JP4714512B2 - Motor rotor and method of manufacturing the rotor - Google Patents

Motor rotor and method of manufacturing the rotor Download PDF

Info

Publication number
JP4714512B2
JP4714512B2 JP2005188158A JP2005188158A JP4714512B2 JP 4714512 B2 JP4714512 B2 JP 4714512B2 JP 2005188158 A JP2005188158 A JP 2005188158A JP 2005188158 A JP2005188158 A JP 2005188158A JP 4714512 B2 JP4714512 B2 JP 4714512B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
inner member
magnetic
receiving seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005188158A
Other languages
Japanese (ja)
Other versions
JP2007014053A (en
Inventor
治夫 坂東
Original Assignee
治夫 坂東
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 治夫 坂東 filed Critical 治夫 坂東
Priority to JP2005188158A priority Critical patent/JP4714512B2/en
Publication of JP2007014053A publication Critical patent/JP2007014053A/en
Application granted granted Critical
Publication of JP4714512B2 publication Critical patent/JP4714512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、電気で作動するモータの回転子、及び回転子の製造方法に関する。   The present invention relates to an electric motor rotor and a method for manufacturing the rotor.

複数のコイルに流れる電流をコイル間で変化させて、周期的に変化する(周方向に回転する)磁界を発生させ、この変化する磁界に対して、永久磁石に起因する磁界が追従するように作用して回転力が発生する電気モータについて、その構造は種々のものがある。例えば、直流(DC)電流により作動するDCブラシレスモータについては、通常、上記永久磁石が組み込まれ、回転運動を行う回転子と、回転子の外周囲に位置し、上記コイルが設けられた固定子とで主に構成されている。そして、モータを効率良く作動させるためには、永久磁石に起因する磁界を回転子の周囲に効果的に発生させる必要がある。   The current flowing through the coils is changed between the coils to generate a magnetic field that periodically changes (rotates in the circumferential direction), and the magnetic field caused by the permanent magnet follows the changing magnetic field. There are various types of electric motors that act to generate rotational force. For example, for a DC brushless motor that operates with a direct current (DC) current, the above permanent magnet is usually incorporated, and a rotor that performs rotational motion, and a stator that is located on the outer periphery of the rotor and is provided with the above coil. And is mainly composed. In order to operate the motor efficiently, it is necessary to effectively generate a magnetic field caused by the permanent magnet around the rotor.

ここで、磁性体内に存在する磁界は、その外部に存在する磁界の影響を強く受けることが知られている(例えば、磁性体材料読本 1998年3月1日 初版第1刷発行、 株式会社 工業調査会 19、20頁、参照)。すなわち、回転子に複数の永久磁石を組み込む場合、回転子の周囲に磁界を効果的に発生させるためには、永久磁石のN極から発生する磁力線がS極に入る、いわゆる「磁力線の流れ」を効果的に形成する必要がある。これにより、回転子の磁性体内部に存在する総合的な磁界を強い状態に維持し、強い状態に維持された磁界を磁性体から回転子周囲に放出することが可能となる。   Here, it is known that the magnetic field existing in the magnetic body is strongly influenced by the magnetic field existing outside the magnetic body (for example, the first publication of the first edition of the magnetic material reader March 1, 1998, Kogyo Co., Ltd.). (Refer to pages 19 and 20). That is, when a plurality of permanent magnets are incorporated in the rotor, in order to effectively generate a magnetic field around the rotor, the magnetic lines generated from the N pole of the permanent magnet enter the S pole, so-called “flow of magnetic lines”. Must be formed effectively. This makes it possible to maintain the overall magnetic field present inside the rotor magnetic body in a strong state and to release the magnetic field maintained in a strong state from the magnetic body around the rotor.

また、単一形成された回転子の鉄心の内部に永久磁石の両磁極を埋設すると、両磁極間で磁界がいわゆる「短絡」し、回転子の周囲に磁界が効果的に発生しない現象が知られている。このため、この短絡を防止するための種々の工夫がなされている。   It is also known that if both magnetic poles of a permanent magnet are embedded inside the single rotor core, the magnetic field is so-called “short-circuited” between the two magnetic poles, and the magnetic field is not effectively generated around the rotor. It has been. For this reason, various ideas for preventing this short circuit are made.

一方、回転子に使用する磁石として、ネオジウム系(Nd−Fe−B)磁石が最近使用されるようになってきている。ネオジウム系磁石は磁束密度が高く、少量であっても強い磁界を発生させるという利点を有している。しかしながら、ネオジウム系磁石は剛性等の強度が弱く、小さな外力でも破壊される可能性があり、回転子に組み込む場合、曲げ応力等の応力が過度にかかる状態にすることができない。更に、ネオジウム系磁石は高価であり、多くのネオジウム系磁石を使用すると、回転子の製造費用が高くなる。   On the other hand, neodymium-based (Nd-Fe-B) magnets have recently been used as magnets used for rotors. Neodymium magnets have the advantage of generating a strong magnetic field even with a small amount of magnetic flux density. However, neodymium magnets have low strength such as rigidity and can be broken even with a small external force. When incorporated in a rotor, stress such as bending stress cannot be excessively applied. Further, neodymium magnets are expensive, and the use of many neodymium magnets increases the cost of manufacturing the rotor.

このような、加工に高度の技術を要するネオジウム系磁石を小型のモータの回転子に組み込むために、種々の工夫がなされている。例えば、外径50mm、長さ70mm程度のサイズのモータで、1KWの出力を有するものの回転子(ローター)において、ケプラ糸で回転子全体を巻き、これによりネオジウム系磁石を固定したものがある。   In order to incorporate such a neodymium magnet that requires high technology for processing into the rotor of a small motor, various ideas have been made. For example, there is a motor having a size of an outer diameter of 50 mm and a length of about 70 mm, which has an output of 1 KW, in which the entire rotor is wound with Kepla yarn and a neodymium magnet is fixed thereby.

また、上述したサイズよりも更に小型、例えば、外径が15mm程度の回転子では、回転子に複数個のネオジウム系磁石を組み込んだ多極の回転子を製造することが困難になる。このため、小型の回転子では、1個のネオジウム系磁石をいわゆる「むく」の状態、又は「円筒型の総ネオジウム系磁石」の状態で回転子に組み込み、N極とS極の2極の回転子構造とする場合が多い。   In addition, it is difficult to manufacture a multipolar rotor in which a plurality of neodymium-based magnets are incorporated in the rotor in a rotor that is smaller than the above-described size, for example, an outer diameter of about 15 mm. For this reason, in a small rotor, a single neodymium magnet is incorporated into the rotor in a so-called “peeled” state or “cylindrical total neodymium magnet” state, so that two poles of N and S poles are provided. Often has a rotor structure.

ここで、多極の回転子の製造が困難になる1要因として、小型の回転子では上述した「磁力線の流れ」を効果的に形成することが困難になることが挙げられる。例えば、永久磁石の一方の磁極から発生した磁力線の一部が、回転子外部に放出されることなく、他の磁極に流れ込む傾向を最小限に抑制する構造を構成することが困難になることが挙げられる。そして、上記物性のため、ネオジウム系磁石は、その形状や固定方法について、通常の永久磁石よりも厳しい制限がなされ、効果的な多極の小型回転子を製造することをより困難なものにしている。   Here, one factor that makes it difficult to manufacture a multipolar rotor is that it is difficult to effectively form the above-described “flow of magnetic field lines” with a small-sized rotor. For example, it may be difficult to construct a structure in which a part of the lines of magnetic force generated from one magnetic pole of the permanent magnet is not released to the outside of the rotor, and the tendency to flow into the other magnetic pole is minimized. Can be mentioned. And, due to the above physical properties, neodymium magnets are more severely limited than normal permanent magnets in terms of their shape and fixing method, making it more difficult to produce an effective multipolar small rotor. Yes.

永久磁石が組み込まれた回転子の構造に関する技術が特許文献1に開示されている。同文献に開示された回転子コアは、複数の板状永久磁石を挿入する挿入部が軸方向に貫通して設けられた構成を有している。この挿入部は、回転子コアの周方向に延び、永久磁石の周方向の長さ(永久磁石の幅寸法)よりも長いスロット状の形状を有している。そして、この挿入部の両側部から、回転子コアの半径方向外方に延びるスリット状のバリア部を軸方向に貫通して設け、挿入部に永久磁石を挿入した状態で、挿入部に生じる隙間部とバリア部に非磁性材料からなる硬化性充填剤を充填している。この構成により回転子コアに永久磁石を固定すると共に、バリア部を設けることにより回転子内での磁束の短絡を防止するものである。   A technique relating to the structure of a rotor incorporating a permanent magnet is disclosed in Patent Document 1. The rotor core disclosed in this document has a configuration in which an insertion portion for inserting a plurality of plate-like permanent magnets is provided so as to penetrate in the axial direction. The insertion portion extends in the circumferential direction of the rotor core and has a slot shape longer than the circumferential length of the permanent magnet (the width dimension of the permanent magnet). Then, a slit-like barrier portion extending radially outward of the rotor core from both side portions of the insertion portion is provided so as to penetrate in the axial direction, and a gap generated in the insertion portion in a state where the permanent magnet is inserted into the insertion portion. The part and the barrier part are filled with a curable filler made of a nonmagnetic material. With this configuration, a permanent magnet is fixed to the rotor core, and a barrier portion is provided to prevent a short circuit of magnetic flux in the rotor.

特許文献2には、回転子の構造に関する他の技術が開示されている。同文献に開示された回転子は、内側鉄心部と外側鉄心部とを有し、両者の間に平板状の磁石を挟むように埋設している。そして、磁石の極間部において外側鉄心部は切断され、これにより磁界の短絡を防止している。また、内側鉄心部は、磁石の極間部に突起部を備え、固定子側の磁束が効果的に作用する構成としている。   Patent Document 2 discloses another technique related to the structure of the rotor. The rotor disclosed in this document has an inner iron core portion and an outer iron core portion, and is embedded so as to sandwich a flat magnet between them. And the outer iron core part is cut | disconnected in the pole part of a magnet, and the short circuit of a magnetic field is prevented by this. Further, the inner iron core portion is provided with a protrusion at the inter-electrode portion of the magnet so that the magnetic flux on the stator side acts effectively.

特開平9−215236JP-A-9-215236 特開平10−164784JP-A-10-164784

永久磁石をケプラ糸等で回転子に固定する場合、回転子を製造するのに手間のかかるものとなる。また、回転子の外周にケプラ糸を巻くと、その幅だけ固定子と回転子との間に距離が生じ、磁界を効率的に相互作用させるための支障となる。また、「むく」の状態、又は「円筒型の総ネオジウム系磁石」の状態で小型の回転子を構成する場合、回転子は、2極以上の多極の回転子を構成することが困難である。   When the permanent magnet is fixed to the rotor with Kepla yarn or the like, it takes time to manufacture the rotor. Further, when Kepla yarn is wound around the outer periphery of the rotor, a distance is generated between the stator and the rotor by the width, which hinders efficient interaction of magnetic fields. In addition, when a small rotor is configured in a “peeled” state or a “cylindrical total neodymium magnet”, it is difficult to configure a multipole rotor having two or more poles. is there.

特許文献1に開示された回転子では、回転子内に生じた磁界の短絡を防止するバリア部が設けられているものの、バリア部と回転子外縁との間に回転子コアが存在する。バリア部と回転子外縁との間に回転子コアが存在する上記構成では、この部位から磁界の一部が短絡し、回転子の外周に発生させる磁界が弱くなり、モータの高トルクや効率化を阻害する要因となることが一般的に知られている。   In the rotor disclosed in Patent Document 1, although a barrier portion for preventing a short circuit of a magnetic field generated in the rotor is provided, a rotor core exists between the barrier portion and the rotor outer edge. In the above configuration in which the rotor core exists between the barrier section and the outer edge of the rotor, a part of the magnetic field is short-circuited from this part, and the magnetic field generated on the outer periphery of the rotor is weakened, thereby increasing the torque and efficiency of the motor. It is generally known that it becomes a factor that inhibits the above.

更に、同文献に開示された回転子では、互いに隣り合うバリア部の相互間において、回転子コアの部材が存在することになる。この部位では、互いに隣り合う永久磁石から発生する磁力線の方向が互いに逆向きになり、従ってこの部位で互いに影響を及ぼし合って磁力がロスする可能性がある。   Further, in the rotor disclosed in this document, a rotor core member exists between the adjacent barrier portions. In this part, the directions of the lines of magnetic force generated from the permanent magnets adjacent to each other are opposite to each other. Therefore, there is a possibility that the magnetic force may be lost due to influence on each other in this part.

特許文献2に開示された回転子では、内側鉄心部と外側鉄心部及び磁石を一体に保持するために、かしめピン等を使用する必要がある。しかし、例えば、回転子の外径が15mm程度の小型のものでは、このような組立構造では組み立てることが困難になる。   In the rotor disclosed in Patent Document 2, it is necessary to use caulking pins or the like in order to hold the inner core portion, the outer core portion, and the magnet together. However, for example, if the rotor has a small outer diameter of about 15 mm, it is difficult to assemble with such an assembly structure.

更に、この特許文献2に示された図(例えば図1、2)では、永久磁石が薄い平板状に構成されているが、強度的に弱いネオジウム系磁石を使用して、同図に示されたような構造を小型の回転子に適応すると、強度上の問題も生じる。   Further, in the figure shown in Patent Document 2 (for example, FIGS. 1 and 2), the permanent magnet is formed in a thin flat plate shape, but it is shown in the figure using a neodymium magnet that is weak in strength. When such a structure is applied to a small rotor, there is a problem in strength.

本発明は上記課題に鑑みてなされたものでありその目的は、複数のネオジウム系磁石を組み込むことが可能であり、且つ小型のモータに適用できる、高性能の回転子を安価に提供すること、及びこの回転子を容易に製造する方法を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to provide a high-performance rotor at a low cost that can incorporate a plurality of neodymium magnets and can be applied to a small motor. And it is providing the method of manufacturing this rotor easily.

請求項1に記載のモータの回転子は、電流によって作動するモータの回転子であって、磁性材料で構成され、外周に複数の突出部が所定間隔で形成され、ほぼ中心を回転軸とする内側部材と、磁性材料で構成され、前記内側部材の周囲に互いに所定の間隔をあけて設けられ、それぞれ前記内側部材の突出部と対向する対向面を一端部に有する、複数の外側部材と、前記内側部材の突出部と前記外側部材の対向面との間でそれぞれ保持された永久磁石であるネオジウム系磁石と、前記内側部材の突出部相互間、前記ネオジウム系磁石相互間及び前記外側部材相互間に一体的に設けられ、非磁性材料で且つ可撓性材料で形成された中間部材とを有し、前記内側部材の前記突出部は、両側面に凹部が形成され、前記外側部材の前記一端対向面と対向する部位が略平面状とされた内側受け座として構成され、前記外側部材の前記一端部は、両側面に凹部が形成され、前記対向面が略平面状とされた外側受け座として構成され、前記中間部材によって前記内側部材と前記外側部材とを結合したことを特徴とする。 The rotor of the motor according to claim 1 is a rotor of a motor that is operated by an electric current, and is made of a magnetic material. A plurality of protrusions are formed at a predetermined interval on the outer periphery, and the rotation axis is substantially at the center. an inner member formed of a magnetic material, mutually arranged at predetermined intervals around the inner member has a surface facing the protruding portion of each of said inner member at one end, and a plurality of outer members, respectively neodymium magnet is a permanent magnet held, between the protruding portions cross said inner member, between the neodymium magnets mutually and the outer member and forth between the opposing surfaces of the outer member and the projecting portion of said inner member And an intermediate member formed of a non-magnetic material and a flexible material. The protrusion of the inner member has recesses on both side surfaces, and the protrusion of the outer member. Opposite to one end facing surface The one end portion of the outer member is formed as an outer receiving seat in which concave portions are formed on both side surfaces, and the opposing surface is substantially flat. and wherein the bound and said outer member and said inner member by said intermediate member.

これにより、永久磁石は内側部材の突出部と、外側部材の対向面との間に保持されるので、強い曲げ応力から保護され、またネオジウム系磁石を薄板状等、強度的に弱くなる形状に加工する必要がない。従って、ネオジウム系磁石を強度的に強い形状で回転子に組み込むことが可能となる。また、かしめピンやネジ等を使用することなく、小型の回転子に複数個のネオジム系磁石を容易に組み込むことができ、多極の回転子を形成できる。更に、中間部材が位置する部位には磁界がほとんど発生せず、回転子内部において、互いに隣り合う永久磁石間で効果的な磁界を形成できる。すなわち、磁界をロスすることなく外側部材を介して回転子の外部に効果的に発生させる高性能の回転子を形成できる。なお、外側部材は互いに所定の間隔を置いて設けられているので、この部位を磁界が短絡することはない。
更に、内側受け座と外側受け座との間に永久磁石を密着した状態で挿入し、安定して保持することができる。そして、中間部材と内側部材及び外側部材との結合が、内側部材の側面及び外側部材の側面に形成された凹部で行われる構成になる。
更に、中間部材が可撓性材料で形成されており、これにより、外側部材と内側部材との間に、中間部材を介して弾性が作用する状態となる。従って、永久磁石の保持位置を永久磁石が隙間なく挿入される形状に作成する場合、永久磁石と保持位置の形成に必要とされる許容公差を大きくすることができ、製造コストを低くできる。更に、完成後のモータの外部からの衝撃、例えば落下等の衝撃の影響を受けにくい構造とすることができる。
As a result, the permanent magnet is held between the protruding portion of the inner member and the opposing surface of the outer member, so that it is protected from strong bending stress, and the neodymium magnet has a thin shape such as a thin plate. There is no need to process. Therefore, it becomes possible to incorporate a neodymium magnet into the rotor with a strong shape. In addition, a plurality of neodymium magnets can be easily incorporated into a small rotor without using caulking pins or screws, and a multipolar rotor can be formed. Further, almost no magnetic field is generated at the portion where the intermediate member is located, and an effective magnetic field can be formed between the adjacent permanent magnets in the rotor. That is, it is possible to form a high-performance rotor that is effectively generated outside the rotor through the outer member without losing the magnetic field. Since the outer members are provided at a predetermined interval from each other, the magnetic field does not short circuit this portion.
Furthermore, the permanent magnet can be inserted between the inner receiving seat and the outer receiving seat in a close contact state, and can be stably held. And it becomes the structure by which the coupling | bonding of an intermediate member, an inner member, and an outer member is performed in the recessed part formed in the side surface of an inner member, and the side surface of an outer member.
Furthermore, the intermediate member is formed of a flexible material, and thereby, elasticity is exerted between the outer member and the inner member via the intermediate member. Therefore, when the holding position of the permanent magnet is created in a shape in which the permanent magnet is inserted without a gap, the tolerance required for forming the permanent magnet and the holding position can be increased, and the manufacturing cost can be reduced. Furthermore, it can be made into the structure which is hard to receive to the impact from the exterior of the motor after completion, for example, impacts, such as dropping.

請求項に記載のモータの回転子は、請求項1に記載の回転子であって、外側部材が、回転軸の半径方向の外縁に、回転方向に沿って設けられた円弧部を有し、上記一端部が、円弧部から内側部材の方向に突出して形成されたことを特徴とする。 The rotor of the motor according to claim 2 is the rotor according to claim 1 , wherein the outer member has an arc portion provided along the rotation direction on the outer edge in the radial direction of the rotation shaft. The one end portion is formed so as to protrude from the arc portion toward the inner member.

これにより、円弧部から磁力線が回転子の外部に放出され、回転子の外部から円弧部に磁力線が流入する状態になる。従って、回転子の周囲の磁界が均一化し、回転子の更なる高性能化が図られる。   Thereby, the magnetic lines of force are released from the arc portion to the outside of the rotor, and the magnetic lines of force flow into the arc portion from the outside of the rotor. Therefore, the magnetic field around the rotor is made uniform, and further improvement in the performance of the rotor is achieved.

本発明に係る回転子によれば、複数のネオジウム系磁石が組み込まれた小型の回転子を、その周囲に磁界を効果的に発生させた状態で、安価に提供することができる。また、この回転子を迅速且つ容易に製造することが可能になる。   According to the rotor according to the present invention, a small-sized rotor incorporating a plurality of neodymium magnets can be provided at a low cost in a state where a magnetic field is effectively generated around the rotor. In addition, the rotor can be manufactured quickly and easily.

次に、本発明の実施の形態について図面に基づいて説明する。図1は、本実施の形態にかかる回転子10を、回転軸12を横切る面で切断した断面図である。回転子10は略円柱形状であり、図の中心部に回転軸12を有し、回転軸12を軸中心に回転するものである。回転子10は、磁性材料で形成された内側部材14と、同じく磁性材料で形成された外側部材16、非磁性材料で形成された中間部材18、及び永久磁石20とで主に構成されている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a rotor 10 according to the present embodiment cut along a plane that traverses a rotating shaft 12. The rotor 10 has a substantially cylindrical shape, and has a rotation shaft 12 at the center of the figure, and rotates around the rotation shaft 12. The rotor 10 is mainly composed of an inner member 14 made of a magnetic material, an outer member 16 also made of a magnetic material, an intermediate member 18 made of a nonmagnetic material, and a permanent magnet 20. .

なお、本発明において、磁性材料とは、「磁化されやすい材料」を意味し、例えば、純鉄、鉄−けい素合金、けい素鋼板等の磁芯材料が挙げられる。また、非磁性材料とは、「磁化されにくい材料」を意味し、例えば、合成樹脂、ガラス、木材等その他内部に磁界をほとんど発生させない材料が挙げられる。   In the present invention, the magnetic material means “a material that is easily magnetized”, and examples thereof include magnetic core materials such as pure iron, iron-silicon alloy, and silicon steel plate. Further, the non-magnetic material means “a material that is not easily magnetized”, and examples thereof include a material that hardly generates a magnetic field inside, such as synthetic resin, glass, and wood.

内側部材14は、回転子10の略中央部に設けられ、そのほぼ中心を回転軸としている。そして、本実施の形態では、略円筒形状を有する内輪部14aと、内輪部14aからその周囲に連続的に突出する突出部として設けられた内側受け座14bを有している。本実施の形態では、内側受け座14bは、互いに略等間隔で設けられており、その両側面に凹14c部を有し、そしてその端部において後述する永久磁石20の一方の磁極(内周側磁極)と対向する面が略平面状に形成されている。   The inner member 14 is provided at a substantially central portion of the rotor 10, and the substantially center thereof is used as a rotation axis. And in this Embodiment, it has the inner ring | wheel part 14a which has a substantially cylindrical shape, and the inner receiving seat 14b provided as a protrusion part which protrudes continuously from the inner ring | wheel part 14a to the circumference | surroundings. In the present embodiment, the inner receiving seats 14b are provided at substantially equal intervals, have concave portions 14c on both side surfaces thereof, and one magnetic pole (inner circumference) of the permanent magnet 20 described later at the end thereof. The surface facing the side magnetic pole) is formed in a substantially planar shape.

外側部材16は、それぞれの内側受け座14bに対応して設けられている。この外側部材16は、回転子10の外縁に矢印210で示した回転方向に沿って設けられた円弧部16aと、円弧部16aから内側部材14側に連続的に突出して設けられた外側受け座16bとを有している。外側受け座16bは、その両側面に凹部16cを有している。そして外側受け座16bは、その端部において、上述した略平面状に形成された内側受け座14bの端部と対向する面、すなわち一端対向面が略平面状に形成されている。この部位は後述する永久磁石20の一方の磁極(外周側磁極)と対向するように位置されている。また、各外側部材16は、外側部材16相互間で、互いに所定の間隔をあけて設けられている。   The outer member 16 is provided corresponding to each inner receiving seat 14b. The outer member 16 includes an arc portion 16a provided on the outer edge of the rotor 10 along the rotation direction indicated by an arrow 210, and an outer receiving seat provided so as to continuously protrude from the arc portion 16a to the inner member 14 side. 16b. The outer receiving seat 16b has recesses 16c on both side surfaces thereof. The outer receiving seat 16b has a surface facing the end of the inner receiving seat 14b formed in a substantially flat shape as described above, that is, an end facing surface formed in a substantially flat shape. This part is located so as to face one magnetic pole (outer peripheral side magnetic pole) of the permanent magnet 20 described later. In addition, the outer members 16 are provided at predetermined intervals between the outer members 16.

永久磁石20は、本実施の形態では6個の永久磁石20が、内側受け座14bと外側受け座16bとの間に互いに密着して挿入された状態で、回転軸12の回転方向に略等間隔で設けられている。そして、永久磁石20は、回転軸12を中心とした半径方向(矢印220方向)にN極とS極の両磁極を位置させ、更に互いに隣り合う永久磁石20のN極とS極を交互に入れ替えた状態となっている。   In the present embodiment, the permanent magnets 20 are substantially equal in the rotational direction of the rotary shaft 12 with the six permanent magnets 20 inserted in close contact with each other between the inner receiving seat 14b and the outer receiving seat 16b. It is provided at intervals. The permanent magnet 20 has both the north and south poles positioned in the radial direction around the rotary shaft 12 (in the direction of the arrow 220), and the north and south poles of the permanent magnets 20 adjacent to each other alternately. It has been replaced.

この構成により、永久磁石20に起因する磁界が内側受け座14bと外側受け座16bに磁束が損失することなく効果的に流れることになる。なお、回転軸12側に位置する磁極を内周側磁極、回転子10外周側に位置する磁極を外周側磁極とする。   With this configuration, the magnetic field caused by the permanent magnet 20 effectively flows through the inner receiving seat 14b and the outer receiving seat 16b without loss of magnetic flux. The magnetic pole located on the rotating shaft 12 side is referred to as an inner peripheral magnetic pole, and the magnetic pole located on the outer peripheral side of the rotor 10 is referred to as an outer peripheral magnetic pole.

中間部材18は、上述した互いに隣り合う内側受け座14b間、永久磁石20間、及び外側部材16間に一体的に設けられている。中間部材18は、例えば、硬化性の充填材を充填し、硬化させて形成することができる。ここで、中間部材18が設けられた位置は磁界がほとんど発生しない。従って、互いに隣り合う、永久磁石20相互間や、外側部材16相互間等で磁界が互いに直接的に影響を及ぼし合うことがほとんどない。   The intermediate member 18 is integrally provided between the above-described inner receiving seats 14b, between the permanent magnets 20, and between the outer members 16. The intermediate member 18 can be formed by, for example, filling a curable filler and curing it. Here, the magnetic field is hardly generated at the position where the intermediate member 18 is provided. Accordingly, the magnetic fields hardly influence each other directly between the permanent magnets 20 adjacent to each other or between the outer members 16.

なお、本実施の形態では上述した永久磁石20の保持位置は、永久磁石20の上記両磁極の対向面に対する側面が中間部材18で形成され、これにより永久磁石20は、その保持位置に嵌合して固定されている。更に、内側受け座14bと外側受け座16bの上述した形状(凹部14c、凹部16c)により、内側部材14及び外側部材16が中間部材18で結合固定され、全体が一体に保持されている。   In the present embodiment, the holding position of the permanent magnet 20 described above is such that the side surface of the permanent magnet 20 with respect to the opposing surfaces of the two magnetic poles is formed by the intermediate member 18, whereby the permanent magnet 20 is fitted into the holding position. And fixed. Furthermore, the inner member 14 and the outer member 16 are coupled and fixed by the intermediate member 18 by the above-described shapes (the recessed portion 14c and the recessed portion 16c) of the inner receiving seat 14b and the outer receiving seat 16b, and the whole is integrally held.

以上の構成により、本実施の形態にかかる回転子10によれば、永久磁石20は、内側受け座14bと、外側受け座16bの互いに対向する面との間に保持されるので、強い曲げ応力から保護される。またネオジウム系磁石を薄板状等、強度的に弱くなる形状に加工する必要がなく、比較的厚い略直方体状等の構造上強い状態で複数個、従って多極の回転子に組み込むことができる。更に、組み立てにネジやピン、更に糸等を使用する必要がない。このため、例えば材質的に弱いネオジウム系磁石を使用し、外径が15mm程度の小型の回転子を安価に製造することができる。   With the above configuration, according to the rotor 10 according to the present embodiment, the permanent magnet 20 is held between the opposing surfaces of the inner receiving seat 14b and the outer receiving seat 16b. Protected from. Further, it is not necessary to process a neodymium magnet into a thin plate shape or the like that weakens in strength, and a plurality of neodymium magnets can be incorporated into a multipole rotor in a strong state such as a relatively thick substantially rectangular parallelepiped shape. Furthermore, it is not necessary to use screws, pins, and threads for assembly. For this reason, a small rotor with an outer diameter of about 15 mm can be manufactured at low cost by using, for example, a weakly neodymium magnet.

なお、本実施の形態において、中間部材18は可撓性を有する材料例えば、合成樹脂等で形成しても良い。これにより、外側部材と内側部材との間に、中間部材を介して弾性が作用する状態となる。従って、永久磁石と保持位置の形成に必要とされる許容公差を大きくすることができ、製造コストを更に低くできる。また、完成後のモータの外部からの衝撃、例えば落下等の衝撃の影響を受けにくい構造とすることができる。   In the present embodiment, the intermediate member 18 may be formed of a flexible material such as a synthetic resin. Thereby, it will be in the state in which elasticity acts via an intermediate member between an outer side member and an inner side member. Therefore, the tolerance required for forming the permanent magnet and the holding position can be increased, and the manufacturing cost can be further reduced. Moreover, it can be made into the structure which is hard to be influenced by the impact from the exterior of the motor after completion, for example, impacts, such as dropping.

図2は、図1に示した回転子10において、永久磁石20に起因して発生する磁界の状態を説明した図である。図2に破線で示したように、回転子10の内部において、内側部材14を介して互いに隣り合う永久磁石20の磁極間を結ぶ磁力線が形成される。そして、この磁力線は、非磁性体材料で形成された中間部材18の存在により、内側受け座14b間、永久磁石20間、外側受け座16b相互間で、直接的に流れる磁界はほとんど発生しない。また、内側受け座14bから外側部材16及び回転子10の周囲にかけて互いに対向する向きに磁力線が発生する領域も存在しない。   FIG. 2 is a diagram illustrating a state of a magnetic field generated due to the permanent magnet 20 in the rotor 10 shown in FIG. As indicated by broken lines in FIG. 2, magnetic lines of force connecting the magnetic poles of the permanent magnets 20 adjacent to each other are formed inside the rotor 10 via the inner member 14. In addition, due to the presence of the intermediate member 18 formed of a nonmagnetic material, the magnetic field lines hardly generate a magnetic field that flows directly between the inner receiving seats 14b, between the permanent magnets 20, and between the outer receiving seats 16b. Further, there is no region in which magnetic lines of force are generated in the opposite directions from the inner receiving seat 14b to the outer member 16 and the periphery of the rotor 10.

すなわち、永久磁石20のN極が外周側磁極である部位から発生した磁力線は、その全てが外側部材16の円弧部16aから回転子10の外部に放出される。そして、隣り合う円弧部16aからS極が外周側磁極である部位に入り、内側部材14を介して内周側磁極がN極である部位から内周側磁極がS極である部位に、磁力線が流れる。このように、互いに隣り合う永久磁石20間でいわゆる「磁力線の回路」が形成され、この間、上述のように磁力線のロスはほとんど発生しない。従って、互いの磁極が接近した状態で位置される小型の回転子10であっても、回転子10外部に効率的に磁界を発生させることが可能な高性能の回転子を構成できる。   That is, all of the magnetic lines of force generated from the part where the N pole of the permanent magnet 20 is the outer peripheral magnetic pole are emitted from the arc portion 16 a of the outer member 16 to the outside of the rotor 10. Then, from the adjacent arc portion 16a, the S pole enters the part that is the outer peripheral side magnetic pole, and the line of magnetic force passes through the inner member 14 from the part that the inner peripheral side magnetic pole is the N pole to the part that the inner peripheral side magnetic pole is the S pole. Flows. Thus, a so-called “line of magnetic force” is formed between the permanent magnets 20 adjacent to each other, and during this time, almost no loss of the line of magnetic force occurs as described above. Therefore, even with the small rotor 10 positioned with the magnetic poles close to each other, a high-performance rotor capable of efficiently generating a magnetic field outside the rotor 10 can be configured.

更に、円弧部16aの上述した形状により、永久磁石20に起因して回転子10の周囲に発生する磁界の磁束が回転子10の周囲で均一化され、回転子10をより高性能なものとしている。なお、外側部材16は、互いに所定の間隔を置いて設けられているので、外側部材16相互間を磁界が短絡することもない。   Further, due to the above-described shape of the arc portion 16a, the magnetic flux of the magnetic field generated around the rotor 10 due to the permanent magnet 20 is made uniform around the rotor 10, so that the rotor 10 has higher performance. Yes. Since the outer members 16 are provided at a predetermined interval, the magnetic field does not short-circuit between the outer members 16.

本発明は、上述の実施の形態に限定されるものではなく、本発明の用紙の範囲内で種々の変更が可能である。例えば、図1に示した実施の形態では、永久磁石20が6個使用されているがこれに限られるものではない。例えば8個の永久磁石20、又は4個永久磁石を使用するようにしても良い。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the sheet of the present invention. For example, in the embodiment shown in FIG. 1, six permanent magnets 20 are used, but the present invention is not limited to this. For example, eight permanent magnets 20 or four permanent magnets may be used.

また、図1に示した実施の形態では、永久磁石20は、内側受け座14bと外側受け座16bとの間に互いに密着して挿入された状態で設けられているとしたがこれに限られるものではない。例えば、互いに対向する内側受け座14bと外側受け座16bと間隔よりも薄い厚さの永久磁石20を挿入する。そして、永久磁石20と、内側受け座14b又は外側受け座16bとの間に形成される間隙に、他の磁性材料を、この間隙を埋めるように介在させても良い。   Further, in the embodiment shown in FIG. 1, the permanent magnet 20 is provided in a state of being inserted in close contact with each other between the inner receiving seat 14b and the outer receiving seat 16b. It is not a thing. For example, the permanent magnet 20 having a thickness smaller than the distance between the inner receiving seat 14b and the outer receiving seat 16b facing each other is inserted. Then, another magnetic material may be interposed in the gap formed between the permanent magnet 20 and the inner receiving seat 14b or the outer receiving seat 16b so as to fill this gap.

図3(A)〜(E)は、図1に示した実施の形態にかかる回転子10の製造工程を説明した図である。同図に基づいて、回転子10の製造方法を説明する。本実施の形態に従えば、本発明にかかる回転子10は以下のように迅速且つ容易に製造することができる。   FIGS. 3A to 3E are diagrams illustrating a manufacturing process of the rotor 10 according to the embodiment shown in FIG. A method for manufacturing the rotor 10 will be described with reference to FIG. According to the present embodiment, the rotor 10 according to the present invention can be manufactured quickly and easily as follows.

先ず、外側部材16を、円弧部16aにおいて互いに連続させた環状体26を形成する(環状体形成工程)(図3(A))。そして成型用金型内において、環状体26の内側に内側部材14を配置する(内側部材配置工程)(図3(B))。環状体26と内側部材14の、この配置状態では、上述のように内側受け座14bの平面状に構成された、突出した端部と、外側受け座16bの端部、すなわち平面上の一端対向面とが対向した状態になっている。ここで、内側部材14及び外側部材16は、珪素鋼板等をプレス抜きし、所定の枚数を重ね、接着剤で固定して形成されている。   First, an annular body 26 is formed in which the outer member 16 is continuous with each other in the arc portion 16a (annular body forming step) (FIG. 3A). Then, in the molding die, the inner member 14 is arranged inside the annular body 26 (inner member arranging step) (FIG. 3B). In this arrangement state of the annular body 26 and the inner member 14, as described above, the protruding end portion configured in the planar shape of the inner receiving seat 14b and the end portion of the outer receiving seat 16b, that is, one end on the plane are opposed to each other. The surface is in opposition. Here, the inner member 14 and the outer member 16 are formed by pressing a silicon steel plate or the like, stacking a predetermined number of sheets, and fixing with an adhesive.

そして、後に、永久磁石20が挿入される部位、すなわち、内側受け座14bの突出した端部と、外側受け座16bの端部との間にスペーサとして中子28を配置する(スペーサ配置工程)(図3(C))。   Then, the core 28 is disposed as a spacer between a portion into which the permanent magnet 20 is inserted, that is, between the protruding end of the inner receiving seat 14b and the end of the outer receiving seat 16b (spacer arranging step). (FIG. 3C).

この状態で、環状体26の内部に形成された内部空間に硬化性充填材として硬化性樹脂を注入する。これにより、硬化性樹脂は、内側受け座14b相互間から外側受け座16bの相互間にかけて注入され、注入後硬化して中間部材18が形成される。この中間部材18により上述のように内側部材14と中間部材18と外側部材16が相互に結合された状態となる(結合工程)(図3(D))。   In this state, a curable resin is poured into the internal space formed inside the annular body 26 as a curable filler. Thereby, the curable resin is injected between the inner receiving seats 14b and between the outer receiving seats 16b, and is cured after injection to form the intermediate member 18. As described above, the intermediate member 18, the intermediate member 18, and the outer member 16 are connected to each other (joining step) (FIG. 3D).

次に、上記硬化性充填材を充填硬化させた後の工程について説明する。先ず、中子28を取り除くと、内側受け座14bと外側受け座16bの間には永久磁石20を挿入可能な挿入空間24が形成されており、この部位に永久磁石20を矢印240の方向に挿入する(永久磁石挿入工程)(図3(E))。また、この挿入の前又は後において、円弧部16aの互いに連続された部位を所定の間隔で除去してスロット16dを形成する(切断工程)(図3(E))。これにより回転子10が製造される。この永久磁石挿入工程と切断工程を実施する順序は、結合工程終了後であれば両工程の何れが先に実施されても良い。   Next, the process after filling and curing the curable filler will be described. First, when the core 28 is removed, an insertion space 24 into which the permanent magnet 20 can be inserted is formed between the inner receiving seat 14b and the outer receiving seat 16b, and the permanent magnet 20 is placed in this direction in the direction of the arrow 240. Insert (permanent magnet insertion step) (FIG. 3E). Further, before or after the insertion, the consecutive portions of the arc portion 16a are removed at a predetermined interval to form the slot 16d (cutting step) (FIG. 3E). Thereby, the rotor 10 is manufactured. As for the order of performing the permanent magnet insertion step and the cutting step, either of the two steps may be performed first as long as it is after the joining step.

なお、上記結合工程において、硬化性充填材が例えば射出成形等により高温状態で上記注入される場合もある。この場合、上記永久磁石挿入工程は、硬化性充填材が硬化して中間部18を形成後、中間部材18の温度が永久磁石20の磁力等に影響を与えない程度にまで低下した後に行うことが望ましい。   In the bonding step, the curable filler may be injected at a high temperature by, for example, injection molding. In this case, the permanent magnet insertion step is performed after the curable filler is cured and the intermediate portion 18 is formed, and then the temperature of the intermediate member 18 is lowered to a level that does not affect the magnetic force or the like of the permanent magnet 20. Is desirable.

以上の手順により、複数の外側部材16が連続形成されて一体化した状態で、硬化性充填剤の充填により回転子10の組み立てを行うので、外側部材16がばらばらになることなく、回転子10の組み立て、製造が容易且つ迅速となる。   With the above procedure, since the rotor 10 is assembled by filling the curable filler with the plurality of outer members 16 being continuously formed and integrated, the outer member 16 is not separated, and the rotor 10 is not separated. Assembling and manufacturing are easy and quick.

更に、回転子10は、内周側部材14と外周側部材16及び中間部材18を相互に組み立てた後に永久磁石20を挿入空間24に挿入可能に形成できるので、回転子10の組み立てが非常に容易かつ迅速になる。また、永久磁石が充填に伴う熱的影響を受け、例えば磁力が低下することがない。そして、永久磁石の保持位置にゴミやほこりが介在することを防止できる。   Further, the rotor 10 can be formed so that the permanent magnet 20 can be inserted into the insertion space 24 after the inner peripheral side member 14, the outer peripheral side member 16 and the intermediate member 18 are assembled to each other. Easy and quick. Further, the permanent magnet is not affected by the thermal effect associated with the filling, and for example, the magnetic force does not decrease. And it can prevent that a dust and dust intervene in the holding position of a permanent magnet.

なお、回転子10の製造方法として、永久磁石挿入工程において、永久磁石20を挿入空間24挿入に挿入するとしたが、永久磁石20の代わりに、磁界を発生させていない状態の永久磁石化材料を挿入することも可能である。そして、上記切断工程終了後、回転子10の外部から回転子10内部に所定の方向に磁界を発生させ、この磁界により上記挿入した永久磁石化材料を永久磁石にする(着磁する)ことも可能である。   In addition, as a manufacturing method of the rotor 10, in the permanent magnet insertion process, the permanent magnet 20 is inserted into the insertion space 24. However, instead of the permanent magnet 20, a permanent magnetized material in a state where no magnetic field is generated is used. It is also possible to insert. After the cutting step, a magnetic field is generated from the outside of the rotor 10 in the rotor 10 in a predetermined direction, and the inserted permanent magnetizing material is made a permanent magnet (magnetized) by this magnetic field. Is possible.

本発明にかかる回転子を、回転軸を横切る方向面で切断した断面図である。It is sectional drawing which cut | disconnected the rotor concerning this invention in the direction surface which crosses a rotating shaft. 図1に示した回転子に永久磁石に起因して発生する磁界の状態を説明した図である。It is the figure explaining the state of the magnetic field which originates in a rotor shown in FIG. 1 resulting from a permanent magnet. 図1に示した実施の形態にかかる回転子の製造工程を説明した図である。It is a figure explaining the manufacturing process of the rotor concerning the embodiment shown in FIG.

符号の説明Explanation of symbols

10 回転子
12 回転軸
14 内側部材
14a 内輪
14b 内側受け座
16 外側部材
16a 円弧部
16b 外側受け座
18 中間部材
20 永久磁石
24 挿入空間
26 環状体
28 中子
DESCRIPTION OF SYMBOLS 10 Rotor 12 Rotating shaft 14 Inner member 14a Inner ring 14b Inner receiving seat 16 Outer member 16a Arc part 16b Outer receiving seat 18 Intermediate member 20 Permanent magnet 24 Insertion space 26 Annular body 28 Core

Claims (2)

電流によって作動するモータの回転子であって、
磁性材料で構成され、外周に複数の突出部が所定間隔で形成され、ほぼ中心を回転軸とする内側部材と、
磁性材料で構成され、前記内側部材の周囲に互いに所定の間隔をあけて設けられ、それぞれ前記内側部材の突出部と対向する対向面を一端部に有する、複数の外側部材と、
前記内側部材の突出部と前記外側部材の対向面との間でそれぞれ保持された永久磁石であるネオジウム系磁石と、
前記内側部材の突出部相互間、前記ネオジウム系磁石相互間及び前記外側部材相互間に一体的に設けられ、非磁性材料で形成され、且つ可撓性材料で形成された中間部材とを有し、
前記内側部材の前記突出部は、
両側面に凹部が形成され、前記外側部材の前記一端対向面と対向する部位が略平面状とされた内側受け座として構成され、
前記外側部材の前記一端部は、
両側面に凹部が形成され、前記対向面が略平面状とされた外側受け座として構成され、
前記中間部材によって前記内側部材と前記外側部材とを結合したことを特徴とするモータの回転子。
A rotor of a motor operated by electric current,
An inner member made of a magnetic material, having a plurality of protrusions formed on the outer periphery at predetermined intervals, and having a rotation axis substantially at the center;
A plurality of outer members made of a magnetic material, provided at predetermined intervals around the inner member, each having an opposing surface facing the protruding portion of the inner member at one end;
A neodymium-based magnet that is a permanent magnet held between the protruding portion of the inner member and the facing surface of the outer member;
An intermediate member that is integrally formed between the protrusions of the inner member, between the neodymium-based magnets, and between the outer members, formed of a nonmagnetic material, and formed of a flexible material. ,
The protrusion of the inner member is
Concave portions are formed on both side surfaces, and the portion facing the one end facing surface of the outer member is configured as an inner receiving seat that is substantially planar,
The one end of the outer member is
Concave portions are formed on both side surfaces, and the opposing surface is configured as an outer receiving seat having a substantially flat shape,
A rotor of a motor, wherein the inner member and the outer member are coupled by the intermediate member.
前記外側部材が、前記回転軸の半径方向の外縁に、前記回転方向に沿って設けられた円弧部を有し、
前記一端部が、前記円弧部から前記内側部材の方向に突出して形成されたことを特徴とする請求項1に記載のモータの回転子。
The outer member has an arc portion provided along the rotation direction at an outer edge in the radial direction of the rotation shaft,
2. The motor rotor according to claim 1, wherein the one end portion is formed to protrude from the arc portion toward the inner member.
JP2005188158A 2005-06-28 2005-06-28 Motor rotor and method of manufacturing the rotor Active JP4714512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188158A JP4714512B2 (en) 2005-06-28 2005-06-28 Motor rotor and method of manufacturing the rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188158A JP4714512B2 (en) 2005-06-28 2005-06-28 Motor rotor and method of manufacturing the rotor

Publications (2)

Publication Number Publication Date
JP2007014053A JP2007014053A (en) 2007-01-18
JP4714512B2 true JP4714512B2 (en) 2011-06-29

Family

ID=37751789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188158A Active JP4714512B2 (en) 2005-06-28 2005-06-28 Motor rotor and method of manufacturing the rotor

Country Status (1)

Country Link
JP (1) JP4714512B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128754A (en) * 1984-11-26 1986-06-16 Shinko Electric Co Ltd Rotor of permanent magnet type
JPS62221850A (en) * 1986-03-24 1987-09-29 Meidensha Electric Mfg Co Ltd Manufacture of rotor for magneto
JPH0382350A (en) * 1989-08-22 1991-04-08 Nippon Steel Corp Electric motor field rotor and manufacture thereof
JP2000209799A (en) * 1999-01-07 2000-07-28 Toshiba Corp Permanent magnet motor and manufacture thereof
JP2002171702A (en) * 2000-12-05 2002-06-14 Isuzu Motors Ltd Rotor of rotating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128754A (en) * 1984-11-26 1986-06-16 Shinko Electric Co Ltd Rotor of permanent magnet type
JPS62221850A (en) * 1986-03-24 1987-09-29 Meidensha Electric Mfg Co Ltd Manufacture of rotor for magneto
JPH0382350A (en) * 1989-08-22 1991-04-08 Nippon Steel Corp Electric motor field rotor and manufacture thereof
JP2000209799A (en) * 1999-01-07 2000-07-28 Toshiba Corp Permanent magnet motor and manufacture thereof
JP2002171702A (en) * 2000-12-05 2002-06-14 Isuzu Motors Ltd Rotor of rotating machine

Also Published As

Publication number Publication date
JP2007014053A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP5614501B2 (en) Rotating electric machine rotor, rotating electric machine, and method for manufacturing rotating electric machine rotor
JP6667084B2 (en) Surface magnet type motor
JP6280970B2 (en) Rotor and motor
JP5902563B2 (en) Rotor and rotating electric machine using the same
WO2014034344A1 (en) Rotating electric machine
US20060022553A1 (en) Rotating electric machine
US9024498B2 (en) Rotating electrical machine
KR102404299B1 (en) Electronically commutated electric motor with two rotor cores
JP2017169402A (en) Motor rotor and brushless motor
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
CN108462268B (en) Rotor of rotating electric machine
JP2007068318A (en) Magnet embedded type motor
JP2009050099A (en) Rotor core, permanent magnet rotor, and permanent magnet synchronous electric rotating machine
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP4678321B2 (en) Rotor manufacturing method and electric power steering motor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP6013269B2 (en) Permanent magnet rotating electric machine
WO2017009902A1 (en) Electric motor and air conditioner
JP4714512B2 (en) Motor rotor and method of manufacturing the rotor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine
JP6685166B2 (en) Axial gap type rotating electric machine
JP6176379B2 (en) Permanent magnet rotating electric machine
CN113646993A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250