JP4710434B2 - Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer - Google Patents

Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer Download PDF

Info

Publication number
JP4710434B2
JP4710434B2 JP2005189807A JP2005189807A JP4710434B2 JP 4710434 B2 JP4710434 B2 JP 4710434B2 JP 2005189807 A JP2005189807 A JP 2005189807A JP 2005189807 A JP2005189807 A JP 2005189807A JP 4710434 B2 JP4710434 B2 JP 4710434B2
Authority
JP
Japan
Prior art keywords
air
valve
tube
measurement
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005189807A
Other languages
Japanese (ja)
Other versions
JP2007007038A (en
Inventor
宗春 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2005189807A priority Critical patent/JP4710434B2/en
Priority to TW095112983A priority patent/TW200700047A/en
Publication of JP2007007038A publication Critical patent/JP2007007038A/en
Application granted granted Critical
Publication of JP4710434B2 publication Critical patent/JP4710434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は血圧計用排気バルブの漏気測定装置及び漏気測定方法に関するものであり、特に、漏気測定の時間短縮と精度向上が図れる血圧計用排気バルブの漏気測定装置及び漏気測定方法に関するものである。   The present invention relates to a leak measurement device and a leak measurement method for an exhaust valve for a sphygmomanometer, and more particularly to a leak measurement device and an leak measurement for an exhaust valve for a sphygmomanometer that can shorten the time and improve accuracy of the leak measurement. It is about the method.

従来の血圧計用排気バルブの漏気測定装置1を図5に示す。被測定物(製品)である血圧計用排気バルブ2の漏気測定を行う際、まず、バルブ用電源3の電圧オンにより血圧計用排気バルブ2を閉状態としたのち、CPU4の指令信号で電磁弁5を開く。ついで、該電磁弁5から所定圧の加圧エアー6をエアーチューブ8に送ることにより、エアータンク7及び血圧計用排気バルブ2までのエアーチューブ8内の圧力Pは、規格圧以上、たとえば330mmHg(44kpa)に加圧される。加圧後、電磁弁5を閉じたのち、圧力のふらつき安定のため30秒間ほど放置する。   FIG. 5 shows a conventional air leak measuring device 1 for an exhaust valve for a blood pressure monitor. When measuring the leakage of the sphygmomanometer exhaust valve 2, which is the object to be measured (product), first the sphygmomanometer exhaust valve 2 is closed by turning on the voltage of the valve power supply 3, and then the command signal of the CPU 4 is used. Open the solenoid valve 5. Then, by sending pressurized air 6 having a predetermined pressure from the electromagnetic valve 5 to the air tube 8, the pressure P in the air tube 8 to the air tank 7 and the sphygmomanometer exhaust valve 2 is equal to or higher than a standard pressure, for example, 330 mmHg. Pressurized to (44 kpa). After pressurization, the solenoid valve 5 is closed and left for about 30 seconds to stabilize the pressure fluctuation.

そして、圧力センサー9で放置時間T1(例えば30秒)後のエアーチューブ8内の圧力を読み取り、さらに、所定時間(例えば60秒)経過後のエアーチューブ8内の圧力を読み取る。そして、それぞれ読み取った2つの圧力差ΔPを電気信号として検出し、この検出値はA/D変換器10に電気信号として送られる。A/D変換器10に送られた圧力信号は、CPU4で演算処理されて、その結果を表示モニター11で数値表示して、血圧計用排気バルブ2の漏気測定試験の合否を自動判定している。(類似した関連先行技術としては特許文献1を参照のこと)。   The pressure sensor 9 reads the pressure in the air tube 8 after the standing time T1 (for example, 30 seconds), and further reads the pressure in the air tube 8 after a predetermined time (for example, 60 seconds) has elapsed. Then, the two read pressure differences ΔP are detected as electrical signals, and the detected values are sent to the A / D converter 10 as electrical signals. The pressure signal sent to the A / D converter 10 is arithmetically processed by the CPU 4 and the result is numerically displayed on the display monitor 11 to automatically determine the pass / fail of the leak measurement test of the sphygmomanometer exhaust valve 2. ing. (See Patent Document 1 for similar related prior art).

その他、12はCPU電源である。尚、エアータンク7が小型バルブ用65ccタンクである場合の測定データ波形の一例を図6に示すが、横軸に時間T、縦軸にチューブ内圧力(タンク内圧)Pをとっている。
特開2002−78686号
In addition, 12 is a CPU power source. FIG. 6 shows an example of a measurement data waveform when the air tank 7 is a 65 cc tank for a small valve. The horizontal axis represents time T, and the vertical axis represents tube internal pressure (tank internal pressure) P.
JP 2002-78686 A

従来のバルブ漏気測定によれば、血圧計用排気バルブ2の製品規格の種類に応じて、エアータンク7の容量も違うが、タンク容量が小さくなると、それに伴い、放置状態でのチューブ内圧力Pのふらつきが大きくなる。そのため、ふらつき安定化のための放置時間T1は、30秒では足りなくなる。又、次回測定のため、前回測定の終了後(製品取り外し後)は、エアーチューブ8内へのエアー供給により、チューブ内圧力Pを0から立ち上げなければならないので、図6中に符号Nで示すように、測定波形に多くのノイズが生じ、測定精度を低下させる原因になる。ここで、測定精度を上げるには、放置時間T1を長くすれば良いが、この場合は、放置時間T1が長くなる分だけ、時間当たりの測定効率が低下するという問題があった。   According to the conventional valve leak measurement, the capacity of the air tank 7 differs depending on the product specification type of the sphygmomanometer exhaust valve 2. However, as the tank capacity decreases, the pressure in the tube in the neglected state increases accordingly. P wobble increases. Therefore, the standing time T1 for stabilizing the wobbling is insufficient in 30 seconds. Also, for the next measurement, after the previous measurement is completed (after product removal), the tube pressure P must be raised from 0 by supplying air into the air tube 8, so that the symbol N in FIG. As shown, a lot of noise is generated in the measurement waveform, which causes a reduction in measurement accuracy. Here, in order to increase the measurement accuracy, the standing time T1 may be lengthened. However, in this case, there is a problem that the measurement efficiency per hour is lowered by the amount of the standing time T1 being increased.

そこで、血圧計用排気バルブの漏気測定の効率改善と要求品質アップを実現すべく、漏気測定時間の短縮と漏気測定精度の向上が図れるようにするために解決すべき技術的課題が生じてくるのであり、本発明は該課題を解決することを目的とする。   Therefore, there are technical issues to be solved in order to reduce the time required for air leak measurement and improve the accuracy of air leak measurement in order to improve the efficiency of air leak measurement and improve the required quality of the sphygmomanometer exhaust valve. The present invention aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、血圧計用排気バルブが着脱自在に取り付けられる一端部を有するエアーチューブと、該エアーチューブの他端部側に設けられたエアー供給用開閉弁と、前記エアーチューブの中間部
に配設されたエアータンクとを備えた血圧計用排気バルブの漏気測定装置において、前記エアーチューブの一端部近傍にチューブ内圧保持用開閉弁を設け、前回の漏気測定終了後にチューブ内圧保持用開閉弁を閉鎖することにより、前回のチューブ内圧を密閉保持したままで次回の血圧計用排気バルブの漏気測定を行うように構成した血圧計用排気バルブの漏気測定装置を提供する。
The present invention has been proposed to achieve the above object, and the invention according to claim 1 is directed to an air tube having one end portion to which an exhaust valve for a sphygmomanometer is detachably attached, and the other end of the air tube. In an air leakage measuring device for a sphygmomanometer exhaust valve comprising an air supply on-off valve provided on the side of the air and an air tank disposed in the middle part of the air tube, in the vicinity of one end of the air tube By installing a tube internal pressure holding on-off valve and closing the tube internal pressure holding on-off valve after the previous air leakage measurement is completed, the next air leak measurement of the sphygmomanometer exhaust valve can be performed while the previous tube internal pressure is kept airtight. Provided is a device for measuring air leakage of an exhaust valve for a blood pressure monitor configured to be performed.

この構成によれば、エアーチューブの一端部近傍にチューブ内圧保持用開閉弁が設けられ、該開閉弁を漏気測定終了後に閉じることにより、前回測定時のチューブ内圧をそのままキープした状態で、次回の血圧計用排気バルブの漏気測定を行う。よって、チューブ内圧のふらつき安定化のための放置時間を長くしなくとも、良好な漏気測定を安定して行える。   According to this configuration, the tube internal pressure holding on-off valve is provided in the vicinity of one end portion of the air tube, and the on-off valve is closed after the end of the air leakage measurement so that the tube internal pressure at the previous measurement is kept as it is next time. Measure the air leakage of the sphygmomanometer exhaust valve. Therefore, it is possible to stably perform good air leakage measurement without increasing the standing time for stabilizing the fluctuation of the tube internal pressure.

請求項2記載の発明では、上記チューブ内圧保持用開閉弁が電磁弁である請求項1記載の血圧計用排気バルブの漏気測定装置を提供する。   According to a second aspect of the present invention, there is provided the leak measuring apparatus for an exhaust valve for a sphygmomanometer according to the first aspect, wherein the on-off valve for maintaining the tube internal pressure is an electromagnetic valve.

この構成によれば、チューブ内圧保持用開閉弁が電磁弁であるので、電気信号のオンオフにより高速に開閉される。   According to this configuration, since the on-off valve for maintaining the tube internal pressure is an electromagnetic valve, it is opened / closed at high speed by turning on / off the electrical signal.

請求項3記載の発明では、上記チューブ内圧保持用開閉弁とエアー供給用開閉弁は、同一の制御装置により開閉制御される請求項1記載の血圧計用排気バルブの漏気測定装置を提供する。   According to a third aspect of the present invention, there is provided the apparatus for measuring leakage of a sphygmomanometer exhaust valve according to the first aspect, wherein the on-off valve for maintaining the internal pressure of the tube and the on-off valve for supplying air are controlled to be opened and closed by the same control device. .

この構成によれば、チューブ内圧保持用開閉弁は、エアー供給用開閉弁と同一の制御装置(CPU)により開閉動作され、別途専用の制御装置を設ける必要がない。   According to this configuration, the tube internal pressure holding on-off valve is opened and closed by the same control device (CPU) as the air supply on-off valve, and there is no need to provide a separate dedicated control device.

請求項4記載の発明は、エアーチューブの一端部に血圧計用排気バルブを取り付けた後、該エアーチューブに加圧エアーを封入して漏気測定を行う方法において、前回の漏気測定終了後に、前記エアーチューブの一端部近傍に設けたチューブ内圧保持用開閉弁を閉鎖することにより、前回のチューブ内圧を密閉保持したままで次回の血圧計用排気バルブを交換し、次回の漏気測定を行う血圧計用排気バルブの漏気測定方法を提供する。   The invention according to claim 4 is a method in which after the exhaust valve for a sphygmomanometer is attached to one end of the air tube, the air tube is filled with pressurized air to measure the air leakage. By closing the tube internal pressure holding on-off valve provided near one end of the air tube, the next sphygmomanometer exhaust valve is replaced while keeping the previous tube internal pressure sealed, and the next leak measurement is performed. Provided is a method for measuring leakage of a blood pressure monitor exhaust valve.

この構成によれば、エアーチューブの一端部近傍のチューブ内圧保持用開閉弁を前回測定終了後に閉じることで、前回測定時のチューブ内圧が次回測定時に有効に利用される。例えば、エアーチューブの一端部に血圧計用排気バルブ(製品)を取り付け、エアーチューブにエアーを加圧封入して、チューブ内圧を規格圧に設定することにより、1回目の漏気測定を行う。   According to this configuration, by closing the tube internal pressure holding on-off valve in the vicinity of one end of the air tube after the previous measurement is completed, the tube internal pressure at the previous measurement is effectively used at the next measurement. For example, a blood pressure meter exhaust valve (product) is attached to one end of the air tube, air is pressurized and sealed in the air tube, and the internal pressure of the tube is set to a standard pressure, thereby performing the first leak measurement.

次回(2回目)の漏気測定では、前回の測定終了後にチューブ内圧保持用開閉弁を閉鎖したままで、次の製品と交換して後、前回同様の漏気測定を行う。これにより、前回測定終了後のチューブ内圧が次回測定時でも密閉保持されるので、チューブ内圧の安定化のために長い放置時間が必要としない。   In the next (second) air leak measurement, after the previous measurement is completed, the tube internal pressure holding on-off valve is closed and replaced with the next product. As a result, the tube internal pressure after the end of the previous measurement is hermetically maintained even at the next measurement, so that a long standing time is not required for stabilizing the tube internal pressure.

請求項1記載の発明は、 請求項1記載の発明は、エアータンク容量が小さい場合でも、圧力のふらつき安定のために一定時間以上長く放置する必要がないので、従来に比べその分だけ測定効率が高くなるという格別の効果を奏する。特に、前回測定終了後にチューブ内圧保持用開閉弁を閉鎖することにより、前回測定時のチューブ内圧をそのまま有効に利用できるので、チューブ内を0から規格圧まで加圧する工程(立ち上げ工程)を削減でき、しかも、立ち上げ時の測定波形に多くのノイズが生じていた従来方式に較べて、かなり精度の高い安定した漏気測定が可能になり、大幅な品質向上が図られる。   The invention according to claim 1 is that the invention according to claim 1 does not need to be left longer than a certain time in order to stabilize the pressure fluctuation even when the air tank capacity is small. Has the special effect of increasing the value. In particular, by closing the tube internal pressure holding on-off valve after the last measurement, the tube internal pressure at the previous measurement can be used effectively as it is, thus reducing the process (start-up process) of pressurizing the tube from 0 to the standard pressure. In addition, compared with the conventional method in which a lot of noise is generated in the measurement waveform at the time of start-up, it is possible to perform stable air leakage measurement with considerably high accuracy, and a significant improvement in quality can be achieved.

請求項2記載の発明は、チューブ内圧保持用開閉弁は、電気信号のオンオフにより高速に開閉されるので、請求項1記載の発明の効果に加えて、開閉弁の切り替え動作(切り替えタイミング)を正確迅速に制御でき、チューブ内圧保持作用をより確実に行えるという特有のメリットがある。   According to the second aspect of the present invention, the on-off valve for holding the tube internal pressure is opened and closed at a high speed by turning on / off the electrical signal. Therefore, in addition to the effect of the first aspect, the switching operation (switching timing) of the on-off valve is performed. There is a unique merit that it can be controlled accurately and quickly, and the pressure inside the tube can be maintained more reliably.

請求項3記載の発明は、エアー供給用開閉弁とチューブ内圧保持用開閉弁は共に、同一の制御装置により開閉制御されるので、請求項1記載の発明の効果に加えて、漏気測定の自動化が促進され、同時に、制御装置の共用化により制御系の簡易化が図れる。   In the invention according to claim 3, since the air supply on-off valve and the tube internal pressure holding on-off valve are both controlled to be opened and closed by the same control device, in addition to the effect of the invention of claim 1, air leakage measurement Automation is promoted, and at the same time, the control system can be simplified by sharing the control device.

請求項4記載の発明は、エアータンク容量が小さい場合でも、圧力安定化のための放置時間を長くする必要がなく、しかも、測定波形にノイズを生じることもないので、精度の高い安定した測定を効率良く行える。   In the invention according to claim 4, even when the air tank capacity is small, it is not necessary to lengthen the standing time for stabilizing the pressure, and no noise is generated in the measurement waveform. Can be performed efficiently.

本発明による最良の実施形態は、エアーチューブの一端部に血圧計用排気バルブが着脱自在に取り付けられ、かつ、エアーチューブの他端部にエアー供給用電磁弁を設けると共に、エアーチューブの中間部にエアータンクを設置し、更に、エアーチューブの一端部近傍にチューブ内圧保持用電磁弁を設け、前回の漏気測定終了後に、チューブ内圧保持用開閉弁を閉鎖して、次回の血圧計用排気バルブと交換して取り付け、前回のチューブ内圧を保持しつつ、次回の漏気測定を行うことにより、エアータンク容量が小さい場合でも、チューブ内圧安定化のために放置時間を長くしなくとも、高い測定精度を確保できるという目的を達成した。   In the best mode of the present invention, a blood pressure monitor exhaust valve is detachably attached to one end of an air tube, and an air supply electromagnetic valve is provided to the other end of the air tube, and an intermediate portion of the air tube In addition, an air tank is installed in the vicinity of one end of the air tube. After the previous air leakage measurement, the tube internal pressure holding on-off valve is closed and the next sphygmomanometer exhaust. Replacing and installing the valve, maintaining the previous tube internal pressure, and performing the next leak measurement, even if the air tank capacity is small, it is high without increasing the standing time to stabilize the tube internal pressure The purpose of ensuring measurement accuracy was achieved.

即ち、漏気測定終了後に、漏気測定器の内部圧を密閉状態に保持することにより、漏気測定器の内部圧のロスを少なくし、前回の測定時間T2が圧力安定のための時間(従来の放置時間T1)を兼ねるようになる。それゆえ、血圧計用排気バルブを新しく交換して次回の漏気測定を行う際に、精度の高い安定した測定ができる。又、従来の放置時間T1が大幅に短縮されるので、時間当たりの漏気測定の生産効率が高まる。   That is, after the air leakage measurement is completed, the internal pressure of the air leakage measuring device is maintained in a sealed state to reduce the loss of the internal pressure of the air leakage measuring device, and the previous measurement time T2 is a time for pressure stabilization ( It also serves as the conventional standing time T1). Therefore, when the blood pressure monitor exhaust valve is newly replaced and the next air leakage measurement is performed, highly accurate and stable measurement can be performed. In addition, since the conventional standing time T1 is significantly shortened, the production efficiency of air leakage measurement per hour is increased.

以下、本発明の一実施例を図1乃至図4に従って説明する。図1は、本実施例に係る血圧計用排気バルブの漏気測定装置14を示す説明図である。尚、図5の従来例と同一の構成要素には、それと同一の符号を付して説明する。図1において、エアーチューブ8は、血圧計用排気バルブ2が着脱自在に嵌着される一端部を有し、該嵌着された血圧計用排気バルブ2の開閉は、バルブ用電源3のオンオフに応じて切り替えられるよう構成されている。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory diagram showing a leak measurement device 14 for an exhaust valve for a blood pressure monitor according to the present embodiment. It should be noted that the same components as those in the conventional example of FIG. In FIG. 1, an air tube 8 has one end portion into which a sphygmomanometer exhaust valve 2 is detachably fitted, and the sphygmomanometer exhaust valve 2 is opened and closed by turning on and off the valve power supply 3. It is configured to be switched according to the situation.

エアーチューブ8の他端側は、図示せぬコンプレッサーに接続され、コンプレッサーにより、加圧エアー6をエアーチューブ8内に封入することによって、エアーチューブ8の内部圧力Pは、規格値まで昇圧される。また、エアーチューブ8の他端側部分には、エアー供給用開閉弁としての電磁弁5が設置され、電磁弁5の開閉動作は、CPU4からの指令信号に基づいて切り替え制御される。   The other end of the air tube 8 is connected to a compressor (not shown), and the internal pressure P of the air tube 8 is increased to a standard value by sealing the pressurized air 6 into the air tube 8 by the compressor. . In addition, an electromagnetic valve 5 as an air supply opening / closing valve is installed at the other end portion of the air tube 8, and the opening / closing operation of the electromagnetic valve 5 is controlled to be switched based on a command signal from the CPU 4.

前記エアーチューブ8の一端部とエアー供給用電磁弁5との間にはエアータンク7が設けられ、エアータンク7の内部には圧力センサー9が設けられている。圧力センサー9は、エアータンク7及びこれと連通するエアーチューブ8内の圧力Pを検出するもので、該検出データは、A/D変換器10に電気信号として送られる。A/D変換器10に送られた圧力信号は、CPU4で演算処理されて、図4に例示するような測定データ波形が出力される。   An air tank 7 is provided between one end of the air tube 8 and the air supply solenoid valve 5, and a pressure sensor 9 is provided inside the air tank 7. The pressure sensor 9 detects the pressure P in the air tank 7 and the air tube 8 communicating with the air tank 7, and the detection data is sent to the A / D converter 10 as an electrical signal. The pressure signal sent to the A / D converter 10 is arithmetically processed by the CPU 4 to output a measurement data waveform as illustrated in FIG.

さらに、エアーチューブ8の一端部近傍には、チューブ内圧保持用開閉弁としての電磁弁15が設けられ、この電磁弁15の開閉動作は、エアー供給用電磁弁5と同様に、CPU4からの指令信号に基づき切り替え制御される。チューブ内圧保持用電磁弁15は、例えば1回目の血圧計用排気バルブ2の漏気測定終了後に閉鎖され、チューブ内圧Pを密閉状態のままキープする。このため、チューブ内圧Pが所定値以上に保持ざれた状態で、2回目の漏気測定が行われる。なお、電磁弁15としては、ここでは図3に示す常時閉(NC)タイプのものを使用しているが、CPU4により開閉制御できれば、勿論これに限定されない。   Further, in the vicinity of one end portion of the air tube 8, an electromagnetic valve 15 as a tube internal pressure holding open / close valve is provided. The open / close operation of the electromagnetic valve 15 is controlled by a command from the CPU 4 as with the air supply electromagnetic valve 5. Switching control is performed based on the signal. The tube internal pressure holding electromagnetic valve 15 is closed after the first leak measurement of the sphygmomanometer exhaust valve 2, for example, and keeps the tube internal pressure P in a sealed state. For this reason, the second air leakage measurement is performed in a state where the tube internal pressure P is not maintained at a predetermined value or more. Here, as the solenoid valve 15, a normally closed (NC) type shown in FIG. 3 is used here, but it is of course not limited to this as long as the CPU 4 can perform opening / closing control.

次に、実施例の測定原理について説明する。血圧計用排気バルブ2の漏気測定に際し、まず、エアーチューブ8の一端部に血圧計用排気バルブ2を装着した後、電源3のオン作動により、血圧計用排気バルブ2に電圧をかけて、これを閉状態にする。つぎに、CPU4の指令信号により、エアー供給用電磁弁5及びチューブ内圧保持用電磁弁15を開き、コンプレッサーから所定圧の加圧エアー6をエアーチューブ8内に送る。これによって、エアータンク7及び血圧計用排気バルブ2までのエアーチューブ8内の圧力Pが330mmHg(44kpa)まで加圧される。加圧後、CPU4の指令信号により、エアー供給用電磁弁5を閉じる。   Next, the measurement principle of the example will be described. When measuring the leakage of the sphygmomanometer exhaust valve 2, first, the sphygmomanometer exhaust valve 2 is attached to one end of the air tube 8, and then the power supply 3 is turned on to apply a voltage to the sphygmomanometer exhaust valve 2. This is closed. Next, in response to a command signal from the CPU 4, the air supply electromagnetic valve 5 and the tube internal pressure holding electromagnetic valve 15 are opened, and pressurized air 6 having a predetermined pressure is sent from the compressor into the air tube 8. As a result, the pressure P in the air tube 8 to the air tank 7 and the blood pressure monitor exhaust valve 2 is increased to 330 mmHg (44 kpa). After pressurization, the air supply electromagnetic valve 5 is closed by a command signal from the CPU 4.

エアー供給用電磁弁5を閉じたら、圧力センサー9でエアーチューブ8内の圧力を読み取り、この後、測定時間T2=60秒経過後のエアーチューブ8内の圧力を読み取る。そして、読み取った2つの圧力の差ΔPを電気信号として検出する。この検出値はA/D変換器10に電気信号として送られる。A/D変換器10に送られた圧力信号は、CPU4で演算処理されて、その演算結果を表示モニター11にて数値表示し、併せて、血圧計用排気バルブ2の漏気測定の合否判定結果を自動表示する。   When the air supply solenoid valve 5 is closed, the pressure in the air tube 8 is read by the pressure sensor 9, and then the pressure in the air tube 8 after the measurement time T2 = 60 seconds has elapsed. Then, the difference ΔP between the two read pressures is detected as an electric signal. This detected value is sent to the A / D converter 10 as an electrical signal. The pressure signal sent to the A / D converter 10 is arithmetically processed by the CPU 4, and the calculation result is numerically displayed on the display monitor 11. In addition, the pass / fail determination of the leak measurement of the sphygmomanometer exhaust valve 2 is performed. Automatically display results.

血圧計用排気バルブ2の漏気測定が終了すると、同時に、CPU4の指令信号により、チューブ内圧保持用電磁弁15は閉弁状態となり、この電磁弁15とエアー供給用電磁弁5の間におけるエアーチューブ8の内部圧力Pを密閉保持する。このあと、エアーチューブ8一端部の血圧計用排気バルブ2を、次の測定対象物たる製品と交換して装着する。この場合、図2に示すように、エアーチューブ8における電磁弁5と電磁弁15との間の部分(エアータンク7を含む)は、それ以外の部分8R,8Lとは異なり、加圧エアー6が密封保持されたままであるので、内部圧力Pは所定値以上にキープされる。   When the air leak measurement of the sphygmomanometer exhaust valve 2 is completed, the tube internal pressure maintaining solenoid valve 15 is closed at the same time by the command signal of the CPU 4, and the air between the solenoid valve 15 and the air supply solenoid valve 5 is closed. The internal pressure P of the tube 8 is kept hermetically. Thereafter, the sphygmomanometer exhaust valve 2 at one end of the air tube 8 is replaced with a product that is the next object to be measured. In this case, as shown in FIG. 2, the portion of the air tube 8 between the solenoid valve 5 and the solenoid valve 15 (including the air tank 7) is different from the other portions 8R and 8L, and the pressurized air 6 Remains sealed, the internal pressure P is kept above a predetermined value.

製品交換後、チューブ内圧力Pが300mmHg以上であることを条件に、エアー供給用電磁弁5を閉じたままで、チューブ内圧保持用電磁弁15を開き、前回同様の手順に従って漏気測定を行う。したがって、エアータンク容量が小さい場合でも、従来の如きチューブ内圧を立ち上げるための時間が不要になり、放置時間T1の短縮化が可能になる。   After product replacement, on the condition that the tube internal pressure P is 300 mmHg or more, the tube internal pressure maintaining electromagnetic valve 15 is opened while the air supply electromagnetic valve 5 is closed, and air leakage is measured according to the same procedure as the previous time. Therefore, even when the capacity of the air tank is small, the time for raising the tube internal pressure as in the prior art becomes unnecessary, and the standing time T1 can be shortened.

参考のため、実施例による測定データ波形(時間T−圧力Pの特性グラフ)を、図4に例示する。図中、T3は製品交換時間である。   For reference, a measurement data waveform (time T-pressure P characteristic graph) according to the example is illustrated in FIG. In the figure, T3 is the product replacement time.

このように、本実施例は、漏気測定を行うたびに、毎回、エアーチューブ8内の圧力Pを0から規格圧まで加圧する必要がないので、圧力変動安定化のための時間を省略でき、かつ、漏気測定を高精度に行うことができる。つまり、前回測定終了後の密閉加圧状態が、次回の漏気測定においても有効に利用される。このことにより、チューブ内圧Pのふらつき安定のための工程が不要になり、しかも、従来方法で圧力立ち上げ時に生じていたノイズがなくなり、高精度な漏気測定が可能になる。因みに、従来は、毎回、チューブ内圧Pのふらつき安定のために、放置時間T1を一定時間以上長くする必要があったので、その分だけ測定作業が長くなり、加えて、測定精度も良くなかった。   As described above, in this embodiment, it is not necessary to increase the pressure P in the air tube 8 from 0 to the standard pressure every time the air leakage measurement is performed, so that time for stabilizing the pressure fluctuation can be omitted. In addition, leak measurement can be performed with high accuracy. That is, the hermetic pressure state after the end of the previous measurement is effectively used in the next air leakage measurement. This eliminates the need for a process for stabilizing the fluctuation of the tube internal pressure P, eliminates the noise generated when the pressure is raised by the conventional method, and enables highly accurate leakage measurement. Incidentally, in the past, in order to stabilize the fluctuation of the tube internal pressure P every time, it was necessary to lengthen the standing time T1 for a certain time or more, so that the measurement work became longer and the measurement accuracy was not good. .

なお、前述の製品交換直後において、チューブ内圧Pが300mmHg未満の場合は、エアー供給用電磁弁5を開いて加圧エアー6を送って、チューブ内圧Pを330mmHg程度まで補充加圧するものとする。この後の測定手順は、電磁弁5閉じて上記同様に測定できる。   If the tube internal pressure P is less than 300 mmHg immediately after the product replacement, the air supply electromagnetic valve 5 is opened and the pressurized air 6 is sent to replenish and pressurize the tube internal pressure P to about 330 mmHg. The subsequent measurement procedure can be performed in the same manner as described above with the solenoid valve 5 closed.

上述のように、前回測定終了後に、チューブ内圧保持用開閉弁15を閉鎖することにより、前回測定時のチューブ内圧Pを利用して次回の測定を行うので、チューブ内圧Pを最初から規格圧まで加圧する必要がないばかりか、ノイズのない測定波形が得られ、精度の高い安定した測定が可能になる。又、チューブ内圧保持用開閉弁15は、エアー供給用開閉弁5と同一のCPU4により開閉制御されるので、漏気測定工程の自動化と制御系の簡易化が同時に両立される。   As described above, by closing the tube internal pressure holding on-off valve 15 after the end of the previous measurement, the next measurement is performed using the tube internal pressure P at the time of the previous measurement, so that the tube internal pressure P is changed from the first to the standard pressure. Not only does it need to be pressurized, but a measurement waveform free of noise can be obtained, and highly accurate and stable measurement is possible. Moreover, since the tube internal pressure holding on-off valve 15 is controlled to be opened and closed by the same CPU 4 as the air supply on-off valve 5, automation of the air leakage measurement process and simplification of the control system are compatible at the same time.

尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified one.

本発明の一実施例を示し、血圧計用排気バルブの漏気測定装置の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing of the air leak measurement apparatus of the exhaust valve for blood pressure monitors which shows one Example of this invention. 図1の血圧計用排気バルブの漏気測定装置の製品取り替え後の状態を示す構成説明図。Structure explanatory drawing which shows the state after product replacement of the air leak measurement apparatus of the exhaust valve for blood pressure monitors of FIG. 図1の実施例に係る電磁弁の構成例を示す説明図。Explanatory drawing which shows the structural example of the solenoid valve which concerns on the Example of FIG. 図1の実施例に係る圧力センサーで検出される測定信号を示す圧力データ波形図。The pressure data waveform figure which shows the measurement signal detected with the pressure sensor which concerns on the Example of FIG. 従来例を示し、血圧計用排気バルブの漏気測定装置の構成説明図。The structure explanatory drawing of the air leak measurement apparatus of the exhaust valve for blood pressure monitors which shows a prior art example. 図5の従来例に係る圧力センサーで検出される測定信号を示す圧力データ波形図。FIG. 6 is a pressure data waveform diagram showing a measurement signal detected by a pressure sensor according to the conventional example of FIG. 5.

符号の説明Explanation of symbols

1 血圧計用排気バルブの漏気測定装置
2 血圧計用排気バルブ(測定対象物)
3 バルブ用電源
4 CPU(電気制御装置)
5 エアー供給用電磁弁(開閉弁)
6 加圧エアー
7 エアータンク
8 エアーチューブ
9 圧力センサー
10 A/D変換器
11 表示モニター
12 CPU電源
14 血圧計用排気バルブの漏気測定装置
15 チューブ内圧保持用電磁弁(開閉弁)

1 Air pressure measuring device for sphygmomanometer exhaust valve 2 Exhaust valve for sphygmomanometer (measurement object)
3 Valve power supply 4 CPU (electric control device)
5 Solenoid valve for air supply (open / close valve)
6 Pressurized air 7 Air tank 8 Air tube 9 Pressure sensor 10 A / D converter 11 Display monitor 12 CPU power supply 14 Leakage measuring device for exhaust valve for sphygmomanometer 15 Solenoid valve for maintaining internal pressure of tube (open / close valve)

Claims (4)

血圧計用排気バルブが着脱自在に取り付けられる一端部を有するエアーチューブと、該エアーチューブの他端部側に設けられたエアー供給用開閉弁と、前記エアーチューブの中間部に配設されたエアータンクとを備えた血圧計用排気バルブの漏気測定装置において、前記エアーチューブの一端部近傍にチューブ内圧保持用開閉弁を設け、前回の漏気測定終了後にチューブ内圧保持用開閉弁を閉鎖することにより、前回のチューブ内圧を密閉保持したままで、次回の血圧計用排気バルブの漏気測定を行うように構成したことを特徴とする血圧計用排気バルブの漏気測定装置。   An air tube having one end portion to which a sphygmomanometer exhaust valve is detachably attached, an air supply opening / closing valve provided on the other end side of the air tube, and an air disposed in an intermediate portion of the air tube In a leak measuring apparatus for a sphygmomanometer exhaust valve equipped with a tank, a tube internal pressure holding on-off valve is provided in the vicinity of one end of the air tube, and the tube internal pressure holding on-off valve is closed after completion of the previous air leak measurement. Thus, the leak measurement device for the sphygmomanometer exhaust valve is configured to perform the next leak measurement of the sphygmomanometer exhaust valve while keeping the previous tube internal pressure sealed. 上記チューブ内圧保持用開閉弁が電磁弁であることを特徴とする請求項1記載の血圧計用排気バルブの漏気測定装置。   The leak measuring apparatus for an exhaust valve for a sphygmomanometer according to claim 1, wherein the tube internal pressure holding on-off valve is an electromagnetic valve. 上記エアー供給用開閉弁とチューブ内圧保持用開閉弁は、同一の制御装置により開閉制御されることを特徴とする請求項1記載の血圧計用排気バルブの漏気測定装置。   2. The air leak measuring device for an exhaust valve for a sphygmomanometer according to claim 1, wherein the air supply on / off valve and the tube internal pressure holding on / off valve are controlled to be opened and closed by the same control device. エアーチューブの一端部に血圧計用排気バルブを取り付けた後、該エアーチューブに加圧エアーを封入して漏気測定を行う方法において、前回の漏気測定終了後に、前記エアーチューブの一端部近傍に設けたチューブ内圧保持用開閉弁を閉鎖することにより、前回のチューブ内圧を密閉保持したままで、次回の血圧計用排気バルブと交換して漏気測定を行うことを特徴とする血圧計用排気バルブの漏気測定方法。


In the method of attaching air pressure to one end of the air tube and then measuring the leak by sealing the compressed air into the air tube, after the end of the previous leak measurement, near the one end of the air tube For the sphygmomanometer, the air pressure measurement is performed by closing the tube internal pressure holding on-off valve provided in the tube and replacing the next sphygmomanometer exhaust valve while keeping the previous tube internal pressure sealed. Exhaust valve leakage measurement method.


JP2005189807A 2005-06-29 2005-06-29 Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer Expired - Fee Related JP4710434B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005189807A JP4710434B2 (en) 2005-06-29 2005-06-29 Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer
TW095112983A TW200700047A (en) 2005-06-29 2006-04-12 Device and method for measuring air leak for exhaust valve for hemadynamometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189807A JP4710434B2 (en) 2005-06-29 2005-06-29 Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer

Publications (2)

Publication Number Publication Date
JP2007007038A JP2007007038A (en) 2007-01-18
JP4710434B2 true JP4710434B2 (en) 2011-06-29

Family

ID=37746277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189807A Expired - Fee Related JP4710434B2 (en) 2005-06-29 2005-06-29 Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer

Country Status (2)

Country Link
JP (1) JP4710434B2 (en)
TW (1) TW200700047A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147666B2 (en) * 2019-04-03 2022-10-05 オムロンヘルスケア株式会社 Sphygmomanometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228120A (en) * 1992-02-25 1993-09-07 Matsushita Electric Works Ltd Hemadynamometer
JPH1142215A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Sphygmomanometer
JP2002078686A (en) * 2000-09-11 2002-03-19 Citizen Watch Co Ltd Sphygmomanometer
JP2003301777A (en) * 2002-11-26 2003-10-24 Kmc:Kk Piston pump
JP2004160186A (en) * 2002-09-20 2004-06-10 Nippon Seimitsu Sokki Kk Electronic device for health index measurement and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228120A (en) * 1992-02-25 1993-09-07 Matsushita Electric Works Ltd Hemadynamometer
JPH1142215A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Sphygmomanometer
JP2002078686A (en) * 2000-09-11 2002-03-19 Citizen Watch Co Ltd Sphygmomanometer
JP2004160186A (en) * 2002-09-20 2004-06-10 Nippon Seimitsu Sokki Kk Electronic device for health index measurement and its control method
JP2003301777A (en) * 2002-11-26 2003-10-24 Kmc:Kk Piston pump

Also Published As

Publication number Publication date
JP2007007038A (en) 2007-01-18
TW200700047A (en) 2007-01-01
TWI363612B (en) 2012-05-11

Similar Documents

Publication Publication Date Title
US20060196250A1 (en) Leakage tester
US9198584B2 (en) Blood pressure measurement device and control method for blood pressure measurement device
WO2020258815A1 (en) Glue dispensing control apparatus and glue outlet control method therefor
US7899629B2 (en) Method for determining the total leak rate of systems impinged upon by pressure, and control apparatus for carrying out said method
WO2014162817A1 (en) Air pressure circuit for tire testing device
JP4710434B2 (en) Leakage measuring device and leak measuring method for exhaust valve for sphygmomanometer
US11231028B2 (en) Method of driving an atmospheric air pump in a capillary electrophoresis apparatus
JP2804951B2 (en) Precise quantitative discharge method and discharge device
CN108061619A (en) A kind of method that new Medical Devices pressure calibration system and the system are calibrated
US10274972B2 (en) Method of inspecting gas supply system
JP2004278690A (en) Method and device for inspecting working pressure of vent valve
CN210198661U (en) Air tightness detection device
CN109602408B (en) Finger blood pressure simulator, control method and detection method
CN203443752U (en) Device for dynamically detecting the sealing of gas meter valve
JPH0523310A (en) Electronic hemomanometer
JP5463789B2 (en) Leak inspection device
JPH11119839A (en) Pressure control abnormality detection device for semiconductor production device
CN111623855A (en) Flow rate calculation system, storage medium, flow rate calculation method, and flow rate calculation device
JP2010060542A (en) Method and device for inspecting defect of airtight component
JP2000241304A (en) Device for testing water pressure of tire
JP4863453B2 (en) Method and apparatus for inspecting cap with protrusion
CN220206980U (en) Hermetic seal pressure test device of speed reducer
CN218297527U (en) Air tightness test tool for I-PEX head antenna
JP2776021B2 (en) Airtightness inspection method for hollow containers
JPH09229804A (en) Tire air pressure measurement and adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

LAPS Cancellation because of no payment of annual fees