JP4711697B2 - 光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置 - Google Patents

光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置 Download PDF

Info

Publication number
JP4711697B2
JP4711697B2 JP2005046450A JP2005046450A JP4711697B2 JP 4711697 B2 JP4711697 B2 JP 4711697B2 JP 2005046450 A JP2005046450 A JP 2005046450A JP 2005046450 A JP2005046450 A JP 2005046450A JP 4711697 B2 JP4711697 B2 JP 4711697B2
Authority
JP
Japan
Prior art keywords
molding material
molding
mold
press
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005046450A
Other languages
English (en)
Other versions
JP2006232581A (ja
Inventor
賢治 山中
忠幸 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005046450A priority Critical patent/JP4711697B2/ja
Publication of JP2006232581A publication Critical patent/JP2006232581A/ja
Application granted granted Critical
Publication of JP4711697B2 publication Critical patent/JP4711697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/005Transporting hot solid glass products other than sheets or rods, e.g. lenses, prisms, by suction or floatation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/61Positioning the glass to be pressed with respect to the press dies or press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/65Means for releasing gas trapped between glass and press die
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、被成形面に対する研削、研磨などの後加工を必要とせずに、精密加工を施した成形型によって、ガラスなどの成形素材をプレス成形する光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置に関する。
ガラスなどの成形素材を、加熱により軟化し、所定形状に精密加工した上下一対の成形型でプレス成形することにより、レンズなどの光学素子を製造する方法が知られている(例えば、特許文献1〜3参照)。
ここで、特許文献1には、成形型内において、ラックとピニオンなどを利用し、一対の位置決め部材を移動させ、光学素材を挟む形で当接させることによって光学素材(成形素材)を成形型に対して位置決めする成形方法が記載されている。
また、特許文献2には、素子材料セット部材に設けられた、光学素子材料(成形素材)とほぼ同径の素子材料収納凹部に光学素子材料を収納し、光学素子材料を吸引しながら下型上に運ぶことにより、光学素子成型用の鋳型の中心に光学素子材料を設置するセット方法が開示されている。
また、特許文献3には、光学素材(成形素材)の素材中心を光学素材載置箇所の中心位置に位置決めする装置が開示されている。この特許文献3に開示された位置決め装置は、基準部材に載置された光学素子に対し、位置決め方向に移動する移動部材の端部を光学素材の外周部に当接させる、基準部材を振動させる、又は移動部材をベルクランプ式により光学素材の盤面に当接させることにより、光学素材を位置決めするものである。
特許第3501580号公報 特許第3222548号公報 特開平10−29826号公報
ガラスなどの成形素材を、精密モールドプレスによって成形し、レンズなどの光学素子を成形する場合には、成形素材を、対向する成形面をもつ上下一対の成形型間で押圧、成形することが一般に行われている。
このような成形方法にあっては、予め下型成形面の中心位置に成形素材を供給、配置する必要があり、成形素材が下型成形面の中心位置に配置されず、成形面上に偏在していると、成形される光学素子が偏肉し、形状不良となるだけでなく、偏肉に起因してプレス荷重の印加が不均一になってしまうことにより、光学機能面の面精度が劣化してしまう。
しかしながら、得ようとする光学素子の形状や、プレス成形に用いる成形型の構造などによっては、下型成形面の中心位置に、成形素材を配置することが必ずしも容易でない。
このため、特許文献1では、成形型内に光学素材の位置決め部材を配置し、これをラックとピニオンなどの駆動手段によって、基準位置を中心に互いに反対方向に移動させ、光学素材を挟む形で当接、停止させることで、光学素材を成形型に対して位置決めしている。
しかしながら、この方法によると、成形型内部に位置決め部材を配置するので、成形型が極めて複雑な構造となるという問題がある。さらに、プレス装置に上下型からなる成形型を固定し、昇温、プレス、冷却を同位置で行う場合には、上記のような装置の複雑化を伴う可動部材によって成形素材の位置決めを行うことは、ある程度は可能であるが、プレス装置から分離された成形型に成形素材を収容し、装置内を移送させつつ、順次適切な処理を施す成形方法(詳細については後述する)においては、個々の成形型に上記のような大掛かりな可動部材を設けることは著しく不効率であり、実質的に不可能である。
また、特許文献2では、光学素子材料の外径とほぼ同一の内径を有する素子材料収納凹部を設けた素子材料セット部材を吸引手段と結合し、収納された光素子材料を吸引しながら下型上に運ぶが、光学素子材料を上記凹部に嵌合、収容するためには、光学素子材料と、素子材料セット部材との相対的な位置関係にずれが生じないようにするための工夫が必要となる。
そして、両者の位置関係にずれが生じてしまうと、光学素子材料が上記凹部に嵌合されなかったり、上記凹部内で素子材料の姿勢が傾いた状態のまま、光学素子材料が吸引、保持されたりするなどの問題が生じてしまう。
ところで、プレス成形に先立って、下型成形面の中心位置に成形素材を配置することは、前述したように、成形する光学素子の形状歩留や、光学機能面の面精度などの点で重要であるが、例えば、下型成形面が凸面を有している場合や、成形型の構造上、成形面の周囲に可動式の治具を配置できない場合などには、成形型に成形素材を供給した後、下型成形面上に成形素材が載置された状態のままで、成形面と成形素材との中心を一致させることが困難である。
このような場合には、成形型に成形素材を供給する搬送手段(例えば、吸着パッドを備えたロボットの成形素材保持部など)に成形素材を保持させるときに、搬送手段と成形素材とを予め相互に位置決めし、これとともに、成形素材を成形型に供給するときには、搬送手段と成形型との相対位置についても予め制御用コンピュータなどにより制御することで、成形素材が成形面の中心に配置されるようにすることが有効である。
しかしながら、成形素材は、予備成形されて所定範囲の体積、形状とされた後に、一つずつ成形型に供給されていくのではなく、搬送効率の点から、通常は、搬送用のトレーなどに複数配置、収容されてから、予備成形工程からプレス成形工程へと、まとめて搬送される。このため、プレス成形に際しては、成形素材は、トレーなどに収容されて、成形型への供給を待つこととなるが、一般に用いられているトレーは、複数種類の成形素材に対応できるように、トレーに設けられた収容区画は汎用の形状となっており、多くの場合、個々の成形素材の形状と一致した形状にはなっていない。
したがって、トレーに収容された個々の成形素材は、それぞれトレーの各収容区画内のばらばらの位置に収容され、例えば、搬送手段が備える吸着パッドに成形素材を吸着、保持させるときに、成形素材と吸着パッドとの位置関係は、必ずしも一定にはならない。このような状態で、吸着パッドにより成形素材を拾い上げると、吸着パッドによる成形素材の保持姿勢が一定とはならず、その保持姿勢にも傾きなどが生じてしまう。
これに対し、特許文献3では、成形前の光学素材(成形素材)の素材中心を光学素材載置箇所の中心位置に位置決めするために、前述したような方法により、光学素材の位置決めをしている。
しかしながら、光学素材の周囲から位置決め点に向かって移動可能に構成された移動部材を光学素材に当接させて位置決めする方法や、ベルクランプ式により位置決めする方法では、光学素材が載置される基準部材の周辺に駆動手段などを配置しなければならず、そのための相当のスペースを必要とする。このため、装置の大型化を招き、設置場所が制限されるなどの問題がある。また、基準部材を振動させて位置決めする方法では、光学素材が凸曲面によって覆われている場合には、基準部材の支持部上に、光学素材が対称に支持されにくくなり、位置決め精度が落ちるという問題がある。
本発明は、上記の事情にかんがみなされたものであり、成形素材を成形型に搬送、供給する際に、搬送手段と成形素材との相互の位置決めを高い精度で行ってから、成形型の成形面の中心位置に成形素材を供給、配置することにより、プレス成形された光学素子の形状歩留や、光学機能面の面精度などを向上させることができる光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置の提供を目的とし、さらに、一対の上下型を備えた成形型が、プレス装置に固定されずに、装置内を移送されながら適切な処理が順次施される成形方法に好適で、かつ、高精度の光学素子を効率よく量産できる光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置の提供を目的とする。
上記目的を達成するため本発明の光学素子の製造方法は、成形素材を、搬送手段によって成形型に供給し、プレス成形する光学素子の製造方法であって、前記成形素材を前記成形型に供給するに際し、前記成形素材を位置決め装置に載置して、前記位置決め装置から気流を噴出させて前記成形素材の位置を修正し、次いで、雰囲気ガスを吸引して前記成形素材を前記位置決め装置上に固定することによって、前記成形素材と、前記搬送手段との相対的な位置決めをした後に、前記搬送手段により前記成形素材を前記成形型に供給する方法としてある。
このような方法とすれば、成形面上で成形素材の位置修正をすることが困難、又は不効率な場合であっても、成形素材を成形型に供給するに際して、搬送手段と成形素材との相互の位置決めを高い精度で行ってから、成形型の成形面の中心位置に正確に成形素材を供給、配置して、成形面上で成形素材が偏在するのを回避することができ、これにより、偏肉やプレス荷重の不均一による光学機能面の面精度の劣化を防止して、光学素子を高い精度で製造することができる。
また、本発明の光学素子の製造方法は、前記成形素材が、溶融ガラスを流下、又は滴下して受け型上で成形され、凸曲面に覆われた形状を有するものである方法とすることができる。
このような方法とすれば、生産効率の点で有利であり、かつ、表面欠陥のない熱間成形による凸曲面に覆われた形状の成形素材を用いて光学素子を製造することができ、この際、成形型の成形面の中心位置に正確に成形素材を供給、配置することにより、このような形状の成形素材に顕著な、成形面上での偏在などの問題を解消することができる。
また、本発明の光学素子の製造方法は、前記位置決め装置上で、前記成形素材に予熱処理を施す方法とすることができる。
このような方法とすれば、成形型に成形素材が供給された後に行われる加熱処理において、成形素材がプレス成形に適した温度となるまでに要する時間を短縮することができるとともに、成形素材の表面と内部との温度差が緩和され、成形素材の表面と内部との温度差により、プレス成形された光学素子の肉厚精度や、面精度が損なわれてしまう不都合を有効に回避することができる。
また、本発明の光学素子の製造方法は、前記成形素材が収容された成形型を、加熱室、プレス室、冷却室を含む複数の処理室に移送し、順次、加熱、プレス、冷却を含む処理を施すことにより、前記成形型に収容された前記成形素材をプレス成形する方法とすることができる。
このような方法にすれば、多数の成形型を同時に使用しつつ、成形型の昇温や降温を効率良く行い、光学素子1個当たりの成形に必要な実質時間(成形サイクルタイム)を短縮することができ、生産効率を向上させることが可能となる。
本発明方法は、搬送手段と成形素材との相対的な位置関係を一定とすることにより、成形型の成形面の中心位置に正確に成形素材を供給、配置するものであるため、個々の成形型に大掛かりな可動部材を設けて、成形面上で成形素材の位置修正をすることが実質的に不可能な、この種の成形型の移送を前提とした成形方法に、特に好適に適用することができる。
また、本発明のモールドプレス成形装置は、成形素材をプレス成形するためのモールドプレス成形装置であって、対向する成形面を有する一対の成形型と、前記成形素材を前記成形型に供給する搬送手段と、前記成形素材と前記搬送手段との相対的な位置決めをする位置決め装置とを備え、前記位置決め装置、前記成形素材が載置される受け部を有し前記受け部の載置面に設けた開口部から気流を噴出させて、前記成形素材を前記受け部上に浮遊させて位置を修正し、次いで、雰囲気ガスを吸引して前記開口部内を負圧とすることにより、前記成形素材を前記受け部上に固定することによって、前記成形素材と、前記搬送手段との相対的な位置決めをする構成とすることができる。
このような構成とすれば、成形面上で成形素材の位置修正をすることが困難、又は不効率な場合であっても、成形素材を成形型に供給するに際して、搬送手段と成形素材との相互の位置決めを高い精度で行うことができ、成形型の成形面の中心位置に正確に成形素材を供給、配置して、成形面上で成形素材が偏在するのを回避することができる。
また、本発明の位置決め装置は、成形素材を成形型に供給してプレス成形するにあたり、前記成形素材と、前記成形素材を前記成形型に供給する搬送手段との相対的な位置決めをする位置決め装置であって、前記成形素材が載置される受け部を有し前記受け部の載置面に設けた開口部から気流を噴出させて、前記成形素材を前記受け部上に浮遊させて位置を修正し、次いで、雰囲気ガスを吸引して前記開口部内を負圧とすることにより、前記成形素材を前記受け部上に固定することによって、前記成形素材と、前記搬送手段との相対的な位置決めをする構成とすることができる。
このような構成とすれば、より簡易な構造により、成形素材を成形型に供給するに際して、搬送手段と成形素材との相互の位置決めを高い精度で行うことができる。
また、本発明の位置決め装置は、前記受け部の載置面が、凹曲面を有している構成とすることができる。
このような構成とすれば、成形素材として、例えば、両凸曲面形状に予備成形されたものを用いた場合であっても、受け部上に、成形素材を安定に載置することができる。
また、本発明の位置決め装置は、前記成形素材の外径よりわずかに大きな内径を有する落し穴が、前記受け部の周りを囲むように設けられている構成とすることができる。
このような構成とすれば、受け部の上面に設けた開口部から噴出する気流と、落し穴の内周面とによって、成形素材の位置修正をすることができる。
また、本発明の位置決め装置は、前記受け部の周囲に、加熱手段が設置されている構成とすることができる。
このような構成とすれば、位置決め装置上で、成形素材に予熱処理を施すことができ、成形型に成形素材が供給された後に行われる加熱処理において、成形素材がプレス成形に適した温度となるまでに要する時間を短縮することができるとともに、成形素材の表面と内部との温度差が緩和され、成形素材の表面と内部との温度差により、プレス成形された光学素子の肉厚精度や、面精度が損なわれてしまう不都合を有効に回避することができる。
以上のように、本発明によれば、成形素材を成形型に供給するに際して、搬送手段と成形素材との相互の位置決めを高い精度で行ってから、成形型の成形面の中心位置に正確に成形素材を供給して、成形面上で成形素材が偏在するのを回避することができる。
これにより、プレス成形により成形される光学素子の偏肉や、プレス荷重の不均一による光学機能面の面精度の劣化を防止して、高い精度で光学素子を製造することができる。
以下、本発明に係る光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置の好ましい実施形態について、図面を参照して説明する。
[位置決め装置(第一実施形態)]
まず、本発明に係る位置決め装置の第一実施形態について説明する。ここで、図1及び図2は、後述する本発明に係る光学素子の製造方法の実施形態における一工程を示す説明図であり、本実施形態に係る位置決め装置により、成形素材を成形型に供給するための搬送手段と、成形素材との相対的な位置関係を常に一定とする位置決め工程を示している。
本実施形態における位置決め装置1は、ガラスプリフォームなどの成形素材50を成形型に供給してプレス成形するに際して、成形素材50を成形型に供給する搬送手段(図示する例では、搬送アーム60)と、成形素材50との相対的な位置決めをするものであり、成形素材50を載置して、成形素材50の位置修正を行う受け部2を備えている。
この受け部2は、上面(成形素材50が載置される載置面)が所定の曲率をもって凹曲面状に形成された皿形状のものとするのが好ましい。これにより、成形素材50が、図示するような、両凸曲面形状に予備成形されたものであっても、受け部2上に、成形素材50を安定に載置することができる。
本実施形態において、受け部2の素材は特に制限されず、成形素材50との融着や反応を防止するためにカーボン製とするのが好ましいが、適当な素材により受け部2を形成し、成形素材50と接触する上面にカーボン層を形成することもできる。
また、受け部2の上面のほぼ中央には、開口部3が設けられている。この開口部3からは、気体通路4を介して位置決め装置1に接続された、図示しない気体供給源から気体が供給されることにより、気流が噴出するように構成されている。
このとき、気体供給源から供給される気体としては、例えば、窒素などの不活性ガスが用いられる。
ところで、後述するように、成形素材50が収容された成形型を、加熱室、プレス室、冷却室を含む複数の処理室に移送して、それぞれの処理室で加熱、プレス、冷却を含む処理を施すことにより、成形型に収容された成形素材50をプレス成形する場合には、成形サイクルタイムの短縮を図るべく、各処理室における処理に要する時間を必要最小限とすることが好ましい。
しかしながら、加熱処理に際しては、成形素材50の組成や、体積などに応じて、十分な熱量を加えないとプレス工程における肉厚精度や、面精度などに悪影響を及ぼしてしまう。このため、加熱時間を短くするには限度があり、成形素材50への加熱を十分なものとするために加熱時間が長くなると、成形サイクルタイムの短縮に不利となる。また、成形サイクルタイムの短縮を図りつつ、十分な加熱がなされるようにするためには、加熱室を増やすことが考えられるが、加熱室を増やすとすると、既存の装置の改造が必要となるだけでなく、成形型数もさらに増やす必要が生じ、コスト効率上不利である。
このような問題を解消するために、図示する例では、位置決め装置1上で成形素材50を加熱することができるように、受け部2の周囲に加熱手段5を設置してある。加熱手段5の具体的態様は特に制限されないが、例えば、抵抗加熱、高周波誘導加熱などによるものとすることができる。また、このときの加熱温度は、位置決め装置1などの耐熱性、成形素材50の組成や体積などを考慮して設定され、例えば、成形素材50がガラスプリフォームの場合、100〜300℃程度とするのが好ましい。
位置決め装置1上で成形素材50を予め加熱して、成形素材50に予熱処理を施しておけば、加熱室での加熱処理において、成形素材50がプレス成形に適した温度となるまでに要する時間を短縮することができ、成形サイクルタイムの短縮に有利となる。すなわち、上記予熱処理は、成形素材50を成形型に供給する前の待機時間であり、かつ、成形素材の位置修正に要する時間を利用して同時に行う。
また、成形素材50の表面と内部とで温度差があると、プレス成形された光学素子(成形体51)の肉厚精度や、面精度が損なわれてしまう不都合があり、特に、成形素材50の体積が大きい場合には、このような温度差が生じやすいが、加熱室における加熱処理に先だって、成形素材50に予熱処理を施すことにより、成形素材50の表面と内部との温度差が緩和され、これにより、光学素子(成形体51)の肉厚精度や、面精度が損なわれるのを有効に回避することができる。
ここで、図4は、後述するように、モールドプレス成形装置の一例を示す概略平面図であり、位置決め部P10には、上記した位置決め装置1が設置される。位置決め部P10において、位置決め装置1により搬送手段60との相対的な位置決めがなされた成形素材50は、分解・組立部P9に搬送され、成形型に供給される。そして、成形素材50を収容して組み立てられて成形型は、取出・挿入室P1に移送される。
この一連の過程において、位置決め装置1により同時に予熱処理が施された成形素材50からの放熱を少なくするために、位置決め部P10(位置決め装置1)は、分解・組立部P9とともに、取出・挿入室P1の近傍に配置されるのが好ましい。
以上のような本実施形態における位置決め装置1では、搬送手段としての搬送アーム60と、成形素材50との相対的な位置決めが、成形素材50を成形型に供給するに先だって行われるが、図1及び図2を参照しつつ、位置決め装置1においてなされる位置決め工程について説明する。
まず、所定の位置に配置された、図示しない搬送用のトレーから、先端に吸着パッド61を備えた搬送アーム60により、成形素材50を一つずつ吸引保持して取り出し、位置決め装置1に搬送する。
ここで、所定形状に予備成形された成形素材50は、通常、複数個まとめて搬送用のトレーに収容され、搬送アーム60により順次成形型に供給されるが、トレーとしては、複数種類の成形素材に対応できるように、汎用のものが用いられるのが一般的である。このため、トレーに収容された各成形素材50は、それぞれの収容区画内における収容位置が正確に定められておらず、各収容区画内での成形素材50の位置、姿勢は、必ずしも一定ではない。
したがって、成形素材50が、先にトレー上で一定の位置、一定の姿勢となるように、それぞれの収容区画内における収容位置や、収容姿勢が正確に定められていなかったことを反映して、搬送アーム60が備える吸着パッド61により、成形素材50を吸引保持する際に、吸着パッド61と成形素材50の中心位置(中心軸)は、必ずしも一致せず、吸着パッド61により吸引保持される成形素材50の姿勢も一定ではない(図1(1)参照)。
成形素材50を位置決め装置1に搬送するにあたり、搬送アーム60は、予めロボットの制御部に入力された座標情報により、定められた三次元の動きを行い、トレー上の成形素材50を吸引保持し、位置決め装置1の受け部2に順次搬送する(図1(2)参照)。
成形素材50が受け部2に搬送されると、吸着パッド61による吸引保持が解除され、成形素材50は、受け部2上に載置される。
このとき、上述したように成形素材50と吸着パッド61の中心位置は必ずしも一致していないため、受け部2上に載置された成形素材50についても、その中心軸と、受け部2の中心軸Cとは、必ずしも一致しておらず、受け部2上に載置された成形素材50の姿勢も一定とは限らない(図1(3)参照)。
成形素材50を受け部2上に載置した後、図示しない気体供給源から気体通路4を介して気体を供給し、受け部2の上面に設けた開口部3から気流を噴出させる。これによって、図中矢印で示すように、受け部2に載置された成形素材50の周囲に上方に向けて気流が発生する。
そして、この気流により、成形素材50と受け部2との間に気体の層が形成され、成形素材50は、受け部2上に浮遊した状態となり、最も安定な受け部2の中心位置に向かうように移動する。これにより、受け部2上における成形素材50の位置修正がなされ、成形素材50の中心軸と、受け部2の中心軸Cとが一致するように、成形素材50が位置決めされる(図1(4)参照)。
次いで、気体供給源からの気体供給を停止するとともに気体通路4から雰囲気ガスを吸引して、開口部3内を負圧状態とすることにより、成形素材50を受け部2上に固定し(図2(5)参照)、搬送アーム60の吸着パッド61を成形素材50に接近させて、成形素材50を吸引保持する。
このとき、搬送アーム60の吸着パッド61の中心軸と、受け部2の中心軸Cとが一致するように、搬送アーム60の動きを制御することにより、成形素材50と吸着パッド61の中心位置も実質的に一致し、搬送アーム60と成形素材50との相対的な位置決めがなされる(図1(6)参照)。
この後、成形素材50は、搬送アーム60により位置決め装置1から取り出され、成形型に搬送、供給される(図2(7)参照)。
成形型に供給、収容された成形素材50は、所定の処理が施されることによりプレス成形されるが、これにつては後述する。
以上のように、本実施形態における位置決め装置1は、成形素材50を成形型に供給する搬送手段と、成形素材50との相対的な位置決めをするものであるが、成形素材50を位置決め装置1まで搬送する搬送手段は、成形素材50を位置決め装置1から成形型に搬送(供給)する搬送手段と同一のものを用いてもよく、また、両搬送手段は、別個独立ものとすることもできる。
成形素材50を位置決め装置1まで搬送する搬送手段と、位置決め装置1から成形型に搬送する搬送手段とを、別個独立のものとすれば、一つの成形素材50について、その位置決めが完了し、位置決め装置1から取り出された直後に、次の成形素材50を受け部2に載置することができ、成形素材50が位置決め装置1に滞在している時間を長くすることができる。このような態様は、位置決め装置1上で成形素材50に予熱処理を施す場合に、加熱時間を確保する上で有利である。
[位置決め装置(第二実施形態)]
次に、本発明に係る位置決め装置の第二実施形態について説明する。ここで、図3は、本実施形態に係る位置決め装置により、成形素材を成形型に供給するための搬送手段と、成形素材との相対的な位置関係を常に一定とする位置決め工程の一部を示す説明図である。
本実施形態における位置決め装置1は、受け部2の構成が、第一実施形態と異なっている。
第一実施形態では、受け部2を、上面が所定の曲率をもって凹曲面状に形成された皿形状のものとすることで、成形素材50を受け部2上に安定に載置できるようにしているが、本実施形態では、図示するように、成形素材50の外径よりわずかに大きな内径を有する落し穴6を、受け部2の周りを囲むように設けるともに、落し穴6の開口部の周囲には、落し穴6に向かって下方に傾斜するガイド面7が設けられている。
これにより、ガイド面7上に搬送された成形素材50が、ガイド面7に案内されて、受け部2上に落し込まれるようにしてある(図3(a)参照)。
すなわち、搬送アーム60によりガイド面7上まで搬送された成形素材50は、吸着パッド61による吸引保持が解除されると、図中一点破線で示すように、ガイド面7上を滑り落ちて、落し穴6内に落し込まれ、受け部2上に載置される。
成形素材50が受け部2上に載置された後は、第一実施例と同様に、図示しない気体供給源から気体通路4を介して気体を供給する。これにより、図中矢印で示す受け部2の上面に設けた開口部3から噴出する気流と、落し穴6の内周面とによって、成形素材50の位置決めがなされる(図3(b)参照)。
このように、本実施形態における位置決め装置1は、落し穴6の内周面を成形素材50の位置決めに関与させるものであるので、寸法管理が容易な、研磨により図示するような円盤状に予備成形された成形素材50を用いる場合に、特に好適である。
本実施形態の他の構成は、第一実施形態とほぼ同様であるため、他の構成についての詳細な説明は省略するが、本実施形態においても、成形素材50の位置決めがなされた後は、第一実施例で説明したのと同様にして気体通路4から雰囲気ガスを吸引し、成形素材50を受け部2上に固定し(図3(c)参照)、次いで、成形素材50は、搬送アーム60に吸引保持され、成形型に搬送、供給される。
また、本実施形態においても、第一実施形態と同様に、受け部2の周囲には、加熱手段5を設置することもできる。
[モールドプレス成形装置]
次に、本発明に係るモールドプレス成形装置(以下、単に成形装置という)の実施形態について説明する。ここで、図4は、本実施形態に係る成形装置の一例として示す回転移送式の成形装置の概略平面図である。
本実施形態における成形装置は、成形型に供給された成形素材50をプレス成形するためのものであり、成形エリア内に、取出・挿入室P1と、周方向に並べて配置された多数の処理室P2〜P8とを備え、成形エリア外に、分解・組立部P9と、位置決め部P10とを備えている。
取出・挿入室P1では、成形エリア内の設定環境を損なうことなく、成形を終えた成形型の取り出し作業と、新たに成形に供される成形素材50を収容した成形型の挿入作業とが行われる。
取出・挿入室P1から取り出された成形型は、成形エリア外の分解・組立部P9に移送され、プレス成形された成形体51を取り出すために分解される。そして、分解された成形型は、新たに成形に供される成形素材50が供給されるのを、そのままの状態で待機する。
位置決め部P10には、前述したような位置決め装置1が設置されており、成形素材50を成形型に供給するに先だって、成形素材50を成形型に供給する搬送手段と、成形素材との相対的な位置決めが行われる。この位置決め部P10は、分解・組立部P9とともに、取出・挿入室P1の近傍に備えるのが好ましいのは、前述したとおりである。
搬送手段との相対的な位置関係が一定とされた成形素材50は、搬送手段により、分解・組立部P9で待機する成形型に供給され、成形型は、成形素材50を収容して組み立てられる。
新たに成形に供される成形素材50を収容した成形型は、取出・挿入室P1から成形エリア内に挿入され、図中矢印方向に回転する回転テーブルに取り付けられた保持台に保持されるなどして、常時非酸化性ガスの雰囲気(不活性ガス雰囲気)下にある処理室P2〜P8の中を順次通過するようになっている。
なお、不活性ガス雰囲気となっていない取出・挿入室P1にあっては、成形型の酸化防止を考慮して、成形型の温度が250℃以下となるように温度制御するのが好ましい。
回転テーブルは、一定時間ごとに間歇的に回転し、この間歇的な回転により、隣設された処理室間を成形型が移動する。そして、この一定時間が、成形サイクルタイムとなる。
ここで、P2は第一加熱室、P3は第二加熱室、P4は第三加熱室(又は均熱室)であり、これらは総称して加熱部ともいう。P5はプレス室であり、加熱部でプレス成形に適した温度とされた成形型へのプレス荷重の印加が行われる。P6は第一徐冷室、P7は第二徐冷室、P8は急冷室であり、これらは総称して冷却部ともいい、プレス荷重が印加された後の成形型の冷却処理が行われる。
これらの処理室P2〜P8は、略等間隔に配置されており、それぞれの処理に適した温度に温度制御されるとともに、各処理室内の温度を所定温度に保つために、シャッターS1〜S6によって区画されている。
このような成形装置を用いれば、成形素材50(又は、成形体51)が収容された成形型を、各処理室を順次移送しながら適切な処理を施すことによって、所望の光学素子を効率よく製造することができる。
すなわち、プレス成形に適した温度への成形型の昇温、プレス荷重の印加、その後の冷却処理が、二次元的に配置された各処理室を成形型が通過することによって行われるため、多数の成形型を同時に使用でき、実質的な成形サイクルタイムが短縮される。
本実施形態における成形装置にあっては、加熱室、プレス室、冷却室などの各処理室に、成形素材50(又は、成形体51)が収容された成形型を移送して、加熱、プレス、冷却を含む適切な処理を順次施すが、各処理室に成形型を移送する具体的な構成は、上記した例には制限されない。例えば、上記した例では、回転テーブルにより成形型を移送するようにしているが、二次元的(場合によっては三次元的)に配置された各処理室内を所定の時間間隔で通過できるように構成されているものであれば、成形型を移送する手段は特に制限されない。
また、各処理室の配置構成は、成形素材50の組成や、得ようとする光学素子の形状にあわせて、加熱工程や冷却工程を最適化するために適宜変更することができる。例えば、加熱室を四つにしたり、徐冷室を三つにしたりするなどの変更を行うことができるが、前述したように、位置決め装置1により成形素材50に予熱処理を施すようにすれば、成形エリアを占有する新たな加熱室を追加することなく、加熱工程を最適化することが可能となる。
また、生産効率をさらに向上させるためには、加熱室、プレス室、冷却室などをそれぞれ同数連設し、異なる温度条件、異なる加圧条件を要する複数種類のプレス成形を同時並行的に行うようにしてもよい。
また、生産効率を向上させるために、例えば、同一の工程に供される複数の保持台が各処理室を同時に通過するようにするなどして、各処理室の中で成形型を複数個ずつ同時に処理することもできる。具体的には、各処理室において、加熱、プレス荷重の印加、冷却処理等の処理が行われるときに、成形型を2個以上配列し、それらに対して同時に同じ処理を施すことができる。この場合、プレス室には、成形型の数に対応した二以上のプレス手段を設けることが好ましい。
[モールドプレス成形型]
次に、本発明に好適に用いられるモールドプレス成形型(以下、単に成形型という)の一例について説明する。ここで、図5は、成形型の概略断面図であり、プレス荷重印加時の状態(図7(14)参照)を示している。また、図6〜図8は、後述する本発明に係る光学素子の製造方法の実施形態における工程の一部を示す説明図である。
図5に示す成形型は、上型10、下型20、胴型30及び支承部材40を備えて構成され、上型10と下型20との間で成形素材50をプレス成形する。
図示する例において、胴型30は、成形型を組み立てる際や、プレス成形の際に、上下型10,20を摺動ガイドすることにより、これらの水平方向の相対位置を規制して、上下型10,20の同軸性を確保する。
このため、胴型30と上下型10,20の摺動クリアランスは、要求される光学素子の偏心精度を考慮すると10μm以下、特に、5μm以下とすることが好ましい。上記摺動クリアランスを制御すれば、上下型10,20の成形面11,21間の偏心(シフト:上下型10,20の成形面11,21の水平方向のずれ、ティルト:上下型10,20の軸の傾き)を高精度に抑制できる。
後述する光学素子の製造方法では、プレス成形の際に、胴型30内に嵌合された下型20に対して、上型10が胴型30内を摺動ガイドされ、上下型10,20が相対的に接近、離間するように構成した例について説明するが、これとは逆に構成することもできる。すなわち、胴型30内に嵌合された上型10に対して、下型20が胴型30内を摺動ガイドされるようにしてもよく、上下型10,20が、その同軸性を確保しつつ、相対的に近接、離間するようになっていれば、その具体的な構成は制限されない。
このような胴型30には、上下型10,20が接近、離間するときに、型内外の気圧差によって、上下型10,20の動きが妨げられないようにするための通気孔33を設けておくのが好ましい。特に、図示するように、胴型30の内径が変化して段部となっている部位に通気孔33を設け、この段部の隙間における体積の増減に対して、成形型内部が常に外圧と等しくなるように、通気孔33を介して雰囲気ガスの導通が行われるようにするのが好ましい。また、支承部材40にも、胴型30と同様の目的で通気孔41を設けることが好ましい。これにより、プレス成形や成形型の組立・分解をスムーズに行えるようになる。
上型10は、下型20と対向する下面に成形面11が形成されている。図示する例において、成形面11は、凸面となっているが、凹面又は平面であってもよい。また、上型10の上部には、成形面11より径の大きいフランジ部12が形成されており、このフランジ部12が、胴型30の上部に形成された大径内周部31に収容される。
このとき、上型10の上面と、胴型30の上面とが同一面となったときに、上型10に形成されたフランジ部12の下面と、胴型30に形成された小径内周部32の上端との間には、所定寸法以上の隙間Gが確保されるようにするのが好ましい。このような隙間Gを確保することにより、プレス成形の際に、上型10を、その上面が胴型30の上面と一致するまで押し込んで、いったん成形体15の肉厚を決めた後であっても、成形体51に必要な荷重(上型10の自重のみでもよい)を付与し続けることができ、成形体51の熱収縮に追従した上型10の下降を許容することができる(図7(14)及び同(15)参照)。
また、図示する例では、下型20の上型10と対向する上面には、凸面を有する成形面21が形成されているが、下型20に形成する成形面21は、平面、又は凹面であってもよい。また、下型20の下部には、成形面21より径の大きいフランジ部22が形成されている。プレス成形の際に、このフランジ部22の上面に胴型30の下面が当接し、かつ、プレス圧によって互いに密着されることにより、下型20と胴型30の相互位置が高精度に画定され、これによってもティルトが抑制される。
さらに、下型20の成形面21の外周には、成形面21より低く、フランジ部22よりも高い位置に段部23が形成されていて、この段部23に成形面21の周りを囲むように、環状の支承部材40が載置されている。
このとき、前述した支承部材40に設ける通気孔41は、プレス成形中に成形素材50が通気孔41に侵入しない位置に設けるものとし、具体的には、支承部材40を段部23に載置した状態において、支承部材40の軸方向における下型20の成形面21の周縁部と段部23の中間に位置するところに設けるのが好ましい。
図示する例において、通気孔41は、支承部材40をほぼ半径方向に貫通するように設けられ、支承部材40の内周面と下型20とのクリアランスや、支承部材40の外周面と胴型30とのクリアランス、及び通気孔33と連通している。これにより、成形素材50と下型成形面21との間の空間に存在する雰囲気ガスが上下型10,20の近接(プレス成形)によって圧縮されるときに、成形型内の雰囲気ガスを、支承部材40の内周面と下型20とのクリアランス、支承部材40の通気孔41、支承部材40の外周面と胴型30とのクリアランス、胴型30の通気孔33を経由して成形型の外部へ放出することができる。
したがって、このような通気孔41を設けることにより、雰囲気ガスを成形型の外部へ放出させることで、成形型内部と外圧とを均衡させることができる。
なお、後述のとおり、支承部材40の外周面と胴型30とのクリアランスは、成形する光学素子の偏心精度に直接影響しないため、支承部材40の通気孔41と胴型30の通気孔33を連通し、雰囲気ガスが支障なく排出される程度に設定することができる。
支承部材40は、下型20上に供給された成形素材50を支承して、成形素材50の滑落や、位置ずれを防止するものであるが、成形素材50の下面側における周辺部を支承して、支承部材40で支承された成形素材50の周縁部外方に開放空間を確保できるものであれば、その具体的な構成は特に制限されない。支承部材40で支承された成形素材50の周縁部外方に開放空間を確保することにより、下型20上に供給された成形素材50の個体差によって、成形素材50の最大外径にばらつきがある場合や、成形素材50の水平断面が真円でなく、成形素材50の部位によって径に長短差がある場合であっても、安定して成形素材50を支承するとともに、その状態を保持することができる。
ここで、支承とは成形素材50が一定の姿勢を維持できるようにすることをいうものとする。また、成形素材50が支承部材40により支承される位置(下面側における周辺部)は、成形素材50を安定に支承できることに加え、得ようとするレンズなどの光学素子の光学的有効径、さらに好ましくは、芯取り径(外径中心を光学的な中心と一致させるために、プレス成形された成形体51の外周を切除する加工、すなわち、芯取り加工を施した後の最終的な光学素子としての外径をいい、光学素子有効径ともいう)を考慮して決定され、以下の関係式(1)を充足することが好ましい。
[光学的有効径]≦[光学素子有効径(=芯取り径)]<[支承部材の内径(支承位置)]<[成形素材の径] ・・・(1)
より具体的にいうと、好ましくは、最大外径が光学素子有効径よりも大きい成形素材50を用い、この成形素材50の最大外径(直径)を2rとするとき、成形素材50を支承する位置は、成形素材50の中心から0.5〜0.95rの範囲とするのが好ましく、より好ましくは、0.7〜0.95rの範囲とする。これにより、成形体51に芯取り加工を施す際の除去率を小さくし、効率的な生産が可能となる。
支承部材40は、下型20と一体的に加工されたものであってもよいが、下型20とは別体に形成することもできる。支承部材40を下型20と別体に形成する場合、下型20に対してピンなどを用いて固定してもよいが、支承部材40は、下型20に対して着脱可能に設けることもできる。
下型20の成形面21の外周に、別体に形成された支承部材40を着脱可能に設けるには、例えば、図示するように、下型20の成形面21の周囲であって、成形面21より低く、フランジ部22よりも高い位置に段部23を形成しておき、この段部23に支承部材40を載置するようにすればよい。
支承部材40を着脱可能とした場合には、プレス成形された成形体51を下型20の成形面21上から取り出す際に、成形体51とともに支承部材40を成形型から取り出すことができる。このため、プレス成形後に、成形体51と支承部材40とを互いに密着した状態のまま成形型から取り出し、その後、より温度が下がった時点で成形体51から支承部材40を取り外すようにすれば、両者を容易に分離することができる。
また、支承部材40の内周はテーパ形状とし、下方にいくほど(下型20の成形面21に近づくほど)内径が小さくなるような傾斜面となっているのが好ましい。これにより、プレス成形時に、成形面21の外周に沿った部分に充填不良や加圧不良が生じるのを避けることができ、光学素子有効径を確保すべく、成形素材50の外径を必要以上に大きくして、成形素材50の使用量(体積)が過度に増加してしまうのを防ぐためにも、このような傾斜を支承部材40の内周に形成するのが有効である。
なお、支承部材40と胴型30とのクリアランスは、光学素子の偏心精度には直接関係しないため、5〜50μm程度でよく、得ようとする光学素子の外径中心と、その光軸との一致性は、プレス成形された成形体51に芯取り加工を施すことによって得ることができる。
支承部材40の形状や寸法は、少なくとも支承部材40の内周面側の上端縁で、下型20上に供給された成形素材50の下面側周辺部を支承するのに十分な程度に、支承部材40の上端側が下型20の成形面21よりも上方に突出するものであれば特に制限されない(図6(10)参照)。
このとき、成形素材50は、下型20の成形面21に接触した状態であっても、下型20の成形面21に接触せず、支承部材40のみによって支承された状態であってもよいが、特に、前述したような成形装置を用いてプレス成形を行う場合には、成形素材50が収容された成形型が、成形素材50とともに加熱されるため、プレスされるまでの間に、成形素材50と成形型(下型20の成形面21)とが接触状態にあると、その界面において両者の間に反応が生じてしまい、成形材料の成形面21への融着、成形体51の被成形面における曇りや発泡の原因となる場合がある。このため、支承部材40の上端側は、成形素材50を下型20の成形面21に接触しないように支承できる程度に、下型20の成形面21よりも上方に突出しているのが好ましい。
このような態様は、前述したような成形装置において、成形型を保持する保持台の熱容量により、下型20が、より強く加熱されやすい場合や、リン酸塩系硝材、W,Ti,Nb等の高屈折率成分(例えば、nd≧1.7)を多量に含有する硝材、又はアルカリ金属を多量に含有する硝材などのような反応性の高い硝材を用いてプレス成形する場合に、特に有効である。
また、支承部材40の成形素材50を支承する部位(内周側の上端縁)の形状は、角形状でもよく、R面取り、C面取りをしたものでもよい。成形素材50の曲面に沿った曲面形状としてもよい。また、成形素材50を支承するにあたり、支承部材40は、成形素材の50の全周にわたって成形素材50と接触している必要は特になく、周方向に所定の間隔をあけた成形素材50との部分的な接触によって、支承部材40が成形素材50を支承するようにしてもよい。
このような成形型において、上型10、下型20、胴型30及び支承部材40の素材には特に制限はない。炭化ケイ素、ケイ素、窒化ケイ素、炭化タングステン、酸化アルミニウムや炭化チタンなどのサーメット、又は、これらの表面にダイヤモンド、耐熱金属、貴金属合金、炭化物、窒化物、硼化物、酸化物などを被覆したものを挙げることができる。
上下型10,20の成形面11、21や、支承部材40には、ガラスの融着を防止するために、非晶質及び/又は結晶質のグラファイト及び/又はダイヤモンドの単一成分層又は混合層からなる炭素膜、又は貴金属合金による離型膜などを用いることが好ましい。
[光学素子の製造方法]
次に、本発明に係る光学素子の製造方法の実施形態について、図5に示す成形型を、図4に示す成型装置に適用して実施する例を挙げて説明する。ここで、図1は、本実施形態に係る光学素子の製造方法における工程(1)〜(4)を示す説明図、図2は、同工程(5)〜(7)を示す説明図、図6は、同工程(8)〜(11)を示す説明図、図7は、同工程(12)〜(15)を示す説明図、図8は、同工程(16)〜(18)を示す説明図である。
工程(1)〜(7):位置決め工程
本実施形態にあっては、まず、所定の位置に配置された、図示しない搬送用のトレーから、先端に吸着パッド61を備えた搬送アーム60により、成形素材50を一つずつ吸引保持して取り出して、位置決め部P10に設置された位置決め装置1に搬送する。
このとき、トレー上の成形素材50と吸着パッド61との位置関係は一定になっていないため、吸着パッド61により吸引保持される成形素材50の姿勢は一定していない(図1(1)参照)。
成形素材50が受け部2に搬送されると(図1(2)参照)、吸着パッド61による吸引保持を解除して、成形素材50を、受け部2上に載置する。
このとき、吸着パッド61により吸引保持された成形素材50の姿勢が一定していなかったため、受け部2上に載置された成形素材50の姿勢も一定していない(図1(3)参照)。
成形素材50を受け部2上に載置した後、図示しない気体供給源から気体通路4を介して気体を供給し、受け部2の上面に設けた開口部3から気流を噴出させる。これによって、図中矢印で示すような気流が発生し、この気流により、受け部2上における成形素材50の位置修正がなされ、成形素材50の中心軸と、受け部2の中心軸Cとが一致するように、成形素材50が位置決めされる(図1(4)参照)。
次いで、気体供給源からの気体供給を停止するとともに気体通路4から雰囲気ガスを吸引して、成形素材50を受け部2上に固定する(図2(5)参照)。その後、吸着パッド61の中心と、受け部2の中心軸Cとが一致するように制御された搬送アーム60を接近させ、成形素材50を搬送アーム60に吸引保持することにより、搬送アーム60の吸着パッド61と、成形素材50との相対的な位置関係を一定にすることができる(図2(6)参照)。
そして、位置決め装置1から取り出された成形素材50は、成形型に搬送、供給される(図2(7)参照)。
上記の工程(1)〜(7)においては、受け部2の周囲に設置された加熱手段5により、位置決め装置1上で成形素材50を加熱して、成形素材50の位置決めと同時に、成形素材50に予熱処理を施すことができる。このときの加熱温度は、例えば、成形素材50がガラスプリフォームの場合、100〜300℃程度とするのが好ましい。
位置決め装置1上で、成形素材50の位置決めに要する時間を利用して、成形素材50に予熱処理を施しておくことで、後述する加熱工程において、成形素材50がプレス成形に適した温度となるまでに要する時間を短縮することができ、また、成形素材50の表面と内部との温度差を緩和して、プレス成形された光学素子(成形体51)の肉厚精度、面精度を良好とすることもできるので、このような態様は、成形サイクルタイムの短縮のみならず、成形精度においても有利である。
工程(8)〜(10):成形素材供給工程
搬送アーム60の吸着パッド61と、成形素材50との相対的な位置関係を一定にした後に、成形素材50を、下型20と上型10とが離間した状態で待機している成形型に搬送(供給)する。このとき、上型10が組み込まれた胴型30は、保持手段80により、その位置を固定しておく(図6(8)参照)。
そして、搬送アーム60の吸着パッド61が、所定範囲内の精度で下型20の成形面21上に到達したときに(図6(9)参照)、その吸着を解除し、搬送アーム60を直ちに退避させる。
これにより、成形素材50は、その下面側の周辺部が、支承部材40の内周側の上端縁に支承され、滑落することなく支承部材40上に保持される(図6(10)参照)。
ここで、図示する例では、下型20の成形面が凸面を有している成形型を用いており、下型20上で成形素材50の位置修正を行うのが困難であるため、支承部材40により成形素材50を支承して、成形素材50の滑落や位置ずれを防止しているが、搬送アーム60と成形素材50の相対的な位置関係が一定しないと、成形素材50を支承部材40にうまく支承させることができない。
しかしながら、本実施態様では、成形素材50を成形型に供給するに先だって、搬送アーム60と成形素材50の相対的な位置関係が常に一定になるように、成形素材50の位置決めをしているため、支承部材40の所定の位置に成形素材50を確実に支承させることができる。
工程(11):成形型の組立工程
搬送アーム60を退避させた後に、載置台70を上昇させ、胴型30内に下型20を組み込む。胴型30内に下型20が組み込まれ、胴型30の下面に、下型20のフランジ部22の上面が当接すると、成形素材50の厚みによって、上型10の上面が、胴型30の上面より高い位置に押し上げられる(図6(11)参照)。
このとき、胴型30と下型20のクリアランスは、5μm以下とされていることが好ましい。また、予め組み立てられた上型10と胴型30も同様のクリアランスとするのが好ましい。これにより、上下型10,20の成形面11,21間の偏心を高精度に抑制できる。また、成形型を組み立てるに際しては、載置台70を上昇させるかわりに、保持手段80により上型10及び胴型30を下降させるようにしてもよい。
上記の工程(8)〜(11)においては、下型20が載置台70上で位置ずれを起こさないように、載置台70に設けられた開口部71から雰囲気ガスを吸引することにより載置台70上に下型20を密着、固定することができる。また、後述するように、成形型を分解する際に、雰囲気ガスの吸引により載置台70上に下型20を密着、固定し、胴型30から下型20を抜き出した時の位置を維持することで、下型20と胴型30の水平方向の相対位置がずれてしまうのを避けることができる。
なお、図4に示す成形装置において、上記の工程(8)〜(11)は、分解・組立部P9で行われ、成形素材50を収容して組み立てられた成形型は、取出・挿入室P1から成形エリア内に挿入されるが、分解・組立部P9を省略して、取出・挿入室P1内で、上記の工程(8)〜(11)を行うようにしてもよい。
工程(12):加熱工程
成形素材50を収容して組み立てられた成形型を、回転テーブルに取り付けられた保持台75に保持させるなどして、加熱室P2〜P4に順次移送しつつ、加熱して、成形型ごと成形素材50をプレス成形に適した温度に昇温する(図7(12)参照)。
このとき、例えば、第一加熱室P2は、成形素材50のプレス温度以上の高温に保ち、成形型及び成形素材50を急速に加熱する。そして、成形素材50が収容された成形型は、第一加熱室P2で所定時間静止した後、回転テーブルの回転に応じて第二加熱室P3に移送される。この第二加熱室P3での加熱により、成形型と成形素材50は、さらに加熱されながら、均熱化されてプレス温度に近づく。次いで、第三加熱室P4で成形型と成形素材50を均熱化して、成形素材50の粘度をプレス成形に適切な10〜10ポアズにするが、好ましくは、成形素材50の温度は、10〜10ポアズの粘度となる温度となるように設定する。
なお、加熱室P2〜P4が備える加熱手段には特に制限はない。例えば、抵抗加熱によるヒータ、高周波誘導コイル等を用いることができる。
工程(13)〜(14):プレス工程
適温になった成形型を、プレス室P5に移送する(図7(13)参照)。プレス室P5では、成形型の上方からプレスヘッド90により、所定圧力(例えば、30〜200Kg/cm)、所定時間(例えば、数十秒)で、成形型にプレス荷重を印加する(図7(14)参照)。このとき、下型20と成形素材50との間に介在する雰囲気ガスは、支承部材40の通気孔41や胴型30の通気孔33を経由して成形型の外部へ放出される。
プレスヘッド90の下面が胴型30の上面に当接した時点で成形体51の肉厚が規定され、その後、プレスヘッド90を上昇させてプレス荷重の印加を解除することにより、プレス工程を終了する。
工程(15):冷却工程
プレス工程終了後、徐冷室P6、P7及び急冷室P8に、成形型を順次移送して、冷却処理を施す(図7(15)参照)。急冷室P8では、冷却用ガスによる急冷を行うことができ、成形体51が大気開放に支障のない温度となるまで冷却する。
このとき、成形型には、上型10のフランジ部12の下面と、胴型30の小径内周部32の上端との間に、前述したような隙間Gを所定の寸法で確保しておくことにより、ガラスの収縮に対して上型10がその自重によって追随することが可能となり、良好な形状精度が得られる。
なお、ガラスの収縮に追随して上型10が降下したとき、上型10のフランジ部12と、胴型30の小径内周部32の上端面との間の隙間Gの間隔は狭くなる。
工程(16)〜(17):成形型の分解工程
冷却処理が施された成形型を、取出・挿入室P1から取り出して、分解・組立部P9に移送し、分解・組立部P9に設けた載置台70に載置する(図8(16)参照)。そして、保持手段80により、上型10が組み込まれた胴型30の位置を固定するとともに、載置台70の開口部71から雰囲気ガスを吸引して、載置台70上に下型20を一体的に保持した上で、載置台70を垂直に下降させ、胴型30から下型20を抜き出す(図8(17)参照)。
このとき、載置台70上に下型20を一体的に保持して、胴型30から下型20を抜き出したときの位置を維持することで、下型20と胴型30の水平方向の相対位置がずれてしまうのを避けることができる。
工程(18):成形体の取り出し工程
胴型30から下型20を抜き出した後に、搬送アーム60の吸着パッド61によって成形体51を吸引保持し、下型20の成形面21上から成形体51を取り出す(図8(18)参照)。
このようにして成形型から取り出された成形体51は、そのまま、又は必要に応じて芯取り加工を施して、所望の光学素子とすることができる。
なお、図示する例では、下型20に対して支承部材40を固定してあるが、支承部材40は、下型20に対して着脱可能に設け、成形体51と支承部材40とを互いに密着した状態のまま成形型から取り出すようにしてもよい。このようにすれば、より温度が下がった時点で成形体51から支承部材40を取り外すことができ、両者の分離を容易に行うことができる。ただし、この場合には、複数の支承部材40を用意しておき、成形素材供給工程(上記の工程(8)〜(10))に先立って、支承部材40を下型20上に供給しておく必要がある。
これらの工程(1)〜(18)が終了した後は、工程(1)に戻り、上記のサイクルを繰り返すことによって、プレス成形を連続的に行うことができる。
このようにして光学素子を製造すれば、成形型が、加熱室P2〜P4、プレス室P5、冷却室P6〜P7を含む複数の処理室に移送され、それぞれの処理室で加熱、プレス、冷却を含む処理が施されることによって、成形型の内部に収容した成形素材50がプレス成形されるので、多数の成形型を同時に使用しつつ、成形型の昇温や降温を効率良く行い、生産効率を向上させることができる。
本実施形態における光学素子の製造方法は、搬送手段と成形素材との相対的な位置関係を一定とすることにより、成形型の成形面の中心位置に正確に成形素材を供給、配置するものであるため、個々の成形型に大掛かりな可動部材を設けて、成形面上で成形素材の位置修正をすることが実質的に不可能な、この種の成形型の移送を前提とした成形方法に、特に好適に適用することができる。
また、本実施形態に用いる成形素材50の材料には特に制限はなく、ガラスプリフォームなどのガラス素材とすることができ、例えば、ブロック状の光学ガラスを、切断、研磨して、円盤状、球形状などに加工(冷間加工)したものとすることができる。また、光学ガラスを、溶融状態から受け型上に滴下、又は流下することによって、球形状、又は両凸曲面形状などに予備成形(熱間成形)したものであってもよい。
本実施形態においては、冷間加工した円盤状のガラス素材、又は熱間成形した両凸曲面形状のガラス素材を成形素材50とするのが好ましいが、特に、熱間成形による両凸曲面形状のもの(凸曲面に覆われたもの)は生産効率の点で極めて有利である。凸曲面に覆われた成形素材50は、成形面上での転がりによる偏在などの問題が生じやすいが、本実施形態では、成形素材50を成形型に搬送、供給する際に、搬送アーム60と成形素材50との相互の位置決めを高い精度で行ってから、成形型の成形面の中心位置に成形素材を供給、配置することにより、このような問題を解消することができる。
以上のように、本実施形態に係る光学素子の製造方法は、成形素材50の位置決めを下型20の成形面21上で行うのではなく、搬送アーム60と成形素材50との相対関係で行うものであるため、例えば、成形面21が所定以上の曲率の凹面でない場合、成形面21の周囲に規制物があって治具などを使えない場合、又は移送を前提とした成形型であって治具などを配置できない場合など、成形面上で成形素材の位置修正をすることが困難、又は不効率な場合であっても、成形型の成形面の中心位置に正確に成形素材を供給、配置して、偏肉やプレス荷重不均一による面精度劣化などを防止し、高い精度の光学素子を製造することができる。
以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上記した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
本発明は、被成形面に対する研磨などの後加工を必要とせずに、ガラス等の成形素材を、精密加工を施した一対の上下型を用いてプレス成形することにより光学素子を製造する技術分野に広く適用することができる。
本発明に係る光学素子の製造方法の実施形態における工程(1)〜(4)を示す説明図であり、本発明に係る位置決め装置の第一実施形態を用いた位置決め工程の一部を示している。 本発明に係る光学素子の製造方法の実施形態における工程(5)〜(7)を示す説明図であり、本発明に係る位置決め装置の第一実施形態を用いた位置決め工程の一部を示している。 本発明に係る位置決め装置の第二実施形態を用いた位置決め工程の一部を示す説明図である。 本発明に係るモールドプレス成形装置の実施形態を示す概略平面図である。 本発明に好適に用いられるモールドプレス成形型の一例を示す概略断面図である。 本発明に係る光学素子の製造方法の一実施形態における工程(8)〜(11)を示す説明図である。 本発明に係る光学素子の製造方法の一実施形態における工程(12)〜(15)を示す説明図である。 本発明に係る光学素子の製造方法の一実施形態における工程(16)〜(18)を示す説明図である。
符号の説明
1 位置決め装置
2 受け部
3 開口部
5 加熱手段
6 落し穴
10 上型
20 下型
50 成形素材
P1 取出・挿入室
P2 第一加熱室
P3 第二加熱室
P4 第三加熱室
P5 プレス室
P6 第一徐冷室
P7 第二徐冷室
P8 急冷室
P9 分解・組立部
P10 位置決め部

Claims (9)

  1. 成形素材を、搬送手段によって成形型に供給し、プレス成形する光学素子の製造方法であって、
    前記成形素材を前記成形型に供給するに際し、
    前記成形素材を位置決め装置に載置して、前記位置決め装置から気流を噴出させて前記成形素材の位置を修正し、次いで、雰囲気ガスを吸引して前記成形素材を前記位置決め装置上に固定することによって、
    前記成形素材と、前記搬送手段との相対的な位置決めをした後に、
    前記搬送手段により前記成形素材を前記成形型に供給することを特徴とする光学素子の製造方法。
  2. 前記成形素材が、溶融ガラスを流下、又は滴下して受け型上で成形されたものであり、凸曲面に覆われた形状を有することを特徴とする請求項1に記載の光学素子の製造方法。
  3. 前記位置決め装置上で、前記成形素材に予熱処理を施すことを特徴とする請求項1〜2のいずれか1項に記載の光学素子の製造方法。
  4. 前記成形素材が収容された成形型を、加熱室、プレス室、冷却室を含む複数の処理室に移送し、順次、加熱、プレス、冷却を含む処理を施すことにより、前記成形型に収容された前記成形素材をプレス成形することを特徴とする請求項1〜3のいずれか1項に記載の光学素子の製造方法。
  5. 成形素材をプレス成形するためのモールドプレス成形装置であって、
    対向する成形面を有する一対の成形型と、
    前記成形素材を前記成形型に供給する搬送手段と、
    前記成形素材と前記搬送手段との相対的な位置決めをする位置決め装置と
    を備え、
    前記位置決め装置、前記成形素材が載置される受け部を有し前記受け部の載置面に設けた開口部から気流を噴出させて、前記成形素材を前記受け部上に浮遊させて位置を修正し、次いで、雰囲気ガスを吸引して前記開口部内を負圧とすることにより、前記成形素材を前記受け部上に固定することによって、前記成形素材と、前記搬送手段との相対的な位置決めをすることを特徴とするモールドプレス成形装置。
  6. 成形素材を成形型に供給してプレス成形するにあたり、前記成形素材と、前記成形素材を前記成形型に供給する搬送手段との相対的な位置決めをする位置決め装置であって、
    前記成形素材が載置される受け部を有し前記受け部の載置面に設けた開口部から気流を噴出させて、前記成形素材を前記受け部上に浮遊させて位置を修正し、次いで、雰囲気ガスを吸引して前記開口部内を負圧とすることにより、前記成形素材を前記受け部上に固定することによって、前記成形素材と、前記搬送手段との相対的な位置決めをすることを特徴とする位置決め装置。
  7. 前記受け部の載置面が、凹曲面を有していることを特徴とする請求項6に記載の位置決め装置。
  8. 前記成形素材の外径よりわずかに大きな内径を有する落し穴が、前記受け部の周りを囲むように設けられていることを特徴とする請求項6に記載の位置決め装置。
  9. 前記受け部の周囲に、加熱手段が設置されていることを特徴とする請求項6〜8のいずれか1項に記載の位置決め装置。
JP2005046450A 2005-02-23 2005-02-23 光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置 Active JP4711697B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046450A JP4711697B2 (ja) 2005-02-23 2005-02-23 光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046450A JP4711697B2 (ja) 2005-02-23 2005-02-23 光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置

Publications (2)

Publication Number Publication Date
JP2006232581A JP2006232581A (ja) 2006-09-07
JP4711697B2 true JP4711697B2 (ja) 2011-06-29

Family

ID=37040649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046450A Active JP4711697B2 (ja) 2005-02-23 2005-02-23 光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置

Country Status (1)

Country Link
JP (1) JP4711697B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006007B2 (ja) * 2012-06-13 2016-10-12 オリンパス株式会社 光学素子の製造装置、及び、光学素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665018B2 (ja) * 1990-03-30 1997-10-22 ホーヤ株式会社 成形型の分解・組立装置
JPH0781949A (ja) * 1993-09-09 1995-03-28 Fuji Photo Optical Co Ltd 光学ガラス素材の移載装置
JP3753415B2 (ja) * 1994-10-07 2006-03-08 Hoya株式会社 ガラス光学素子の成形方法
JP3243219B2 (ja) * 1997-07-18 2002-01-07 ホーヤ株式会社 ガラス光学素子の製造方法
JP4192300B2 (ja) * 1998-07-27 2008-12-10 フジノン株式会社 光学ガラス素材の移載装置

Also Published As

Publication number Publication date
JP2006232581A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
KR101272074B1 (ko) 몰드 프레스 성형 몰드 및 광학소자의 제조방법
JP5059019B2 (ja) モールドプレス成形型、及び成形体の製造方法
KR100839731B1 (ko) 몰드 프레스 성형 몰드 및 광학소자의 제조방법
JP5021205B2 (ja) モールドプレス成形型及び光学素子の製造方法
JP5021196B2 (ja) モールドプレス成形型、光学素子の製造方法、及び凹メニスカスレンズ
JP5200074B2 (ja) モールドプレス成形装置及び光学素子の製造方法
JP4711697B2 (ja) 光学素子の製造方法、モールドプレス成形装置、及びこれらに用いる位置決め装置
JP4878321B2 (ja) モールドプレス成形型、及び成形体の製造方法
JP3608768B2 (ja) ガラス光学素子用プレス成形装置及びガラス光学素子の成形方法
JP4266115B2 (ja) モールドプレス成形装置及びガラス光学素子の製造方法
JP4792141B2 (ja) モールドプレス成形型及び光学素子の製造方法
JP2003104741A (ja) 光学素子のプレス成形装置及び光学素子の製造方法
JP4695404B2 (ja) 成形型の組立装置及び光学素子の製造方法
JP3234871B2 (ja) ガラス光学素子の製造方法
JP4141983B2 (ja) モールドプレス成形方法及び光学素子の製造方法
JP4680738B2 (ja) モールドプレス成形装置及び光学素子の製造方法
JP4044373B2 (ja) ガラス光学素子の製造方法
JP2006083026A (ja) モールドプレス成形型および成形体の製造方法
JP2009007221A (ja) 光学素子成形方法
JP6726464B2 (ja) 光学素子の製造方法及び光学素子の製造装置
JP3897746B2 (ja) プレス成形体の吸着装置、吸着方法、及びそれを用いた光学素子の製造方法
JP2001335329A (ja) ガラスプリフォームの浮上搬送装置
JP4086152B2 (ja) ガラスのプレス成形装置及び成形方法
JP4848194B2 (ja) モールドプレス成形型、及び光学素子の製造方法
JP2004345943A (ja) モールドプレス成形装置及び光学素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Ref document number: 4711697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250