JP4710681B2 - Engine exhaust recirculation control valve - Google Patents

Engine exhaust recirculation control valve Download PDF

Info

Publication number
JP4710681B2
JP4710681B2 JP2006082680A JP2006082680A JP4710681B2 JP 4710681 B2 JP4710681 B2 JP 4710681B2 JP 2006082680 A JP2006082680 A JP 2006082680A JP 2006082680 A JP2006082680 A JP 2006082680A JP 4710681 B2 JP4710681 B2 JP 4710681B2
Authority
JP
Japan
Prior art keywords
valve
opening
lift
engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082680A
Other languages
Japanese (ja)
Other versions
JP2007255357A (en
Inventor
惠夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006082680A priority Critical patent/JP4710681B2/en
Publication of JP2007255357A publication Critical patent/JP2007255357A/en
Application granted granted Critical
Publication of JP4710681B2 publication Critical patent/JP4710681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Lift Valve (AREA)

Description

本発明は、エンジンの排気通路内の排気ガスの一部をエンジンの吸気通路に還流させる際の排気還流量を調節する排気還流量制御弁に関する。   The present invention relates to an exhaust gas recirculation amount control valve that adjusts an exhaust gas recirculation amount when a part of exhaust gas in an exhaust passage of an engine is recirculated to an intake passage of the engine.

エンジンの排気通路内の排気ガスの一部をエンジンの吸気通路に還流させるための排気再循環装置(EGR装置)は、例えば、エンジンの排気管(或いは排気マニフォールド)と吸気管(或いは吸気マニフォールド)とを結び、排気管からEGRガス(排気ガス)を抜き出す排気還流管(EGR管)と、排気還流管の途中に設けられ、EGRガスを冷却するEGRクーラと、エンジンの回転速度、負荷、吸入空気量(MAF量)及びアクセル開度等を検出する検出手段と、排気還流管の途中に設けられ、検出手段により検出される検出値に応じて排気還流量(EGR量)或いは排気還流率(EGR率)を調節するためにガス流路面積(開口面積)が可変とされる排気還流量制御弁(EGR弁)と、EGR弁のガス流路面積を調節するためにEGR弁のリフト量(開度)を制御するコンピュータとから構成される。   An exhaust gas recirculation device (EGR device) for returning a part of exhaust gas in the exhaust passage of the engine to the intake passage of the engine is, for example, an exhaust pipe (or exhaust manifold) and an intake pipe (or intake manifold) of the engine. And an exhaust gas recirculation pipe (EGR pipe) that extracts EGR gas (exhaust gas) from the exhaust pipe, an EGR cooler that is provided in the middle of the exhaust gas recirculation pipe and cools the EGR gas, engine speed, load, and intake A detecting means for detecting an air amount (MAF amount), an accelerator opening degree, and the like, and an exhaust gas recirculation amount (EGR amount) or an exhaust gas recirculation rate (in accordance with a detection value provided in the middle of the exhaust gas recirculation pipe and detected by the detection means) An exhaust gas recirculation amount control valve (EGR valve) whose gas flow path area (opening area) is variable in order to adjust the EGR rate), and E in order to adjust the gas flow path area of the EGR valve Composed of a computer for controlling the lift amount of R valve (opening).

例えば、エンジンの回転速度及び負荷を検出し、設定されたEGR率になるようにコンピュータの指示に基づきEGR弁のリフト量を制御することで、目標とするEGR率を得ようとする。或いは、エンジンの回転速度、負荷及びMAF量を検出し、設定されたMAF量になるようにコンピュータの指示に基づきEGR弁のリフト量を制御することで、目標とするEGR率を得ようとする。   For example, the engine rotation speed and load are detected, and the EGR valve lift amount is controlled based on a computer instruction so that the set EGR rate is obtained, thereby obtaining a target EGR rate. Alternatively, the engine speed, load, and MAF amount are detected, and the target EGR rate is obtained by controlling the lift amount of the EGR valve based on a computer instruction so that the set MAF amount is obtained. .

近年、厳しい排気ガス規制に対応するために大量のEGRを行う必要があり、EGR弁も大量のEGRガスを流すために、EGR弁のリフト量に対するガス流路の必要面積(ガスの必要流量)は拡大する傾向にある。   In recent years, it is necessary to perform a large amount of EGR in order to comply with strict exhaust gas regulations, and the EGR valve also requires a large area of the gas flow path with respect to the lift amount of the EGR valve in order to flow a large amount of EGR gas (required gas flow rate) Tend to expand.

ところで、エンジンの低負荷運転領域においてNOx(窒素酸化物)、PM(粒子状物質)を低減できる技術として有望なディーゼル予混合燃焼(PCI燃焼)においては、過早着火やノッキング等を防止し、燃焼の着火時期を制御すべく大量のEGRを行う。しかし、EGR率を制御すべき範囲が狭く、この範囲を外れると過早着火やノッキング等を生じ、燃焼時のノッキング音発生やPMの排出量増大の問題を引き起こす。従って、エンジンの低負荷運転領域においては、EGR率を狭い制御範囲で精度良く制御するために、EGR弁のリフト量に対するガス流路面積(ガス流量)の変化率を小さくする必要がある。   By the way, in diesel premixed combustion (PCI combustion), which is promising as a technology capable of reducing NOx (nitrogen oxide) and PM (particulate matter) in the low load operation region of the engine, premature ignition and knocking are prevented, A large amount of EGR is performed to control the ignition timing of combustion. However, the range in which the EGR rate should be controlled is narrow, and if it falls outside this range, pre-ignition, knocking, etc. occur, causing problems such as the generation of knocking noise during combustion and an increase in PM emissions. Therefore, in the low load operation region of the engine, in order to accurately control the EGR rate within a narrow control range, it is necessary to reduce the rate of change of the gas passage area (gas flow rate) with respect to the lift amount of the EGR valve.

通常燃焼(拡散燃焼)にEGRを組み合わせてNOx低減を行う場合、車両の加速時に主として用いられるエンジンの高負荷運転領域においては、ターボチャージャの応答遅れにより定常運転に比べて空気過剰率が低下する。従って、エンジンの高負荷運転領域においても、EGR率を狭い制御範囲で精度良く制御するために、EGR弁のリフト量に対するガス流路面積(ガス流量)の変化率を小さくする必要がある。また、エンジンの高負荷運転領域においては、EGR率を低く抑えるものの大量のEGRガスを流すために、EGR弁のガス流路面積(ガス流量)を大きくする必要がある。   When NOx reduction is performed by combining EGR with normal combustion (diffusion combustion), the excess air ratio decreases in the high-load operation region of the engine mainly used during vehicle acceleration due to the response delay of the turbocharger compared to the steady operation. . Therefore, even in the high load operation region of the engine, in order to accurately control the EGR rate within a narrow control range, it is necessary to reduce the rate of change of the gas passage area (gas flow rate) with respect to the lift amount of the EGR valve. Further, in the high load operation region of the engine, it is necessary to increase the gas flow path area (gas flow rate) of the EGR valve in order to flow a large amount of EGR gas while keeping the EGR rate low.

通常燃焼にEGRを組み合わせてNOx低減を行う場合、車両の定常走行時に主として用いられるエンジンの中負荷運転領域においては、変動が少なく、且つ、空気過剰率が比較的高い。従って、エンジンの中負荷運転領域においては、大量のEGRを行い、EGR率の制御範囲を広く設定することができる。   When NOx reduction is performed by combining EGR with normal combustion, there is little fluctuation and a relatively high excess air ratio in the medium-load operation region of the engine that is mainly used during steady running of the vehicle. Therefore, in the medium load operation region of the engine, a large amount of EGR can be performed and the control range of the EGR rate can be set wide.

エンジンの中負荷運転領域では大量のEGRを行い、エンジンの低・高負荷運転領域では大量のEGRを狭い制御範囲で行うためには、EGR弁のリフト量に対するガス流路面積(ガス流量)の変化率を小さくし、且つ、EGR弁のリフト量を大きくする必要がある。   In order to perform a large amount of EGR in the medium load operation region of the engine and a large amount of EGR in a narrow control range in the low / high load operation region of the engine, the gas flow path area (gas flow rate) relative to the lift amount of the EGR valve It is necessary to reduce the rate of change and increase the lift amount of the EGR valve.

しかし、単にEGR弁のリフト量を大きくすると、(1)EGR弁が大型化し車両への搭載性に支障をきたす、(2)EGR弁を大リフト量で素早く動かすために大きな駆動力が必要となる、(3)EGR弁のリフト量を大きくするために、EGR弁の応答性がむしろ悪くなる、等の問題が発生する。   However, if the lift amount of the EGR valve is simply increased, (1) the EGR valve becomes larger and hinders mounting on the vehicle, and (2) a large driving force is required to quickly move the EGR valve with a large lift amount. (3) In order to increase the lift amount of the EGR valve, there arises a problem that the responsiveness of the EGR valve is rather deteriorated.

このような問題を解決すべく、リフト量に対するガス流路面積(ガス流量)の変化率が互いに異なる複数のバルブと、これら複数のバルブを適宜開閉動作させるための駆動手段とを備えたEGR弁が提案されている。このようなEGR弁は、特許文献1から3等にも記載されている。   In order to solve such a problem, an EGR valve comprising a plurality of valves having different rates of change in the gas flow path area (gas flow rate) with respect to the lift amount, and drive means for appropriately opening and closing the plurality of valves. Has been proposed. Such an EGR valve is also described in Patent Documents 1 to 3 and the like.

特開平8−312470号公報JP-A-8-31470 特開平11−13558号公報Japanese Patent Laid-Open No. 11-13558 特開2002−81571号公報JP 2002-81571 A

しかし、特許文献1から3等では、複数のバルブを全て別体で構成し、それら複数のバルブを適宜開閉動作させるための駆動手段を設けているため、構造が大型化し更にコストが掛かるという問題がある。   However, in Patent Documents 1 to 3 and the like, a plurality of valves are all configured separately, and driving means for appropriately opening and closing the plurality of valves is provided, so that the structure becomes large and further costs increase. There is.

そこで、本発明の目的は、簡単な構成で低コストな排気還流量制御弁を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas recirculation amount control valve with a simple configuration and low cost.

上記目的を達成するために、請求項1の発明は、エンジンの排気通路内の排気ガスの一部を取り入れる取入通路と、上記取入通路から流入した排気ガスを上記エンジンの吸気通路に供給する第一供給通路と、上記取入通路から流入した排気ガスを上記吸気通路に供給する第二供給通路と、上記第一供給通路と上記取入通路との間を連通する第一開口部と、上記第二供給通路と上記取入通路との間を連通する第二開口部と、上記第一開口部開閉する第一弁体と上記第二開口部を開閉する第二弁体とが軸部に一体形成されるバルブとを備え、上記第一弁体は、上記第一開口部に着座される弁部に一体形成され、上記第一開口部に挿入される拡径軸部と、上記第一開口部に挿入される突起部とを有し、上記第二弁体は、上記弁部が上記第一開口部に着座するリフト域で、上記第二開口部に着座する位置に形成され、上記突起部は、上記軸部が上記第二開口部に挿入するリフト域で、上記第一開口部に挿入する位置に形成されることを特徴とするエンジンの排気還流量制御弁である。 To achieve the above object, a first aspect of the invention, the intake passage for taking a part of the exhaust gas in the exhaust passage of the engine, the exhaust gas flowing from the upper Quito inlet passage to the intake passage of the engine a first supply passage for supplying a first communicating between the exhaust gas flowing from the intake passage and the second supply passage for supplying to said intake passage, and the first supply communication passage and the intake passage and the opening, the second opening and closing a second opening communicating between the first valve body and the second opening that opens and closes the first opening between the second supply passage and the intake passage And a valve body integrally formed on the shaft portion, and the first valve body is formed integrally with the valve portion seated on the first opening portion and is inserted into the first opening portion. A shaft portion and a protrusion inserted into the first opening, and the second valve body is configured such that the valve portion is the first opening. It is formed at a position where it is seated in the second opening in the lift area where it sits, and the protrusion is located at a position where it is inserted into the first opening in the lift area where the shaft is inserted into the second opening. An exhaust gas recirculation control valve for an engine characterized by being formed .

請求項2の発明は、上記軸部を、上記突起部と上記拡径軸部との間に備える請求項1に記載のエンジンの排気還流量制御弁である。 A second aspect of the present invention is the exhaust gas recirculation control valve for an engine according to the first aspect, wherein the shaft portion is provided between the protruding portion and the diameter-expanded shaft portion .

請求項3の発明は、上記突起部は、上記バルブの摺動方向に対して垂直方向の断面積が上記拡径軸部における上記バルブの摺動方向に対して垂直方向の断面積より小さく形成される請求項2に記載のエンジンの排気還流量制御弁である。 According to a third aspect of the present invention, the protrusion is formed such that a cross-sectional area in a direction perpendicular to a sliding direction of the valve is smaller than a cross-sectional area in a direction perpendicular to the sliding direction of the valve in the enlarged diameter shaft portion. The engine exhaust gas recirculation amount control valve according to claim 2.

請求項4の発明は、上記第一弁体は、小リフト域及び高リフト域での上記バルブのリフト量に対するガス流量の変化率が中リフト域での上記バルブのリフト量に対するガス流量の変化率よりも小さく設定され、上記第二弁体は、全リフト域での上記バルブのリフト量に対するガス流量が上記バルブのリフトに応じて増加するように設定される請求項1から3いずれかに記載のエンジンの排気還流量制御弁である。   According to a fourth aspect of the present invention, in the first valve body, the rate of change of the gas flow rate relative to the lift amount of the valve in the small lift region and the high lift region is a change in gas flow rate relative to the lift amount of the valve in the middle lift region. The second valve body is set so that the gas flow rate relative to the lift amount of the valve in the entire lift region is set to increase according to the lift of the valve. It is an engine exhaust gas recirculation amount control valve of description.

本発明によれば、簡単な構成で低コストな排気還流量制御弁を提供することができるという優れた効果を奏する。   According to the present invention, there is an excellent effect that an exhaust gas recirculation amount control valve with a simple configuration and low cost can be provided.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る排気還流量制御弁を備えたエンジンの概略図である。図2は、本発明の一実施形態に係る排気還流量制御弁の断面図である。図3(a)から(c)は、小リフト域、中リフト域及び高リフト域での本発明の一実施形態に係る排気還流量制御弁をそれぞれ示す概略図である。図4は、本発明の一実施形態に係る排気還流量制御弁の流量特性を示すグラフである。 FIG. 1 is a schematic view of an engine provided with an exhaust gas recirculation amount control valve according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of an exhaust gas recirculation amount control valve according to an embodiment of the present invention . Figure 3 (a) (c) is a schematic diagram illustrating small lift region, the exhaust gas recirculation amount control valve according to an embodiment of the present invention in a medium lift range and high lift region, respectively. FIG. 4 is a graph showing the flow characteristics of the exhaust gas recirculation control valve according to the embodiment of the present invention .

本実施形態は、車両用等のディーゼルエンジン(以下、エンジンという)に適用したものである。   The present embodiment is applied to a diesel engine (hereinafter referred to as an engine) for a vehicle or the like.

まず、エンジンについて説明する。   First, the engine will be described.

図1中、1がエンジン本体、2がエンジン本体1に接続され吸入空気が流通する吸気通路としての吸気管(或いは吸気マニフォールド)、3がエンジン本体1に接続され排気ガスが流通する排気通路としての排気管(或いは排気マニフォールド)である。   In FIG. 1, 1 is an engine body, 2 is an intake pipe (or intake manifold) that is connected to the engine body 1 and through which intake air flows, and 3 is an exhaust passage that is connected to the engine body 1 and through which exhaust gas flows. The exhaust pipe (or exhaust manifold).

吸気管2には、ターボチャージャ4のコンプレッサ5が接続される。排気管3には、ターボチャージャ4のタービン6が接続される。   A compressor 5 of a turbocharger 4 is connected to the intake pipe 2. A turbine 6 of a turbocharger 4 is connected to the exhaust pipe 3.

エンジンは、排気管3内の排気ガスの一部を吸気管2に還流させるための排気再循環装置7(以下、EGR装置という)を備えている。   The engine includes an exhaust gas recirculation device 7 (hereinafter referred to as an EGR device) for returning a part of the exhaust gas in the exhaust pipe 3 to the intake pipe 2.

EGR装置7は、排気管3と吸気管2とを結び、排気管3からEGRガス(排気ガス)を抜き出す排気還流通路としての排気還流管8(以下、EGR管という)と、EGR管8の途中に設けられ、EGRガスを冷却するEGRクーラ9と、EGR管8の途中に設けられ、排気還流量(以下、EGR量という)或いは排気還流率(以下、EGR率という)を調節するためにガス流路面積(開口面積)が可変とされる排気還流量制御弁10(以下、EGR弁という)と、EGR弁10のガス流路面積を変化させるためにEGR弁10のリフト量を制御するコンピュータ11とを有している。   The EGR device 7 connects the exhaust pipe 3 and the intake pipe 2, and an exhaust gas recirculation pipe 8 (hereinafter referred to as an EGR pipe) serving as an exhaust gas recirculation passage for extracting EGR gas (exhaust gas) from the exhaust pipe 3. In order to adjust the exhaust gas recirculation amount (hereinafter referred to as EGR amount) or the exhaust gas recirculation rate (hereinafter referred to as EGR rate) provided in the middle and provided in the middle of the EGR cooler 9 for cooling the EGR gas and the EGR pipe 8. An exhaust gas recirculation amount control valve 10 (hereinafter referred to as an EGR valve) having a variable gas flow path area (opening area) and a lift amount of the EGR valve 10 are controlled in order to change the gas flow path area of the EGR valve 10. And a computer 11.

コンピュータ11は、各種センサ類から実際のエンジン運転状態を検出し、このエンジン運転状態に基づいてEGR弁10を制御する。上記センサ類としては、エンジンの回転速度を検出するエンジン回転検出手段としてのエンジン回転センサ12、エンジンの負荷を検出するエンジン負荷検出手段としてのエンジン負荷センサ13、吸入空気量(以下、MAF量という)を検出する吸入空気量検出手段としての吸入空気量センサ14、アクセル開度を検出するアクセル開度検出手段としてのアクセル開度センサ15等が含まれ、これらセンサ12、13、14、15からの検出信号がコンピュータ11に入力される。   The computer 11 detects an actual engine operating state from various sensors, and controls the EGR valve 10 based on the engine operating state. Examples of the sensors include an engine rotation sensor 12 as an engine rotation detection unit that detects the rotation speed of the engine, an engine load sensor 13 as an engine load detection unit that detects an engine load, and an intake air amount (hereinafter referred to as MAF amount). ), An intake air amount sensor 14 as an intake air amount detection means, an accelerator opening sensor 15 as an accelerator opening detection means for detecting an accelerator opening, and the like. The detection signal is input to the computer 11.

例えば、コンピュータ11は、エンジン回転センサ12及びエンジン負荷センサ13により検出されたエンジンの回転速度及び負荷の検出値を設定されたEGR率になるようなリフト量が予め入力されたマップに入力してリフト量を求め、求めたリフト量に従ってEGR弁10を制御する。   For example, the computer 11 inputs the engine rotation speed detected by the engine rotation sensor 12 and the engine load sensor 13 and the detected value of the load into a map in which a lift amount that gives a set EGR rate is input in advance. The lift amount is obtained, and the EGR valve 10 is controlled according to the obtained lift amount.

或いは、コンピュータ11は、エンジン回転センサ12、エンジン負荷センサ13及び吸入空気量センサ14により検出されたエンジンの回転速度、負荷及びMAF量の検出値を設定されたMAF量(設定されたMAF量=EGR無しのMAF量−EGR量)になるようなリフト量が予め入力されたマップに入力してリフト量を求め、求めたリフト量に従ってEGR弁10を制御する。   Alternatively, the computer 11 sets the MAF amount (the set MAF amount = the detected MAF amount = the detected value of the engine rotation speed, the load, and the MAF amount detected by the engine rotation sensor 12, the engine load sensor 13 and the intake air amount sensor 14). The lift amount such that MAF amount without EGR−EGR amount) is input to a previously input map to obtain the lift amount, and the EGR valve 10 is controlled according to the obtained lift amount.

次に、EGR弁10について図2により説明する。   Next, the EGR valve 10 will be described with reference to FIG.

本実施形態は、エンジンの空気過剰率が低く、EGR量或いはEGR率の微妙な制御が必要となる中負荷運転領域から高負荷運転領域で使用することが考えられる。   This embodiment is considered to be used in a medium load operation region to a high load operation region in which the excess air ratio of the engine is low and delicate control of the EGR amount or the EGR rate is required.

図2に示すように、EGR弁10は、EGR管8の途中に配設されるケーシング16を備えている。ケーシング16には、排気管3内の排気ガスの一部を取り入れる取入通路17と、取入通路17の両側(図示例では、上下)に設けられ、取入通路17から流入した排気ガスを吸気管2に供給する第一供給通路18及び第二供給通路19と、第一供給通路18及び第二供給通路19と取入通路17との間をそれぞれ連通する第一開口部20及び第二開口部21と、第一開口部20を開閉するための第一弁体22及び第二開口部21を開閉するための第二弁体23が同軸上に(同一の軸部24上に)一体形成されたバルブ25とが設けられている。   As shown in FIG. 2, the EGR valve 10 includes a casing 16 disposed in the middle of the EGR pipe 8. The casing 16 is provided with intake passages 17 for taking in part of the exhaust gas in the exhaust pipe 3 and both sides (upper and lower in the illustrated example) of the intake passages 17, and exhaust gas flowing from the intake passages 17 is supplied to the casing 16. A first opening 20 and a second supply passage 19 that supply the intake pipe 2, and a first opening 20 and a second passage that communicate between the first supply passage 18, the second supply passage 19, and the intake passage 17, respectively. The opening 21, the first valve body 22 for opening and closing the first opening 20, and the second valve body 23 for opening and closing the second opening 21 are integrated coaxially (on the same shaft portion 24). A formed valve 25 is provided.

バルブ25は、ケーシング16に設けられた挿通穴26に摺動自在に支持された軸部24を有している。第一弁体22が軸部24の中間部に設けられ、第二弁体23が軸部24の端部(図示例では、下端部)に設けられる。   The valve 25 has a shaft portion 24 slidably supported in an insertion hole 26 provided in the casing 16. The first valve body 22 is provided at an intermediate portion of the shaft portion 24, and the second valve body 23 is provided at an end portion (lower end portion in the illustrated example) of the shaft portion 24.

バルブ25は、第一開口部20に設けられた第一バルブ穴27及び第二開口部21に設けられた第二バルブ穴28に挿通された状態で、付勢手段(図示せず)により閉方向(図示例では、上方)に付勢される。   The valve 25 is closed by an urging means (not shown) while being inserted into a first valve hole 27 provided in the first opening 20 and a second valve hole 28 provided in the second opening 21. It is urged in the direction (upward in the illustrated example).

第一弁体22の弁部29は、第一開口部20の第一バルブ穴27より大きい外径を有し、第一開口部20に設けられたバルブシート30の取入通路17側(図示例では、下面)に着座するようになっている。   The valve portion 29 of the first valve body 22 has an outer diameter larger than that of the first valve hole 27 of the first opening 20, and the intake passage 17 side of the valve seat 30 provided in the first opening 20 (see FIG. In the example shown, it is seated on the lower surface.

第一弁体22は、小リフト域及び高リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率が中リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率よりも小さく設定される。   The first valve element 22 has a gas flow rate area (gas flow rate) with respect to the lift amount of the valve 25 in the middle lift region (gas flow rate area relative to the lift amount of the valve 25 in the small lift region and the high lift region). It is set smaller than the rate of change of the gas flow rate.

第一弁体22は、第一バルブ穴27の径より小さい範囲で拡径され、バルブ25(第一弁体22)の閉弁時に第一開口部20(第一バルブ穴27)に挿入され、バルブ25のリフトに応じて第一開口部20(第一バルブ穴27)から離脱される円環状の軸部(拡径軸部)31と、拡径軸部31の径より小さく形成され、バルブ25のリフトに応じて第一開口部20(第一バルブ穴27)に挿入される円板状の突起部(突起板)32とを有している。   The first valve body 22 is enlarged in a range smaller than the diameter of the first valve hole 27, and is inserted into the first opening 20 (first valve hole 27) when the valve 25 (first valve body 22) is closed. The annular shaft portion (expanded shaft portion) 31 is separated from the first opening 20 (first valve hole 27) according to the lift of the valve 25, and is formed smaller than the diameter of the expanded shaft portion 31. It has a disc-shaped projection (projection plate) 32 that is inserted into the first opening 20 (first valve hole 27) according to the lift of the valve 25.

拡径軸部31は、小リフト域で第一バルブ穴27内に位置するものであり、弁部29及び突起部32と同軸上に(同一の軸部24上に)一体形成される。拡径軸部31は、弁部29の端部(図示例では、上端部)に連続させて設けられる。拡径軸部31の外径は、拡径軸部31が第一バルブ穴27に挿入された際の拡径軸部31と第一バルブ穴27との間の隙間面積が、比較的小さくなるように設定される。   The diameter-expanded shaft portion 31 is located in the first valve hole 27 in a small lift region, and is formed integrally with the valve portion 29 and the projection portion 32 (on the same shaft portion 24). The enlarged diameter shaft portion 31 is provided continuously to the end portion (the upper end portion in the illustrated example) of the valve portion 29. The outer diameter of the enlarged diameter shaft portion 31 is such that the clearance area between the enlarged diameter shaft portion 31 and the first valve hole 27 when the enlarged diameter shaft portion 31 is inserted into the first valve hole 27 is relatively small. Is set as follows.

突起部32は、高リフト域で第一バルブ穴27内に位置するものであり、弁部29及び拡径軸部31と同軸上に(同一の軸部24上に)一体形成される。突起部32は、弁部29及び拡径軸部31に対して軸方向に(図示例では、上方に)所定間隔を隔てて設けられる。   The protruding portion 32 is located in the first valve hole 27 in the high lift region, and is integrally formed coaxially with the valve portion 29 and the enlarged diameter shaft portion 31 (on the same shaft portion 24). The protrusion 32 is provided at a predetermined interval in the axial direction (upward in the illustrated example) with respect to the valve portion 29 and the diameter-expanded shaft portion 31.

突起部32の外径は、突起部32が第一バルブ穴27に挿入された際の突起部32と第一バルブ穴27との間の隙間面積が、拡径軸部31が第一バルブ穴27から離脱され、突起部32が第一バルブ穴27に挿入されるまでの拡径軸部31と第一バルブ穴27との間の最大開口面積よりわずかに大きくなるように設定される。   The outer diameter of the projecting portion 32 is such that the clearance area between the projecting portion 32 and the first valve hole 27 when the projecting portion 32 is inserted into the first valve hole 27 is equal to the diameter-enlarging shaft portion 31 being the first valve hole. 27 is set so as to be slightly larger than the maximum opening area between the enlarged diameter shaft portion 31 and the first valve hole 27 until the projection 32 is inserted into the first valve hole 27.

第二弁体23の弁部33は、第二開口部21の第二バルブ穴28より大きい外径を有し、第二開口部21に設けられたバルブシート34の第二供給通路19側(図示例では、下面)に着座するようになっている。   The valve part 33 of the second valve body 23 has an outer diameter larger than the second valve hole 28 of the second opening 21, and the valve seat 34 provided in the second opening 21 has the second supply passage 19 side ( In the illustrated example, it is seated on the lower surface.

第二弁体23は、全リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)がバルブ25のリフトに応じて直線的に増加するように設定される。第二弁体23は、そのガス流路面積(ガス流量)が全リフト域で第一弁体22のガス流路面積(ガス流量)より大きくなるように設定される。   The second valve body 23 is set so that the gas flow path area (gas flow rate) with respect to the lift amount of the valve 25 in the entire lift region increases linearly according to the lift of the valve 25. The second valve body 23 is set such that its gas flow path area (gas flow rate) is larger than the gas flow path area (gas flow rate) of the first valve body 22 in the entire lift region.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

駆動手段(図示せず)によりバルブ25を開方向(図示例では、下方向)にリフトさせる。   The valve 25 is lifted in the opening direction (downward in the illustrated example) by driving means (not shown).

拡径軸部31が設けられている第一弁体22においては、拡径軸部31が第一バルブ穴27内に位置する小リフト域(図3(a)参照)の間、第一弁体22のガス流路面積は、拡径軸部31と第一バルブ穴27との間の隙間面積により規定されて一定となり、拡径軸部31と第一バルブ穴27との間の隙間を通るガス流量に抑えられる(図4参照)。   In the first valve body 22 provided with the enlarged diameter shaft portion 31, the first valve is provided during the small lift region (see FIG. 3A) where the enlarged diameter shaft portion 31 is located in the first valve hole 27. The gas flow path area of the body 22 is defined by the gap area between the enlarged diameter shaft portion 31 and the first valve hole 27 and becomes constant, and the gap between the enlarged diameter shaft portion 31 and the first valve hole 27 is set to be constant. The flow rate of gas passing through is suppressed (see FIG. 4).

また、第一弁体22においては、拡径軸部31が第一バルブ穴27から離脱され、突起部32が第一バルブ穴27に挿入されるまでの中リフト域(図3(b)参照)の間、拡径軸部31及び突起部32が第一バルブ穴27内に位置していない。したがって、中リフト域の間、第一弁体22のガス流路面積はバルブ25のリフトに応じて直線的に増加し、そのガス流路面積及びリフト量に応じたガス流量となる(図4参照)。   In the first valve body 22, the intermediate lift region (see FIG. 3B) until the enlarged diameter shaft portion 31 is detached from the first valve hole 27 and the protrusion 32 is inserted into the first valve hole 27. ), The enlarged diameter shaft portion 31 and the protruding portion 32 are not located in the first valve hole 27. Therefore, during the intermediate lift region, the gas flow path area of the first valve element 22 increases linearly according to the lift of the valve 25, and the gas flow rate corresponds to the gas flow path area and the lift amount (FIG. 4). reference).

また、第一弁体22においては、突起部32が第一バルブ穴27内に位置する高リフト域(図3(c)参照)の間、第一弁体22のガス流路面積は、突起部32と第一バルブ穴27との間の隙間面積により規定されて中リフト域までの拡径軸部31と第一バルブ穴27との間の最大開口面積を下回らない範囲で一定となり、突起部32と第一バルブ穴27との間の隙間を通るガス流量に抑えられる(図4参照)。   Further, in the first valve body 22, during the high lift region (see FIG. 3C) where the protrusion 32 is located in the first valve hole 27, the gas flow path area of the first valve body 22 is the protrusion. It is defined by the clearance area between the portion 32 and the first valve hole 27, and is constant within a range that does not fall below the maximum opening area between the enlarged diameter shaft portion 31 and the first valve hole 27 up to the middle lift region. The gas flow rate passing through the gap between the portion 32 and the first valve hole 27 is suppressed (see FIG. 4).

一方、拡径軸部31及び突起部32が設けられていない第二弁体23においては、全リフト域(図3(a)〜(c)参照)の間、ガス流路面積はバルブ25のリフトに応じて直線的に増加し、そのガス流路面積及びリフト量に応じたガス流量となる(図4参照)。   On the other hand, in the second valve body 23 in which the enlarged diameter shaft portion 31 and the protrusion portion 32 are not provided, the gas flow path area of the valve 25 is in the entire lift region (see FIGS. 3A to 3C). It increases linearly according to the lift, and becomes a gas flow rate according to the gas flow path area and the lift amount (see FIG. 4).

従って、バルブ25全体としては、小リフト域、中リフト域及び高リフト域の三段階でバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率が変化する(図4参照)。   Accordingly, the rate of change of the gas flow path area (gas flow rate) with respect to the lift amount of the valve 25 changes in three stages of the small lift region, the middle lift region, and the high lift region as the entire valve 25 (see FIG. 4).

詳しくは、PCI燃焼領域(エンジンの低負荷運転領域)で用いる高リフト域、高負荷運転領域で用いる低リフト域では、第二弁体23によってバルブ25のリフト量に対するバルブ25のガス流路面積(ガス流量)を十分に確保しながら、第一弁体22によってバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率の感度を落とし、中負荷運転領域で用いる中リフト域では、第一弁体22及び第二弁体23によって少ないリフト量でバルブ25のリフト量に対するバルブ25のガス流路面積(ガス流量)を十分に確保できるようにしている。   Specifically, in the high lift region used in the PCI combustion region (low load operation region of the engine) and the low lift region used in the high load operation region, the gas flow path area of the valve 25 relative to the lift amount of the valve 25 by the second valve element 23. While sufficiently securing (gas flow rate), the sensitivity of the rate of change of the gas flow path area (gas flow rate) with respect to the lift amount of the valve 25 is reduced by the first valve body 22, and in the middle lift region used in the medium load operation region, The first valve body 22 and the second valve body 23 can sufficiently secure the gas flow path area (gas flow rate) of the valve 25 with respect to the lift amount of the valve 25 with a small lift amount.

本実施形態では、第一弁体22は、小リフト域及び高リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率が中リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率よりも小さく設定され、第二弁体23は、全リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)がバルブ25のリフトに応じて増加するように設定されるため、バルブ25全体として、小リフト域及び高リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率を中リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率より小さくすることができ、小リフト域及び高リフト域でのEGR率を狭い制御範囲で精度良く制御することが可能となる。   In the present embodiment, the first valve body 22 has a rate of change of the gas flow passage area (gas flow rate) relative to the lift amount of the valve 25 in the small lift region and the high lift region with respect to the lift amount of the valve 25 in the middle lift region. The gas flow passage area (gas flow rate) is set to be smaller than the rate of change of the gas flow passage area (gas flow rate), and the second valve element 23 has a gas flow passage area (gas flow rate) corresponding to the lift amount of the valve 25 in the entire lift region. Therefore, the rate of change of the gas passage area (gas flow rate) with respect to the lift amount of the valve 25 in the small lift region and the high lift region is set as the overall value of the valve 25 in the middle lift region. The rate of change of the gas flow path area (gas flow rate) with respect to the lift amount can be made smaller, and the EGR rate in the small lift region and the high lift region can be accurately controlled within a narrow control range.

また、本実施形態では、第一弁体22及び第二弁体23を同軸上に(同一の軸部24上に)一体形成するようにしているので、バルブ25を動かす駆動手段を複数設ける必要がないため、構造が大型化したりコストが掛かるということはない。   Further, in the present embodiment, the first valve body 22 and the second valve body 23 are integrally formed on the same axis (on the same shaft portion 24), so it is necessary to provide a plurality of drive means for moving the valve 25. Therefore, the structure is not increased in size or cost.

以上要するに、本実施形態によれば、簡単な構成で低コストな排気還流量制御弁を提供することができる。   In short, according to the present embodiment, it is possible to provide an exhaust gas recirculation amount control valve with a simple configuration and low cost.

次に、参考形態について図5から図7に基づいて説明する。 Next, a reference form will be described with reference to FIGS.

上記実施形態と同一部材には同一符号を付して説明を省略し、相違点のみを説明する。 The same members as those in the above embodiment are denoted by the same reference numerals, description thereof will be omitted, and only differences will be described.

図5は、参考形態の排気還流量制御弁の断面図である。図6(a)から(c)は、小リフト域、中リフト域及び高リフト域での参考形態の排気還流量制御弁をそれぞれ示す概略図である。図7は、参考形態の排気還流量制御弁の流量特性を示すグラフである。 FIG. 5 is a cross-sectional view of an exhaust gas recirculation amount control valve according to a reference embodiment. 6 (a) to 6 (c) are schematic views respectively showing an exhaust gas recirculation amount control valve of a reference form in a small lift region, a middle lift region, and a high lift region. FIG. 7 is a graph showing the flow characteristics of the exhaust gas recirculation amount control valve of the reference embodiment.

参考形態は、エンジンの空気過剰率が高い低負荷運転領域から中負荷運転領域で使用することが考えられる。 It is conceivable that the reference form is used in a low load operation region where the engine air excess ratio is high to a medium load operation region.

参考形態においては、第一弁体22に突起部32(図2参照)が設けられていない。 In the reference embodiment, the first valve body 22 is not provided with the protrusion 32 (see FIG. 2).

従って、参考形態では、バルブ25全体としては、小リフト域、中・高リフト域(図6(a)〜(c)参照)の二段階でバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率が変化する(図7参照)。 Therefore, in the reference embodiment, the valve 25 as a whole has a gas flow path area (gas flow rate) with respect to the lift amount of the valve 25 in two stages, a small lift region and a middle / high lift region (see FIGS. 6A to 6C). ) Changes (see FIG. 7).

参考形態では、第一弁体22は、小リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率が中リフト域及び高リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率よりも小さく設定され、第二弁体23は、全リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)がバルブ25のリフトに応じて増加するように設定されるため、バルブ25全体として、小リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率を中リフト域及び高リフト域でのバルブ25のリフト量に対するガス流路面積(ガス流量)の変化率より小さくすることができ、小リフト域でのEGR率を狭い制御範囲で精度良く制御することが可能となる。 In the reference form, the first valve body 22 is configured such that the rate of change of the gas flow path area (gas flow rate) with respect to the lift amount of the valve 25 in the small lift region is a gas with respect to the lift amount of the valve 25 in the middle lift region and the high lift region. The change rate of the flow path area (gas flow rate) is set smaller than that, and the second valve body 23 has a gas flow path area (gas flow rate) corresponding to the lift amount of the valve 25 in the entire lift region according to the lift of the valve 25. Since the valve 25 is set to increase, the rate of change of the gas flow path area (gas flow rate) with respect to the lift amount of the valve 25 in the small lift region is set as the lift of the valve 25 in the middle lift region and the high lift region. The rate of change of the gas flow path area (gas flow rate) with respect to the amount can be made smaller, and the EGR rate in the small lift region can be accurately controlled within a narrow control range.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず他の様々な実施形態を採ることが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various other embodiments can be adopted.

本発明の一実施形態に係る排気還流量制御弁を備えたエンジンの概略図である。 1 is a schematic view of an engine including an exhaust gas recirculation amount control valve according to an embodiment of the present invention. 本発明の一実施形態に係る排気還流量制御弁の断面図である。1 is a cross-sectional view of an exhaust gas recirculation amount control valve according to an embodiment of the present invention . (a)から(c)は、小リフト域、中リフト域及び高リフト域での本発明の一実施形態に係る排気還流量制御弁をそれぞれ示す概略図である。(A) to (c) is a schematic diagram illustrating small lift region, the exhaust gas recirculation amount control valve according to an embodiment of the present invention in a medium lift range and high lift region, respectively. 本発明の一実施形態に係る排気還流量制御弁の流量特性を示すグラフである。It is a graph which shows the flow characteristic of the exhaust gas recirculation amount control valve concerning one embodiment of the present invention . 参考形態の排気還流量制御弁の断面図である。It is sectional drawing of the exhaust gas recirculation amount control valve of a reference form. (a)から(c)は、小リフト域、中リフト域及び高リフト域での参考形態の排気還流量制御弁をそれぞれ示す概略図である。(A)-(c) is the schematic which each shows the exhaust gas recirculation amount control valve of the reference form in a small lift area, a middle lift area, and a high lift area. 参考形態の排気還流量制御弁の流量特性を示すグラフである。It is a graph which shows the flow volume characteristic of the exhaust gas recirculation amount control valve of a reference form.

符号の説明Explanation of symbols

2 吸気管(吸気通路)
3 排気管(排気通路)
10 排気還流量制御弁(EGR弁)
17 取入通路
18 第一供給通路
19 第二供給通路
20 第一開口部
21 第二開口部
22 第一弁体
23 第二弁体
25 バルブ
31 拡径軸部(軸部)
32 突起部
2 Intake pipe (intake passage)
3 Exhaust pipe (exhaust passage)
10 Exhaust gas recirculation control valve (EGR valve)
17 Intake passage 18 First supply passage 19 Second supply passage 20 First opening 21 Second opening 22 First valve body 23 Second valve body 25 Valve 31 Expanded shaft portion (shaft portion)
32 Protrusion

Claims (4)

エンジンの排気通路内の排気ガスの一部を取り入れる取入通路と、上記取入通路から流入した排気ガスを上記エンジンの吸気通路に供給する第一供給通路と、上記取入通路から流入した排気ガスを上記吸気通路に供給する第二供給通路と、上記第一供給通路と上記取入通路との間を連通する第一開口部と、上記第二供給通路と上記取入通路との間を連通する第二開口部と、上記第一開口部開閉する第一弁体と上記第二開口部を開閉する第二弁体とが軸部に一体形成されるバルブとを備え、
上記第一弁体は、上記第一開口部に着座される弁部に一体形成され、上記第一開口部に挿入される拡径軸部と、上記第一開口部に挿入される突起部とを有し、
上記第二弁体は、上記弁部が上記第一開口部に着座するリフト域で、上記第二開口部に着座する位置に形成され、
上記突起部は、上記軸部が上記第二開口部に挿入するリフト域で、上記第一開口部に挿入する位置に形成される
ことを特徴とするエンジンの排気還流量制御弁。
And intake passage for taking a part of the exhaust gas in the exhaust passage of the engine, the exhaust gas flowing from the upper Quito inlet passage and the first supply passage for supplying the intake passage of the engine, flowing from the intake passage a second supply passage for supplying exhaust gas to the intake passage, a first opening communicating between said first supply communication passage and the intake passage, and the second supply passage and the intake passage comprises a second opening communicating between, a valve and a second valve body for opening and closing the first valve body and the second opening that opens and closes the first opening is formed integrally with the shaft portion ,
The first valve body is integrally formed with a valve portion seated in the first opening, and has a diameter-enlarged shaft portion inserted into the first opening, and a protrusion inserted into the first opening. Have
The second valve body is formed at a position where the valve portion is seated on the second opening in a lift region where the valve portion is seated on the first opening.
The exhaust gas recirculation amount control valve for an engine, wherein the protrusion is formed at a position where the shaft portion is inserted into the first opening in a lift region where the shaft is inserted into the second opening .
上記軸部を、上記突起部と上記拡径軸部との間に備える請求項1に記載のエンジンの排気還流量制御弁。 The exhaust recirculation amount control valve for an engine according to claim 1, wherein the shaft portion is provided between the projection portion and the diameter-expanded shaft portion . 上記突起部は、上記バルブの摺動方向に対して垂直方向の断面積が上記拡径軸部における上記バルブの摺動方向に対して垂直方向の断面積より小さく形成される請求項2に記載のエンジンの排気還流量制御弁。 3. The projecting portion is formed such that a cross-sectional area in a direction perpendicular to a sliding direction of the valve is smaller than a cross-sectional area in a direction perpendicular to the sliding direction of the valve in the enlarged diameter shaft portion. Engine exhaust gas recirculation control valve. 上記第一弁体は、小リフト域及び高リフト域での上記バルブのリフト量に対するガス流量の変化率が中リフト域での上記バルブのリフト量に対するガス流量の変化率よりも小さく設定され、
上記第二弁体は、全リフト域での上記バルブのリフト量に対するガス流量が上記バルブのリフトに応じて増加するように設定される請求項1から3いずれかに記載のエンジンの排気還流量制御弁。
The first valve body is set such that the change rate of the gas flow rate with respect to the lift amount of the valve in the small lift region and the high lift region is smaller than the change rate of the gas flow rate with respect to the lift amount of the valve in the middle lift region,
The exhaust gas recirculation amount of the engine according to any one of claims 1 to 3, wherein the second valve body is set such that a gas flow rate with respect to a lift amount of the valve in an entire lift region increases according to the lift of the valve. Control valve.
JP2006082680A 2006-03-24 2006-03-24 Engine exhaust recirculation control valve Expired - Fee Related JP4710681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082680A JP4710681B2 (en) 2006-03-24 2006-03-24 Engine exhaust recirculation control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082680A JP4710681B2 (en) 2006-03-24 2006-03-24 Engine exhaust recirculation control valve

Publications (2)

Publication Number Publication Date
JP2007255357A JP2007255357A (en) 2007-10-04
JP4710681B2 true JP4710681B2 (en) 2011-06-29

Family

ID=38629835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082680A Expired - Fee Related JP4710681B2 (en) 2006-03-24 2006-03-24 Engine exhaust recirculation control valve

Country Status (1)

Country Link
JP (1) JP4710681B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165951U (en) * 1980-05-12 1981-12-09
JPH0791326A (en) * 1993-09-22 1995-04-04 Mazda Motor Corp Exhaust gas refluxing device for engine having supercharger
JPH08312470A (en) * 1995-05-17 1996-11-26 Isuzu Motors Ltd Flow control valve
JPH1113558A (en) * 1997-06-23 1999-01-19 Honda Motor Co Ltd Exhaust circulation control valve for vehicular engine
WO1999043942A1 (en) * 1998-02-27 1999-09-02 Mitsubishi Denki Kabushiki Kaisha Exhaust gas reflux device
JP2002081571A (en) * 2000-09-08 2002-03-22 Mitsubishi Motors Corp Flow control valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165951U (en) * 1980-05-12 1981-12-09
JPH0791326A (en) * 1993-09-22 1995-04-04 Mazda Motor Corp Exhaust gas refluxing device for engine having supercharger
JPH08312470A (en) * 1995-05-17 1996-11-26 Isuzu Motors Ltd Flow control valve
JPH1113558A (en) * 1997-06-23 1999-01-19 Honda Motor Co Ltd Exhaust circulation control valve for vehicular engine
WO1999043942A1 (en) * 1998-02-27 1999-09-02 Mitsubishi Denki Kabushiki Kaisha Exhaust gas reflux device
JP2002081571A (en) * 2000-09-08 2002-03-22 Mitsubishi Motors Corp Flow control valve

Also Published As

Publication number Publication date
JP2007255357A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US7363761B1 (en) Exhaust gas throttle for divided turbine housing turbocharger
JP4301296B2 (en) Exhaust gas recirculation system for internal combustion engines
JP4492406B2 (en) Diesel engine intake / exhaust system
EP1808591A2 (en) Exhaust gas recirculation control apparatus for internal combustion engine and control method of the same
JP2008008205A (en) Exhaust gas recirculation device for internal combustion engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
WO2006077708A1 (en) Egr device
JP2010528211A (en) Intake / exhaust system of combustion engine, component thereof, and operation control method thereof
JP2007085198A (en) Supercharging pressure control system of internal combustion engine
JP5212923B2 (en) Control device for internal combustion engine
KR101126233B1 (en) Egr system and control method for the same
JP6565109B2 (en) Control method and control apparatus for internal combustion engine
JP2007016612A (en) Exhaust gas pressure controller of internal combustion engine
JP4710681B2 (en) Engine exhaust recirculation control valve
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP5651979B2 (en) EGR device
JP5131138B2 (en) Engine blow-by gas processing equipment
JP4559915B2 (en) Exhaust gas recirculation device
JP4247100B2 (en) Internal combustion engine with exhaust gas recirculation device
JP2009127540A (en) Control device of turbocharger
JP2004278433A (en) Engine with supercharger
JP2006105096A (en) Internal combustion engine with supercharger
JP4601518B2 (en) EGR device
JP5206514B2 (en) Exhaust gas recirculation device for internal combustion engine
JPH11200959A (en) Egr valve structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

LAPS Cancellation because of no payment of annual fees