JP4703022B2 - Transceiver module - Google Patents

Transceiver module Download PDF

Info

Publication number
JP4703022B2
JP4703022B2 JP2001095659A JP2001095659A JP4703022B2 JP 4703022 B2 JP4703022 B2 JP 4703022B2 JP 2001095659 A JP2001095659 A JP 2001095659A JP 2001095659 A JP2001095659 A JP 2001095659A JP 4703022 B2 JP4703022 B2 JP 4703022B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
filter
transmission
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001095659A
Other languages
Japanese (ja)
Other versions
JP2002296456A (en
Inventor
宏樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001095659A priority Critical patent/JP4703022B2/en
Publication of JP2002296456A publication Critical patent/JP2002296456A/en
Application granted granted Critical
Publication of JP4703022B2 publication Critical patent/JP4703022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光信号にて送受信を行う光通信において、発光素子、受光素子の双方を保有し、電気から光への変換、光から電気への変換を行う光通信用の送受信モジュールに関するものである。
【0002】
【従来の技術】
情報の高度化やマルチメディア化に伴う公衆通信網やLAN等における情報伝送容量の肥大化が深刻な問題となっている。これを解決する手段として、光伝送技術を応用した各種光通信システムが注目されており、ネットワークの光化が近年急速に広まっている。
【0003】
その中で2点間を1本の光ファイバで結んで相互に通信を行う光双方向通信は、伝送路が1本で済みケーブルのスペースを取らないので、経済的な通信方式である。
【0004】
これらの光通信システムを支える上で、発光素子、受光素子を搭載した各種光素子モジュールは最も基本的な部品であり、その低コスト化を実現する量産技術の確立は重要な課題となっている。
【0005】
図3に1本の光ファイバに2つの波長の光信号にて送受信を行う光双方向通信に用いられる送受信モジュールの構造図を示す。
【0006】
波長λ1の送信光を放射する発光素子1と波長λ1の送信光を送信側集光レンズ2を介して波長λ1の送信光を導く光ファイバ3、又、光ファイバ3を通過してきた波長λ2の受信光に対して、反射する成分を持つ分波フィルタ4を介して反射された波長λ2の受信光を受光側集光レンズ5により波長λ2の受信光に対して感度のある受光素子6に導かれる構造を持つ。
【0007】
又、発光素子1からの漏れ光や、光ファイバ3を通過してきた波長λ2の受信光以外の光の受光を防止する機能の為、波長λ2の受信光のみを透過するフィルタ7を受信側集光レンズ5と分波フィルタ4の間に有する構造となっており、フィルタ7は高感度の受信が必要な場合には特に重要である(特開平9−304666号参照)。
【0008】
【発明が解決しようとする課題】
しかしながら、上記図3に従来構造の送受信モジュールは、多くの光学部品が必要であり、全ての光学部品を最適位置に配置する必要がある。該光学部品はそれぞれを金具に接着剤等を用いて取りつけられ、それぞれの金具同士を位置調整した後、レーザー溶接等にて固定する構造となっているため、小型化が困難であり、組立ても複雑であるという問題があった。
【0009】
例えば、上記従来構造では発光素子1を分波フィルタ4と送信側集光レンズ2が組み込まれたあとの最適位置に調整する必要がある。これにより、発光素子1から出射された波長λ1の送信光は、送信側集光レンズ2によって集光され、分波フィルタ4を通過した最適位置に像を結ぶ。光ファイバ3をこの集光位置に位置調整することにより、最適な光量を光ファイバ3に導くことが可能となる。
【0010】
更に、フィルタ7と受信側集光レンズ5はこの分波フィルタ4により反射された、波長λ2の受信光が通る適切な位置に固定する必要がある。これにより、光ファイバ3を通して送られてきた波長λ2の受信光は分波フィルタ4で反射され、フィルタ7を通過し、受信側集光レンズ5によって集光して最適位置に像を結ぶ。受光素子6をこの集光位置に位置調整することにより、最適な光量を得ることが可能となる。
【0011】
これらの光学調整を行うためには、それぞれの光学部品の取り付けられる金具の形状は複雑で高い精度が必要であり、光学部品同士が調整時にぶつかり合うことを避けるための間隔も必要となるという制限があった。
【0012】
特にフィルタ7の部品を配置する為には光学系を比較的長くする必要があり、小型化が困難という問題があった。
【0013】
本発明は、上述した従来の送受信モジュールの課題を解決することを目的としている。
【0014】
【課題を解決するための手段】
上記従来の課題を解決するため、本発明は、発光素子、受光素子、及び光信号の導出、導入を行う光ファイバを有し、複数の波長の光信号にて送受信を行う送受信モジュールであって、上記光ファイバ先端が透明管に収納され、該透明管は中心軸に垂直な面に対して傾斜した端面を有し、この傾斜端面に、受信光を反射するとともに送信光を透過する第1のフィルタを介して透明ブロックを接合し、上記光ファイバから導入され、傾斜端面で反射した光が出射する透明管の表面に、送信光を反射するとともに受信光を透過する第2のフィルタを備え、前記透明ブロックの前記発光素子への対向面を前記発光素子からの光の光軸垂直方向に対して4〜12度の角度で傾斜させている。
【0015】
前記透明管と前記透明ブロックとを接合する接着剤の屈折率及び前記透明ブロックの屈折率が、前記光ファイバのコアの屈折率と同等であることが好ましい。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図1によって説明する。
【0017】
図1において、光ファイバ8の被覆を除去した部分が透明管9に固定され、透明管9の端面は光ファイバ8の中心軸に垂直な面に対して45度に研磨された傾斜端面9aとなっている。この傾斜端面9aに、波長λ4の光を反射して波長λ3の光を透過する分波フィルタ10を介して透明ブロック11がこれと同等の屈折率を有する接着剤にて接着固定される。なお、分波フィルタ10は透明ブロック11又は透明管9にコーティングされたものである。また、光ファイバ8から導入された光がこの傾斜端面9aで反射し、出射する透明管9の表面に平面12を備え、フィルタ13がコーティングされている。
【0018】
この透明管9は金具18に接着固定される。一方、金具19に抵抗溶接された発光素子15と金具20に低融点ガラス付けされた送信側集光レンズ16とを発光素子15からの出射光が送信側レンズ16を介して光ファイバ8に導出されるような位置に調整して上記金具18にレーザー溶接固定される。
【0019】
該金具18は透明管9のフィルタ13の位置に開口部を有し、金具21に抵抗溶接された受光側集光レンズ付き受光素子14を、光ファイバ8から導入され、分波フィルタ10で反射し、フィルタ13を通過した光が入射する様に位置調整し、金具18にレーザー溶接する。
【0020】
いま、光ファイバ8から導入された波長λ4の受信光は45度の傾斜端面9a上の波長λ3の送信光を透過し、波長λ4の受信光を反射する分波フィルタ10で反射され、透明管9内を光ファイバ8の中心軸と垂直に光路を変えて平面12より出射する。この平面12に波長λ4の受信光を透過し、波長λ3の送信光を反射するフィルタ13がコーティングされており、波長λ3の送信光の迷光の入射を防止する機能を持つ。これにより、送受同時通信時に受信側の微少な光信号でも送信光の影響を受けずに正確に電気信号に変換することが可能となる。
【0021】
又、発光素子15から波長λ3の送信光を放射して、送信側集光レンズ16で集光し、透明ブロック11を介して光ファイバ8に導入する構造となっている。
【0022】
ここで光ファイバのコアと同等の屈折率を持つ透明ブロック11を備えることにより、45度の傾斜端面9aの影響を受けることなく、発光素子15からの波長λ3の送信光を送信側集光レンズ16を介して無駄なく導出することが可能となる。このように双方向の送受信を行えることとともに、分波フィルタ10を傾斜端面9aに備え、フィルタ13を透明管9に直接備えてあるため小型化することができ、組立も容易になる。
【0023】
図1の送信側を拡大したものを図2に示す。
【0024】
ここで透明ブロック11の発光素子15への対向面17が、光素子15から送信側集光レンズ16を介して集光した光の光軸垂直方向に対して4〜12度の角度で傾斜させることにより、対向面17からの反射戻り光を低減し、発光素子15の発光状態が不安定になることを防止することができる。又、対向面17に反射防止膜をコーティングすることで、発光素子15のから出射した波長λ3の送信光の対向面17による反射戻り光を低減し、発光状態が不安定になることを防止することもできる。特に受光素子14側での光路長を短くし、寸法を小さくすることができる。
【0025】
又、この送受信モジュールで使用される波長以外の通信光も使用するシステムの中で使用する場合には、この対向面17に波長λ3の送信光のみ透過する干渉膜フィルタをコーティングすることで、その他の波長の光が入ってきても、発光素子15の発光状態に影響を与えない。
【0026】
上記透明管9透明ブロック11の材質としては光ファイバ8のコアと近い屈折率で、加工しやすい硬質ガラス、若しくは使用波長に対して損失のない樹脂を用いる。又分波フィルタ10、フィルタ13の材質としてはZnS、CeO2、ZrO2もしくはTiO2等の誘電体多層膜のものが用いられる。
【0027】
【実施例】
本発明の図1に示す送受信モジュールを試作した。
【0028】
ガラスの透明管9の端面はあらかじめ光ファイバ8の通る穴の中心軸に垂直な面に対して45度の傾斜端面9aとなっている。なお、透明管9はこの傾斜端面9aに対面する側面に平面12を備え、波長1.55μm(λ4)の光を透過し、波長1.31μm(λ3)の光を反射するフィルタ13がコーティングされている。
【0029】
シングルモードファイバの光ファイバ8の先端を被覆を除去した後、上記透明管9にエポキシ系接着剤にて接着固定し、透明管9の傾斜端面9aに合わせて段差が生じない様に研磨した。このとき接着剤はコアと同等の屈折率の物を使用し、気泡が入らないよう十分脱泡することが望ましい。
【0030】
その傾斜端面9aに波長1.31μm(λ3)の光を透過し、波長1.55μm(λ4)の光を反射する分波フィルタ10が蒸着された透明ブロック11をエポキシ系接着剤を用いて接着固定する。
【0031】
このとき透明ブロック11とそれを固定するエポキシ系接着剤は光ファイバ8のコアと同等の屈折率の物を使用する。
【0032】
この光ファイバ8、透明ブロック11を有する透明管9はエポキシ系接着剤を用いて金具18に接着固定し、金具19に抵抗溶接にて取り付けられた発光素子15と金具20に低融点ガラスにて取り付けられた送信側集光レンズ16を発光素子15からの出射光が送信側レンズ16を介して光ファイバ8に導出されるような位置に位置調整し、上記金具18にレーザー溶接で固定した。金具18,19、20は溶接性に防錆性に優れたステンレスを用い、発光素子15は波長1.31μmのファブリペローレーザーを用い、送信側集光レンズ16は非球面レンズを用いた。非球面レンズを用いることにより、球面収差の影響を軽減し、高結合効率を得ることが可能となる。
【0033】
このように光ファイバ8の傾斜端面9aに直接分波フィルタ10を備えており、又、フィルタ13が一体型となっているため、光学距離が非常に短く、集光位置の短いボールレンズ付きの受光素子の使用が可能となる。
【0034】
さらに、金具18の平面12の位置の開口部に対して、金具21に抵抗溶接された受光側集光レンズ付き受光素子14を光ファイバ8からの受信光を導入出来る位置に位置調整し、レーザー溶接で固定した。金具21も溶接性に防錆性に優れたステンレスを用いた。
【0035】
本発明の図1示す送受信モジュールと従来例の図3に示す送受信モジュールの部品点数、組立工程数、寸法を比較した。
【0036】
【表1】

Figure 0004703022
【0037】
この結果より、従来例の図3に示す送受信モジュールは部品点数が13点で、筐体の寸法が24×13.5×8mmであったのに対して、本発明は10点で済み、寸法も24×9.5×8mmと受光素子14側の寸法を4mmも小型化する事が可能となった。
【0038】
【発明の効果】
本発明によれば、上記光ファイバ先端が透明管に収納され、該透明管は中
心軸に垂直な面に対して傾斜した端面を有し、この傾斜端面に、受信光を反射するとともに送信光を透過する第1のフィルタを介して透明ブロックを接合し、上記光ファイバから導入され、傾斜端面で反射した光が出射する透明管の表面に、送信光を反射するとともに受信光を透過する第2のフィルタを備えることにより、部品点数と組立て工数の削減が可能となり、その部品自体のスペースとその保持する部品のスペースの削減により小型化が実現出来る。さらに、透明ブロックの発光素子への対向面を発光素子からの光の光軸垂直方向に対して4〜12度の角度で傾斜させていることにより、対向面からの反射戻り光を低減し、発光素子の発光状態が不安定になることを防止することができる。
【図面の簡単な説明】
【図1】本発明の送受信モジュールを示す断面図である。
【図2】本発明の送受信モジュールの送信側の拡大断面図である。
【図3】従来の送受信モジュールを示す断面図である。
【符号の説明】
8:光ファイバ
9:透明管
9a:傾斜端面
10:分波フィルタ
11:透明ブロック
12:平面
13:フィルタ
14:受光素子
15:発光素子
16:送信側集光レンズ
17:対向面
18:金具
19:金具
20:金具
21:金具
λ1:波長
λ2:波長
λ3:波長
λ4:波長[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission / reception module for optical communication that has both a light emitting element and a light receiving element and performs conversion from electricity to light and conversion from light to electricity. .
[0002]
[Prior art]
Increasing information transmission capacity in public communication networks, LANs, etc. due to information sophistication and multimedia has become a serious problem. As a means for solving this, various optical communication systems applying optical transmission technology have attracted attention, and the opticalization of networks has been rapidly spreading in recent years.
[0003]
Among them, bidirectional optical communication in which two points are connected by a single optical fiber to communicate with each other is an economical communication method because only one transmission path is required and no cable space is required.
[0004]
In supporting these optical communication systems, various optical element modules equipped with light emitting elements and light receiving elements are the most basic components, and the establishment of mass production technology that realizes cost reduction is an important issue. .
[0005]
FIG. 3 shows a structural diagram of a transmission / reception module used for two-way optical communication in which transmission / reception is performed with optical signals of two wavelengths in one optical fiber.
[0006]
The light emitting element 1 that emits the transmission light of wavelength λ1 and the optical fiber 3 that guides the transmission light of wavelength λ1 through the transmission-side condensing lens 2 and the wavelength of λ2 that has passed through the optical fiber 3 With respect to the received light, the received light having the wavelength λ 2 reflected through the demultiplexing filter 4 having a component to reflect is guided to the light receiving element 6 having sensitivity to the received light having the wavelength λ 2 by the light receiving side condenser lens 5. It has a structure that can be broken.
[0007]
In addition, a filter 7 that transmits only the received light of wavelength λ2 is arranged on the receiving side for the function of preventing leakage light from the light emitting element 1 and light other than the received light of wavelength λ2 that has passed through the optical fiber 3. The filter 7 has a structure between the optical lens 5 and the demultiplexing filter 4, and the filter 7 is particularly important when high-sensitivity reception is required (see JP-A-9-304666).
[0008]
[Problems to be solved by the invention]
However, the transmission / reception module having the conventional structure shown in FIG. 3 requires many optical components, and all the optical components need to be arranged at optimum positions. Each of these optical components is attached to the metal fittings using an adhesive or the like, and has a structure in which the positions of the metal fittings are adjusted and then fixed by laser welding or the like. There was a problem of being complicated.
[0009]
For example, in the conventional structure, it is necessary to adjust the light emitting element 1 to the optimum position after the demultiplexing filter 4 and the transmission-side condenser lens 2 are incorporated. As a result, the transmission light having the wavelength λ 1 emitted from the light emitting element 1 is condensed by the transmission side condensing lens 2 and forms an image at the optimum position that has passed through the demultiplexing filter 4. By adjusting the position of the optical fiber 3 to this condensing position, it is possible to guide the optimum amount of light to the optical fiber 3.
[0010]
Furthermore, it is necessary to fix the filter 7 and the reception side condensing lens 5 at appropriate positions through which the reception light having the wavelength λ2 reflected by the demultiplexing filter 4 passes. As a result, the received light of wavelength λ2 transmitted through the optical fiber 3 is reflected by the demultiplexing filter 4, passes through the filter 7, and is condensed by the reception side condensing lens 5 to form an image at the optimum position. By adjusting the position of the light receiving element 6 to this condensing position, it is possible to obtain an optimal amount of light.
[0011]
In order to perform these optical adjustments, the shape of the bracket to which each optical component is attached must be complex and highly accurate, and there is also a need for an interval to prevent the optical components from colliding with each other during adjustment. was there.
[0012]
In particular, in order to arrange the components of the filter 7, it is necessary to make the optical system relatively long, and there is a problem that it is difficult to reduce the size.
[0013]
An object of the present invention is to solve the problems of the conventional transmission / reception module described above.
[0014]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the present invention is a transmission / reception module that includes a light emitting element, a light receiving element, and an optical fiber that derives and introduces an optical signal, and transmits and receives an optical signal with a plurality of wavelengths. The optical fiber tip is housed in a transparent tube, and the transparent tube has an end surface that is inclined with respect to a plane perpendicular to the central axis, and the inclined end surface reflects the received light and transmits the transmitted light. A transparent block is joined via the filter, and a second filter that reflects the transmitted light and transmits the received light is provided on the surface of the transparent tube through which the light introduced from the optical fiber and reflected by the inclined end surface is emitted. The surface of the transparent block facing the light emitting element is inclined at an angle of 4 to 12 degrees with respect to the direction perpendicular to the optical axis of the light from the light emitting element.
[0015]
It is preferable that the refractive index of the adhesive for joining the transparent tube and the transparent block and the refractive index of the transparent block are equal to the refractive index of the core of the optical fiber.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0017]
In FIG. 1, the portion of the optical fiber 8 from which the coating has been removed is fixed to the transparent tube 9, and the end surface of the transparent tube 9 is slanted end surface 9 a polished at 45 degrees with respect to the surface perpendicular to the central axis of the optical fiber 8. It has become. The transparent block 11 is bonded and fixed to the inclined end face 9a with an adhesive having a refractive index equivalent to this through a demultiplexing filter 10 that reflects light of wavelength λ4 and transmits light of wavelength λ3. The demultiplexing filter 10 is coated on the transparent block 11 or the transparent tube 9. Further, the light introduced from the optical fiber 8 is reflected by the inclined end surface 9a, and the surface of the transparent tube 9 to be emitted is provided with a flat surface 12, and the filter 13 is coated thereon.
[0018]
The transparent tube 9 is bonded and fixed to the metal fitting 18. On the other hand, light emitted from the light emitting element 15 is led out to the optical fiber 8 through the transmission side lens 16 through the light emitting element 15 resistance-welded to the metal fitting 19 and the transmission side condensing lens 16 attached to the metal fitting 20 with low melting point glass. It adjusts to such a position and is laser-welded to the metal fitting 18.
[0019]
The metal fitting 18 has an opening at the position of the filter 13 of the transparent tube 9, and the light receiving element 14 with the light receiving side condensing lens that is resistance welded to the metal fitting 21 is introduced from the optical fiber 8 and reflected by the demultiplexing filter 10. Then, the position is adjusted so that the light having passed through the filter 13 is incident, and laser welding is performed on the metal fitting 18.
[0020]
Now, the received light of wavelength λ4 introduced from the optical fiber 8 transmits the transmitted light of wavelength λ3 on the inclined end surface 9a of 45 degrees, and is reflected by the demultiplexing filter 10 that reflects the received light of wavelength λ4, and the transparent tube The light beam is emitted from the plane 12 by changing the optical path perpendicularly to the central axis of the optical fiber 8 in the inside 9. The flat surface 12 is coated with a filter 13 that transmits the reception light having the wavelength λ4 and reflects the transmission light having the wavelength λ3, and has a function of preventing the incidence of stray light of the transmission light having the wavelength λ3. As a result, even a small optical signal on the receiving side can be accurately converted into an electric signal without being affected by the transmitted light during simultaneous transmission and reception.
[0021]
Further, the transmission light having the wavelength λ 3 is emitted from the light emitting element 15, condensed by the transmission side condensing lens 16, and introduced into the optical fiber 8 through the transparent block 11.
[0022]
Here, by providing the transparent block 11 having a refractive index equivalent to that of the core of the optical fiber, the transmission light having the wavelength λ3 from the light emitting element 15 is transmitted without being affected by the inclined end surface 9a of 45 degrees. 16 can be derived without waste. In addition to being able to perform bidirectional transmission and reception in this way, the demultiplexing filter 10 is provided on the inclined end surface 9a, and the filter 13 is provided directly on the transparent tube 9, so that the size can be reduced and assembly is facilitated.
[0023]
FIG. 2 shows an enlarged view of the transmission side in FIG.
[0024]
Here, the opposed surface 17 of the transparent block 11 to the light emitting element 15 is inclined at an angle of 4 to 12 degrees with respect to the direction perpendicular to the optical axis of the light collected from the optical element 15 via the transmission side condenser lens 16. Thus, the reflected return light from the facing surface 17 can be reduced, and the light emission state of the light emitting element 15 can be prevented from becoming unstable. Further, by coating the opposing surface 17 with an antireflection film, the reflected return light from the opposing surface 17 of the transmitted light of wavelength λ3 emitted from the light emitting element 15 is reduced, and the light emission state is prevented from becoming unstable. You can also In particular, the optical path length on the light receiving element 14 side can be shortened and the dimensions can be reduced.
[0025]
Further, when used in a system that also uses communication light other than the wavelength used in the transmission / reception module, the other surface is coated with an interference film filter that transmits only the transmission light having the wavelength λ3. Even if light having a wavelength of λ enters, the light emitting state of the light emitting element 15 is not affected.
[0026]
The transparent tube 9 and the transparent block 11 are made of hard glass having a refractive index close to that of the core of the optical fiber 8 and easy to process, or a resin having no loss with respect to the wavelength used. The demultiplexing filter 10, as the material of the filter 13 ZnS, is used as a CeO 2, or the like ZrO 2 or TiO 2 dielectric multilayer film.
[0027]
【Example】
The transmission / reception module shown in FIG.
[0028]
The end face of the transparent glass tube 9 is an inclined end face 9a inclined at 45 degrees with respect to a plane perpendicular to the central axis of the hole through which the optical fiber 8 passes. The transparent tube 9 has a flat surface 12 on the side surface facing the inclined end surface 9a, and is coated with a filter 13 that transmits light having a wavelength of 1.55 μm (λ4) and reflects light having a wavelength of 1.31 μm (λ3). ing.
[0029]
After the coating of the tip of the optical fiber 8 of the single mode fiber was removed, the transparent tube 9 was bonded and fixed to the transparent tube 9 with an epoxy-based adhesive, and polished so as not to cause a step according to the inclined end surface 9a of the transparent tube 9. At this time, it is desirable that the adhesive has a refractive index equivalent to that of the core and is sufficiently defoamed so that bubbles do not enter.
[0030]
The transparent block 11 on which the demultiplexing filter 10 that transmits the light having the wavelength of 1.31 μm (λ3) and reflects the light having the wavelength of 1.55 μm (λ4) is adhered to the inclined end surface 9a by using an epoxy adhesive. Fix it.
[0031]
At this time, the transparent block 11 and the epoxy adhesive for fixing the transparent block 11 are those having a refractive index equivalent to that of the core of the optical fiber 8.
[0032]
The optical fiber 8 and the transparent tube 9 having the transparent block 11 are bonded and fixed to the metal fitting 18 using an epoxy adhesive, and the light emitting element 15 and the metal fitting 20 attached to the metal fitting 19 by resistance welding are made of low melting glass. The attached transmission-side condensing lens 16 was adjusted to a position where the emitted light from the light-emitting element 15 was led out to the optical fiber 8 through the transmission-side lens 16 and fixed to the metal fitting 18 by laser welding. The brackets 18, 19, and 20 are made of stainless steel having excellent weldability and rust prevention, the light-emitting element 15 is a Fabry-Perot laser having a wavelength of 1.31 μm, and the transmission-side condenser lens 16 is an aspheric lens. By using an aspheric lens, the influence of spherical aberration can be reduced and high coupling efficiency can be obtained.
[0033]
As described above, the optical fiber 8 is provided with the demultiplexing filter 10 directly on the inclined end surface 9a, and the filter 13 is integrated, so that the optical distance is very short, and a ball lens with a short condensing position is attached. The light receiving element can be used.
[0034]
Further, the light receiving element 14 with the light receiving side condensing lens resistance-welded to the metal fitting 21 is adjusted to a position where the light received from the optical fiber 8 can be introduced with respect to the opening at the position of the flat surface 12 of the metal fitting 18. Fixed by welding. The metal fitting 21 was also made of stainless steel with excellent weldability and rust prevention.
[0035]
The number of parts, the number of assembly steps, and dimensions of the transceiver module shown in FIG. 1 of the present invention and the transceiver module shown in FIG. 3 of the conventional example were compared.
[0036]
[Table 1]
Figure 0004703022
[0037]
From this result, the transmission / reception module shown in FIG. 3 of the conventional example has 13 parts and the housing has a size of 24 × 13.5 × 8 mm, whereas the present invention only requires 10 points. In addition, it is possible to reduce the size of the light receiving element 14 side to 24 × 9.5 × 8 mm by 4 mm.
[0038]
【The invention's effect】
According to the present invention, the end of the optical fiber is housed in a transparent tube, and the transparent tube has an end surface that is inclined with respect to a plane perpendicular to the central axis. The inclined end surface reflects received light and transmits light. A transparent block is joined through a first filter that transmits the light, and the first light that reflects the transmitted light and transmits the received light is reflected on the surface of the transparent tube that is introduced from the optical fiber and reflected by the inclined end surface . By providing the second filter, it is possible to reduce the number of parts and the number of assembling steps, and downsizing can be realized by reducing the space for the parts themselves and the space for the parts to be held. Furthermore, by reflecting the surface facing the light emitting element of the transparent block at an angle of 4 to 12 degrees with respect to the direction perpendicular to the optical axis of the light from the light emitting element, the reflected return light from the facing surface is reduced, It is possible to prevent the light emitting state of the light emitting element from becoming unstable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a transceiver module of the present invention.
FIG. 2 is an enlarged cross-sectional view of a transmission side of a transmission / reception module according to the present invention.
FIG. 3 is a cross-sectional view showing a conventional transceiver module.
[Explanation of symbols]
8: Optical fiber
9: Transparent tube
9a: Inclined end face
10: Demultiplexing filter
11: Transparent block
12: Plane
13: Filter
14: Light receiving element
15: Light emitting element
16: Condenser lens on the transmission side
17: Opposite surface
18: Hardware
19: Hardware
20: Hardware
21: metal fitting λ1: wavelength λ2: wavelength λ3: wavelength λ4: wavelength

Claims (2)

発光素子、受光素子、及び光信号の導出、導入を行う光ファイバを有し、複数の波長の光信号にて送受信を行う送受信モジュールにおいて、上記光ファイバ先端が透明管に収納され、該透明管は中心軸に垂直な面に対して傾斜した端面を有し、この傾斜端面に、受信光を反射するとともに送信光を透過する第1のフィルタを介して透明ブロックを接合し、上記光ファイバから導入され、傾斜端面で反射した光が出射する透明管の表面に、送信光を反射するとともに受信光を透過する第2のフィルタを備え、前記透明ブロックの前記発光素子への対向面を前記発光素子からの光の光軸垂直方向に対して4〜12度の角度で傾斜させていることを特徴とする送受信モジュール。In a transmission / reception module having a light emitting element, a light receiving element, and an optical fiber for deriving and introducing an optical signal, and transmitting and receiving an optical signal with a plurality of wavelengths, the tip of the optical fiber is housed in a transparent tube, and the transparent tube Has an end face inclined with respect to a plane perpendicular to the central axis, and a transparent block is joined to the inclined end face via a first filter that reflects received light and transmits transmitted light. A second filter that reflects the transmitted light and transmits the received light is provided on the surface of the transparent tube through which the light reflected by the inclined end surface is emitted, and the light emitting surface of the transparent block facing the light emitting element is provided with the light emission. A transceiver module characterized by being inclined at an angle of 4 to 12 degrees with respect to a direction perpendicular to the optical axis of light from the element. 前記透明管と前記透明ブロックとを接合する接着剤の屈折率及び前記透明ブロックの屈折率が、前記光ファイバのコアの屈折率と同等であることを特徴とする請求項1に記載の送受信モジュール。2. The transceiver module according to claim 1, wherein a refractive index of an adhesive for joining the transparent tube and the transparent block and a refractive index of the transparent block are equal to a refractive index of a core of the optical fiber. .
JP2001095659A 2001-03-29 2001-03-29 Transceiver module Expired - Fee Related JP4703022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095659A JP4703022B2 (en) 2001-03-29 2001-03-29 Transceiver module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095659A JP4703022B2 (en) 2001-03-29 2001-03-29 Transceiver module

Publications (2)

Publication Number Publication Date
JP2002296456A JP2002296456A (en) 2002-10-09
JP4703022B2 true JP4703022B2 (en) 2011-06-15

Family

ID=18949676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095659A Expired - Fee Related JP4703022B2 (en) 2001-03-29 2001-03-29 Transceiver module

Country Status (1)

Country Link
JP (1) JP4703022B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202157A (en) 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005202156A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005234464A (en) 2004-02-23 2005-09-02 Tdk Corp Optical transceiver and optical module used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619610A (en) * 1984-06-25 1986-01-17 Nec Corp Module for bidirectional optical communication
JPS62118210U (en) * 1986-01-20 1987-07-27
JPH07333462A (en) * 1994-06-02 1995-12-22 Seiko Instr Inc Parts for optical communication
JPH0854541A (en) * 1994-08-15 1996-02-27 Fujitsu Ltd Bidirectional transmission optical module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619610A (en) * 1984-06-25 1986-01-17 Nec Corp Module for bidirectional optical communication
JPS62118210U (en) * 1986-01-20 1987-07-27
JPH07333462A (en) * 1994-06-02 1995-12-22 Seiko Instr Inc Parts for optical communication
JPH0854541A (en) * 1994-08-15 1996-02-27 Fujitsu Ltd Bidirectional transmission optical module

Also Published As

Publication number Publication date
JP2002296456A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP4759380B2 (en) Optical prism for optical communication and optical transceiver module
US8380075B2 (en) Optical transceiver module
WO2017118271A1 (en) Parallel transmission and reception optical module for dual-link transmission, and preparation method
JPH1010373A (en) Receptacle type optical transmitter-receiver and production therefor
JP2000180671A (en) Optical transmission and reception module structure and manufacture of it
CN104914519B (en) A kind of 40G optical transceiver modules
US7160034B2 (en) Optical transmission and receiver module
JPH10173207A (en) Optical transmission-reception module
JP3578264B2 (en) Method of adjusting photoelectric component and component
US7364374B2 (en) Bi-directional optical signal transmitting and receiving device
CN111650701A (en) Structure for improving return loss and application
US20060013541A1 (en) Optoelectronic module
CN109884753B (en) Light receiving assembly and assembling method
JP2002156547A (en) Optical circuit module and its assembling method
JPH08338927A (en) Optical coupler and its assembling method
US6396981B1 (en) Optical device module
JP4703022B2 (en) Transceiver module
US6478479B1 (en) Optical connector module with optical fibers for connecting optical module and optical fiber connector
US7099536B1 (en) Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
JP3767842B2 (en) Bi-directional optical communication module
US6879784B1 (en) Bi-directional optical/electrical transceiver module
JP3694432B2 (en) Bidirectional optical communication device and bidirectional optical communication device
JPS619610A (en) Module for bidirectional optical communication
JP2004354908A (en) Two-way optical communication module
JP5640547B2 (en) Single fiber bidirectional optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees