JP4714478B2 - Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment - Google Patents

Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment Download PDF

Info

Publication number
JP4714478B2
JP4714478B2 JP2005042445A JP2005042445A JP4714478B2 JP 4714478 B2 JP4714478 B2 JP 4714478B2 JP 2005042445 A JP2005042445 A JP 2005042445A JP 2005042445 A JP2005042445 A JP 2005042445A JP 4714478 B2 JP4714478 B2 JP 4714478B2
Authority
JP
Japan
Prior art keywords
heavy metal
containing wastewater
wastewater
chelating agent
insoluble matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042445A
Other languages
Japanese (ja)
Other versions
JP2006224023A (en
Inventor
悦二 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005042445A priority Critical patent/JP4714478B2/en
Publication of JP2006224023A publication Critical patent/JP2006224023A/en
Application granted granted Critical
Publication of JP4714478B2 publication Critical patent/JP4714478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、重金属含有排水の処理方法および重金属含有排水の処理装置に関する。   The present invention relates to a method for treating heavy metal-containing wastewater and a device for treating heavy metal-containing wastewater.

電池工場等の工業排水は、その中に重金属が含まれていることがある。重金属は、人体に悪影響を及ぼすため、工業排水においては、その含有量が厳しく規制されている。例えば、排水中の鉛等の重金属の含有量を基準値(例えば、鉛においては0.1mg/L)以下とするために、従来から、沈殿法による排水中の鉛等の重金属の処理が行われてきた。この沈殿法による排水中の鉛の処理の一例(特許文献1)を、図3に基づき説明する。すなわち、まず、鉛含有排水36を中和槽31に導入し、ここで、捕捉剤添加手段41により、チオアルコール類等の捕捉剤を前記鉛含有排水36に添加して前記鉛含有排水36中の鉛と反応させた後、pH調整手段42により、NaOH等のアルカリ物質を添加することで、前記鉛含有排水36を中和する。そして、この中和排水37を、コンディショナー槽32に送り、ここで、凝集剤添加手段43により、ポリ塩化アルミニウム又は有機系凝集剤等を添加して、フロック48を生成させる。フロック48が生成した排水(フロック生成排水)38を沈殿槽33に導入し、ここで、前記フロック48を沈殿させて固液分離する。固液分離した上澄の排水(上澄排水)39は、急速砂濾過器34に導入されて、ここで濾過され、濾過された排水(濾過排水)40は、貯槽35に回収される。一方、固液分離で生じた沈殿物47は、フィルタープレス機45に導入され、ここで、フィルタープレスされる。そして、フィルタープレスされた固形物46は、鉛処理工程(図示せず)に導入され処理される。   Industrial wastewater from battery factories may contain heavy metals. Since heavy metals adversely affect the human body, the content of industrial wastewater is strictly regulated. For example, in order to keep the content of heavy metals such as lead in wastewater below a standard value (for example, 0.1 mg / L for lead), conventionally, heavy metals such as lead in wastewater have been treated by precipitation. I have been. An example of the treatment of lead in waste water by this precipitation method (Patent Document 1) will be described with reference to FIG. That is, first, the lead-containing waste water 36 is introduced into the neutralization tank 31, where a scavenger such as thioalcohols is added to the lead-containing waste water 36 by the scavenger addition means 41 and the lead-containing waste water 36 is added. After reacting with lead, the pH adjusting means 42 neutralizes the lead-containing waste water 36 by adding an alkaline substance such as NaOH. Then, this neutralized waste water 37 is sent to the conditioner tank 32, where polyaluminum chloride or an organic coagulant is added by the coagulant adding means 43 to generate a floc 48. Drainage generated by the floc 48 (floc generation wastewater) 38 is introduced into the sedimentation tank 33, where the floc 48 is precipitated and separated into solid and liquid. The supernatant wastewater (supernatant wastewater) 39 obtained by solid-liquid separation is introduced into a rapid sand filter 34, where it is filtered, and the filtered wastewater (filtered wastewater) 40 is collected in the storage tank 35. On the other hand, the precipitate 47 generated by the solid-liquid separation is introduced into the filter press machine 45 where it is filter pressed. The filter-pressed solid 46 is introduced and processed in a lead processing step (not shown).

一方、鉛含有排水中の鉛の処理効率を向上させる方法として、前記鉛含有排水中の鉛を重金属捕捉剤を用いて捕捉して第1のキレート化合物を形成し、これに硫酸アルミニウム等の凝集剤を添加して第2のキレート化合物を形成し、ついでpHをアルカリ性に調整し、この状態でアニオン系凝集剤を添加して前記第2のキレート化合物を凝集させ、この凝集物を前記鉛含有排水から分離するという処理方法が提案されている(特許文献2)。
特開昭56−58582号公報 特開2001−212576号公報
On the other hand, as a method for improving the treatment efficiency of lead in lead-containing wastewater, the lead in the lead-containing wastewater is captured using a heavy metal scavenger to form a first chelate compound, and agglomeration of aluminum sulfate, etc. An agent is added to form a second chelate compound, and then the pH is adjusted to be alkaline. In this state, an anionic flocculant is added to aggregate the second chelate compound, and the aggregate contains the lead-containing compound. A treatment method of separating from waste water has been proposed (Patent Document 2).
JP-A-56-58582 JP 2001-212576 A

しかしながら、前記特許文献1に記載されているような従来の沈殿法による鉛含有排水中の鉛の処理には、沈殿槽が必要である。しかも、鉛の除去効率が低いので、基準値以下の処理を行うためには、沈殿槽を大型化する必要がある。また、多量の凝集剤が必要となり、これに伴い多量の廃棄物が発生する。このとき、凝集剤として有機系凝集剤を用いると、その高い粘性のために配管が閉塞するという課題がある。   However, a precipitation tank is required for the treatment of lead in lead-containing wastewater by the conventional precipitation method as described in Patent Document 1. And since the removal efficiency of lead is low, in order to perform a process below a standard value, it is necessary to enlarge a sedimentation tank. In addition, a large amount of flocculant is required, and a large amount of waste is generated accordingly. At this time, when an organic flocculant is used as the flocculant, there is a problem that the pipe is blocked due to the high viscosity.

また、前記特許文献2に記載されている処理方法は、処理工程数が多く、操作が煩雑であり、それに伴い処理装置も大型化するという課題がある。   Further, the processing method described in Patent Document 2 has a problem that the number of processing steps is large, the operation is complicated, and the processing apparatus is enlarged accordingly.

そこで、本発明は、重金属の除去効率が高く、処理装置の小型化が可能であり、多量の凝集剤を必要としない重金属含有排水の処理方法および重金属含有排水の処理装置の提供を、その目的とする。   Accordingly, the object of the present invention is to provide a heavy metal-containing wastewater treatment method and a heavy metal-containing wastewater treatment apparatus that have a high heavy metal removal efficiency, can be downsized, and do not require a large amount of flocculant. And

前記目的を達成するために、本発明の処理方法は、重金属含有排水の処理方法であって、前記重金属含有排水に、キレート剤を添加して前記重金属含有排水中の重金属と前記キレート剤とのキレート化合物を形成する反応工程と、前記キレート化合物を含有する前記重金属含有排水を中和する中和工程と、前記中和された前記重金属含有排水に無機系凝集剤を添加して重金属含有不溶物を生成させる凝集工程と、前記重金属含有不溶物が生成した前記重金属含有排水に対し、濾材を用いた濾過処理を行い、前記重金属含有不溶物を捕集する濾過工程とを有する処理方法である。   In order to achieve the above object, the treatment method of the present invention is a treatment method of heavy metal-containing wastewater, wherein a chelating agent is added to the heavy metal-containing wastewater, and the heavy metal in the heavy metal-containing wastewater and the chelating agent are combined. A reaction step of forming a chelate compound, a neutralization step of neutralizing the heavy metal-containing wastewater containing the chelate compound, and an inorganic flocculant added to the neutralized heavy metal-containing wastewater to add a heavy metal-containing insoluble matter And a filtration step of collecting the heavy metal-containing insoluble matter by filtering the heavy metal-containing wastewater generated by the heavy metal-containing insoluble matter using a filter medium.

また、本発明の処理装置は、重金属含有排水の処理装置であって、反応槽と、中和槽と、濾過器とを有し、これらが前記順序で流路により連結しており、前記反応槽は、キレート剤添加手段を有し、これにより、前記重金属含有排水に、キレート剤を添加して前記重金属含有排水中の重金属と前記キレート剤とのキレート化合物を形成し、前記中和槽は、pH調整手段を有し、これにより、前記キレート化合物を含有する前記重金属含有排水を中和し、前記濾過器は、凝集剤添加手段および濾材を有し、前記凝集剤添加手段により、前記中和された前記重金属含有排水に無機系凝集剤を添加して重金属含有不溶物を生成させ、前記濾材により、前記重金属含有不溶物が生成した前記重金属含有排水を濾過処理して前記重金属含有不溶物を捕集する処理装置である。   The treatment apparatus of the present invention is a treatment apparatus for heavy metal-containing wastewater, and includes a reaction tank, a neutralization tank, and a filter, which are connected by a flow path in the order described above. The tank has a chelating agent addition means, thereby adding a chelating agent to the heavy metal-containing wastewater to form a chelate compound of the heavy metal and the chelating agent in the heavy metal-containing wastewater, PH adjustment means, thereby neutralizing the heavy metal-containing wastewater containing the chelate compound, the filter has a flocculant addition means and a filter medium, the flocculant addition means, An inorganic flocculant is added to the summed heavy metal-containing wastewater to produce a heavy metal-containing insoluble matter, and the heavy metal-containing wastewater produced by the heavy metal-containing insoluble matter is filtered by the filter medium, and the heavy metal-containing insoluble matter is filtered. Collecting Is that processing equipment.

このように、本発明の処理方法および処理装置では、キレート剤と無機系凝集剤とを用いて重金属含有不溶物を生成させ、これを濾材を用いた濾過処理により捕集する。したがって、本発明では、重金属除去効率が高く、沈殿槽を必要としないから、装置の小型化が可能であり、廃棄物の発生も抑制できる。また、本発明では、有機系凝集剤を使用しないため、コスト的に有利なことに加え、処理された排水が高品質であるため再利用可能であり、また有機系凝集剤に起因する配管閉塞の問題も生じない。   Thus, in the processing method and processing apparatus of this invention, a heavy metal containing insoluble matter is produced | generated using a chelating agent and an inorganic type flocculant, and this is collected by the filtration process using a filter medium. Therefore, in the present invention, the heavy metal removal efficiency is high and a sedimentation tank is not required, so that the apparatus can be miniaturized and the generation of waste can be suppressed. Further, in the present invention, since no organic flocculant is used, in addition to being advantageous in terms of cost, the treated wastewater is reusable because of its high quality, and the pipe clogging caused by the organic flocculant is also possible. No problem arises.

本発明の処理方法において、処理対象である前記重金属含有排水は、特に制限されず、例えば、電池工場、ビニルコンパウンドの製造工場、半導体工場、メッキ工場等の工業排水等があげられる。前記重金属含有排水中の重金属は、特に制限されず、例えば、鉛、カドミウム、ニッケル、コバルト、クロム、銅、亜鉛等があげられる。   In the treatment method of the present invention, the heavy metal-containing wastewater to be treated is not particularly limited, and examples thereof include industrial wastewater from a battery factory, a vinyl compound manufacturing factory, a semiconductor factory, a plating factory, and the like. The heavy metal in the heavy metal-containing wastewater is not particularly limited, and examples thereof include lead, cadmium, nickel, cobalt, chromium, copper, and zinc.

本発明の処理方法の前記反応工程において、前記キレート剤は、液体キレート剤であることが好ましい。前記液体キレート剤としては、ジチオカルバミン酸基およびチオール基の双方の基またはいずれかの基を有する化合物を含むキレート剤であることが好ましい。このようなキレート剤としては、市販品を用いてもよく、市販品としては、例えば、東ソー(株)製のTX−10(商品名)、ミヨシ油脂(株)製のエポフロックL−1(商品名)等があげられる。前記キレート剤の添加割合は、前記重金属含有排水中の重金属濃度に対し、例えば、5〜20倍等量の範囲であり、好ましくは、10〜20倍等量の範囲である。   In the reaction step of the treatment method of the present invention, the chelating agent is preferably a liquid chelating agent. The liquid chelating agent is preferably a chelating agent containing a compound having either or both of a dithiocarbamic acid group and a thiol group. As such a chelating agent, a commercially available product may be used. Examples of commercially available products include TX-10 (trade name) manufactured by Tosoh Corporation, and Epofloc L-1 (product manufactured by Miyoshi Oil & Fats Co., Ltd.). Name). The addition ratio of the chelating agent is, for example, in the range of 5 to 20 times equivalent to the heavy metal concentration in the heavy metal-containing wastewater, and preferably in the range of 10 to 20 times equivalent.

本発明の処理方法の前記反応工程において、前記重金属含有排水のpHをpH4〜6の範囲に調整することが好ましい。前記重金属含有排水のpHをpH4〜6の範囲に調整すれば、前記重金属含有排水中の重金属がイオン化して前記キレート剤と効率良くキレート化合物を形成し、この結果、重金属除去効率がさらに向上するからである。なお、前記pHの調整は、pH5〜6の範囲に調整することが、より好ましい。   In the reaction step of the treatment method of the present invention, it is preferable to adjust the pH of the heavy metal-containing wastewater to a range of pH 4-6. If the pH of the heavy metal-containing wastewater is adjusted to a range of pH 4 to 6, the heavy metal in the heavy metal-containing wastewater is ionized to efficiently form a chelate compound with the chelating agent. As a result, the heavy metal removal efficiency is further improved. Because. In addition, it is more preferable to adjust the pH within a range of pH 5-6.

本発明の処理方法の前記凝集工程において、前記無機系凝集剤は、特に制限されず、例えば、硫酸アルミニウム(Al2(SO43・nH2O)、ポリ塩化アルミニウム、塩化第二鉄、ポリ塩化第二鉄等があげられる。これらの中でも、硫酸アルミニウム(Al2(SO43・nH2O)が好ましい。また、前記無機系凝集剤の添加割合は、前記重金属含有排水中の重金属濃度に対し、例えば、10〜30倍等量の範囲であり、好ましくは、20〜30倍等量の範囲である。 In the coagulation step of the treatment method of the present invention, the inorganic coagulant is not particularly limited, and examples thereof include aluminum sulfate (Al 2 (SO 4 ) 3 · nH 2 O), polyaluminum chloride, ferric chloride, Examples thereof include polyferric chloride. Among these, aluminum sulfate (Al 2 (SO 4 ) 3 .nH 2 O) is preferable. Moreover, the addition ratio of the said inorganic type coagulant is the range of 10-30 times equivalent with respect to the heavy metal density | concentration in the said heavy metal containing wastewater, Preferably, it is the range of 20-30 times equivalent.

本発明の処理方法は、さらに、前記濾過工程における濾材を逆洗浄する逆洗浄工程を有することが好ましい。この場合、本発明の処理方法は、さらに、前記逆洗浄工程により、前記濾材から前記重金属含有不溶物を分離し、前記重金属含有不溶物中の重金属を処理する重金属処理工程を有することが好ましい。   It is preferable that the processing method of the present invention further includes a back washing step of back washing the filter medium in the filtration step. In this case, it is preferable that the treatment method of the present invention further includes a heavy metal treatment step of separating the heavy metal-containing insoluble matter from the filter medium and treating the heavy metal in the heavy metal-containing insoluble matter by the back washing step.

本発明の処理方法において、さらに、前記濾過工程で得られた濾過排水を回収する回収工程を有することが好ましい。   In the processing method of this invention, it is preferable to have further the collection | recovery process which collect | recovers the filtration waste_water | drain obtained at the said filtration process.

本発明の処理方法において、処理対象である前記重金属含有排水は、重金属含有酸排水であることが好ましい。前記重金属含有排水が酸性であれば、前記重金属含有排水中の重金属がイオン化しているから、前記キレート剤と効率良くキレート化合物を形成し、この後の凝集工程で重金属含有不溶物となりやすくなり、この結果、重金属除去効率がさらに向上するからである。   In the treatment method of the present invention, the heavy metal-containing wastewater to be treated is preferably a heavy metal-containing acid wastewater. If the heavy metal-containing wastewater is acidic, the heavy metal in the heavy metal-containing wastewater is ionized, so that the chelating agent is efficiently formed with the chelating agent, and it becomes easy to become a heavy metal-containing insoluble matter in the subsequent aggregation step, As a result, the heavy metal removal efficiency is further improved.

前述と同様に、本発明の処理装置において、処理対象である前記重金属含有排水は、特に制限されず、例えば、電池工場、ビニルコンパウンドの製造工場、半導体工場、メッキ工場等の工業排水等があげられる。前記重金属含有排水中の重金属は、特に制限されず、例えば、鉛、カドミウム、ニッケル、コバルト、クロム、銅、亜鉛等があげられる。   Similarly to the above, in the treatment apparatus of the present invention, the heavy metal-containing wastewater to be treated is not particularly limited, and examples thereof include industrial wastewater from battery factories, vinyl compound production factories, semiconductor factories, plating factories, and the like. It is done. The heavy metal in the heavy metal-containing wastewater is not particularly limited, and examples thereof include lead, cadmium, nickel, cobalt, chromium, copper, and zinc.

本発明の処理装置の前記反応槽において、キレート剤添加手段を有し、前記キレート剤は、液体キレート剤であることが好ましい。前述と同様に、前記液体キレート剤としては、ジチオカルバミン酸基およびチオール基の双方の基またはいずれかの基を有する化合物を含むキレート剤であることが好ましい。このようなキレート剤としては、市販品を用いてもよく、市販品としては、例えば、東ソー(株)製のTX−10(商品名)、ミヨシ油脂(株)製のエポフロックL−1(商品名)等があげられる。前記キレート剤の添加割合は、前記重金属含有排水中の重金属濃度に対し、例えば、5〜20倍等量の範囲であり、好ましくは、10〜20倍等量の範囲である。   The reaction vessel of the treatment apparatus of the present invention preferably has a chelating agent adding means, and the chelating agent is a liquid chelating agent. As described above, the liquid chelating agent is preferably a chelating agent containing a compound having either or both of a dithiocarbamic acid group and a thiol group. As such a chelating agent, a commercially available product may be used. Examples of commercially available products include TX-10 (trade name) manufactured by Tosoh Corporation, and Epofloc L-1 (product manufactured by Miyoshi Oil & Fats Co., Ltd.). Name). The addition ratio of the chelating agent is, for example, in the range of 5 to 20 times equivalent to the heavy metal concentration in the heavy metal-containing wastewater, and preferably in the range of 10 to 20 times equivalent.

本発明の処理装置の前記反応槽において、さらに、pH調整手段を有し、これにより、前述と同様に、前記重金属含有排水のpHをpH4〜6の範囲に調整することが好ましく、より好ましくは、pH5〜6の範囲に調整することである。   In the reaction vessel of the treatment apparatus of the present invention, it further has a pH adjusting means, and as described above, it is preferable to adjust the pH of the heavy metal-containing wastewater to a range of pH 4 to 6, more preferably. , Adjusting to a pH range of 5-6.

本発明の処理装置の前記濾過器において、前記無機系凝集剤は、前述と同様に、特に制限されず、例えば、硫酸アルミニウム(Al2(SO43・nH2O)、ポリ塩化アルミニウム、塩化第二鉄、ポリ塩化第二鉄等があげられる。これらの中でも、硫酸アルミニウム(Al2(SO43・nH2O)が好ましい。また、前記無機系凝集剤の添加割合は、前述のように、前記重金属含有排水中の重金属濃度に対し、例えば、10〜30倍等量の範囲であり、好ましくは、20〜30倍等量の範囲である。 In the filter of the treatment apparatus of the present invention, the inorganic flocculant is not particularly limited as described above, and examples thereof include aluminum sulfate (Al 2 (SO 4 ) 3 .nH 2 O), polyaluminum chloride, Examples thereof include ferric chloride and polyferric chloride. Among these, aluminum sulfate (Al 2 (SO 4 ) 3 .nH 2 O) is preferable. In addition, as described above, the addition ratio of the inorganic flocculant is, for example, in the range of 10 to 30 times equivalent, preferably 20 to 30 times equivalent to the heavy metal concentration in the heavy metal-containing wastewater. Range.

前述と同様に、本発明の処理装置は、さらに、前記濾過器における濾材を逆洗浄する逆洗浄手段を有することが好ましい。この場合、本発明の処理装置は、さらに、前記逆洗浄手段により、前記濾材から前記重金属含有不溶物を分離し、前記重金属含有不溶物中の重金属を処理する重金属処理手段を有することが好ましい。   Similarly to the above, it is preferable that the processing apparatus of the present invention further includes a back cleaning means for back cleaning the filter medium in the filter. In this case, it is preferable that the processing apparatus of the present invention further includes a heavy metal processing unit that separates the heavy metal-containing insoluble matter from the filter medium by the back cleaning unit and processes the heavy metal in the heavy metal-containing insoluble matter.

前述と同様に、本発明の処理装置は、さらに、中水槽を有し、これと前記濾過器とが流路で連結されており、前記中水槽により、前記濾過器で得られた濾過排水を回収することが好ましい。これにより、処理された排水の再利用が可能となる。   Similarly to the above, the treatment apparatus of the present invention further includes a middle water tank, and the filter is connected to the filter by a flow path, and the filtered waste water obtained by the filter is collected by the middle water tank. It is preferable to collect. Thereby, the treated waste water can be reused.

前述と同様に、本発明の処理装置において、処理対象である前記重金属含有排水は、重金属含有酸排水であることが好ましい。前記重金属含有排水が酸性であれば、前記重金属含有排水中の重金属がイオン化しているから、前記キレート剤と効率良くキレート化合物を形成し、この後の凝集工程で重金属含有不溶物となりやすくなり、この結果、重金属除去効率がさらに向上するからである。   Similarly to the above, in the treatment apparatus of the present invention, the heavy metal-containing wastewater to be treated is preferably a heavy metal-containing acid wastewater. If the heavy metal-containing wastewater is acidic, the heavy metal in the heavy metal-containing wastewater is ionized, so the chelating agent is efficiently formed with the chelating agent, and it becomes easy to become a heavy metal-containing insoluble matter in the subsequent aggregation process, As a result, the heavy metal removal efficiency is further improved.

つぎに、本発明の処理方法および処理装置の例について、図面に基づき説明する。ただし、本発明は、以下の例に制限されない。   Next, examples of the processing method and the processing apparatus of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

図1に、本発明の処理装置の構成の一例を示す。図示のように、この装置は、反応槽1と、中和槽2と、中間槽3と、濾過器4と、中水槽5とを主要構成要素として有し、これらが前記順序で流路(例えば、パイプ)により連結されている。前記反応槽1は、キレート剤添加手段11と、pH調整手段12とを有する。前記中和槽2は、pH調整手段13を有する。前記濾過器4は、凝集剤添加手段14および内部に濾材を有する。この装置を用いた重金属含有排水の処理の一例について、以下、各工程別に説明する。   FIG. 1 shows an example of the configuration of the processing apparatus of the present invention. As shown in the figure, this apparatus has a reaction tank 1, a neutralization tank 2, an intermediate tank 3, a filter 4, and a middle water tank 5 as main components, and these are the flow paths ( For example, they are connected by a pipe). The reaction tank 1 includes a chelating agent addition unit 11 and a pH adjustment unit 12. The neutralization tank 2 has pH adjusting means 13. The filter 4 has a flocculant addition means 14 and a filter medium inside. An example of the treatment of heavy metal-containing wastewater using this apparatus will be described below for each process.

まず、重金属含有排水6を、反応槽1に導入する。ここで、まず、前記重金属含有排水6に、キレート剤添加手段11により、キレート剤が添加され、前記キレート剤と前記重金属含有排水6中の重金属が反応してキレート化合物16が生成する。前記キレート剤添加手段11は、例えば、キレート剤の貯留槽と、前記キレート剤を送るポンプとから構成される。キレート剤としては、前述のものがある。つぎに、このキレート化合物16が生成した重金属含有排水6は、pH調整手段12により、例えば、前述のpHの範囲4〜6に調整される。pH調整手段12としては、例えば、アルカリ性物質若しくは酸性物質を添加する手段があげられ、これは、例えば、アルカリ性物質若しくは酸性物質の貯留槽と、前記物質を送るポンプと、前記キレート化合物16が生成した重金属含有排水6のpHを測定するpHセンサとから構成される。前記アルカリ性物質としては、例えば、NaOH、Ca(OH)2(石灰)、KOH等があげられ、前記酸性物質としては、例えば、HCl、H2SO4等があげられる。なお、既に、前記キレート化合物16が生成した重金属含有排水6が、例えば、前述のpHの範囲4〜6にあるときは、pHの調整は省略してもよい。なお、前記キレート化合物16の生成およびpH調整の各操作は、攪拌羽根等により、前記重金属含有排水6を攪拌しながら実施することが好ましい。 First, the heavy metal-containing waste water 6 is introduced into the reaction tank 1. Here, first, a chelating agent is added to the heavy metal-containing wastewater 6 by the chelating agent addition means 11, and the chelating agent reacts with the heavy metal in the heavy metal-containing wastewater 6 to produce a chelate compound 16. The chelating agent adding means 11 includes, for example, a chelating agent storage tank and a pump for feeding the chelating agent. Examples of chelating agents include those described above. Next, the heavy metal containing waste water 6 produced by the chelate compound 16 is adjusted by the pH adjusting means 12 to, for example, the pH range 4 to 6 described above. Examples of the pH adjusting means 12 include a means for adding an alkaline substance or an acidic substance. For example, a storage tank for an alkaline substance or an acidic substance, a pump for feeding the substance, and the chelate compound 16 are generated. And a pH sensor for measuring the pH of the heavy metal-containing waste water 6. Examples of the alkaline substance include NaOH, Ca (OH) 2 (lime), KOH and the like, and examples of the acidic substance include HCl and H 2 SO 4. In addition, when the heavy metal containing waste water 6 which the said chelate compound 16 produced | generated is already in the above-mentioned pH range 4-6, adjustment of pH may be abbreviate | omitted. In addition, it is preferable to implement each operation | movement of the production | generation of the said chelate compound 16, and pH adjustment, stirring the said heavy metal containing waste water 6 with a stirring blade etc.

つぎに、キレート化合物16を含有する前記重金属含有排水7を前記中和槽2に導入し、ここで、pH調整手段13により、略中性に中和する。なお、中和後のpHは、例えば、pH6〜8の範囲であり、好ましくは、pH7である。pH調整手段13は、反応槽1のpH調整手段12と同様の構成をとることができる。また、この中和槽2における中和工程は、攪拌羽根等により、前記キレート化合物16を含有する前記重金属含有排水7を攪拌しながら実施することが好ましい。   Next, the heavy metal-containing waste water 7 containing the chelate compound 16 is introduced into the neutralization tank 2, where it is neutralized approximately neutral by the pH adjusting means 13. In addition, pH after neutralization is the range of pH 6-8, for example, Preferably, it is pH 7. The pH adjusting unit 13 can have the same configuration as the pH adjusting unit 12 of the reaction tank 1. Moreover, it is preferable to implement the neutralization process in this neutralization tank 2, stirring the said heavy metal containing waste water 7 containing the said chelate compound 16 with a stirring blade etc.

つぎに、中和された前記重金属含有排水(中和排水)8を、中間槽3に導入し、さらに、濾過器4に導入する。この濾過器4は、凝集剤添加手段14を有し、これにより、濾過前の前記中和排水8に対し、無機系凝集剤を添加する。前記凝集剤添加手段14は、例えば、無機系凝集剤の貯留槽と、前記無機系凝集剤を送るポンプとから構成される。前記無機系凝集剤としては、前述のものが使用でき、添加割合は、前述のとおりである。   Next, the heavy metal-containing wastewater (neutralized wastewater) 8 that has been neutralized is introduced into the intermediate tank 3 and further introduced into the filter 4. The filter 4 has a flocculant addition means 14, and thereby adds an inorganic flocculant to the neutralized waste water 8 before filtration. The flocculant adding means 14 includes, for example, an inorganic flocculant storage tank and a pump for feeding the inorganic flocculant. As the inorganic flocculant, those described above can be used, and the addition ratio is as described above.

無機系凝集剤を前記中和排水8に添加することで、重金属含有不溶物の粒子をマイクロフロック化し、濾過器4を用いて前記マイクロフロックを捕集する。粒子を大きくすることにより、高価な高性能の膜は使用せず、砂等による清澄濾過で重金属含有不溶物を捕集することが可能となる。   By adding an inorganic flocculant to the neutralized waste water 8, the particles of the heavy metal-containing insoluble matter are converted into micro flocs, and the micro flocs are collected using the filter 4. By enlarging the particles, it is possible to collect heavy metal-containing insoluble matter by clarification filtration using sand or the like without using an expensive high-performance membrane.

本発明において、前記濾過器4の構成は、例えば、SUS304、SUS316等のステンレス製およびSS400等の鋼板製の円筒体の中に、濾材として砂17およびアンスラサイト18を充填した密閉容器であり、前記中和排水8は、例えば、中間槽3よりポンプで濾過器4に圧送される。   In the present invention, the configuration of the filter 4 is, for example, a hermetic container in which sand 17 and anthracite 18 are filled as a filter medium in a cylindrical body made of stainless steel such as SUS304 and SUS316 and steel plate such as SS400, The neutralized waste water 8 is pumped from the intermediate tank 3 to the filter 4 by a pump, for example.

前記濾過器4に充填される砂17は、例えば、有効径0.4〜0.6mmの範囲、比重2.7、アンスラサイト18は、例えば、有効径1.0〜1.2mmの範囲、比重1.5であり、上層にアンスラサイト18、下層に砂17の2層を構成し、上層で粒子の大きな重金属含有不溶物を、下層で粒子の小さな重金属含有不溶物を捕集し、前記中和排水8を濾過する。   The sand 17 filled in the filter 4 has, for example, an effective diameter in the range of 0.4 to 0.6 mm, a specific gravity of 2.7, and the anthracite 18 has, for example, an effective diameter in the range of 1.0 to 1.2 mm. Specific gravity 1.5, comprising two layers of anthracite 18 in the upper layer and sand 17 in the lower layer, collecting heavy metal-containing insoluble matter having large particles in the upper layer, and collecting heavy metal-containing insoluble matter having small particles in the lower layer, The neutralized waste water 8 is filtered.

捕集された重金属含有不溶物が溜まってくると、濾過抵抗が大きくなる。ここで、例えば、濾過器4の出入り口で圧力を測定(図示せず)し、一定値まで上がると、圧送するポンプが停止し、逆洗水を濾過器4の下部から入れて、濾材に付着した重金属含有不溶物を洗い流す。この時、比重の軽いアンスラサイト18が常に上層となり、逆洗後も濾過性能を維持できる。   When the collected heavy metal-containing insoluble matter accumulates, the filtration resistance increases. Here, for example, when the pressure is measured (not shown) at the entrance and exit of the filter 4 and rises to a certain value, the pump for pumping stops and backwash water enters from the lower part of the filter 4 and adheres to the filter medium. Wash away insoluble heavy metal. At this time, the anthracite 18 having a low specific gravity is always the upper layer, and the filtration performance can be maintained even after backwashing.

また、例えば、前記濾過器4の構成に、有効径のより小さく、かつ比重のより大きい砂、例えば、ガーネット等を追加し、濾材を3層構造とした精密濾過器を使用することにより、濾過後の処理水質を向上させることが可能となる。   In addition, for example, by adding sand having a smaller effective diameter and larger specific gravity, such as garnet, to the configuration of the filter 4 and using a microfilter having a three-layer filter medium, filtration is performed. It becomes possible to improve the quality of treated water later.

なお、濾過器4の構成は、前述の構成に制限されるものではなく、その他の構成とすることもできる。   Note that the configuration of the filter 4 is not limited to the above-described configuration, and may be other configurations.

つぎに、前記濾過器4で濾過された前記中和排水(濾過排水)10は、中水槽5で回収される。このような一連の工程を経て処理された排水は、重金属の含有量が基準値以下となり、また有機系凝集剤を使用しないことから、清浄度が高く、しかも配管の閉塞の恐れもなく、再利用可能である。   Next, the neutralized wastewater (filtered wastewater) 10 filtered by the filter 4 is collected in the middle water tank 5. Wastewater treated through such a series of steps has a heavy metal content that is below the standard value and does not use organic flocculants. Is available.

つぎに、本発明の処理装置の別の例について、図2に基づき説明する。なお、図2において、図1と同一部分には同一符号を付している。   Next, another example of the processing apparatus of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those in FIG.

この装置は、濾過器4の濾材に対する逆洗浄手段(図示せず)を有する。この逆洗浄手段により、前記濾過器4の濾材に捕集された重金属含有不溶物を含む液(不溶物含有液)15が、中間槽3を介して、重金属処理工程(図示せず)に導入される。その他の工程の操作および条件等は、前述の例の装置と同様である。   This apparatus has a back cleaning means (not shown) for the filter medium of the filter 4. By this back washing means, the liquid (insoluble matter-containing liquid) 15 containing the heavy metal-containing insoluble matter collected on the filter medium of the filter 4 is introduced into the heavy metal treatment step (not shown) via the intermediate tank 3. Is done. Other process operations, conditions, and the like are the same as those of the apparatus of the above-described example.

(参考例1)
鉛含有排水(鉛濃度約0.5mg/L)に、キレート剤(ミヨシ油脂(株)製、エポフロックL−1(商品名))を添加し、前記キレート剤と前記鉛含有排水中の鉛を反応させてキレート化合物を生成させた。前記キレート剤の添加量は、0.4、1、2、5、10mg/Lの5通りとした。つぎに、このキレート化合物が生成した鉛含有排水のpHを、NaOHを添加するにより、pH7〜8に調整した。なお、前記キレート化合物の生成およびpH調整は、前記鉛含有排水を10分間攪拌しながら行った。
(Reference Example 1)
To the lead-containing wastewater (lead concentration about 0.5 mg / L), a chelating agent (Miyoshi Oil & Fats Co., Ltd., Epoflock L-1 (trade name)) is added, and the chelating agent and lead in the lead-containing wastewater are added. Reaction was performed to produce a chelate compound. The amount of the chelating agent added was 0.4, 1, 2, 5, 10 mg / L. Next, the pH of the lead-containing wastewater produced by this chelate compound was adjusted to pH 7-8 by adding NaOH. In addition, the production | generation and pH adjustment of the said chelate compound were performed stirring the said lead containing waste water for 10 minutes.

つぎに、希硫酸を加え、pH7に中和し、2分間攪拌した後、無機系凝集剤(硫酸アルミニウム(Al23として8%))30mg/Lを添加し、鉛含有不溶物を生成させた。 Next, dilute sulfuric acid is added, neutralized to pH 7, stirred for 2 minutes, and then added with an inorganic flocculant (aluminum sulfate (8% as Al 2 O 3 )) 30 mg / L to produce lead-containing insoluble matter. I let you.

つぎに、前記鉛含有不溶物が生成した前記鉛含有排水を濾紙(濾紙No.5A)で濾過し、その濾液(処理排水)を回収した。   Next, the lead-containing wastewater produced by the lead-containing insoluble matter was filtered with a filter paper (filter paper No. 5A), and the filtrate (treated wastewater) was recovered.

(実施例1)
キレート化合物が生成した鉛含有排水のpHを5〜6に調整し、つぎに、NaOHを加え、pH7に中和したこと以外は、参考例1と同様にして、鉛含有排水の処理を行った。
(Example 1)
The lead-containing wastewater was treated in the same manner as in Reference Example 1 except that the pH of the lead-containing wastewater produced by the chelate compound was adjusted to 5 to 6, and then NaOH was added and neutralized to pH 7. .

参考例1および実施例1で処理された前記鉛含有排水の鉛含有量(mg/L)を測定した。前記鉛含有量の測定は、フレーム原子吸光光度定量法で行った。その結果を下記表1に示す。なお、本実施例では、前記鉛含有量を、前記フレーム原子吸光光度定量法で測定したが、ICP発光分析法でも測定可能である。 The lead content (mg / L) of the lead-containing wastewater treated in Reference Example 1 and Example 1 was measured. The lead content was measured by flame atomic absorption spectrophotometry. The results are shown in Table 1 below. In the present example, the lead content was measured by the flame atomic absorption spectrophotometry, but it can also be measured by ICP emission spectrometry.

(表1)
キレート剤添加量 鉛含有量(mg/L)
(mg/L) pH7〜8 pH5〜6
0.4 0.13 0.099
1 0.11 0.057
2 0.15 0.045
5 0.12 <0.01(0.006)
10 0.12 <0.01(0.009)
(Table 1)
Chelating agent addition amount Lead content (mg / L)
(Mg / L) pH 7-8 pH 5-6
0.4 0.13 0.099
1 0.11 0.057
2 0.15 0.045
5 0.12 <0.01 (0.006)
10 0.12 <0.01 (0.009)

上記表1に示すとおり、前記キレート化合物が生成した鉛含有排水のpHを、pH7〜8に調整した場合には、処理排水の鉛含有量を、基準値(0.1mg/L)程度にまで低下させることができ、表に示していないが、さらに無機系凝集剤添加量を増やすことで、鉛含有量を基準値より少なくすることができた。また、前記キレート化合物が生成した鉛含有排水のpHを、pH5〜6に調整した場合には、キレート剤添加量に関係なく、前記鉛含有排水の鉛含有量を、微量(30mg/L)の無機系凝集剤添加で基準値より少なくすることができた。そして、前記キレート化合物が生成した鉛含有排水のpHを、pH5〜6に調整し、前記鉛含有排水中の鉛濃度に対し、約10〜20倍等量(5〜10mg/L)のキレート剤を添加することで、処理排水中の鉛含有量を0.01mg/L以下にすることができることがわかった。前記鉛含有量0.01mg/Lは、環境基本法での水質環境基準であり、工場等の排水にはこの基準が採用されることが多い。なお、前記鉛含有排水を上記処理条件で処理した場合、スラッジの発生量を4mg/Lと非常に少なく抑えることができた。本実施例は、鉛含有排水を用いて行ったが、その他の重金属を含有する排水についても同様に処理することができる。   As shown in Table 1 above, when the pH of the lead-containing wastewater produced by the chelate compound is adjusted to pH 7-8, the lead content of the treated wastewater is reduced to the reference value (0.1 mg / L). Although not shown in the table, the lead content could be reduced from the reference value by further increasing the amount of the inorganic flocculant added. In addition, when the pH of the lead-containing wastewater produced by the chelate compound is adjusted to pH 5-6, the lead content of the lead-containing wastewater is set to a very small amount (30 mg / L) regardless of the amount of the chelating agent added. The addition of the inorganic flocculant could reduce the amount below the standard value. And the pH of the lead containing waste water which the said chelate compound produced | generated is adjusted to pH 5-6, About 10-20 times equivalent (5-10 mg / L) chelating agent with respect to the lead concentration in the said lead containing waste water It was found that the lead content in the treated wastewater can be reduced to 0.01 mg / L or less by adding. The lead content of 0.01 mg / L is a water quality environmental standard in the Environmental Basic Law, and this standard is often adopted for wastewater from factories and the like. In addition, when the said lead containing waste water was processed on the said processing conditions, the generation amount of sludge was able to be suppressed very small with 4 mg / L. Although the present Example was performed using the lead containing waste_water | drain, it can process similarly about the waste_water | drain containing other heavy metals.

以上のように、本発明の重金属含有排水の処理方法および処理装置は、その用途は制限されず、例えば、電池工場、ビニルコンパウンドの製造工場、半導体工場、メッキ工場等のように重金属を使用する工場の廃水処理に適用でき、その他、生活廃水処理等にも適用できる。   As described above, the method and apparatus for treating heavy metal-containing wastewater of the present invention are not limited in its use, and use heavy metals such as battery factories, vinyl compound production factories, semiconductor factories, and plating factories. It can be applied to wastewater treatment at factories, and can also be applied to domestic wastewater treatment.

図1は、本発明の処理装置の一例の構成図である。FIG. 1 is a configuration diagram of an example of a processing apparatus according to the present invention. 図2は、本発明の処理装置のその他の例の構成図である。FIG. 2 is a configuration diagram of another example of the processing apparatus of the present invention. 図3は、従来の処理装置の概略図である。FIG. 3 is a schematic view of a conventional processing apparatus.

1 反応槽
2、31 中和槽
3 中間槽
4 濾過器
5 中水槽
6 重金属含有排水
7 キレート化合物を含有する重金属含有排水
8、37 中和排水
10、40 濾過排水
11 キレート剤添加手段
12、13、42 pH調整手段
14、43 凝集剤添加手段
15 不溶物含有液
16 キレート化合物
17 重金属含有不溶物
32 コンディショナー槽
33 沈殿槽
34 急速砂濾過器
35 貯槽
36 鉛含有排水
38 フロック生成排水
39 上澄排水
41 捕捉剤添加手段
45 フィルタープレス機
46 固形物
47 沈殿物
48 フロック
DESCRIPTION OF SYMBOLS 1 Reaction tank 2, 31 Neutralization tank 3 Intermediate tank 4 Filter 5 Middle water tank 6 Heavy metal containing waste water 7 Heavy metal containing waste water 8 containing a chelate compound, 37 Neutralization waste water 10, 40 Filtration waste water 11 Chelating agent addition means 12, 13 42, pH adjusting means 14, 43 Flocculant addition means 15 Insoluble matter-containing liquid 16 Chelate compound 17 Heavy metal-containing insoluble matter 32 Conditioner tank 33 Precipitation tank 34 Rapid sand filter 35 Storage tank 36 Lead-containing drainage 38 Flock generation wastewater 39 Supernatant drainage 41 Capture agent addition means 45 Filter press machine 46 Solid matter 47 Precipitate 48 Flock

Claims (10)

重金属含有排水の処理方法であって、前記重金属含有排水に、前記重金属含有排水中の重金属濃度に対し10〜20倍等量のキレート剤を添加して前記重金属含有排水中の重金属と前記キレート剤とのキレート化合物を形成する反応工程と、スラッジの発生量を少なくするために前記反応工程において前記重金属含有排水のpHをpH5〜6の範囲に調整することと、そのpH5〜6の範囲に調整した前記キレート化合物を含有する前記重金属含有排水を中和する中和工程と、前記中和された前記重金属含有排水に前記重金属含有排水中の重金属濃度に対し20〜30倍等量の無機系凝集剤を添加して重金属含有不溶物を生成させる凝集工程と、前記重金属含有不溶物が生成した前記重金属含有排水に対し、濾材を用いた濾過処理を行い、前記重金属含有不溶物を捕集する濾過工程とを有する重金属含有排水の処理方法。 A method for treating heavy metal-containing wastewater, comprising adding a chelating agent in an amount equivalent to 10 to 20 times the heavy metal concentration in the heavy metal-containing wastewater to the heavy metal-containing wastewater, and the heavy metal and the chelating agent in the heavy metal-containing wastewater In order to reduce the amount of sludge generated, the pH of the heavy metal-containing wastewater is adjusted in the range of pH 5-6, and the pH is adjusted in the range of 5-6. A neutralization step of neutralizing the heavy metal-containing wastewater containing the chelate compound, and an inorganic agglomeration of the neutralized heavy metal-containing wastewater in an amount equivalent to 20 to 30 times the heavy metal concentration in the heavy metal-containing wastewater. A coagulation step of adding an agent to produce a heavy metal-containing insoluble matter, and a filtration treatment using a filter medium on the heavy metal-containing wastewater produced by the heavy metal-containing insoluble matter, Method of treating heavy metal-containing waste water and a filtration step to collect the heavy metal-containing insolubles. 前記重金属が、鉛である、請求項1記載の重金属含有排水の処理方法。The method for treating heavy metal-containing wastewater according to claim 1, wherein the heavy metal is lead. さらに、前記濾過工程における濾材を逆洗浄する逆洗浄工程を有する請求項1又は2に記載の重金属含有排水の処理方法。 Furthermore, the processing method of the heavy metal containing wastewater of Claim 1 or 2 which has a backwashing process which backwashes the filter medium in the said filtration process. さらに、前記逆洗浄工程により、前記濾材から前記重金属含有不溶物を分離し、前記重金属含有不溶物中の重金属を処理する重金属処理工程を有する請求項記載の重金属含有排水の処理方法。 The heavy metal-containing wastewater treatment method according to claim 3 , further comprising a heavy metal treatment step of separating the heavy metal-containing insoluble matter from the filter medium and treating the heavy metal in the heavy metal-containing insoluble matter by the back washing step. さらに、前記濾過工程で得られた濾過排水を回収する回収工程を有する請求項1からのいずれかに記載の重金属含有排水の処理方法。 Furthermore, the processing method of the heavy metal containing waste_water | drain in any one of Claim 1 to 4 which has a collection | recovery process which collect | recovers the filtered waste_water | drain obtained at the said filtration process. 処理対象である前記重金属含有排水が、重金属含有酸排水である請求項1からのいずれかに記載の重金属含有排水の処理方法。 The method for treating heavy metal-containing wastewater according to any one of claims 1 to 5 , wherein the heavy metal-containing wastewater to be treated is heavy metal-containing acid wastewater. 重金属含有排水の処理装置であって、反応槽と、中和槽と、濾過器とを有し、これらが前記順序で流路により連結しており、前記反応槽は、キレート剤添加手段を有し、これにより、前記重金属含有排水に前記重金属含有排水中の重金属濃度に対し10〜20倍等量のキレート剤を添加して前記重金属含有排水中の重金属と前記キレート剤とのキレート化合物を形成し、前記反応槽において、さらに、スラッジの発生量を少なくするためにpH調整手段を有し、これにより、前記重金属含有排水のpHをpH5〜6の範囲に調整し、前記中和槽は、pH調整手段を有し、これにより、pH5〜6の範囲に調整した前記キレート化合物を含有する前記重金属含有排水を中和し、前記濾過器は、凝集剤添加手段および濾材を有し、前記凝集剤添加手段により、前記中和された前記重金属含有排水に前記重金属含有排水中の重金属濃度に対し20〜30倍等量の無機系凝集剤を添加して重金属含有不溶物を生成させ、前記濾材により、前記重金属含有不溶物が生成した前記重金属含有排水を濾過処理して前記重金属含有不溶物を捕集する重金属含有排水の処理装置。 An apparatus for treating wastewater containing heavy metal, comprising a reaction tank, a neutralization tank, and a filter, which are connected by a flow path in the order described above, and the reaction tank has a chelating agent addition means. Thus, a chelating agent is added to the heavy metal-containing wastewater to add a chelating agent in an amount of 10 to 20 times the heavy metal concentration in the heavy metal-containing wastewater to form a chelate compound of the heavy metal and the chelating agent in the heavy metal-containing wastewater. In addition, the reaction tank further has a pH adjusting means for reducing the amount of sludge generated, thereby adjusting the pH of the heavy metal-containing wastewater to a range of pH 5-6, pH adjustment means, thereby neutralizing the heavy metal-containing wastewater containing the chelate compound adjusted to a pH range of 5 to 6, the filter has a flocculant addition means and a filter medium, the aggregation Additive The stage, the relative concentration of heavy metals in the heavy metals-containing waste water by adding 20-30 fold equivalent of inorganic coagulant to produce a heavy metal-containing insolubles in said heavy metal containing waste water the neutralized, by the filter medium, The heavy metal containing wastewater processing apparatus which filters the said heavy metal containing wastewater which the said heavy metal containing insoluble matter produced | generated, and collects the said heavy metal containing insoluble matter. 前記重金属が、鉛である、請求項7記載の重金属含有排水の処理装置。The processing apparatus of the heavy metal containing waste water of Claim 7 whose said heavy metal is lead. さらに、前記濾過器における濾材を逆洗浄する逆洗浄手段を有する請求項7又は8に記載の重金属含有排水の処理装置。 Furthermore, the processing apparatus of the heavy metal containing waste water of Claim 7 or 8 which has a back washing | cleaning means which back-washes the filter medium in the said filter. さらに、前記逆洗浄手段により、前記濾材から前記重金属含有不溶物を分離し、前記重金属含有不溶物中の重金属を処理する重金属処理手段を有する請求項記載の重金属含有排水の処理装置。 The heavy metal-containing wastewater treatment apparatus according to claim 9 , further comprising heavy metal treatment means for separating the heavy metal-containing insoluble matter from the filter medium by the reverse cleaning means and treating the heavy metal in the heavy metal-containing insoluble matter.
JP2005042445A 2005-02-18 2005-02-18 Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment Active JP4714478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042445A JP4714478B2 (en) 2005-02-18 2005-02-18 Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042445A JP4714478B2 (en) 2005-02-18 2005-02-18 Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2006224023A JP2006224023A (en) 2006-08-31
JP4714478B2 true JP4714478B2 (en) 2011-06-29

Family

ID=36985843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042445A Active JP4714478B2 (en) 2005-02-18 2005-02-18 Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4714478B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205089B2 (en) * 2008-03-18 2013-06-05 パナソニック株式会社 Waste electrolyte treatment method
JP2014104456A (en) * 2012-11-30 2014-06-09 Taki Chem Co Ltd Effluent treatment method
JP2016137429A (en) * 2015-01-27 2016-08-04 王子ホールディングス株式会社 Method and equipment for treating heavy metal-containing waste water
CN108503067A (en) * 2017-02-25 2018-09-07 新乡市新能环保工程有限公司 Industrial sewage treatment technology containing heavy metal
JP6634116B2 (en) * 2018-05-30 2020-01-22 株式会社ヤマト Backwashing method and backwashing device for filter
CN113023942A (en) * 2021-03-15 2021-06-25 湖南新九方科技有限公司 Treatment process of chromium-containing wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658582A (en) * 1979-10-17 1981-05-21 Yuasa Battery Co Ltd Removing method for lead from industrial waste water
JPH04322786A (en) * 1991-01-14 1992-11-12 Japan Organo Co Ltd Treatment of dense waste liquid of detergent comprising alkali saponifying agent for printed circuit board
JPH10118664A (en) * 1996-10-24 1998-05-12 Kansai Electric Power Co Inc:The Treatment of waste water containing cyan compound and organic matter
JP2001246366A (en) * 2000-03-08 2001-09-11 Toshiaki Maruyama Process for removing oily component in wastewater
JP2002086160A (en) * 2000-09-18 2002-03-26 Takuma Co Ltd Treatment method of fluorine-containing waste water
JP2003047828A (en) * 2001-08-03 2003-02-18 Mitsui Eng & Shipbuild Co Ltd Method for treating gas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577797B2 (en) * 1974-09-02 1982-02-12
JPS534354A (en) * 1976-06-30 1978-01-14 Agency Of Ind Science & Technol Process for removing micro-heavy metals in waste of refuse incinerator
JP3264940B2 (en) * 1991-02-13 2002-03-11 株式会社日立製作所 Method for separating transition elements in solution
JP3213045B2 (en) * 1992-03-03 2001-09-25 三井鉱山株式会社 Removal method of arsenic contained in underground hot water
JPH07248582A (en) * 1994-03-09 1995-09-26 Fuji Photo Film Co Ltd Treatment of waste photographic processing liquid and desilvering device and photographic processing device
JP3635678B2 (en) * 1994-06-23 2005-04-06 栗田工業株式会社 Method and apparatus for treating mercury-containing wastewater
JPH09192675A (en) * 1996-01-25 1997-07-29 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPH1177067A (en) * 1997-09-05 1999-03-23 Nippon Shokubai Co Ltd Treatment of waste water
JPH11253968A (en) * 1998-03-12 1999-09-21 Hitachi Chemical Techno Plant Co Ltd Water recovering apparatus
JP2001212576A (en) * 2000-02-03 2001-08-07 Hitachi Cable Ltd Method and apparatus for removing lead from wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658582A (en) * 1979-10-17 1981-05-21 Yuasa Battery Co Ltd Removing method for lead from industrial waste water
JPH04322786A (en) * 1991-01-14 1992-11-12 Japan Organo Co Ltd Treatment of dense waste liquid of detergent comprising alkali saponifying agent for printed circuit board
JPH10118664A (en) * 1996-10-24 1998-05-12 Kansai Electric Power Co Inc:The Treatment of waste water containing cyan compound and organic matter
JP2001246366A (en) * 2000-03-08 2001-09-11 Toshiaki Maruyama Process for removing oily component in wastewater
JP2002086160A (en) * 2000-09-18 2002-03-26 Takuma Co Ltd Treatment method of fluorine-containing waste water
JP2003047828A (en) * 2001-08-03 2003-02-18 Mitsui Eng & Shipbuild Co Ltd Method for treating gas

Also Published As

Publication number Publication date
JP2006224023A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP5471054B2 (en) Methods for recovering water and metals from plating cleaning wastewater
CN203904113U (en) Classified treatment equipment for sewage
CN202865026U (en) Wastewater treatment device and system
CN105461139B (en) Zero discharge process for nickel-containing heavy metal wastewater
CN103466843A (en) Technology and device for treating heavy metal ion wastewater
JP6114903B2 (en) Method and apparatus for recycling nickel plating wastewater
CN102190392B (en) RO dense water standard discharge technology in reclaimed water reuse
JP4714478B2 (en) Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment
CN103482783A (en) Treatment process for plumbic acid waste water generated in production process of lead storage batteries
CN106007074A (en) Lead-zinc smelting wastewater treatment method
JPWO2003020647A1 (en) Method and apparatus for treating heavy metal-containing wastewater using sulfurizing agent
CN109516629A (en) Electroplating wastewater zero treatment process
CN105540988A (en) Effluent treatment technology and system based on combination of super magnetic separation and microwave energy technology
CN103466844A (en) Process and device for processing and recycling leaded wastewater
CN108264164A (en) A kind of nickel-containing wastewater treatment technology
CN102925899A (en) Method for refining copper chloride etching waste liquor
CN112897730A (en) System and method for treating and recycling high-arsenic high-fluorine waste acid
JP5205089B2 (en) Waste electrolyte treatment method
JP2010189747A (en) METHOD FOR PRODUCING HIGH-GRADE RECYCLED Ni SLUDGE
CN208561983U (en) A kind of heavy metal waste water treatment system
JP5224380B2 (en) Manufacturing method of low grade Ni recycled sludge
CN108483715A (en) A kind of processing method of Electroplating Wastewater, nickel
CN103253798B (en) Zero discharge treatment and recycling method for chromium ions in electroplating wastewater and device of method
JP5479923B2 (en) Wastewater treatment method
CN203498201U (en) Heavy metal ion wastewater treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328