JP4708856B2 - Electron beam calibration method and electron beam apparatus - Google Patents

Electron beam calibration method and electron beam apparatus Download PDF

Info

Publication number
JP4708856B2
JP4708856B2 JP2005142095A JP2005142095A JP4708856B2 JP 4708856 B2 JP4708856 B2 JP 4708856B2 JP 2005142095 A JP2005142095 A JP 2005142095A JP 2005142095 A JP2005142095 A JP 2005142095A JP 4708856 B2 JP4708856 B2 JP 4708856B2
Authority
JP
Japan
Prior art keywords
electron beam
diffraction grating
electron
grating pattern
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005142095A
Other languages
Japanese (ja)
Other versions
JP2006318831A (en
Inventor
義則 中山
康成 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005142095A priority Critical patent/JP4708856B2/en
Priority to US11/431,705 priority patent/US7476882B2/en
Publication of JP2006318831A publication Critical patent/JP2006318831A/en
Application granted granted Critical
Publication of JP4708856B2 publication Critical patent/JP4708856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1536Image distortions due to scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • H01J2237/2816Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration

Description

本発明は、半導体集積回路などの製造プロセスに用いられる電子ビーム測長技術に係り、特に、高精度な電子ビーム測長装置およびその校正方法に関する。   The present invention relates to an electron beam length measurement technique used in a manufacturing process of a semiconductor integrated circuit or the like, and more particularly, to a highly accurate electron beam length measurement apparatus and a calibration method thereof.

従来の電子ビーム装置の校正方法は、例えば(特許文献1)にあるように、2次元配列格子試料上にある角度を持って電子ビームを走査して得られたモアレ回折像により校正を行っている。   A conventional method for calibrating an electron beam apparatus, for example, as disclosed in (Patent Document 1), is performed by calibrating a moire diffraction image obtained by scanning an electron beam with a certain angle on a two-dimensional array lattice sample. Yes.

特開2003-022773号JP 2003-022773 A

電子ビーム装置の高精度化のため、その偏向校正も絶対寸法に基づいた校正が必要になってきている。このため校正に用いる試料のピッチ寸法は絶対寸法として規定されているものを用いる必要がある。また、電子ビーム測長装置においては半導体プロセスでの高精度測長が求められ、絶縁材料や変形しやすい材料の測長が不可欠である。そのため、ビーム照射によるダメージの少ない低電流電子ビームでの測長が求められている。しかし、従来の2次元格子試料では縦横に正確なピッチ寸法で配列させる技術がなく、そのピッチ寸法を正確に測定する手段もなかった。また、低電流電子ビームに対しては回折格子が点の集合で構成されているために一走査あたりから得られる二次電子信号が少ないために精度が悪化する欠点があった。(特許文献1)の方法では、図8のように格子点配列に対して角度をつけて走査させた場合、ビームと格子点が一致する箇所が減少する。そのため得られる二次電子信号も減少するために校正精度劣化の要因となっていた。さらに点格子を用いた場合、各格子間の信号が得られないため二次電子強度が十分に得られないという問題があった。   In order to improve the accuracy of the electron beam apparatus, the deflection calibration is also required based on the absolute dimensions. For this reason, it is necessary to use what is prescribed | regulated as an absolute dimension for the pitch dimension of the sample used for a calibration. In addition, the electron beam length measuring device requires high-precision length measurement in a semiconductor process, and length measurement of an insulating material or a material that is easily deformed is indispensable. Therefore, length measurement with a low-current electron beam with little damage caused by beam irradiation is required. However, the conventional two-dimensional lattice sample has no technique for arranging the pitch dimensions in the vertical and horizontal directions, and there is no means for accurately measuring the pitch dimensions. In addition, for a low current electron beam, the diffraction grating is composed of a set of points, so that there is a disadvantage that accuracy is deteriorated because there are few secondary electron signals obtained from one scan. In the method of (Patent Document 1), when scanning is performed at an angle with respect to the lattice point arrangement as shown in FIG. 8, the number of locations where the beam and the lattice point coincide with each other decreases. For this reason, the secondary electron signals obtained are also reduced, which causes a deterioration in calibration accuracy. Further, when a point lattice is used, there is a problem that a secondary electron intensity cannot be sufficiently obtained because a signal between the lattices cannot be obtained.

本発明では、電子ビーム装置において、偏向を精度良く校正することを可能にするために、電子ビーム走査方向に対して垂直な方向と平行な方向の校正を分けて行い、それぞれ異なる方法を用いる。走査方向に平行な方向の偏向校正については、まず、一次元回折格子を走査方向に垂直に配置させて電子ビームを走査して得られる二次電子信号波形から回折格子のピッチ寸法を求める。求めた回折格子のピッチ寸法と回折格子の実際のピッチ寸法が一致するように偏向を校正する。   In the present invention, in order to calibrate the deflection with high accuracy in the electron beam apparatus, calibration in a direction perpendicular to the electron beam scanning direction is performed separately, and different methods are used. For deflection calibration in the direction parallel to the scanning direction, first, the pitch dimension of the diffraction grating is obtained from the secondary electron signal waveform obtained by scanning the electron beam with the one-dimensional diffraction grating arranged perpendicular to the scanning direction. The deflection is calibrated so that the obtained pitch dimension of the diffraction grating matches the actual pitch dimension of the diffraction grating.

さらに電子ビームの走査方向に対して格子の方向が水平方向になるように一次元回折格子を配置させる。格子のピッチ寸法に一致するように電子ビーム走査を垂直方向に移動させながら水平に走査する。ここで、得られた二次電子信号像から、モアレ干渉縞の有無で電子ビームの走査に対する垂直方向の偏向校正が正しく行われているか判定できる。また、一次元回折格子と電子ビーム走査は共に線状のため、一次元回折格子と電子ビーム走査を一致させると二次電子信号強度が格子点の場合よりも大きく取れ、微弱電子ビームでも良好な二次電子信号像が得られる。さらに一次元回折格子のピッチ寸法は光回折光の回折角測定から正確なピッチ寸法が得られるので、上記校正はその絶対精度が保証される。また、回折格子が化合物半導体等の積層結晶の超格子断面構造の場合には、積層結晶の格子数を透過電子顕微鏡等で計測することで正確なピッチ寸法が得られるので、上記校正はその絶対精度が保証される。   Further, the one-dimensional diffraction grating is arranged so that the direction of the grating is horizontal with respect to the scanning direction of the electron beam. The electron beam scanning is horizontally performed while moving in the vertical direction so as to coincide with the pitch dimension of the grating. Here, from the obtained secondary electron signal image, it can be determined whether or not the deflection calibration in the vertical direction with respect to the scanning of the electron beam is correctly performed with or without moire interference fringes. Also, since the one-dimensional diffraction grating and the electron beam scanning are both linear, if the one-dimensional diffraction grating and the electron beam scanning are matched, the secondary electron signal intensity can be larger than that at the lattice point, and even a weak electron beam is good. A secondary electron signal image is obtained. Furthermore, since the pitch dimension of the one-dimensional diffraction grating can be obtained from the diffraction angle measurement of the light diffracted light, the absolute accuracy of the calibration is guaranteed. In addition, when the diffraction grating has a superlattice cross-sectional structure of a laminated crystal such as a compound semiconductor, an accurate pitch dimension can be obtained by measuring the number of lattices of the laminated crystal with a transmission electron microscope or the like. Accuracy is guaranteed.

以下に、本発明の代表的な構成例を列挙する。
(1)本発明に用いる電子ビーム装置は、電子ビームを照射する電子光学系と、一次元回折格子校正用マーク上で電子ビーム走査を所定の送り量で移動させて行う機能と、ビーム走査により校正用マークおよびその近傍から放出される反射電子もしくは二次電子を検出して、前記検出結果から前記電子ビームの偏向量または偏向歪の校正を行う機能とを含むよう構成したことを特徴とする。
Below, the typical structural example of this invention is enumerated.
(1) An electron beam apparatus used in the present invention includes an electron optical system for irradiating an electron beam, a function for performing electron beam scanning by moving a predetermined feed amount on a one-dimensional diffraction grating calibration mark, and beam scanning. A calibration mark and reflected electrons or secondary electrons emitted from the vicinity thereof, and a function of calibrating the deflection amount or deflection distortion of the electron beam from the detection result. .

(2)本発明の電子ビーム校正方法は、電子源から放出される電子ビームをステージに設けられた一次元回折格子校正用マークのパターン上で走査し、電子ビームを偏向手段により一定の送り量で移動させ、電子ビームの走査により校正用マークおよびその近傍から放出される反射電子もしくは二次電子を検出し、検出結果から電子ビームの偏向量または偏向歪の校正を行うことを特徴とする。   (2) According to the electron beam calibration method of the present invention, the electron beam emitted from the electron source is scanned on the pattern of the one-dimensional diffraction grating calibration mark provided on the stage, and the electron beam is deflected by the deflecting means. The reflected mark or secondary electron emitted from the calibration mark and its vicinity is detected by scanning the electron beam, and the deflection amount or deflection distortion of the electron beam is calibrated from the detection result.

本発明によれば、電子ビーム装置における偏向歪を精度良く校正することが可能な電子ビーム装置および描画方法が実現できる。特に低加速・低電流の電子ビーム測長装置においても高精度な偏向校正が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the electron beam apparatus and drawing method which can calibrate the deflection distortion in an electron beam apparatus with a sufficient precision are realizable. In particular, highly accurate deflection calibration is possible even with a low acceleration and low current electron beam length measuring device.

以下、本発明の実施例について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(a)に、本実施例に用いる電子ビーム測長装置の構成を示す。
電子銃(電子源)1から放出された電子ビーム2を、偏向器4により、試料7上で走査する。ステージ9上には偏向校正用マーク8がある。また、電子ビームにより発生する二次電子6を検出する電子検出器10を用いて二次電子像を表示し二次電子信号波形により測長を行う。測長は、二次電子信号波形から寸法演算部においてパターン寸法を求め、寸法校正演算部により寸法演算部で求めたパターン寸法に補正を加え、測長値として表示および記憶する。測長位置の確認は二次電子像を画像表示部にて行う。
FIG. 1A shows the configuration of an electron beam length measuring device used in this embodiment.
An electron beam 2 emitted from an electron gun (electron source) 1 is scanned on a sample 7 by a deflector 4. There is a deflection calibration mark 8 on the stage 9. In addition, a secondary electron image is displayed using an electron detector 10 that detects secondary electrons 6 generated by an electron beam, and length measurement is performed using a secondary electron signal waveform. In the length measurement, a pattern dimension is obtained from the secondary electron signal waveform in the dimension computation unit, the pattern dimension obtained by the dimension computation unit is corrected by the dimension calibration computation unit, and displayed and stored as a length measurement value. The length measurement position is confirmed by performing a secondary electron image on the image display unit.

ここで電子ビーム走査方向に対して垂直な方向に対するビーム校正方法を述べる。まずステージを移動して校正用マークを電子ビーム直下に位置させる。ビーム走査方向に対して垂直な一次元回折格子パターンに電子ビームを走査して二次電子信号波形から寸法演算部においてピッチ寸法を求める。そして寸法校正演算部により寸法演算部で求めたピッチ寸法と光回折法で求められたピッチ寸法と比較してその差が0になるようにビーム偏向制御部に補正を行い校正する。校正の後、再度一次元回折格子パターンに電子ビームを走査して二次電子信号波形から寸法演算部においてピッチ寸法を求める。寸法演算部で求めたピッチ寸法と光回折法で求められたピッチ寸法とを寸法校正演算部で比較して、その差が0になるように計測値の補正を行う。   Here, a beam calibration method in the direction perpendicular to the electron beam scanning direction will be described. First, the stage is moved to position the calibration mark directly under the electron beam. An electron beam is scanned in a one-dimensional diffraction grating pattern perpendicular to the beam scanning direction, and a pitch dimension is obtained from a secondary electron signal waveform in a dimension calculator. Then, the beam calibration control unit corrects and calibrates the beam deflection control unit so that the difference between the pitch dimension obtained by the dimension calculation unit and the pitch dimension obtained by the optical diffraction method becomes zero. After the calibration, the electron beam is again scanned on the one-dimensional diffraction grating pattern, and the pitch dimension is obtained from the secondary electron signal waveform in the dimension calculator. The pitch dimension obtained by the dimension calculation unit and the pitch dimension obtained by the optical diffraction method are compared by the dimension calibration calculation unit, and the measurement value is corrected so that the difference becomes zero.

次に電子ビーム走査方向に対して水平な方向に対するビーム校正方法を図2の手順に従って述べる。まず図1(a)のステージ9を移動して校正用マーク8を電子ビーム直下に位置させる。図1(b)の校正用マーク基板8には上記で説明したビーム走査に対して垂直な一次元回折格子パターンのほかにビーム走査に対して水平な一次元回折格子パターンも含まれている。   Next, a beam calibration method in a direction horizontal to the electron beam scanning direction will be described according to the procedure shown in FIG. First, the stage 9 shown in FIG. 1A is moved so that the calibration mark 8 is positioned immediately below the electron beam. The calibration mark substrate 8 in FIG. 1B includes a one-dimensional diffraction grating pattern horizontal to the beam scanning in addition to the one-dimensional diffraction grating pattern perpendicular to the beam scanning described above.

図3のようにビーム走査に対して水平な一次元回折格子パターン12に対して電子ビームを走査する。この際、偏向制御部により一次元回折格子パターンの光回折法により得られたピッチ寸法に一致するように走査方向に対して垂直方向に移動させながら走査する。このようにして得られた二次電子像を画像表示部に表示させる。この結果、図3のような二次電子像11において上記回折格子12上の電子ビーム走査部分にモアレ縞13が観察された。これは回折格子のピッチ寸法とビーム走査移動量が一致していない即ち走査位置のずれが発生しているために起こる。また、図3より一様に偏向移動量が回折格子のピッチ寸法よりも大きいことが確認できる。そこで図4のように再度ビーム走査に対して水平な一次元回折格子パターン14に電子ビームを走査して二次電子像15内にモアレ縞が観察されなくなるまで、もしくは位置ずれ量が所定の閾値以下になるまでビーム偏向制御部を調整する。調整が終了したら偏向移動量を調整する偏向パラメータを信号演算部内の校正パラメータ記憶部に記憶させて、このパラメータに基づき偏向制御部で偏向量を補正させる。補正後の二次電子像15を校正状態表示部に表示させる。   As shown in FIG. 3, the one-dimensional diffraction grating pattern 12 horizontal to the beam scanning is scanned with the electron beam. At this time, the deflection control unit performs scanning while moving in the direction perpendicular to the scanning direction so as to coincide with the pitch dimension obtained by the light diffraction method of the one-dimensional diffraction grating pattern. The secondary electron image thus obtained is displayed on the image display unit. As a result, moire fringes 13 were observed in the electron beam scanning portion on the diffraction grating 12 in the secondary electron image 11 as shown in FIG. This occurs because the pitch dimension of the diffraction grating and the beam scanning movement amount do not match, that is, a scanning position shift occurs. Moreover, it can be confirmed from FIG. 3 that the deflection movement amount is larger than the pitch dimension of the diffraction grating. Therefore, as shown in FIG. 4, the electron beam is scanned again on the one-dimensional diffraction grating pattern 14 that is horizontal with respect to the beam scanning until moire fringes are not observed in the secondary electron image 15, or the positional deviation amount is a predetermined threshold value. Adjust the beam deflection controller until: When the adjustment is completed, a deflection parameter for adjusting the deflection movement amount is stored in the calibration parameter storage unit in the signal calculation unit, and the deflection control unit corrects the deflection amount based on this parameter. The corrected secondary electron image 15 is displayed on the calibration state display unit.

また、一次元回折格子パターンと偏向量の校正を画像に基づいて行ったが、モアレ縞の波形解析を演算部で行うことで偏向量の校正を行うことも可能である。
上記一次元回折格子はレーザ干渉露光法と異方性エッチングによりシリコン基板上に作製したものである。一次元回折格子のピッチ寸法は光回折法によりピッチ寸法240 nmに対し1 nm以下の精度で求められている。この結果、ビーム走査の水平・垂直方向で絶対値に基づいた偏向校正ができるので、絶対寸法値として測長値が得られるだけでなく、倍率の正確な二次電子像が得られ高精度測長が可能となり、かつ装置状態をいつでも校正状態表示部で確認できる。さらに微細な一次元回折格子として化合物半導体等の積層結晶の超格子断面構造を用いたものがあげられる。GaAs 基板15上にGaAlAs層17とGaAs層18の各5 nmの層が交互に40層繰り返された断面を、GaAlAs層17だけがエッチングされるような酸液でエッチングを行い、図5のような深溝試料として用いる。この一次元回折格子のピッチ寸法は、積層結晶の格子数を透過電子顕微鏡等で計測することでピッチ寸法10 nmが1 nm以下の精度の絶対寸法として得られる。そのため上記校正はその絶対精度が保証される。この一次元回折格子を用いることにより、より高倍率での校正が可能となる。
Further, although the calibration of the one-dimensional diffraction grating pattern and the deflection amount is performed based on the image, it is also possible to calibrate the deflection amount by performing the waveform analysis of the moire fringes by the calculation unit.
The one-dimensional diffraction grating is produced on a silicon substrate by laser interference exposure and anisotropic etching. The pitch dimension of a one-dimensional diffraction grating is determined with an accuracy of 1 nm or less for a pitch dimension of 240 nm by an optical diffraction method. As a result, deflection calibration based on the absolute value can be performed in the horizontal and vertical directions of the beam scanning, so that not only the length measurement value can be obtained as an absolute dimension value, but also an accurate secondary electron image of the magnification can be obtained and high-precision measurement can be obtained. The device status can be checked at any time on the calibration status display section. Further, a fine one-dimensional diffraction grating using a superlattice cross-sectional structure of a laminated crystal such as a compound semiconductor can be used. The cross section of 40 GaAlAs layers 17 and GaAs layers 18 of 40 nm each alternately repeated on the GaAs substrate 15 is etched with an acid solution so that only the GaAlAs layer 17 is etched, as shown in FIG. Used as a deep groove sample. The pitch dimension of the one-dimensional diffraction grating can be obtained as an absolute dimension with an accuracy that the pitch dimension of 10 nm is 1 nm or less by measuring the number of lattices of the laminated crystal with a transmission electron microscope or the like. Therefore, the absolute accuracy of the calibration is guaranteed. By using this one-dimensional diffraction grating, calibration at higher magnification becomes possible.

図6にビーム偏向移動量が局所的に変調している偏向状態を示す。校正は図2と同様の手順に従って行う。まず図1(a)のステージ9を移動して校正用マーク8を電子ビーム直下に位置させる。この際、偏向制御部により図6の一次元回折格子パターン20の光回折法により得られたピッチ寸法に一致するように移動させながら校正用マーク上を走査する。走査により得られた二次電子像を画像表示部に表示させる。この結果、図6のように二次電子像19の回折格子と電子ビーム走査部分にモアレ縞21が観察された。これは回折格子のピッチ寸法とビーム走査移動量が一致していないために起こる。そこでビーム偏向制御部によって偏向移動量に補正を加えて、例えばビームのピッチ量を局所的に変え、再度ビーム走査に対して水平な一次元回折格子パターンに電子ビームを走査してモアレ縞が観察されなくなるまで、もしくは位置ずれ量が所定の閾値になるまでビーム偏向制御部を調整する。偏向移動量を局所的に変えた校正パラメータを制御装置32内部、好ましくは信号演算部内の、画像記憶部に記憶させる。このパラメータに基づき偏向制御部で偏向量を補正させる。この結果を補正後の二次電子像として校正状態表示部に表示させ、図4に示すようにモアレの無い正しい偏向移動量に校正することができその状態を校正状態表示部に表示できる。   FIG. 6 shows a deflection state in which the beam deflection movement amount is locally modulated. Calibration is performed according to the same procedure as in FIG. First, the stage 9 shown in FIG. 1A is moved so that the calibration mark 8 is positioned immediately below the electron beam. At this time, the deflection control unit scans the calibration mark while moving it so as to coincide with the pitch dimension obtained by the light diffraction method of the one-dimensional diffraction grating pattern 20 of FIG. A secondary electron image obtained by scanning is displayed on the image display unit. As a result, moire fringes 21 were observed in the diffraction grating and the electron beam scanning portion of the secondary electron image 19 as shown in FIG. This occurs because the pitch size of the diffraction grating and the amount of beam scanning movement do not match. Therefore, the beam deflection control unit corrects the deflection movement amount, for example, locally changes the beam pitch amount, and scans the electron beam once again on a one-dimensional diffraction grating pattern horizontal to the beam scanning to observe moire fringes. The beam deflection control unit is adjusted until it is not lost or the positional deviation amount reaches a predetermined threshold. A calibration parameter in which the deflection movement amount is locally changed is stored in the control device 32, preferably in an image storage unit in the signal calculation unit. Based on this parameter, the deflection control unit corrects the deflection amount. This result is displayed on the calibration state display unit as a corrected secondary electron image, and can be calibrated to a correct deflection movement amount without moire as shown in FIG. 4, and the state can be displayed on the calibration state display unit.

図7に回折格子のピッチ寸法とビーム走査移動方向が一致していない偏向状態を示す。上記と同様に図2の手順に従って行う。まず図1(a)のステージ9を移動して校正用マーク8を電子ビーム直下に位置させる。一次元回折格子パターン23に対して水平に電子ビームを走査する。この際、偏向制御部により一次元回折格子パターンの光回折法のより得られたピッチ寸法に一致するよう垂直方向に移動させながら走査する。このようにして得られた二次電子像22を画像表示部に表示させる。この結果、図7のような二次電子像22の回折格子23と電子ビーム走査部分に斜め方向のモアレ縞24が確認できる。これは回折格子のピッチ寸法とビーム走査移動方向が一致していないために起こる。そこでビーム偏向制御部に偏向移動方向に回転補正を加えて、再度ビーム走査に対して水平な一次元回折格子パターンに電子ビームを走査し、モアレ縞が観察されないようにビーム偏向制御部を調整する。このビーム走査方向に回転を加えた校正パラメータを制御装置32内部、好ましくは信号演算部内の、画像記憶部に記憶させる。このパラメータに基づき偏向制御部で偏向量を補正させる。この結果を補正後の二次電子像として校正状態表示部に表示させることで、図4に示すようにモアレ縞の無い正しい偏向移動量に校正することができ、その状態を校正状態表示部に表示できた。   FIG. 7 shows a deflection state in which the pitch dimension of the diffraction grating does not coincide with the beam scanning movement direction. Similar to the above, the process is performed according to the procedure of FIG. First, the stage 9 shown in FIG. 1A is moved so that the calibration mark 8 is positioned immediately below the electron beam. An electron beam is scanned horizontally with respect to the one-dimensional diffraction grating pattern 23. At this time, the deflection control unit performs scanning while moving in the vertical direction so as to coincide with the pitch dimension obtained by the light diffraction method of the one-dimensional diffraction grating pattern. The secondary electron image 22 thus obtained is displayed on the image display unit. As a result, oblique moire fringes 24 can be confirmed in the diffraction grating 23 and the electron beam scanning portion of the secondary electron image 22 as shown in FIG. This occurs because the pitch dimension of the diffraction grating does not match the beam scanning movement direction. Therefore, the beam deflection control unit is subjected to rotation correction in the deflection moving direction, and the electron beam is scanned again on the one-dimensional diffraction grating pattern horizontal to the beam scanning, and the beam deflection control unit is adjusted so that moire fringes are not observed. . Calibration parameters obtained by adding rotation in the beam scanning direction are stored in the image storage unit in the control device 32, preferably in the signal calculation unit. Based on this parameter, the deflection control unit corrects the deflection amount. By displaying this result as a corrected secondary electron image on the calibration state display unit, it is possible to calibrate to the correct deflection movement amount without moire fringes as shown in FIG. 4, and the state is displayed on the calibration state display unit. I was able to display it.

以上の様に本実施例の校正では、一次元回折格子とビームの一致する領域が多いため二次電子発生量を大きく取れ、S/N比の大きい二次電子信号が得られる。測長に用いる試料、例えば半導体試料では、酸化膜試料やレジスト材料のように帯電の影響やビーム照射ダメージを避けるために数百ボルトの低加速で10 pA以下の低電流ビームで計測する必要があるが、このような数百ボルトの低加速で10 pA以下の低電流ビームに対しても本実施例の校正では1 nm以下の精度を保証できた。図8に示すような、格子点配列に対して角度をつけて走査させる従来の校正法では、ビームと格子点が一致する箇所がさらに十の一以下となってしまうため得られる二次電子信号も本実施例に比べ数十分の一以下と少なく、校正精度劣化の要因となり校正精度は100 nm以上となった。   As described above, in the calibration of the present embodiment, since there are many regions where the one-dimensional diffraction grating and the beam coincide with each other, a large amount of secondary electrons can be generated and a secondary electron signal having a large S / N ratio can be obtained. Samples used for length measurement, such as semiconductor samples, need to be measured with a low current beam of 10 pA or less at a low acceleration of several hundred volts to avoid the effects of charging and beam irradiation damage like oxide film samples and resist materials. However, even with such a low acceleration of several hundred volts and a low current beam of 10 pA or less, the accuracy of 1 nm or less could be guaranteed by the calibration of this example. In the conventional calibration method in which scanning is performed at an angle with respect to the lattice point arrangement as shown in FIG. 8, the number of locations where the beam and the lattice point coincide with each other is further reduced to ten or less. However, the calibration accuracy was less than a few tenths compared to the present example, which caused deterioration of calibration accuracy and the calibration accuracy was 100 nm or more.

本実施例では校正用マーク基板8には上記で説明したビーム走査に対して垂直な一次元回折格子パターンのほかにビーム走査に対して水平な一次元回折格子パターンも含まれている場合について述べたが、図11にあるように同一ステージに二つのマーク基板を用意して、これらのマーク基板のパターンがビーム走査に対して垂直な一次元回折格子のマーク基板とビーム走査に対して水平な一次元回折格子のマーク基板となるように配置された場合でも良い。また、ステージに回転機構を設けビーム走査に対して垂直な一次元回折格子マーク基板を90度回転させるか、または回折格子のマーク基板部分のみに回転機構を設けることによりビーム走査に対して水平な一次元回折格子パターンに変化させても良い。   In this embodiment, the case where the calibration mark substrate 8 includes a one-dimensional diffraction grating pattern horizontal to the beam scanning in addition to the one-dimensional diffraction grating pattern perpendicular to the beam scanning described above is described. However, as shown in FIG. 11, two mark substrates are prepared on the same stage, and the pattern of these mark substrates is one-dimensional diffraction grating mark substrate perpendicular to the beam scanning and horizontal to the beam scanning. It may be arranged so as to be a mark substrate of a one-dimensional diffraction grating. In addition, a rotation mechanism is provided on the stage, and the one-dimensional diffraction grating mark substrate perpendicular to the beam scanning is rotated 90 degrees, or a rotation mechanism is provided only on the mark substrate portion of the diffraction grating so that it is horizontal with respect to the beam scanning. It may be changed to a one-dimensional diffraction grating pattern.

次に他の実施例について述べる。
校正は図2の手順に従って行う。まず図1(a)でステージ1を移動して校正用マーク8を電子ビーム直下に位置させる。図3でビーム走査に対して水平な一次元回折格子パターン12に電子ビームを走査する。この際、偏向制御部により一次元回折格子パターンの光回折法より得られたピッチ寸法よりも小さな周期で上記走査に垂直方向に移動させながら走査する。そして図1(a)に示した二次電子検出器10による検出を電子ビーム走査が回折格子上に位置する周期に合わせて間欠的に行う。このようにして得られた二次電子像11を画像表示部に表示させる。この結果、図3に示すように二次電子像の上記回折格子12上の電子ビーム走査部分にモアレ縞13が観察された。これは回折格子のピッチ寸法と対応するビーム走査移動量が一致していないために起こる。そこでビーム偏向制御部に偏向移動量に補正を加えて、再度ビーム走査に対して水平な一次元回折格子パターンに電子ビームを走査して図4に示すようにモアレ縞が観察されないようにビーム偏向制御部を調整する。
Next, another embodiment will be described.
Calibration is performed according to the procedure shown in FIG. First, in FIG. 1A, the stage 1 is moved so that the calibration mark 8 is positioned directly below the electron beam. In FIG. 3, the electron beam is scanned onto the one-dimensional diffraction grating pattern 12 which is horizontal with respect to the beam scanning. At this time, scanning is performed while the deflection control unit moves in the direction perpendicular to the scanning with a period smaller than the pitch dimension obtained by the light diffraction method of the one-dimensional diffraction grating pattern. Then, the detection by the secondary electron detector 10 shown in FIG. 1A is intermittently performed in accordance with the period in which the electron beam scanning is located on the diffraction grating. The secondary electron image 11 thus obtained is displayed on the image display unit. As a result, moire fringes 13 were observed in the electron beam scanning portion on the diffraction grating 12 of the secondary electron image as shown in FIG. This occurs because the pitch dimension of the diffraction grating and the corresponding beam scanning movement amount do not match. Therefore, the deflection movement amount is corrected in the beam deflection control unit, and the electron beam is scanned again on the one-dimensional diffraction grating pattern horizontal to the beam scanning so that the moire fringes are not observed as shown in FIG. Adjust the control unit.

この結果、図3では一様に偏向移動量が回折格子のピッチ寸法よりも大きいことがわかり、偏向移動量を一様に小さくする校正パラメータを信号演算部に記憶させて、このパラメータに基づき偏向制御部で偏向量を補正させる。この結果を補正後の二次電子像として校正状態表示部に表示させる。上記一次元回折格子のピッチ寸法は光回折法により1 nm以下の精度で求められているので、倍率の正確な二次電子像が得られ高精度測長が可能となり、かつ装置状態もいつでも校正状態表示部で確認できる。   As a result, it can be seen in FIG. 3 that the deflection movement amount is uniformly larger than the pitch dimension of the diffraction grating, and a calibration parameter for uniformly reducing the deflection movement amount is stored in the signal calculation unit, and the deflection is performed based on this parameter. The control unit corrects the deflection amount. This result is displayed on the calibration state display unit as a corrected secondary electron image. The pitch dimension of the one-dimensional diffraction grating is determined with an accuracy of 1 nm or less by the optical diffraction method, so a secondary electron image with an accurate magnification can be obtained, high-precision length measurement is possible, and the instrument state is always calibrated. It can be confirmed in the status display section.

次に他の実施例について述べる。
校正は図2の手順に従って行う。まず図1(a)でステージ1を移動して校正用マーク8を電子ビーム直下に位置させる。図3でビーム走査に対して水平な一次元回折格子パターン12に電子ビームを走査する。この際、偏向制御部により一次元回折格子パターンの光回折法により得られたピッチ寸法よりも小さな周期で上記走査に垂直方向に移動させながら走査する。この結果得られる二次電子像と画像記憶部に記憶してある一次元回折格子のピッチ寸法に対応した参照像、例えば理想的な二次電子像、CADデータ等と信号演算部において加算処理を行った結果を画像表示部に表示させる。この結果、図9に示すように二次電子像27の参照像28と電子ビーム走査部分にモアレ縞29が観察された。これは回折格子のピッチ寸法と対応するビーム走査移動量が一致していないために起こる。そこでビーム偏向制御部に偏向移動量に補正を加えて、再度ビーム走査に対して水平な一次元回折格子パターンに電子ビームを走査して図10に示すように二次電子像31の参照像30と電子ビーム走査部分にモアレ縞が観察されないようにビーム偏向制御部を調整する。
Next, another embodiment will be described.
Calibration is performed according to the procedure shown in FIG. First, in FIG. 1A, the stage 1 is moved so that the calibration mark 8 is positioned directly below the electron beam. In FIG. 3, the electron beam is scanned onto the one-dimensional diffraction grating pattern 12 which is horizontal with respect to the beam scanning. At this time, scanning is performed while the deflection control unit moves in the direction perpendicular to the scanning with a period smaller than the pitch dimension obtained by the light diffraction method of the one-dimensional diffraction grating pattern. The resulting secondary electron image and a reference image corresponding to the pitch dimension of the one-dimensional diffraction grating stored in the image storage unit, such as an ideal secondary electron image, CAD data, etc., are added in the signal calculation unit. The result is displayed on the image display unit. As a result, as shown in FIG. 9, moire fringes 29 were observed in the reference image 28 of the secondary electron image 27 and the electron beam scanning portion. This occurs because the pitch dimension of the diffraction grating and the corresponding beam scanning movement amount do not match. Therefore, the beam deflection control unit corrects the deflection movement amount, scans the electron beam again on the one-dimensional diffraction grating pattern horizontal to the beam scanning, and as shown in FIG. 10, the reference image 30 of the secondary electron image 31 is obtained. The beam deflection control unit is adjusted so that moire fringes are not observed in the electron beam scanning portion.

この結果、図3では一様に偏向移動量が回折格子のピッチ寸法よりも大きいことがわかり、偏向移動量を一様に小さくする校正パラメータを信号演算部に記憶させて、このパラメータに基づき偏向制御部で偏向量を補正させる。この結果を補正後の二次電子像31として校正状態表示部に表示させる。一次元回折格子のピッチ寸法は光回折法により1 nm以下の精度で求められているので、倍率の正確な二次電子像が得られ高精度測長が可能となる。さらに装置状態もいつでも校正状態表示部で確認できる。一次元回折格子としてはレーザ干渉露光法と異方性エッチングによりシリコン基板上に作製したものや化合物半導体等の積層結晶の超格子断面構造を用いたものを用いた。   As a result, it can be seen in FIG. 3 that the deflection movement amount is uniformly larger than the pitch dimension of the diffraction grating, and a calibration parameter for uniformly reducing the deflection movement amount is stored in the signal calculation unit, and the deflection is performed based on this parameter. The control unit corrects the deflection amount. This result is displayed on the calibration state display unit as a corrected secondary electron image 31. Since the pitch dimension of the one-dimensional diffraction grating is obtained with an accuracy of 1 nm or less by the optical diffraction method, an accurate secondary electron image with a magnification can be obtained and high-precision measurement is possible. In addition, the device status can be checked at any time on the calibration status display. As the one-dimensional diffraction grating, a one produced on a silicon substrate by a laser interference exposure method and anisotropic etching or a one using a superlattice cross-sectional structure of a laminated crystal such as a compound semiconductor was used.

以上の実施例で詳述したように、本発明によれば、電子ビーム装置の偏向歪を精度良く校正することが出来る。   As described in detail in the above embodiments, according to the present invention, the deflection distortion of the electron beam apparatus can be calibrated with high accuracy.

本発明の装置構成を示す図。The figure which shows the apparatus structure of this invention. 本発明の校正方法を説明する図。The figure explaining the calibration method of this invention. 本発明の校正方法を説明する図。The figure explaining the calibration method of this invention. 本発明の校正結果を説明する図。The figure explaining the calibration result of this invention. 本発明の超格子試料による回折格子パターンを説明する図。The figure explaining the diffraction grating pattern by the superlattice sample of this invention. 本発明の校正方法を説明する図。The figure explaining the calibration method of this invention. 本発明の校正方法を説明する図。The figure explaining the calibration method of this invention. 従来の校正方法を説明する図。The figure explaining the conventional calibration method. 本発明の実施例3の校正方法を説明する図。The figure explaining the calibration method of Example 3 of this invention. 本発明の実施例3の校正結果を説明する図。The figure explaining the calibration result of Example 3 of this invention. 本発明の回折格子配置の一例を説明する図。The figure explaining an example of the diffraction grating arrangement | positioning of this invention.

符号の説明Explanation of symbols

1…電子銃、2…電子ビーム、3、5…レンズ、4…偏向器、6…二次電子、7…ウェーハ、8…校正マーク、9…ステージ、10…二次電子検出器、11、15、19、22、27、31…二次電子像、12、14、20、23…一次元格子パターン、13、21、24、29…モアレ縞、16…GaAs基板、17…GaAlAs層、18…GaAs層、25…二次元格子、26…電子ビーム走査、28、30…参照像 32…制御装置。   DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Electron beam, 3, 5 ... Lens, 4 ... Deflector, 6 ... Secondary electron, 7 ... Wafer, 8 ... Calibration mark, 9 ... Stage, 10 ... Secondary electron detector, 11, 15, 19, 22, 27, 31 ... secondary electron image, 12, 14, 20, 23 ... one-dimensional lattice pattern, 13, 21, 24, 29 ... moire fringes, 16 ... GaAs substrate, 17 ... GaAlAs layer, 18 ... GaAs layer, 25 ... two-dimensional grating, 26 ... electron beam scanning, 28, 30 ... reference image 32 ... control device.

Claims (14)

電子ビームを放出する電子源と、試料を載置するステージと、偏向手段と、対物レンズと、校正用マークとを少なくとも備えた電子ビーム装置の電子ビーム校正方法において、
前記電子ビームを前記校正用マーク上に所定のピッチ寸法で配列された一次元回折格子パターンに対して平行に走査する工程と、
該走査位置を前記偏向手段により走査方向に対して垂直に前記回折格子のピッチ間隔に併せて移動させて再び一次元回折格子パターンに対して平行に走査する工程と、
前記校正用マークから放出される反射電子もしくは二次電子を検出する工程と、前記検出結果から前記電子ビームの偏向方向もしくは偏向量の校正を行う工程とを含むことを特徴とする電子ビーム校正方法。
In an electron beam calibration method of an electron beam apparatus comprising at least an electron source that emits an electron beam, a stage on which a sample is placed, a deflecting unit, an objective lens, and a calibration mark,
Scanning the electron beam parallel to a one-dimensional diffraction grating pattern arranged at a predetermined pitch on the calibration mark;
Scanning the scanning position parallel to the one-dimensional diffraction grating pattern by moving the scanning position perpendicularly to the scanning direction by the deflecting means together with the pitch interval of the diffraction grating;
An electron beam calibration method comprising: detecting reflected electrons or secondary electrons emitted from the calibration mark; and calibrating a deflection direction or deflection amount of the electron beam from the detection result. .
電子ビームを放出する電子源と、試料を載置するステージと、偏向手段と、対物レンズと校正用マークとを少なくとも備えた電子ビーム装置の電子ビーム校正方法において、
前記電子ビームを前記校正用マーク上に所定のピッチ寸法で配列された一次元回折格子パターンに対して平行に走査する工程と、
前記電子ビームを前記一次元回折格子パターンに対して垂直方向に移動させて再び前記一次元回折格子パターンに対して平行に走査する工程と、
前記校正用マークより放出される反射電子もしくは二次電子を前記格子状パターンの間隔に対応した周期で検出する工程と、
前記検出結果から前記電子ビームの偏向方向もしくは偏向量の校正を行う工程を含むことを特徴とする電子ビーム校正方法。
In an electron beam calibration method for an electron beam apparatus comprising at least an electron source that emits an electron beam, a stage on which a sample is placed, a deflecting unit, an objective lens, and a calibration mark,
Scanning the electron beam parallel to a one-dimensional diffraction grating pattern arranged at a predetermined pitch on the calibration mark;
Moving the electron beam in a direction perpendicular to the one-dimensional diffraction grating pattern and again scanning in parallel with the one-dimensional diffraction grating pattern;
Detecting reflected electrons or secondary electrons emitted from the calibration mark at a period corresponding to the interval of the lattice pattern;
An electron beam calibration method comprising a step of calibrating the deflection direction or deflection amount of the electron beam from the detection result.
請求項1または2に記載の電子ビーム校正方法において、
該検出結果から得られた反射電子像もしくは二次電子像と予め記憶した参照像とを比較する工程と、
該比較結果から前記電子ビームの偏向方向もしくは偏向量の校正を行う工程を含むことを特徴とする電子ビーム校正方法。
The electron beam calibration method according to claim 1 or 2,
A step of comparing a reflected electron image or secondary electron image obtained from the detection result with a previously stored reference image;
An electron beam calibration method comprising a step of calibrating the deflection direction or deflection amount of the electron beam from the comparison result.
請求項1から3のいずれかに記載の電子ビーム校正方法において、
前記検出結果または前記比較結果がモアレパターンであることを特徴とする電子ビーム校正方法。
In the electron beam calibration method according to any one of claims 1 to 3,
The electron beam calibration method, wherein the detection result or the comparison result is a moire pattern.
請求項1または2に記載の電子ビーム校正方法において、
前記一次元回折格子パターンのピッチ寸法が光回折により求められた回折格子パターンマークであることを特徴とする電子ビーム校正方法。
The electron beam calibration method according to claim 1 or 2,
An electron beam calibration method, wherein a pitch dimension of the one-dimensional diffraction grating pattern is a diffraction grating pattern mark obtained by light diffraction.
請求項1または2に記載の電子ビーム校正方法において、
前記一次元回折格子パターンが超格子積層断面構造であることを特徴とする電子ビーム校正方法。
The electron beam calibration method according to claim 1 or 2,
An electron beam calibration method, wherein the one-dimensional diffraction grating pattern has a superlattice laminated cross-sectional structure.
電子ビームを放出する電子源と、
偏向器と
対物レンズと、
試料を載置するステージと、
前記電子ビームの照射位置を校正する校正用マークと、
前記電子ビームの照射により発生する反射電子もしくは二次電子を検出する電子検出器とを有し、
前記校正用マークは所定のピッチ寸法で配列された一次元回折格子パターンを有し、
前記電子ビームを前記一次元回折格子パターンに平行に走査させ、
該走査方向を前記一次元回折格子パターンに対して垂直に移動させて再び前記電子ビームの走査を行うよう制御する制御部と、
該走査により得られた反射電子もしくは二次電子像の表示部を備えることを特徴とする電子ビーム装置。
An electron source emitting an electron beam;
A deflector and an objective lens,
A stage on which a sample is placed;
A calibration mark for calibrating the irradiation position of the electron beam;
An electron detector for detecting reflected electrons or secondary electrons generated by irradiation of the electron beam;
The calibration mark has a one-dimensional diffraction grating pattern arranged with a predetermined pitch dimension,
Scanning the electron beam parallel to the one-dimensional diffraction grating pattern;
A controller that controls the electron beam to scan again by moving the scanning direction perpendicular to the one-dimensional diffraction grating pattern;
An electron beam apparatus comprising a display unit for reflected electrons or secondary electron images obtained by the scanning.
請求項7に記載の電子ビーム校正方法において、
前記回折格子のピッチ間隔に併せて前記一次元回折格子パターンに対して垂直に移動することを特徴とする電子ビーム装置。
The electron beam calibration method according to claim 7, wherein
The electron beam apparatus moves vertically to the one-dimensional diffraction grating pattern in accordance with the pitch interval of the diffraction grating.
請求項7に記載電子ビーム装置において、
前記制御部は、
前記電子ビームを前記一次元回折格子パターンに平行に走査させて得られた反射電子もしくは二次電子像と予め記憶された参照像との比較を行う信号解析部と、
該比較結果を基に前記電子ビームの偏向量を補正する偏向制御部とを備えることを特徴とする電子ビーム装置。
The electron beam apparatus according to claim 7.
The controller is
A signal analysis unit that compares a reflected electron or secondary electron image obtained by scanning the electron beam in parallel with the one-dimensional diffraction grating pattern and a previously stored reference image;
An electron beam apparatus comprising: a deflection control unit that corrects a deflection amount of the electron beam based on the comparison result.
請求項9に記載の電子ビーム装置において、
前記比較結果を前記表示部に表示することを特徴とする電子ビーム装置。
The electron beam apparatus according to claim 9, wherein
The comparison result is displayed on the display unit.
請求項7に記載の電子ビーム装置において、
前記制御部は、
前記電子ビームの走査によって前記校正用マークから放出される反射電子もしくは二次電子を前記電子検出器により前記一次元回折格子パターンのピッチ間隔に対応した周期で検出させるように制御する信号処理部と、
該検出された反射電子もしくは二次電子像と前記一次元回折格子パターンから走査位置ずれ量を算出する信号演算部と、
該算出結果を基に前記電子ビームの偏向量を補正する偏向制御部を備えることを特徴とする電子ビーム装置。
The electron beam apparatus according to claim 7.
The controller is
A signal processing unit for controlling the electron detector to detect reflected electrons or secondary electrons emitted from the calibration mark by scanning with the electron beam at a period corresponding to the pitch interval of the one-dimensional diffraction grating pattern; ,
A signal calculation unit for calculating a scanning position shift amount from the detected reflected electron or secondary electron image and the one-dimensional diffraction grating pattern;
An electron beam apparatus comprising: a deflection control unit that corrects the deflection amount of the electron beam based on the calculation result.
請求項7から11のいずれかに記載の電子ビーム装置において、
前記一次元回折格子パターンのピッチ寸法が光回折により求められた回折格子パターンマークであることを特徴とする電子ビーム装置。
The electron beam apparatus according to any one of claims 7 to 11,
An electron beam apparatus characterized in that the pitch dimension of the one-dimensional diffraction grating pattern is a diffraction grating pattern mark obtained by light diffraction.
請求項7から12のいずれかに記載の電子ビーム装置において、
前記一次元回折格子パターンが超格子積層断面構造であることを特徴とする電子ビーム装置。
The electron beam apparatus according to any one of claims 7 to 12,
The electron beam apparatus, wherein the one-dimensional diffraction grating pattern has a superlattice laminated cross-sectional structure.
請求項7に記載の電子ビーム装置において、
前記校正用マークは前記ステージ上に配置されていることを特徴とする電子ビーム装置。
The electron beam apparatus according to claim 7.
The electron beam apparatus, wherein the calibration mark is disposed on the stage.
JP2005142095A 2005-05-16 2005-05-16 Electron beam calibration method and electron beam apparatus Expired - Fee Related JP4708856B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005142095A JP4708856B2 (en) 2005-05-16 2005-05-16 Electron beam calibration method and electron beam apparatus
US11/431,705 US7476882B2 (en) 2005-05-16 2006-05-11 Calibration method for electron-beam system and electron-beam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142095A JP4708856B2 (en) 2005-05-16 2005-05-16 Electron beam calibration method and electron beam apparatus

Publications (2)

Publication Number Publication Date
JP2006318831A JP2006318831A (en) 2006-11-24
JP4708856B2 true JP4708856B2 (en) 2011-06-22

Family

ID=37418270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142095A Expired - Fee Related JP4708856B2 (en) 2005-05-16 2005-05-16 Electron beam calibration method and electron beam apparatus

Country Status (2)

Country Link
US (1) US7476882B2 (en)
JP (1) JP4708856B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE484840T1 (en) * 2001-10-10 2010-10-15 Applied Materials Israel Ltd METHOD AND DEVICE FOR ALIGNING A COLUMN FOR CHARGED PARTICLE BEAMS
US7164128B2 (en) * 2003-11-25 2007-01-16 Hitachi High-Technologies Corporation Method and apparatus for observing a specimen
JP4708856B2 (en) * 2005-05-16 2011-06-22 株式会社日立ハイテクノロジーズ Electron beam calibration method and electron beam apparatus
JP4985280B2 (en) * 2007-09-27 2012-07-25 住友電気工業株式会社 Diffraction grating shape evaluation method
JP2009103470A (en) * 2007-10-19 2009-05-14 National Institute For Materials Science Method for inspecting scanning accuracy of scanning irradiation device
JP5160520B2 (en) * 2009-09-25 2013-03-13 株式会社東芝 Crystal lattice moire pattern acquisition method and scanning microscope
CN103794451B (en) * 2012-10-31 2016-03-16 中芯国际集成电路制造(上海)有限公司 The method and apparatus of the electron beam state of monitoring scanning electron microscopy
JP6138471B2 (en) * 2012-12-10 2017-05-31 株式会社日立ハイテクノロジーズ Charged particle beam equipment
US9214317B2 (en) * 2013-06-04 2015-12-15 Kla-Tencor Corporation System and method of SEM overlay metrology
JP2015002114A (en) * 2013-06-17 2015-01-05 株式会社東芝 Inspecting apparatus and inspecting method
US9490182B2 (en) * 2013-12-23 2016-11-08 Kla-Tencor Corporation Measurement of multiple patterning parameters
FR3016815B1 (en) 2014-01-30 2018-03-09 Lablabo DEVICE FOR PACKAGING AND DISPENSING PASTY PRODUCTS
CN115609019A (en) * 2022-12-15 2023-01-17 西安赛隆增材技术股份有限公司 Electron beam calibration device, calibration device and method for metal powder processing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261324A (en) * 1985-09-11 1987-03-18 Oki Electric Ind Co Ltd Stage noise detection of electron beam exposure device
JPH04152513A (en) * 1990-10-17 1992-05-26 Hitachi Ltd Adjustment of electron beam lithography device
JPH08285502A (en) * 1995-04-17 1996-11-01 Nikon Corp Reference sample for distance and step
JP2000214653A (en) * 1999-01-20 2000-08-04 Canon Inc Image forming device and method for controlling same
JP2000277424A (en) * 1999-03-26 2000-10-06 Toshiba Corp Adjusting method for optical system of energy beam device
JP2001109088A (en) * 1999-10-08 2001-04-20 Photo Craft Sha:Kk Method for forming compressed image for image display using lenticular lens, adjusting method for forming compressed image, and compressed image forming device
JP2001119606A (en) * 1999-10-15 2001-04-27 Matsushita Electric Ind Co Ltd Vertical phase controller
JP2003022773A (en) * 2001-07-06 2003-01-24 Nec Corp Distortion compensating method of electron-ray deflection, electron-ray exposure device which has deflection distortion compensating means, and scanning type electron microscope

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9100410A (en) * 1991-03-07 1992-10-01 Asm Lithography Bv IMAGE DEVICE EQUIPPED WITH A FOCUS ERROR AND / OR TILT DETECTION DEVICE.
US5136169A (en) * 1991-04-05 1992-08-04 Massachusetts Institute Of Technology Energy beam locating
US6878935B2 (en) * 2002-04-03 2005-04-12 General Phosphorix Method of measuring sizes in scan microscopes
JP4287671B2 (en) 2003-02-19 2009-07-01 株式会社日立ハイテクノロジーズ Standard member for length measurement, method for producing the same, and electron beam length measuring device using the same
JP4276892B2 (en) 2003-05-19 2009-06-10 株式会社日立ハイテクノロジーズ Standard member for length measurement and calibration method for electron beam length measuring device
US6875982B2 (en) * 2003-08-29 2005-04-05 International Business Machines Corporation Electron microscope magnification standard providing precise calibration in the magnification range 5000X-2000,000X
JP4708856B2 (en) * 2005-05-16 2011-06-22 株式会社日立ハイテクノロジーズ Electron beam calibration method and electron beam apparatus
JP2007139575A (en) * 2005-11-18 2007-06-07 Hitachi High-Technologies Corp Standard member for calibrating length measurement, its production method, and calibration method and system using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261324A (en) * 1985-09-11 1987-03-18 Oki Electric Ind Co Ltd Stage noise detection of electron beam exposure device
JPH04152513A (en) * 1990-10-17 1992-05-26 Hitachi Ltd Adjustment of electron beam lithography device
JPH08285502A (en) * 1995-04-17 1996-11-01 Nikon Corp Reference sample for distance and step
JP2000214653A (en) * 1999-01-20 2000-08-04 Canon Inc Image forming device and method for controlling same
JP2000277424A (en) * 1999-03-26 2000-10-06 Toshiba Corp Adjusting method for optical system of energy beam device
JP2001109088A (en) * 1999-10-08 2001-04-20 Photo Craft Sha:Kk Method for forming compressed image for image display using lenticular lens, adjusting method for forming compressed image, and compressed image forming device
JP2001119606A (en) * 1999-10-15 2001-04-27 Matsushita Electric Ind Co Ltd Vertical phase controller
JP2003022773A (en) * 2001-07-06 2003-01-24 Nec Corp Distortion compensating method of electron-ray deflection, electron-ray exposure device which has deflection distortion compensating means, and scanning type electron microscope

Also Published As

Publication number Publication date
US20060255272A1 (en) 2006-11-16
US7476882B2 (en) 2009-01-13
JP2006318831A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4708856B2 (en) Electron beam calibration method and electron beam apparatus
US7595482B2 (en) Standard component for length measurement, method for producing the same, and electron beam metrology system using the same
US8263929B2 (en) Standard member for correction, scanning electron microscope using same, and scanning electron microscope correction method
US7612334B2 (en) Standard reference component for calibration, fabrication method for the same, and scanning electron microscope using the same
US7834997B2 (en) Standard component for calibration and calibration method using it and electro beam system
US20130216954A1 (en) Drawing apparatus, and method of manufacturing article
JP2000252203A (en) Alignment mark and alignment method
JP6791051B2 (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
US8927949B2 (en) Measuring apparatus, drawing apparatus, and article manufacturing method
JP2014168031A (en) Lithography apparatus, lithography method, and method of manufacturing article
JP2013118060A (en) Charged particle beam device
US8878141B2 (en) Drawing apparatus, and method of manufacturing article
JP4287891B2 (en) Standard member for length measurement and electron beam length measuring device using the same
JP2001085300A (en) Method for detecting mark and manufacture of electron beam device and semiconductor device
JP2001077004A (en) Aligner and electron beam aligner
JP2009182269A (en) Charged beam lithography apparatus and method
WO2002075246A1 (en) Method for measuring dimensions of pattern
CN116134578A (en) Method for imaging a sample using a charged particle beam device, method for calibrating a charged particle beam device, and charged particle beam device
US10438771B2 (en) Measurement device, calibration method of measurement device, and calibration member
JP2015095524A (en) Drawing device and method for manufacturing article
JP2013183017A (en) Drawing apparatus, reference element, and article manufacturing method
JP2016058490A (en) Lithography device, and method of manufacturing article
JP4481851B2 (en) Electron beam drawing device
JP2010147066A (en) Coordinate measuring apparatus and charged particle beam drawing equipment
JP2008042173A (en) Charged-particle beam drawing method, charged-particle beam drawing device, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4708856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees