JP4714832B2 - High-speed and high-precision sea salt particle generator - Google Patents

High-speed and high-precision sea salt particle generator Download PDF

Info

Publication number
JP4714832B2
JP4714832B2 JP2006037139A JP2006037139A JP4714832B2 JP 4714832 B2 JP4714832 B2 JP 4714832B2 JP 2006037139 A JP2006037139 A JP 2006037139A JP 2006037139 A JP2006037139 A JP 2006037139A JP 4714832 B2 JP4714832 B2 JP 4714832B2
Authority
JP
Japan
Prior art keywords
air
tank
sea salt
seawater
supply path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006037139A
Other languages
Japanese (ja)
Other versions
JP2007218639A (en
Inventor
博之 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006037139A priority Critical patent/JP4714832B2/en
Publication of JP2007218639A publication Critical patent/JP2007218639A/en
Application granted granted Critical
Publication of JP4714832B2 publication Critical patent/JP4714832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本願発明は、海塩粒子による腐食性を加速評価する環境試験装置のための、高速高精度の海塩粒子発生装置に関する。   The present invention relates to a high-speed and high-accuracy sea salt particle generator for an environmental test apparatus for accelerating and evaluating the corrosivity caused by sea salt particles.

鉄鋼など金属材料は、屋外環境において自動車車体、橋梁、建築骨材など各種構造材料としてもっともよく使われている。金属材料は、一般には経年により腐食が進行し、特に屋外の風雨に曝されるような環境下に長年あったものは、腐食してその強度が著しく劣化することは周知の通りである。通常の環境における金属の腐食は、表面に付着する付着物の影響を大きく受ける。特に海浜地域では、海水からの海塩粒子が重要な腐食性因子となることが知られている。腐食を防止するために、塗装による表面保護、耐食性合金(ステンレスなど)の使用などが行われているが、海塩粒子が付着する環境でのこれらの耐食性の評価は、構造物等の安全性に関わるため非常に重要である。   Metal materials such as steel are most often used as various structural materials such as automobile bodies, bridges, and building aggregates in outdoor environments. It is well known that a metal material is generally corroded with aging, and particularly when it has been in an environment where it is exposed to outdoor wind and rain for many years, it corrodes and its strength deteriorates significantly. Corrosion of metals in a normal environment is greatly affected by deposits adhering to the surface. It is known that sea salt particles from seawater become an important corrosive factor especially in the beach area. In order to prevent corrosion, surface protection by painting and the use of corrosion-resistant alloys (stainless steel, etc.) have been carried out, but the evaluation of these corrosion resistance in environments where sea salt particles adhere is the safety of structures, etc. It is very important to be involved.

海塩粒子の付着による、金属等の腐食特性の試験方法としては、塩水噴霧試験(以下SST)で知られる5%のNaClを35℃で連続噴霧する方法が、自動車の車体用塗装鋼板の耐食性評価法として適用されている(非特許文献1)。日本自動車工業規格協会で規格化された車体外面腐食試験法の試験条件は、塩化物として5%の食塩水を2時間の塩水噴霧により付着させるものである(非特許文献2)。この試験法では濡れ時間(湿潤時間と塩水噴霧時間の合計時間)を全試験時間の50%の試験時間とすることを実環境との相関性と促進率の両立の重要条件としている。ISO−9227において規定されているCASS試験法においても、金属腐食の促進試験として塩水噴霧試験が規定されている。   As a test method for the corrosion characteristics of metals, etc. due to adhesion of sea salt particles, a method of continuously spraying 5% NaCl at 35 ° C., which is known in the salt spray test (hereinafter referred to as SST), is the corrosion resistance of painted steel sheets for automobile bodies. It is applied as an evaluation method (Non-Patent Document 1). The test condition of the vehicle body outer surface corrosion test method standardized by the Japan Automobile Manufacturers Association is to deposit 5% saline as chloride by spraying with salt water for 2 hours (Non-patent Document 2). In this test method, setting the wetting time (the total time of the wetting time and the salt water spraying time) to be 50% of the total testing time is an important condition for achieving both the correlation with the actual environment and the acceleration rate. Also in the CASS test method prescribed | regulated in ISO-9227, the salt spray test is prescribed | regulated as an accelerated test of metal corrosion.

本願発明者も、現実の腐食プロセスを考慮した実環境シミュレート大気腐食試験装置を提案している(特許文献1)。
JIS Z 2371 JASO M610 自動車技術会:「自動車部品外観腐食試験法」, JASO M610-92(1992). 特開2004−132752号公報
The inventor of the present application has also proposed a real environment simulated atmospheric corrosion test apparatus considering an actual corrosion process (Patent Document 1).
JIS Z 2371 JASO M610 Automotive Engineering Society: `` Automobile parts appearance corrosion test method '', JASO M610-92 (1992). JP 2004-132752 A

しかしながら、従来の試験方法では、塩水を簡便な方法で霧状にし、それを試験材料に吹きかけているので、現実の腐食プロセスを十分に再現できないという課題があった。海塩粒子には沿岸近くで波が砕けて飛沫となって大気中に舞い上がり風によって運ばれてくるものと、遠く海洋から気流に乗って来るものがあり、その生成プロセスにより粒子の大きさは変わってくる。海浜などにおける実環境では、直径数μmから数十μmの海塩粒子が飛来する。そのため、実環境における腐食特性を評価するためには、海塩粒子の生成プロセスに対応する様々な粒径の海塩粒子に関して評価する必要がある。また、上記のような海浜粒子生成プロセスから、海塩粒子によって引き起こされる腐食には海からの距離に相関があることが知られている。従って、海からの距離に対応する海塩粒子付着速度を変えて、材料の腐食速度を評価する必要がある。また、海塩粒子が金属などの表面に付着蓄積し、朝方の結露によりその付着塩が溶解して塩化物イオンが発生し、これにより腐食が進行するという腐食進行プロセスを考慮すると、実環境においては金属表面で高濃度の塩化物イオン溶液が生成し、金属はそれによる侵食を受けていることになり、これに対応する試験方法が必要である。   However, the conventional test method has a problem that the actual corrosion process cannot be sufficiently reproduced because the salt water is atomized by a simple method and sprayed on the test material. There are two types of sea salt particles: one that breaks up near the coast and splashes into the air and is carried by the wind, and the other that comes into the air from far away from the ocean. It will change. In an actual environment such as a beach, sea salt particles having a diameter of several μm to several tens of μm come in. Therefore, in order to evaluate the corrosion characteristics in the actual environment, it is necessary to evaluate sea salt particles having various particle sizes corresponding to the production process of sea salt particles. From the beach particle generation process as described above, it is known that the corrosion caused by the sea salt particles has a correlation with the distance from the sea. Therefore, it is necessary to change the sea salt particle deposition rate corresponding to the distance from the sea to evaluate the corrosion rate of the material. In addition, in the actual environment, considering the corrosion progress process in which sea salt particles adhere and accumulate on the surface of metal, etc., and the adhering salt dissolves due to morning condensation and chloride ions are generated, which causes corrosion to proceed. A highly concentrated chloride ion solution is formed on the metal surface, and the metal is eroded by it, and a corresponding test method is required.

特許文献1の発明は、このような事情を鑑みて本発明者によりなされたものであるが、その後の詳細な実験的検証により、海塩粒子付着速度の制御が難しい場合があること、数mdd以上の海塩粒子付着速度を実現することが困難であるため加速性能として限界があることが把握されている。   The invention of Patent Document 1 has been made by the present inventor in view of such circumstances, and it is difficult to control the sea salt particle deposition rate by detailed experimental verification thereafter. Since it is difficult to realize the above sea salt particle adhesion rate, it has been grasped that the acceleration performance has a limit.

そこで、本願発明は、以上の通りの背景から、本発明者によるこれまでの検討とその過程で得られた知見を踏まえて、海塩粒子による腐食性を加速評価するための、高速高精度の海塩粒子発生装置を提供することを課題としている。   Therefore, the present invention is based on the background as described above, and based on the previous studies by the present inventor and the knowledge obtained in the process, high-speed and high-accuracy for accelerating the corrosivity due to sea salt particles. It is an object to provide a sea salt particle generator.

本願発明は、上記の課題を解決するために、海水より海塩粒子を発生させて材料の腐食特性を評価する環境試験装置のための高速高精度の海塩粒子発生装置において、蒸留水を貯留する加湿槽と、海水を貯留する海水槽と、海水槽の内部に配設され海水を霧化する超音波霧発生器と、当該加湿槽、海水槽のそれぞれにエアーを供給するエアーポンプと、エアーポンプを加湿槽、海水槽にそれぞれ連通させる第1のエアー供給路及び第2のエアー供給路と、第1のエアー供給路と第2のエアー供給路の末端に設けられ、加湿槽内部、海水槽内部に配置されるエアーストーンと、加湿槽、海水槽のそれぞれから流出するエアーを混合し、海塩粒子の通路となる海塩粒子供給路とを備えた海塩粒子発生装置により、第1のエアー供給路、第2のエアー供給路に第1の流量調整器、第2の流量調整器がそれぞれ配設され、第1の流量調整器、第2の流量調整器が独立に制御され、エアーポンプから加湿槽、海水槽に供給されるエアーの流量を調整して、試料室へ送られる風量を一定に保ちつつ海塩粒子付着速度を可変とすることを特徴としている。   In order to solve the above problems, the present invention provides a high-speed and high-precision sea salt particle generator for an environmental test apparatus that generates sea salt particles from seawater and evaluates the corrosion characteristics of materials, and stores distilled water. A humidifying tank, a seawater tank that stores seawater, an ultrasonic mist generator that is disposed inside the seawater tank to atomize seawater, an air pump that supplies air to each of the humidifying tank and the seawater tank, A first air supply path and a second air supply path for communicating the air pump with the humidification tank and the seawater tank, respectively, at the ends of the first air supply path and the second air supply path; A sea salt particle generator equipped with an air stone arranged inside the sea water tank and air that flows out from each of the humidifying tank and the sea water tank and having a sea salt particle supply path serving as a sea salt particle passage, 1 air supply path, 2nd air A first flow rate regulator and a second flow rate regulator are arranged in the supply path, respectively, and the first flow rate regulator and the second flow rate regulator are controlled independently, from the air pump to the humidification tank and seawater tank. The flow rate of the supplied air is adjusted, and the amount of sea salt particles adhering is made variable while keeping the air volume sent to the sample chamber constant.

上記の通りの本願の発明によれば、海塩粒子発生速度を広範囲で制御することができるようになり、それにより様々な実環境に近い条件で大気腐食試験を行うことが可能になる。これにより、耐食性材料や塗装材料の腐食性を高い精度で評価することが可能になり、その開発が促進される。   According to the invention of the present application as described above, it becomes possible to control the generation rate of sea salt particles over a wide range, thereby enabling atmospheric corrosion tests to be performed under conditions close to various real environments. As a result, it becomes possible to evaluate the corrosion resistance of the corrosion-resistant material and the coating material with high accuracy, and the development thereof is promoted.

まず、本発明の概略を説明する。   First, the outline of the present invention will be described.

図1は、本願発明の一実施形態を示した図である。エアーポンプ(1)から送風された空気は二股に分かれた第1のエアー供給路(5)と第2のエアー供給路(6)により二分され、それぞれ第1の流量調整器(10)、第2の流量調整器(11)を通って2つの水槽中に導入される。2つの水槽の一方(海水槽(3))には海水、他方(加湿槽(2))には蒸留水が充填されている。2つの流量調整器の流量値は、予め設定の全風量と海塩粒子付着速度によって適宜定められる。流量調整器により風量を調整された空気は、それぞれ液内部まで導かれた第1のエアー供給路(5)、第2のエアー供給路(6)を通り、その出口に設置されたエアーストーン(7)、(8)からそれぞれの液中に噴出される。海水槽の海水中には、超音波霧発生器(4)を導入し、微小噴霧を発生させる。海水槽からの当該微小噴霧を含む空気流と、加湿槽からの水蒸気を含む空気流が海塩粒子供給路(9)を通って合流して、腐食槽(12)に導入される。腐食槽中には試料を設置する。腐食槽から排気された空気流は、海塩分離装置(13)を通って排気される。   FIG. 1 is a diagram showing an embodiment of the present invention. The air blown from the air pump (1) is divided into two parts by a first air supply path (5) and a second air supply path (6) which are divided into two parts, and the first flow rate regulator (10) and the second air supply path (6), respectively. Two flow regulators (11) are introduced into the two water tanks. One of the two water tanks (seawater tank (3)) is filled with seawater, and the other (humidification tank (2)) is filled with distilled water. The flow rate values of the two flow rate regulators are appropriately determined according to the preset total air volume and the sea salt particle adhesion rate. The air whose air volume has been adjusted by the flow rate regulator passes through the first air supply path (5) and the second air supply path (6) led to the inside of the liquid, respectively, and the air stone ( 7) and (8) are ejected into each liquid. An ultrasonic fog generator (4) is introduced into the seawater in the seawater tank to generate fine spray. The air flow including the micro spray from the seawater tank and the air flow including water vapor from the humidification tank merge through the sea salt particle supply path (9) and are introduced into the corrosion tank (12). Samples are installed in the corrosion tank. The air flow exhausted from the corrosion tank is exhausted through the sea salt separation device (13).

次に、本願発明の詳細を説明する。   Next, details of the present invention will be described.

「エアーポンプ」、「流量調整器」は市販のものを使用することができる。エアーポンプからの風量は、0.1〜10L/minの範囲であると本装置に好適である。海水槽側
の流量調整は、海塩粒子付着速度が設定速度になるように調整することが出来る。海塩粒
子付着速度は、試験試料に設置された水晶振動子の共振周波数の変化から、水晶マイクロバランス法により評価することができる。水晶振動子からの出力により、流量調整器(11)の設定値を制御するようにフィードバック回路を組んでも良い。この海水槽側の流量値と、設定の全風量値から、加湿槽側の流量値が決定される。これも自動的に設定されるようにフィードバック回路を組んでも良い。流量調整は、試料が完全乾燥と結露を繰り返すようにON/OFFすることにより、実環境における腐食プロセスを再現することが出来る。
Commercially available “air pump” and “flow regulator” can be used. The air volume from the air pump is suitable for this apparatus when it is in the range of 0.1 to 10 L / min. The flow rate adjustment on the seawater tank side can be adjusted so that the sea salt particle adhesion speed becomes the set speed. The sea salt particle adhesion rate can be evaluated by the quartz crystal microbalance method from the change in the resonance frequency of the quartz crystal resonator placed on the test sample. A feedback circuit may be assembled so as to control the set value of the flow rate regulator (11) by the output from the crystal resonator. From the flow rate value on the seawater tank side and the set total airflow value, the flow value on the humidification tank side is determined. A feedback circuit may be built so that this is also automatically set. The flow rate adjustment can reproduce the corrosion process in an actual environment by turning the sample ON / OFF so as to repeat complete drying and dew condensation.

「エアーストーン」は、市販のものを使用することができるが、例えば直径5cmの#180の仕様のものが好ましく使用できる。   As the “air stone”, a commercially available one can be used. For example, a # 180 specification having a diameter of 5 cm can be preferably used.

「超音波霧発生器」は、市販のものを使用することができる。発生させる霧は、粒子径1〜50μmの範囲で、超音波の出力を調整することにより適宜設定することができる。この出力値により、発生する霧量も変わってくるが、流量調整器(10)及び(11)により流量値を適宜調整することで、腐食槽における海塩粒子付着速度、及び全風量は設定値に調整することができる。   As the “ultrasonic mist generator”, a commercially available one can be used. The mist to be generated can be appropriately set by adjusting the output of the ultrasonic wave in the range of the particle diameter of 1 to 50 μm. Depending on this output value, the amount of fog generated will change, but by adjusting the flow rate value appropriately with the flow rate regulators (10) and (11), the sea salt particle deposition rate and the total air volume in the corrosion tank are set values. Can be adjusted.

「エアーストーン」に空気を通すだけで、数mdd以下の海塩粒子付着速度を得ることが出来る。これに超音波霧発生器を組み合わせると、数百mddの海塩粒子付着速度を得ることが出来る。本願発明の構成により、0.1〜500mddの範囲内の海塩粒子付着
速度を得ることが出来る。
A sea salt particle deposition rate of several mdd or less can be obtained by simply passing air through the “air stone”. When this is combined with an ultrasonic mist generator, a sea salt particle deposition rate of several hundred mdd can be obtained. By the structure of this invention, the sea salt particle adhesion rate in the range of 0.1-500 mdd can be obtained.

海水槽(3)中の海水は、試験中の塩濃度を随時モニターするのが好ましい。これは、例えば電気伝導度を測定することにより簡易に調べることができる。海水中の塩濃度が変動すると海塩粒子付着速度に影響するため、塩濃度の変化にあわせて、流量調整器(10)及び(11)の流量を調整し、海塩粒子付着速度を設定値に調整する。   The seawater in the seawater tank (3) is preferably monitored at any time for the salt concentration during the test. This can be easily examined, for example, by measuring electric conductivity. As salt concentration in seawater fluctuates, it affects the sea salt particle adhesion rate, so adjust the flow rate of the flow regulators (10) and (11) according to the salt concentration change, and set the sea salt particle adhesion rate to the set value. Adjust to.

空気や蒸気を通す連通管は、腐食性が無く、水分を透過しない材料が好ましい。   The communication pipe through which air or steam passes is preferably a material that is not corrosive and does not transmit moisture.

次に、本願発明の具体的態様を実施例にて説明する。もちろん、本発明がこれらの例示に限定されることはない。   Next, specific embodiments of the present invention will be described with reference to examples. Of course, the present invention is not limited to these examples.

図1の構成を有する装置において、2つの流量調整器の合計流量は、約2L/min.になるように制御した。加湿槽のエアーストーンは負荷を低くするために目の粗いものを用い、海水槽のエアーストーンは目の細かいものを用いた。設定の海塩粒子付着速度に応じて超音波霧発生器を稼動させた。送風流量を変えたときの海塩粒子付着速度の測定値を図2に示した。   In the apparatus having the configuration of FIG. 1, the total flow rate of the two flow rate regulators was controlled to be about 2 L / min. In order to reduce the load, the air stone in the humidification tank was a coarse one, and the sea stone air stone was a fine one. The ultrasonic fog generator was operated according to the set sea salt particle deposition rate. The measured values of the sea salt particle adhesion rate when the air flow rate is changed are shown in FIG.

この結果から、本発明のシステムを用いれば、送風量の設定により、広範囲の海塩付着速度を設定することが可能となる。   From this result, when the system of the present invention is used, it is possible to set a wide range of sea salt deposition speeds by setting the air flow rate.

高速高精度海塩粒子発生システムの概略図である。It is the schematic of a high-speed highly accurate sea salt particle generation system. 超音波海塩粒子発生装置へのエアーポンプからの送風量と、海塩粒子付着速度との相関図である。It is a correlation diagram with the amount of ventilation from the air pump to an ultrasonic sea salt particle generator, and sea salt particle adhesion speed.

符号の説明Explanation of symbols

1 エアーポンプ
2 加湿槽
3 海水槽
4 超音波霧発生器
5 第1のエアー供給路
6 第2のエアー供給路
7 エアーストーン
8 エアーストーン
9 海塩粒子供給路
10 第1の流量調整器
11 第2の流量調整器
12 腐食槽
13 海塩分離装置
DESCRIPTION OF SYMBOLS 1 Air pump 2 Humidification tank 3 Seawater tank 4 Ultrasonic fog generator 5 1st air supply path 6 2nd air supply path 7 Airstone 8 Airstone 9 Sea salt particle supply path 10 1st flow regulator 11 1st 2 Flow controller 12 Corrosion tank 13 Sea salt separator

Claims (1)

蒸留水を貯留する加湿槽と、海水を貯留する海水槽と、海水槽の内部に配設され海水を霧化する超音波霧発生器と、当該加湿槽、海水槽のそれぞれにエアーを供給するエアーポンプと、エアーポンプを加湿槽、海水槽にそれぞれ連通させる第1のエアー供給路及び第2のエアー供給路と、第1のエアー供給路と第2のエアー供給路の末端に設けられ、加湿槽内部、海水槽内部に配置されるエアーストーンと、加湿槽、海水槽のそれぞれから流出するエアーを混合し、海塩粒子の通路となる海塩粒子供給路とを備えた海塩粒子発生装置であって、第1のエアー供給路、第2のエアー供給路に第1の流量調整器、第2の流量調整器がそれぞれ配設され、第1の流量調整器、第2の流量調整器が独立に制御され、エアーポンプから加湿槽、海水槽に供給されるエアーの流量を調整して、試料室へ送られる風量を一定に保ちつつ海塩粒子付着速度を可変とすることを特徴とする、高速高精度の海塩粒子発生装置。   Air is supplied to each of the humidification tank which stores distilled water, the seawater tank which stores seawater, the ultrasonic mist generator which is disposed inside the seawater tank and atomizes seawater, and the humidification tank and the seawater tank. An air pump, a first air supply path and a second air supply path for communicating the air pump with the humidification tank and the seawater tank, respectively, and provided at the ends of the first air supply path and the second air supply path; Generation of sea salt particles with an air stone arranged inside the humidification tank and inside the seawater tank and a sea salt particle supply path that serves as a passage for sea salt particles by mixing the air flowing out of the humidification tank and the seawater tank. A first flow rate regulator and a second flow rate regulator are provided in the first air supply path and the second air supply path, respectively, and the first flow rate regulator and the second flow rate regulation are provided. The vessel is controlled independently, from the air pump to the humidification tank and seawater tank Adjust the flow rate of air to be fed, characterized by varying the sea salt deposition rate while keeping the volume of air delivered to the sample chamber at a constant, sea salt particle generating apparatus of high speed and high accuracy.
JP2006037139A 2006-02-14 2006-02-14 High-speed and high-precision sea salt particle generator Expired - Fee Related JP4714832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037139A JP4714832B2 (en) 2006-02-14 2006-02-14 High-speed and high-precision sea salt particle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037139A JP4714832B2 (en) 2006-02-14 2006-02-14 High-speed and high-precision sea salt particle generator

Publications (2)

Publication Number Publication Date
JP2007218639A JP2007218639A (en) 2007-08-30
JP4714832B2 true JP4714832B2 (en) 2011-06-29

Family

ID=38496130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037139A Expired - Fee Related JP4714832B2 (en) 2006-02-14 2006-02-14 High-speed and high-precision sea salt particle generator

Country Status (1)

Country Link
JP (1) JP4714832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608301A (en) * 2012-03-13 2012-07-25 广州合成材料研究院有限公司 Salt mist system of multifactor environmental aging test device for composite material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140290B2 (en) * 2007-03-02 2013-02-06 富士フイルム株式会社 Insulation film
JP2013134162A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Atmospheric corrosion testing method and atmospheric corrosion testing apparatus
RU2673270C2 (en) 2013-06-19 2018-11-23 Рио Тинто Алкан Интернэшнл Лимитед Composition of aluminum alloy with improved mechanical properties at increased temperature
CN106353708B (en) * 2016-08-30 2023-07-28 国家海洋技术中心 Three-electrode conductivity sensor probe aging experiment device and method
CN110687040B (en) * 2019-10-30 2022-09-02 中国兵器工业第五九研究所 Salt mist generator and salt mist generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165449U (en) * 1988-05-11 1989-11-20
JP2000346790A (en) * 1999-06-04 2000-12-15 Tabai Espec Corp Spray type heat treatment apparatus
JP2003300000A (en) * 2002-03-29 2003-10-21 Nordson Corp Method and apparatus for liquid delivery
JP2004132752A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Actual environmental simulation atmospheric corrosion testing device
JP2006258506A (en) * 2005-03-15 2006-09-28 National Institute For Materials Science Actual environment simulating atmospheric corrosion test device and actual environment simulating atmospheric corrosion test method using the same device
JP2007212320A (en) * 2006-02-10 2007-08-23 Espec Corp Accelerated surface deterioration test method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910832A (en) * 1982-07-12 1984-01-20 Suga Shikenki Kk Testing machine of corrosion
JPS59193338A (en) * 1983-04-19 1984-11-01 Kazuharu Sano Testing apparatus of corrosive gas environment
JPS61155727A (en) * 1984-12-27 1986-07-15 Suga Shikenki Kk Compound corrosion cycle tester
JPH06265464A (en) * 1992-01-21 1994-09-22 Hanwa Denshi Kogyo Kk Corrosion tester
JPH10318910A (en) * 1997-05-16 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> Apparatus for evaluating exposure to sodium chloride particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165449U (en) * 1988-05-11 1989-11-20
JP2000346790A (en) * 1999-06-04 2000-12-15 Tabai Espec Corp Spray type heat treatment apparatus
JP2003300000A (en) * 2002-03-29 2003-10-21 Nordson Corp Method and apparatus for liquid delivery
JP2004132752A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Actual environmental simulation atmospheric corrosion testing device
JP2006258506A (en) * 2005-03-15 2006-09-28 National Institute For Materials Science Actual environment simulating atmospheric corrosion test device and actual environment simulating atmospheric corrosion test method using the same device
JP2007212320A (en) * 2006-02-10 2007-08-23 Espec Corp Accelerated surface deterioration test method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608301A (en) * 2012-03-13 2012-07-25 广州合成材料研究院有限公司 Salt mist system of multifactor environmental aging test device for composite material

Also Published As

Publication number Publication date
JP2007218639A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4714832B2 (en) High-speed and high-precision sea salt particle generator
US10761009B2 (en) Manufacture electrodes for electrochemical monitoring
Zhang et al. Electrochemical corrosion of X65 pipe steel in oil/water emulsion
Stromberg et al. Synthesis and characterisation of surface gradient thin conversion films on zinc coated steel
Stack et al. Mapping erosion–corrosion of WC/Co–Cr based composite coatings: particle velocity and applied potential effects
JP4867303B2 (en) Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material
US10436703B2 (en) Cyclic flexing salt-spray chamber and methods
EP3671177B1 (en) Cyclic flexing environmental chamber and methods
JP2013134162A (en) Atmospheric corrosion testing method and atmospheric corrosion testing apparatus
JP2011174859A (en) Method of evaluating corrosion resistance of metal material, and corrosion acceleration testing device of metal material
Su et al. Fouling corrosion in aluminum heat exchangers
Nazir et al. A comprehensive predictive corrosion model incorporating varying environmental gas pollutants applied to wider steel applications
Iliopoulos et al. Evaluation of organic coatings for corrosion protection of condensing economizers
CN204389359U (en) The simulated acceleration test apparatus that a kind of acid marine aerosol affects steel atmospheric corrosion
Posdorfer et al. Corrosion protection by the organic metal polyaniline: results of immersion, Volta potential and impedance studies
CN105352879B (en) A kind of japanning shaft tower coating corrosion residue lifetime estimation method
JP2011169918A (en) Corrosion resistance evaluation method for metal material, metal material, and device for testing corrosion acceleration of metal material
Glogović et al. Corrosion properties of thermal sprayed aluminium (TSA) coatings deposited by powder flame spraying
JP4727439B2 (en) Surface state deterioration promotion test method and surface state deterioration promotion test apparatus
CN104503499A (en) Humidity control system
JP2009069143A (en) Method for evaluating weather resistance of metallic material, metallic material, and apparatus for testing corrosion acceleration of metallic material
JP2011069625A (en) Atmospheric corrosion testing device
JPH10253524A (en) Accelerating test method for atmospheric corrosion-resistance
Subeshan Highly robust superhydrophobic coating of aluminum 2024-T3 alloy for corrosion mitigation, deicing, and self-cleaning of aircraft
Roberge et al. The fractal dimension of corroded aluminium surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees