。
【0013】
この焼結体は、焼結中に外部から磁場が与えられることにより充分に大きい異方性が付与され、その方向への磁力が高められる等、磁性材料としての特性が向上される。
【0014】
【発明の実施の形態】
本発明の高性能材料の製造方法において焼結は通電発熱により行い、特に好ましくはパルス通電焼結(放電焼結)法を使用する。この焼結方法は焼結型あるいは粉末に直接パルス電流を流すことにより、高速(毎分50°C以上の昇温速度)で焼結することが可能である。この方法には例えば図1に示すような装置が用いられる。
【0015】
この装置において、焼結型1は外型2と上下一対のパンチ3とで構成され、外型2は導電性および非導電性の物質、パンチ3は導電性のある物質からなる。この焼結型1に粉末材料Mを充填し、チェンバ4内で焼結を行う。チェンバ4内は大気はもちろんのこと真空雰囲気あるいは不活性ガス雰囲気にすることができるため種々の粉末を焼結することが可能である。パンチ3は加熱装置5により上下から加圧されることによって電極6と接し、電極6は焼結用電源11に電気的に接続されており、上記電源11から電極6およびパンチ3を通じて粉末Mあるいは外型2に電流が流れ、焼結が行われる。また、パンチ3を電極6と結合させることによって、無加圧の状態で電流を流すこともできる。
【0016】
上記焼結型1内には磁性材料となる強磁性体の非平衡状態の粉末Mが充填される。このような粉末は、例えば単ロールを用いた液体急冷法、あるいはメカニカルアロイング(以下MAと略す)により作製される。すなわち、単ロール法では、液体金属を106K/S以上の速度で超急冷するために、アモルファス相やナノ結晶相などの通常の溶解凝固では得られない非平衡状態を達成できる。また、MAでは、原料粉末あるいは合金粉末を機械的に粉砕し、液体を介さずに固体反応によって合金化を行うか、あるいは合金結晶を微細化することにより、アモルファス相やナノ結晶相を生成させる。
【0017】
また、図1に示す装置内には磁場発生手段が設けられている。この磁場発生手段は、例えば焼結型の周囲に配置されたコイル7により構成されている。そして、このコイル7に、焼結用電源11とは別の磁場発生用電源12から電流を供給することにより、磁場を発生させ、この磁場内に焼結型1が位置する状態で、焼結用電源11からの電力供給により焼結を行わせる。
【0018】
この場合、コイル7を設置する方向によって、発生させる磁場方向が決まるため、パンチ3を加圧する方向と平行に磁場を発生させたり、垂直方向に磁場を発生させたりすることが可能である。
【0019】
磁場は焼結工程の全期間または一部の期間(異方性に影響を及ぼす期間)に与えるようにし、例えば、焼結用電源11からの通電によって焼結材料を加熱する前からコイル7への通電により磁場を生じさせ、加熱終了後すなわち冷却中も磁場を存続させつつ、常温まで冷却する。
【0020】
以上のような方法によると、磁性粉末あるいはそれを含む混合粉末の焼結中に外部から磁場を与えることで異方性を発現させることができ、異方性を発現させるプロセスと焼結により成形するプロセスとを同時に行うことができる。
【0021】
そして、とくに非平衡状態の磁性粉末は、焼結時に熱が加えられるに伴い簡単に結晶成長や結晶の析出が生じ、この際、磁場中で焼結が行われることにより、特定の方向を向いた結晶の成長あるいは析出を起こすことができ、効果的に異方性を発現させることができる。
【0022】
また、焼結がパルス電流の供給による通電焼結とされることにより、急速に昇温されて、短時間で焼結が達成される。つまり、焼結用電源によりパルス電流を供給し、その電流値およびパルス周波数等を制御することにより、放電(アーク放電)による発熱および焼結材料Mを流れる電流によるジュール熱(さらに外型2が導電性物質の場合は外型2を流れる電流によるジュール熱)で急速に昇温される。
【0023】
このように短時間で焼結が達成されることにより、焼結中に成長あるいは析出した結晶が大きくなりすぎることが避けられ、磁気特性の低下が防止される。
【0024】
以上の方法により、異方性を持ち磁気特性にすぐれた高性能磁性材料の焼結体が得られる。
【0025】
なお、本発明は、上記の実施形態に限定されるものではなく、以下の内容をも包含するものである。
【0026】
(1)焼結中に外部から磁場を与える方法としては、図1に示すようなコイル7以外でも、焼結型1の外部に焼結型1に触れないように電流経路を設け、焼結用の電流とは別系統の電流を流すことによって型1内の材料に磁場を与えるようにすればよい。あるいは、焼結外型2を焼結材料とは電気的に絶縁して形成し、この外型2に焼結用の電流とは別系統の電流を与えることによって、型1内に磁場を発生させるようにしてもよい。あるいはまた、輻射熱による影響が無いように外部に磁石を設置することにより型1内の材料に磁場を与えるようにしてもよい。
【0027】
(2)焼結用の電流と磁場発生用の電流は同一電源から発生させても、別電源から発生させても良いが、上記実施形態のように別電源とする方が、個別に制御できて好ましい。
【0028】
(3)焼結用の電流は、パルス状態ではない通常の直流電流あるいは交流電流であってもよい。また、磁場発生用の電流も、直流電流、直流パルス電流、交流電流などが考えられる。
【0029】
(4)磁性材料としては、Nd-Fe-B、Sm-Fe-Nなどの磁石材料、Tb-Dy-Fe、Sm-Feなどの磁歪材料などがある。また、これらと有機材料やセラミックスとの複合材料であっても、焼結が可能である。また、Fe、Co、Niといった強磁性体を含む化合物においても、非平衡状態の粉末を出発原料とすることで、化合物の生成過程において異方性を発現させることが可能である。
【0030】
【実施例】
次に、本発明の実施例を説明する。なお、各実施例の焼結体についての磁気特性の異方性の確認にあたっては、振動試料型磁化測定装置(以下VSMと略す)を使用した。そして、作製した試料をサイコロ状(立方体)に切断し、焼結時に印加した磁場に垂直な方向と水平な方向の磁気特性を測定し、それぞれの違いを調べた。評価は、得られた値のうちの大きい値を小さい値で除した割合で表した。異方性があれば、磁気特性に変化が現れ、その割合が100%以上となる。この割合が大きいほど異方性が大きいことになる。
【0031】
実施例1
図1に示すような装置における内径10mmの黒鉛製の型に、MAによってアモルファス状態にした磁性合金粉末Tb-Dy-Fe-Crを2.5g入れ、黒鉛製のパンチで上下を挟み、加圧力255kgf/cm2でパンチを加圧し、磁場発生手段により発生させた磁場中で焼結を行った。磁場発生手段のコイルに流す電流は直流パルスで80A、周波数2Hzとした。このとき発生する磁場はおよそ2400A/mである。磁場の方向は加圧力に平行な方向とした。焼結は、アモルファス相が結晶化する温度より高い1173Kで5分間行った。作製した焼結体をVSMによって飽和磁化を調べその異方性を測定した結果、114%の違いがあった。
【0032】
参考例
実施例1と同様の焼結条件で、磁場を発生させずに焼結を行った場合、異方性は105%であった。これは、加圧によりわずかに異方性が現れるものの、実施例1と比べて異方性が格段に小さいことを示している。
【0033】
実施例2
MAによってアモルファス状態にした磁性合金粉末Tb-Dy-Fe-Crを1.0gおよび市販のZrO2粉末を1.5g乳鉢で混合した後、図1に示すような装置における内径10mmの黒鉛製の型に充填し、黒鉛製のパンチで上下を挟み、加圧力255kgf/cm2でパンチを加圧し、磁場発生手段により発生させた磁場中で焼結を行った。磁場発生手段のコイルに流す電流は直流パルスで80A、周波数2Hzとした。焼結は、アモルファス相が結晶化する温度より高い1173Kで5分間行った。VSMによって飽和磁化を調べその異方性を測定した結果、110%の違いがあった。
【0034】
実施例3
Al粉末3.0gとFe繊維(平均長さ1mm、平均径10μm)0.5gを乳鉢で混合した後、図1に示すような装置における内径10mmの黒鉛製の型に充填し、無加圧の状態で、磁場発生手段により発生させた磁場中で焼結を行った。磁場発生手段のコイルには直流80Aの電流を流した。また、焼結温度は773Kとした。その結果、繊維が印加した磁場と平行に配列された状態で焼結されていた。
【0035】
実施例4
実施例3と同様にAl粉末とFe繊維を混合した実験について、加圧力を22.6kgf/cm2にすると、磁場を印加しても磁場方向にはそろわず、圧力方向に対して垂直な方向にランダムな状態で焼結された。これは、磁場によって発生する力よりも、加圧したことによってFe繊維がAl粉末に押される力の方が強かったためである。この場合においても、磁場を印加する方向を加圧力に対して垂直方向にすることによって、圧力方向に対して垂直な方向に配列された状態で焼結することが可能であった。
【0036】
実施例5
図1に示すような装置における内径10mmの黒鉛製の型に、超急冷により作製したアモルファス相およびナノ結晶相を含むNd-Fe-B粉末を2.0g充填し、黒鉛製のパンチで上下を挟み、加圧力255kgf/cm2でパンチを加圧し、磁場発生手段により発生させた磁場中で焼結を行った。磁場発生手段のコイルに流す電流は直流パルスで80A、周波数2Hzとした。磁場の方向は加圧力に平行な方向とした。焼結は、アモルファス相が結晶化する温度直上の933Kで10分間行った。VSMによって飽和磁化を調べその異方性を測定した結果、111%の違いがあった。
【0037】
なお、同じ焼結条件下の実験で、磁場を印加しない実験を行って作製した試料につき、異方性を測定すると、101%でほとんど違いが見られなかった。
【0038】
実施例6
超急冷法によって非平衡状態にしたSm-Fe-Nを2.0gおよび市販のエポキシ樹脂粉末を0.2g乳鉢で混合した後、図1に示すような装置における内径10mmの黒鉛製の型に充填し、黒鉛製のパンチで上下を挟み、加圧力255kgf/cm2でパンチを加圧し、磁場発生手段により発生させた磁場中で焼結を行った。磁場発生手段のコイルに流す電流は直流パルスで80A、周波数2Hzとした。焼結は、Sm-Fe-Nが分解する温度より低い423Kで5分間行った。VSMによって飽和磁化を調べその異方性を測定した結果、112%の違いがあった。
【0039】
尚、本発明は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0040】
【発明の効果】
以上記載したとおり、本発明によると、通電焼結により、外部から磁場を与えながら高性能磁性材料を焼結により作製することが可能となる。このため、異方性を発現させるプロセスと焼結により成形するプロセスとを同時に行うことができ、製造工程を簡略化することができるとともに、常温で圧粉体を作製する際に必要な、あるいは、異方性を出すために行う押し出しの際に必要な、大きなプレス圧力が不要となって、省エネルギー化が可能となり、これらによってコストの低減を図ることができる。
【0041】
また、非平衡状態にある磁性材料を含む粉末材料を焼結し、その焼結中に磁場をあたえることにより、簡単かつ効果的に異方性を発現させることができる。
【0042】
非平衡磁性粉末とセラミックス、樹脂等の粉末とを混合した材料を通電により焼結して、その通電焼結中に外部から磁場を与えるようにすれば、異方性を持つ複合磁性材料を作製することができる。
【図面の簡単な説明】
【図1】 本発明の方法を実施するための装置の一例を示す概略図である。
【符号の説明】
1 焼結型
6 電極
7 磁場発生用のコイル
11 焼結用電源
12 磁場発生用電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method for enhancing the performance of a magnetic material and a sintered body thereof.
[0002]
[Prior art]
In recent years, magnetic materials have been used in various applications, such as large-sized, lightweight, high-performance magnet materials such as motors for automobiles, and high-performance soft magnetic materials such as ultra-small cores for high frequencies associated with broadband communication equipment. As such, it can be expected that its use will expand more and more. Such high-performance magnetic materials are produced by ultra-quenching materials containing rare earth elements, such as Nd-Fe-B and Sm-Fe-N systems. After sintering, it is magnetized by applying a magnetic field from the outside.
[0003]
By the way, in general, in order to increase the magnetic force of a magnet, anisotropy is provided by aligning crystal directions in one direction, and the magnetic force in that direction is increased. Conventionally, in the case of non-rare earth magnets, anisotropy is developed by crystal growth in a specific direction by heat treatment in a magnetic field.
[0004]
However, in the case of rare earth magnets produced by ultra-rapid cooling, the fine crystal grains generate high magnetic force, so heat treatment cannot be performed, and the same method as for non-rare earth magnets is used. Anisotropy cannot be expressed. Therefore, a method of sintering after expressing anisotropy by mechanically orienting the powder by extrusion or the like, or a method of sintering after producing a green compact in a magnetic field is used. Both methods require two processes: an anisotropy process and a powder hardening process.
[0005]
[Problems to be solved by the invention]
As described above, when manufacturing a high-performance magnetic material, conventionally, two processes, ie, a process of generating anisotropy and a process of hardening powder, are required, and the manufacturing process has been complicated.
[0006]
Therefore, if both the above processes can be performed simultaneously, the manufacturing process can be simplified, and the total cost can be reduced accordingly. Further, energy saving can be achieved because a large pressing pressure necessary for producing a green compact at normal temperature or for extruding performed to produce anisotropy is not required. Furthermore, it becomes possible to cope with the complexity of the product shape.
[0007]
In view of these circumstances, the present invention provides a manufacturing method capable of simultaneously producing anisotropy and sintering a powder, simplifying the manufacturing process and saving energy, and producing the high An object of the present invention is to provide a sintered body of a performance magnetic material.
[0008]
[Means for Solving the Problems]
The method for producing a high-performance magnetic material according to the present invention includes a magnetic material of Tb-Dy-Fe-Cr or Sm-Fe-N, which is an amorphous phase or a nanocrystalline phase , or a powder material made of a composite material containing the magnetic material. a method for producing a sintered body which is formed into a predetermined shape by sintering using the powder material, supplying a current while applying a magnetic field from the outside, rows Utotomoni the sintering current sintering This It is characterized in that magnetic anisotropy is developed inside.
[0009]
According to the method of the present invention, anisotropy can be expressed by applying a magnetic field from the outside during the sintering of the magnetic powder or mixed powder containing the same, and molding is performed by the process and sintering of the anisotropy. The process can be performed simultaneously.
[0010]
In particular, many of the powders used as raw materials for high-performance magnetic materials are produced by a super-quenching method or a mechanical alloying method, and are in a non-equilibrium state such as a nanocrystalline phase or an amorphous phase. In such a non-equilibrium magnetic material, crystal growth and crystal precipitation are easily caused by applying heat. By applying a magnetic field during such crystal growth or crystal precipitation, crystal growth or precipitation directed in a specific direction can be caused.
[0011]
Crystal growth or precipitation is easily generated by heating. However, if the grown or precipitated crystal becomes too large, the magnetic properties are drastically deteriorated, so that the sintering needs to be completed in a short time. Therefore, it is required to employ a method that can raise the temperature at a high speed. As a sintering method that satisfies this requirement, current sintering is performed by passing a current directly through the sintering mold and powder to raise the temperature. For example, pulse current sintering (discharge sintering) for supplying a pulse current is performed.
[0012]
The sintered body of the present invention can be obtained by the production method as described above. That is, a sintered body formed into a fixed shape by sintering using a Tb—Dy—Fe—Cr magnetic material which is an amorphous phase or a nanocrystalline phase , or a powder material made of a composite material containing the magnetic material. the powder material, direct current is supplied while the magnetic field from the outside is provided, in which energization sintering is sintered Rutotomoni anisotropy This ensures has been granted.
[0013]
The sintered body is sufficiently large anisotropy is imparted by the magnetic field is given from the outside during sintering, such that the magnetic force in the direction is increased, the characteristics of the magnetic material is improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a high-performance material of the present invention, sintering is performed by energization heat generation, and a pulse current sintering (discharge sintering) method is particularly preferably used. In this sintering method, it is possible to sinter at a high speed (heating rate of 50 ° C. or more per minute) by passing a pulse current directly to the sintering mold or powder. For this method, for example, an apparatus as shown in FIG. 1 is used.
[0015]
In this apparatus, the sintering die 1 is composed of an outer die 2 and a pair of upper and lower punches 3, the outer die 2 is made of a conductive and non-conductive material, and the punch 3 is made of a conductive material. The sintering mold 1 is filled with the powder material M and sintered in the chamber 4. Since the inside of the chamber 4 can be a vacuum atmosphere or an inert gas atmosphere as well as the air, various powders can be sintered. The punch 3 is brought into contact with the electrode 6 by being pressurized from above and below by the heating device 5, and the electrode 6 is electrically connected to the power source 11 for sintering, and from the power source 11 through the electrode 6 and the punch 3, the powder M or A current flows through the outer mold 2 and sintering is performed. Further, by combining the punch 3 with the electrode 6, it is possible to pass a current without applying pressure.
[0016]
The sintered mold 1 is filled with a non-equilibrium powder M of a ferromagnetic material as a magnetic material. Such a powder is produced by, for example, a liquid quenching method using a single roll or mechanical alloying (hereinafter abbreviated as MA). That is, in the single roll method, since the liquid metal is super-cooled at a rate of 10 6 K / S or more, a non-equilibrium state that cannot be obtained by ordinary dissolution and solidification such as an amorphous phase or a nanocrystalline phase can be achieved. In MA, raw material powder or alloy powder is mechanically pulverized and alloyed by a solid reaction without using a liquid, or an alloy crystal is refined to generate an amorphous phase or a nanocrystalline phase. .
[0017]
In addition, magnetic field generating means is provided in the apparatus shown in FIG. This magnetic field generating means is constituted by, for example, a coil 7 disposed around a sintered mold. The coil 7 is supplied with a current from a magnetic field generating power source 12 different from the sintering power source 11 to generate a magnetic field, and the sintering mold 1 is positioned in the magnetic field. Sintering is performed by supplying electric power from the power source 11.
[0018]
In this case, since the direction of the magnetic field to be generated is determined by the direction in which the coil 7 is installed, it is possible to generate a magnetic field parallel to the direction in which the punch 3 is pressed or to generate a magnetic field in the vertical direction.
[0019]
The magnetic field is applied to the entire or part of the sintering process (a period that affects the anisotropy). For example, the coil 7 is heated before the sintered material is heated by energization from the power source 11 for sintering. A magnetic field is generated by energization of, and after the heating is completed, that is, during the cooling, the magnetic field is continued and cooled to room temperature.
[0020]
According to the above method, anisotropy can be expressed by applying a magnetic field from the outside during sintering of magnetic powder or mixed powder containing the same, and molding is performed by the process and sintering that develops anisotropy. Process can be performed simultaneously.
[0021]
In particular, magnetic powder in a non-equilibrium state easily undergoes crystal growth or crystal precipitation as heat is applied during sintering. In this case, sintering is performed in a magnetic field, so that a specific direction is achieved. Crystal growth or precipitation can occur, and anisotropy can be effectively expressed.
[0022]
In addition, since the sintering is performed by energization sintering by supplying a pulse current, the temperature is rapidly increased and the sintering is achieved in a short time. That is, a pulse current is supplied from a power source for sintering, and the current value and pulse frequency are controlled, thereby generating heat due to discharge (arc discharge) and Joule heat due to current flowing through the sintered material M (and the outer mold 2 is In the case of a conductive substance, the temperature is rapidly increased by Joule heat due to the current flowing in the outer mold 2.
[0023]
Thus, by achieving sintering in a short time, it is avoided that the crystals grown or precipitated during the sintering become too large, and the deterioration of the magnetic properties is prevented.
[0024]
By the above method, a sintered body of a high-performance magnetic material having anisotropy and excellent magnetic properties can be obtained.
[0025]
In addition, this invention is not limited to said embodiment, The following content is also included.
[0026]
(1) As a method of applying a magnetic field from outside during sintering, a current path is provided outside the sintering mold 1 so as not to touch the sintering mold 1 other than the coil 7 as shown in FIG. What is necessary is just to give a magnetic field to the material in the type | mold 1 by sending the electric current of another system | strain other than the electric current for use. Alternatively, the sintered outer mold 2 is formed by being electrically insulated from the sintered material, and a magnetic field is generated in the mold 1 by applying a current of a different system from the current for sintering to the outer mold 2. You may make it make it. Or you may make it give a magnetic field to the material in the type | mold 1 by installing a magnet outside so that there may be no influence by a radiant heat.
[0027]
(2) The current for sintering and the current for generating magnetic field may be generated from the same power source or from different power sources, but separate power sources can be controlled individually as in the above embodiment. It is preferable.
[0028]
(3) The current for sintering may be a normal direct current or an alternating current that is not in a pulse state. Further, the current for generating a magnetic field may be a direct current, a direct current pulse current, an alternating current, or the like.
[0029]
(4) Magnetic materials include magnet materials such as Nd-Fe-B and Sm-Fe-N, and magnetostrictive materials such as Tb-Dy-Fe and Sm-Fe. Further, even a composite material of these with an organic material or ceramic can be sintered. In addition, even in a compound containing a ferromagnetic material such as Fe, Co, and Ni, anisotropy can be expressed in the formation process of the compound by using a powder in a non-equilibrium state as a starting material.
[0030]
【Example】
Next, examples of the present invention will be described. In order to confirm the magnetic property anisotropy of the sintered body of each example, a vibrating sample type magnetometer (hereinafter abbreviated as VSM) was used. Then, the produced sample was cut into a dice shape (cube), and the magnetic properties in the direction perpendicular to the magnetic field applied during sintering and in the horizontal direction were measured, and the difference between them was examined. Evaluation was expressed as a ratio obtained by dividing a large value among the obtained values by a small value. If there is anisotropy, a change appears in the magnetic properties, and the ratio becomes 100% or more. The larger this ratio, the greater the anisotropy.
[0031]
Example 1
In a graphite mold with an inner diameter of 10 mm in the apparatus as shown in FIG. 1, 2.5 g of magnetic alloy powder Tb-Dy-Fe-Cr made amorphous by MA is put, and the upper and lower sides are sandwiched between graphite punches, and pressure is applied. The punch was pressurized at 255 kgf / cm 2 and sintered in the magnetic field generated by the magnetic field generating means. The current passed through the coil of the magnetic field generating means was 80 A DC pulse and the frequency was 2 Hz. The magnetic field generated at this time is approximately 2400 A / m. The direction of the magnetic field was parallel to the applied pressure. Sintering was performed for 5 minutes at 1173 K, which is higher than the temperature at which the amorphous phase crystallizes. As a result of examining saturation magnetization of the produced sintered body by VSM and measuring its anisotropy, there was a difference of 114%.
[0032]
Reference Example When sintering was performed under the same sintering conditions as in Example 1 without generating a magnetic field, the anisotropy was 105%. This shows that although anisotropy appears slightly by pressurization, the anisotropy is remarkably small as compared with Example 1.
[0033]
Example 2
After mixing 1.0 g of magnetic alloy powder Tb-Dy-Fe-Cr and 1.5 g of commercially available ZrO 2 powder that were made amorphous by MA in a mortar, graphite-made iron with an inner diameter of 10 mm in an apparatus as shown in FIG. The mold was filled, the upper and lower sides were sandwiched between graphite punches, the punch was pressurized with a pressure of 255 kgf / cm 2 , and sintering was performed in a magnetic field generated by a magnetic field generating means. The current passed through the coil of the magnetic field generating means was 80 A DC pulse and the frequency was 2 Hz. Sintering was performed for 5 minutes at 1173 K, which is higher than the temperature at which the amorphous phase crystallizes. As a result of examining saturation magnetization by VSM and measuring its anisotropy, there was a difference of 110%.
[0034]
Example 3
After mixing Al powder 3.0g and Fe fiber (average length 1mm, average diameter 10μm) 0.5g in a mortar, it is filled into a graphite mold with an inner diameter of 10mm in an apparatus as shown in FIG. In this state, sintering was performed in a magnetic field generated by a magnetic field generating means. A direct current of 80 A was passed through the coil of the magnetic field generating means. The sintering temperature was 773K. As a result, the fibers were sintered in a state of being arranged in parallel with the applied magnetic field.
[0035]
Example 4
For the experiment in which Al powder and Fe fiber were mixed in the same manner as in Example 3, when the applied pressure was 22.6 kgf / cm 2 , the direction perpendicular to the pressure direction did not align even when the magnetic field was applied. Sintered in a random state. This is because the force that presses the Fe fibers against the Al powder by pressurization was stronger than the force generated by the magnetic field. Even in this case, it was possible to sinter in a state where the magnetic field was applied in a direction perpendicular to the pressure direction by making the direction perpendicular to the applied pressure.
[0036]
Example 5
A graphite mold having an inner diameter of 10 mm in an apparatus as shown in FIG. 1 is filled with 2.0 g of Nd—Fe—B powder containing an amorphous phase and a nanocrystalline phase produced by ultra-rapid cooling, and up and down with a graphite punch. The punch was pressed with a pressure of 255 kgf / cm 2 and sintered in a magnetic field generated by a magnetic field generating means. The current passed through the coil of the magnetic field generating means was 80 A DC pulse and the frequency was 2 Hz. The direction of the magnetic field was parallel to the applied pressure. Sintering was performed for 10 minutes at 933 K just above the temperature at which the amorphous phase crystallizes. As a result of examining saturation magnetization by VSM and measuring its anisotropy, there was a difference of 111%.
[0037]
In addition, when the anisotropy was measured for the sample produced by conducting an experiment without applying a magnetic field under the same sintering condition, there was almost no difference at 101%.
[0038]
Example 6
After mixing 2.0 g of Sm—Fe—N brought into a non-equilibrium state by a rapid quenching method and 0.2 g of a commercially available epoxy resin powder in a mortar, a graphite mold having an inner diameter of 10 mm in an apparatus as shown in FIG. After filling, the upper and lower sides were sandwiched between graphite punches, the punch was pressurized with a pressure of 255 kgf / cm 2 , and sintering was performed in a magnetic field generated by a magnetic field generating means. The current passed through the coil of the magnetic field generating means was 80 A DC pulse and the frequency was 2 Hz. Sintering was performed for 5 minutes at 423 K, which is lower than the temperature at which Sm-Fe-N decomposes. As a result of examining saturation magnetization by VSM and measuring its anisotropy, there was a difference of 112%.
[0039]
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a high-performance magnetic material by sintering while applying a magnetic field from the outside by electric current sintering. For this reason, the process of expressing anisotropy and the process of forming by sintering can be performed simultaneously, the manufacturing process can be simplified, and it is necessary when producing a green compact at room temperature, or The large pressing pressure required for extrusion for producing anisotropy is not necessary, and energy can be saved, thereby reducing costs.
[0041]
Further, anisotropy can be expressed easily and effectively by sintering a powder material containing a magnetic material in a non-equilibrium state and applying a magnetic field during the sintering.
[0042]
A composite magnetic material with anisotropy can be produced by applying a magnetic field from the outside during the current sintering by sintering a material that is a mixture of non-equilibrium magnetic powder and powder such as ceramics and resin. can do.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sintering type 6 Electrode 7 Coil for magnetic field generation 11 Power source for sintering 12 Power source for magnetic field generation

Claims (2)

アモルファス相もしくはナノ結晶相であるTb−Dy−Fe−CrまたはSm−Fe−Nの磁性材料、または前記磁性材料を含む複合材料からなる粉末材料を用いた焼結により一定形状に成形された焼結体を製造する方法であって、
前記粉末材料に、外部から磁場を与えながら電流を供給し、これにより通電焼結を行うとともにその焼結中に磁気異方性を発現させることを特徴とする高性能磁性材料の製造方法。
A sintered body formed into a fixed shape by sintering using a magnetic material of Tb-Dy-Fe-Cr or Sm-Fe-N, which is an amorphous phase or a nanocrystalline phase , or a powder material made of a composite material containing the magnetic material. A method for producing a knot ,
Wherein the powder material, supplying a current while applying a magnetic field from the outside, thereby manufacturing method of high-performance magnetic materials, characterized in that the expression of the anisotropy of electric current sintering in line Utotomoni its sintering.
アモルファス相もしくはナノ結晶相であるTb−Dy−Fe−Crの磁性材料、または前記磁性材料を含む複合材料からなる粉末材料を用いた焼結により一定形状に成形された結体であり、
前記粉末材料に、外部から磁場が与えられながら直接電流供給され、これによ通電焼結さるとともに磁気異方性が付与されていることを特徴とする高性能磁性材料の焼結体。
A sintered body formed into a fixed shape by sintering using a magnetic material of Tb-Dy-Fe-Cr that is an amorphous phase or a nanocrystalline phase , or a powder material made of a composite material containing the magnetic material,
Wherein the powder material, direct current is supplied while a magnetic field is externally applied, the sintering of high-performance magnetic material characterized in that it'll Ri is energized sintering Rutotomoni magnetic anisotropy is imparted body.
JP2002133000A 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof Expired - Lifetime JP4714839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133000A JP4714839B2 (en) 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133000A JP4714839B2 (en) 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof

Publications (2)

Publication Number Publication Date
JP2003328009A JP2003328009A (en) 2003-11-19
JP4714839B2 true JP4714839B2 (en) 2011-06-29

Family

ID=29696244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133000A Expired - Lifetime JP4714839B2 (en) 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof

Country Status (1)

Country Link
JP (1) JP4714839B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486097B (en) * 2008-12-24 2012-06-20 华南理工大学 Field coupling preparation method of powder metallurgical ferrous alloy material
CN101934371A (en) * 2010-09-13 2011-01-05 华南理工大学 Permanent magnet material forming method and device under multi-external field coupling effect
CN109682202A (en) * 2019-01-30 2019-04-26 清华大学 A kind of ultrasonic wave added direct current sintering furnace and sintering method
CN109631568A (en) * 2019-01-30 2019-04-16 清华大学 A kind of pressure sintering furnace and sintering method of magnetic field coupling DC current
CN113087536B (en) * 2021-04-30 2023-08-22 陕西科技大学 Device for improving density of pressure-sensitive ceramic based on magnetic control method and preparation method of pressure-sensitive ceramic

Also Published As

Publication number Publication date
JP2003328009A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
EP0898287A2 (en) Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications
JP2756471B2 (en) Method for manufacturing radially oriented magnet and radially oriented magnet
WO2003038845A1 (en) Permanent magnet manufacturing method and press apparatus
CN111033653B (en) Permanent magnet with intergranular heavy rare earth elements and method for producing same
CN102339670A (en) Method for manufacturing permanent magnet
JP4714839B2 (en) Method for producing high-performance magnetic material and sintered body thereof
CN109923629A (en) The manufacturing method of rare-earth magnet
KR101804313B1 (en) Method Of rare earth sintered magnet
KR20040085988A (en) Axial pressing method for improved magnetic alignment of rare earth magnet and apparatus thereof
Gould Permanent magnets
KR20180119754A (en) Manufacturing method Of rare earth sintered magnet
JPH06302417A (en) Permanent magnet and its manufacture
WO2003056583A1 (en) Production method for permanent magnet and press device
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JP4315340B2 (en) Magnetic field forming method, radial anisotropic ring magnet manufacturing method, magnetic field forming apparatus and radial anisotropic ring magnet
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP2007123467A (en) Method for manufacturing anisotropic magnet
JP3151604B2 (en) Method for producing radial anisotropic bonded magnet and bonded magnet
KR20180119755A (en) Manufacturing method of rare earth sintered magnet
WO2024101148A1 (en) Anisotropic magnet, and method for manufacturing anisotropic magnet
JP2020504446A (en) Sintered magnet, electric equipment, use of sintered magnet for electric equipment, and method of manufacturing sintered magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JP3937126B2 (en) Die for sintered magnet and method for producing sintered magnet
JPH0935978A (en) Manufacture of anisotropic sintered permanent magnet
JPH06333729A (en) Anisotropic magnet, and method and apparatus for manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4714839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term