JP4702546B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP4702546B2
JP4702546B2 JP2006008121A JP2006008121A JP4702546B2 JP 4702546 B2 JP4702546 B2 JP 4702546B2 JP 2006008121 A JP2006008121 A JP 2006008121A JP 2006008121 A JP2006008121 A JP 2006008121A JP 4702546 B2 JP4702546 B2 JP 4702546B2
Authority
JP
Japan
Prior art keywords
magnet
atomic
rare earth
fluoride
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006008121A
Other languages
Japanese (ja)
Other versions
JP2006303433A (en
Inventor
中村  元
晃一 廣田
正信 島尾
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006008121A priority Critical patent/JP4702546B2/en
Publication of JP2006303433A publication Critical patent/JP2006303433A/en
Application granted granted Critical
Publication of JP4702546B2 publication Critical patent/JP4702546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Description

本発明は、高価なTbやDyの使用量を低減させた高性能のNd−Fe−B系永久磁石に関する。   The present invention relates to a high-performance Nd—Fe—B permanent magnet in which the amount of expensive Tb and Dy used is reduced.

Nd−Fe−B系永久磁石は、その優れた磁気特性のために、ますます用途が広がってきている。近年、環境問題への対応から家電をはじめ、産業機器、電気自動車、風力発電へ磁石の応用の幅が広がったことに伴い、Nd−Fe−B系磁石の高性能化が要求されている。   Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. In recent years, Nd-Fe-B magnets have been required to have higher performance as the application of magnets has expanded to address household environmental issues, industrial appliances, electric vehicles, and wind power generation.

磁石の性能の指標として、残留磁束密度と保磁力の大きさを挙げることができる。Nd−Fe−B系焼結磁石の残留磁束密度増大は、Nd2Fe14B化合物の体積率増大と結晶配向度向上により達成され、これまでに種々のプロセスの改善が行われてきている。保磁力の増大に関しては、結晶粒の微細化を図る、Nd量を増やした組成合金を用いる、あるいは効果のある元素を添加する等、様々なアプローチがある中で、現在最も一般的な手法はDyやTbでNdの一部を置換した組成合金を用いることである。Nd2Fe14B化合物のNdをこれらの元素で置換することで、化合物の異方性磁界が増大し、保磁力も増大する。一方で、DyやTbによる置換は化合物の飽和磁気分極を減少させる。従って、上記手法で保磁力の増大を図る限りでは残留磁束密度の低下は避けられない。更に、TbやDyは高価な金属であるので、できるだけ使用量を減らすことが望ましい。 As the performance index of the magnet, the residual magnetic flux density and the coercive force can be cited. The increase in the residual magnetic flux density of the Nd—Fe—B based sintered magnet has been achieved by increasing the volume fraction of the Nd 2 Fe 14 B compound and improving the degree of crystal orientation, and various processes have been improved so far. Regarding the increase in coercive force, among the various approaches such as refinement of crystal grains, use of a composition alloy with an increased Nd amount, or addition of an effective element, the most common method at present is A composition alloy in which a part of Nd is substituted with Dy or Tb is used. By substituting Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropic magnetic field of the compound increases and the coercive force also increases. On the other hand, substitution with Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, as long as the coercive force is increased by the above method, a decrease in residual magnetic flux density is inevitable. Furthermore, since Tb and Dy are expensive metals, it is desirable to reduce the amount used as much as possible.

Nd−Fe−B磁石は結晶粒界面で逆磁区の核が生成する外部磁界の大きさが保磁力となる。逆磁区の核生成には結晶粒界面の構造が強く影響しており、界面近傍における結晶構造の乱れが磁気的な構造の乱れを招き、逆磁区の生成を助長する。一般的には結晶界面から5nm程度の深さまでの磁気的構造が保磁力の増大に寄与していると考えられているが、保磁力増大のための有効な組織形態を得ることは困難であった。   In the Nd—Fe—B magnet, the coercive force is the magnitude of the external magnetic field generated by the nucleus of the reverse magnetic domain at the crystal grain interface. The structure of the crystal grain interface strongly influences the nucleation of the reverse magnetic domain, and the disorder of the crystal structure in the vicinity of the interface causes the disorder of the magnetic structure and promotes the generation of the reverse magnetic domain. In general, it is considered that the magnetic structure from the crystal interface to a depth of about 5 nm contributes to the increase in coercive force, but it is difficult to obtain an effective structure for increasing the coercive force. It was.

なお従来、特許第3471876号公報(特許文献1)には、希土類磁石(希土類元素Rのうち少なくとも1種以上含有)をフッ素系ガス雰囲気中又はフッ素系ガスを含有する雰囲気中でフッ素化処理して、該磁石の表層部にその構成相中のRとのRF3化合物又はROXY化合物(X,Yの各々の値が0<X<1.5でかつ2X+Y=3を満足する)あるいはその両化合物の混合物を形成させ、更には200〜1,200℃の温度で熱処理を施すことからなる耐食性の優れた希土類磁石が開示されている。 Conventionally, in Japanese Patent No. 3447176 (Patent Document 1), a rare earth magnet (containing at least one rare earth element R) is fluorinated in a fluorine gas atmosphere or a fluorine gas atmosphere. In the surface layer of the magnet, an RF 3 compound or RO X F Y compound with R in the constituent phase (each value of X and Y satisfies 0 <X <1.5 and 2X + Y = 3) Alternatively, a rare earth magnet having excellent corrosion resistance is disclosed, which is formed by forming a mixture of both compounds and further performing heat treatment at a temperature of 200 to 1,200 ° C.

特開2003−282312号公報(特許文献2)には、少なくとも、R−Fe−(B,C)系焼結磁石用合金粉末と、希土類元素のフッ素化合物粉末とを混合し、この混合粉末を磁場配向、圧粉成形して焼結すること、この場合、前記混合粉末の中に3〜20重量%の希土類元素(好ましくはDy及び/又はTb)のフッ素化合物を含ませることにより、R−Fe−(B,C)系焼結磁石(但し、Rは希土類元素であり、Rの50%以上はNd及び/又はPrとする)であって、Nd2Fe14B型結晶から主として構成される主相の結晶粒界又は粒界三重点に粒状の粒界相が形成され、前記粒界相が希土類元素のフッ素化合物を含み、前記希土類元素のフッ素化合物の焼結磁石全体に対する含有量が3〜20重量%の範囲にある着磁性が改善されたR−Fe−(B,C)系焼結磁石、特にR−Fe−(B,C)系焼結磁石(但し、Rは希土類元素であり、Rの50%以上はNd及び/又はPrとする)であって、Nd2Fe14B型結晶から主として構成される主相と、希土類元素のフッ素化合物を含む粒界相とを含んで構成され、前記主相中にDy及び/又はTbが含まれ、該主相中に、Dy及び/又はTbの濃度が、該主相全体におけるDy及び/又はTbの濃度の平均値より低い領域が、形成されているR−Fe−(B,C)系焼結磁石が開示されている。 JP-A-2003-28212 (Patent Document 2) includes mixing at least an R—Fe— (B, C) -based sintered magnet alloy powder and a rare earth element fluorine compound powder, Magnetic field orientation, compacting and sintering, in which case the mixed powder contains a fluorine compound of 3 to 20% by weight of a rare earth element (preferably Dy and / or Tb) Fe- (B, C) based sintered magnet (where R is a rare earth element and 50% or more of R is Nd and / or Pr), and is mainly composed of Nd 2 Fe 14 B type crystals. A grain boundary phase is formed at a crystal grain boundary or grain boundary triple point of the main phase, the grain boundary phase contains a rare earth element fluorine compound, and the content of the rare earth element fluorine compound in the entire sintered magnet is Magnetization in the range of 3-20% by weight is improved Improved R—Fe— (B, C) based sintered magnet, particularly R—Fe— (B, C) based sintered magnet (where R is a rare earth element, 50% or more of R is Nd and / or Or Pr), which is configured to include a main phase mainly composed of Nd 2 Fe 14 B-type crystals and a grain boundary phase including a fluorine compound of a rare earth element, and Dy and / or In the main phase, a region where the concentration of Dy and / or Tb is lower than the average value of the concentration of Dy and / or Tb in the entire main phase is formed in R-Fe- ( B, C) based sintered magnets are disclosed.

しかし、これらの提案においても、Tb及びDyの使用量を低減しつつ、残留磁束密度、保磁力の点で高性能な焼結磁石を得る点でなお十分ではない。   However, these proposals are still not sufficient in terms of obtaining a high-performance sintered magnet in terms of residual magnetic flux density and coercive force while reducing the amount of Tb and Dy used.

特開2005−11973号公報(特許文献3)には、磁石を減圧槽内に支持し、該減圧槽内で物理的手法によって蒸気又は微粒子化したM元素(但し、Mは、Pr,Dy,Tb,Hoから選ばれる希土類元素の1種又は2種以上)又はM元素を含む合金を、該磁石の表面の全部又は一部に飛来させて成膜し、かつ該磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に該磁石内部にM元素を磁石表面から拡散浸透させることによって、M元素が富化された結晶粒界層を形成すること、この場合、結晶粒界層のM元素の濃度を磁石の表面側ほど高濃度に富化させることにより、磁石表面からのM元素(但し、Mは、Pr,Dy,Tb,Hoから選ばれる希土類元素の1種又は2種以上)の拡散によりM元素が富化した結晶粒界層を有し、保磁力Hcjと磁石全体に占めるM元素含有量が下記の式で表されることを特徴とする、希土類−鉄−ホウ素系磁石が開示されている。
Hcj≧1+0.2×M(但し、0.05≦M≦10)
但し、Hcj:保磁力、単位(MA/m)、M:磁石全体に占めるM元素含有量(質量%)
しかし、この方法は生産性が極端に悪く、実用的でない。
JP-A-2005-11973 (Patent Document 3) supports a magnet in a decompression tank and vaporizes or atomizes M element by physical means in the decompression tank (where M is Pr, Dy, An alloy containing one or more rare earth elements selected from Tb and Ho) or an alloy containing M element is deposited on all or part of the surface of the magnet, and exposed to the outermost surface of the magnet. Forming a grain boundary layer enriched with the M element by diffusing and penetrating the M element from the magnet surface into the magnet beyond a depth corresponding to the radius of the crystal grain, By enriching the concentration of M element in the boundary layer to a higher concentration on the magnet surface side, M element from the magnet surface (where M is one of rare earth elements selected from Pr, Dy, Tb, Ho or Grain boundary layer enriched with M element by diffusion of 2 or more types) A, wherein the element M content in the whole coercive force Hcj and the magnet is represented by the following formula, the rare earth - iron - boron based magnets is disclosed.
Hcj ≧ 1 + 0.2 × M (where 0.05 ≦ M ≦ 10)
However, Hcj: coercive force, unit (MA / m), M: M element content in the whole magnet (mass%)
However, this method is extremely impractical and impractical.

特許第3471876号公報Japanese Patent No. 3447176 特開2003−282312号公報JP 2003-28212 A 特開2005−11973号公報Japanese Patent Laid-Open No. 2005-11973

本発明は、上述した従来の問題点に鑑みなされたもので、高性能で、かつTbあるいはDyの使用量の少ないR−Fe−B系永久磁石(RはSc及びYを含む希土類元素から選ばれる2種以上)を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and is a high-performance R-Fe-B permanent magnet with a small amount of Tb or Dy (R is selected from rare earth elements including Sc and Y). 2 or more).

本発明者らは、Nd−Fe−B系焼結磁石に代表されるR−Fe−B系焼結磁石(RはSc及びYを含む希土類元素から選ばれる1種又は2種以上)に対し、Dy及び/又はTbのフッ化物を主成分とする粉末を磁石表面に存在させた状態で焼結温度以下の温度で加熱することにより、粉末に含まれていたDy及び/又はTbとフッ素が共に磁石体に高効率で吸収され、結晶粒の界面近傍にのみDyやTbを濃化させ、界面近傍のみの異方性磁界を増大させることで、残留磁束密度の低下を抑制しつつ保磁力を増大できること、しかもこれによればDy、Tbの使用量を低減させ得るものであることを見出し、この発明を完成したものである。   For the R-Fe-B sintered magnet represented by the Nd-Fe-B sintered magnet (R is one or more selected from rare earth elements including Sc and Y). By heating the powder mainly composed of fluoride of Dy and / or Tb on the surface of the magnet at a temperature below the sintering temperature, Dy and / or Tb and fluorine contained in the powder can be obtained. Both are absorbed by the magnet body with high efficiency, Dy and Tb are concentrated only in the vicinity of the interface of the crystal grains, and the anisotropic magnetic field is increased only in the vicinity of the interface, thereby reducing the coercive force while suppressing the decrease in the residual magnetic flux density. It has been found that the use amount of Dy and Tb can be reduced, and the present invention has been completed.

即ち、本発明は、以下の希土類永久磁石を提供する。
(1)NdとPrとを含む母合金から得られた焼結磁石の表面からTb及び/又はDyのフッ化物を吸収させるか、
NdとTbとを含む母合金から得られた焼結磁石の表面からDyのフッ化物を吸収させるか、又は
NdとDyとを含む母合金から得られた焼結磁石の表面にTbのフッ化物を吸収させることによって得られ、1 a2 bcdefg組成(R1はSc及びYを含み、Tb及びDyを除く希土類元素から選ばれる1種又は2種以上であるが、Ndを必須元素として含有する。2はTb及びDyから選ばれる1種又は2種、TはFe及びCoから選ばれる1種又は2種、AはB及びCから選ばれる1種又は2種、MはAl、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上、a〜gは合金の原子%で、10≦a+b≦15、0.01≦b≦8、3≦d≦15、0.01≦e≦4、0.04≦f≦4、0.01≦g≦11、残部がc)を有する焼結磁石体であって、その構成元素であるF及びR2が磁石体中心より磁石体表面に向かって平均的に含有濃度が濃くなるように分布し、かつ該焼結磁石体中の(R1,R2214A正方晶からなる主相結晶粒の周りを取り囲む結晶粒界部において、結晶粒界に含まれるR2/(R1+R2)の濃度が主相結晶粒中のR2/(R1+R2)濃度より平均的に濃く、更に結晶粒界部の磁石体表面より少なくとも20μmの深さ領域にまで、結晶粒界部に(R1,R2)の酸フッ化物が存在していることを特徴とする希土類永久磁石。
(2)結晶粒界部に存在する酸フッ化物に含まれるNd及び/又はPrのR1+R2に対する原子分率が、該酸フッ化物及びR3の酸化物(R3はSc及びYを含む希土類元素から選ばれる1種あるいは2種以上)を除いた結晶粒界部におけるNd及び/又はPrのR1+R2に対する原子分率よりも高いことを特徴とする(1)記載の希土類永久磁石。
(3)R1がNd及び/又はPrを10原子%以上含有することを特徴とする(1)又は(2)記載の希土類永久磁石。
(4)TがFeを60原子%以上含有することを特徴とする(1)乃至(3)のいずれかに記載の希土類永久磁石。
(5)AがBを80原子%以上含有することを特徴とする(1)乃至(4)のいずれかに記載の希土類永久磁石。
That is, the present invention provides the following rare earth permanent magnets.
(1) The fluoride of Tb and / or Dy is absorbed from the surface of the sintered magnet obtained from the master alloy containing Nd and Pr,
Dy fluoride is absorbed from the surface of a sintered magnet obtained from a master alloy containing Nd and Tb, or
It is obtained by absorbing Tb fluoride on the surface of a sintered magnet obtained from a master alloy containing Nd and Dy, and the composition R 1 a R 2 b T c Ad F e O f Mg composition (R 1 Includes Sc and Y, and is one or more selected from rare earth elements excluding Tb and Dy, but contains Nd as an essential element R 2 is one or two selected from Tb and Dy, T is one or two selected from Fe and Co, A is one or two selected from B and C, M is Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, One or more selected from Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, and W, a to g are atomic% of the alloy , 10 ≦ a + b ≦ 15 , 0.01 ≦ b ≦ 8, 3 ≦ d ≦ 15,0.01 ≦ e ≦ 4,0.04 ≦ f ≦ , 0.01 ≦ g ≦ 11, the balance being a sintered magnet body having a c), darker on average contain a concentration towards the F and R 2 is the magnet surface than the magnet body center its constituent elements R included in the crystal grain boundary at the grain boundary part surrounding the main phase crystal grains made of (R 1 , R 2 ) 2 T 14 A tetragonal crystal in the sintered magnet body. 2 / (R 1 + R 2 ) concentration in the main phase crystal grains of R 2 / (R 1 + R 2) on average darker than the concentration, further at least 20μm depth region than the magnet body surface of the crystal grain boundary portion Until now, a rare earth permanent magnet characterized in that (R 1 , R 2 ) oxyfluoride is present at the grain boundary.
(2) atom fraction for R 1 + R 2 of Nd and / or Pr included in oxyfluoride present in a grain boundary portion, an oxide of the acid fluoride and R 3 a (R 3 are Sc and Y The rare earth permanent as set forth in (1), which is higher than the atomic fraction of Nd and / or Pr with respect to R 1 + R 2 at the grain boundary excluding one or more selected from the rare earth elements contained magnet.
(3) The rare earth permanent magnet according to (1) or (2), wherein R 1 contains 10 atomic% or more of Nd and / or Pr.
(4) The rare earth permanent magnet according to any one of (1) to (3), wherein T contains 60 atomic% or more of Fe.
(5) The rare earth permanent magnet according to any one of (1) to (4), wherein A contains 80 atomic% or more of B.

本発明によれば、高性能な磁石特性を有し、かつTbあるいはDyの使用量の少ないR−Fe−B系焼結磁石を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the R-Fe-B type sintered magnet which has a high-performance magnet characteristic and has little usage-amount of Tb or Dy.

本発明の希土類永久磁石は、下記式(1)で示される組成を有しているものである。
1 a2 bcdefg (1)
ここで、R1はSc及びYを含み、Tb及びDyを除く希土類元素から選ばれる1種又は2種以上、R2はTb及びDyから選ばれる1種又は2種、TはFe及びCoから選ばれる1種又は2種、AはB(ホウ素)及びC(炭素)から選ばれる1種又は2種、MはAl、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上である。
a〜gは合金の原子%で、10≦a+b≦15、3≦d≦15、0.01≦e≦4、0.04≦f≦4、0.01≦g≦11で、残部はcである。
The rare earth permanent magnet of the present invention has a composition represented by the following formula (1).
R 1 a R 2 b T c A d F e O f M g (1)
Here, R 1 contains Sc and Y, and is one or more selected from rare earth elements excluding Tb and Dy, R 2 is one or two selected from Tb and Dy, and T is Fe and Co. One or two selected, A is one or two selected from B (boron) and C (carbon), M is Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, One or more selected from Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, and W.
a to g are atomic% of the alloy, 10 ≦ a + b ≦ 15, 3 ≦ d ≦ 15, 0.01 ≦ e ≦ 4, 0.04 ≦ f ≦ 4, 0.01 ≦ g ≦ 11, and the balance is c It is.

この場合、R1としては、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Ho、Er、Yb及びLuが挙げられ、好ましくはNd及びPrを主体とし、R1中Nd及び/又はPrが10原子%以上、より好ましくは50原子%以上含有することが好ましい。 In this case, examples of R 1 include Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Er, Yb, and Lu, preferably Nd and Pr are mainly used, and Nd in R 1 And / or Pr is preferably contained in an amount of 10 atomic% or more, more preferably 50 atomic% or more.

また、R1とR2(Tb及び/又はDy)の合計量a+bは、上記の通り10〜15原子%であるが、より好ましくは12〜15原子%である。この場合、R2の量bは0.01〜8原子%、より好ましくは0.05〜6原子%、更に好ましくは0.1〜5原子%であることが好ましい。 The total amount a + b of R 1 and R 2 (Tb and / or Dy) is 10 to 15 atomic% as described above, and more preferably 12 to 15 atomic%. In this case, the amount b of R 2 is preferably 0.01 to 8 atomic%, more preferably 0.05 to 6 atomic%, and still more preferably 0.1 to 5 atomic%.

更に、TはFe及び/又はCoであるが、好ましくは60原子%以上、特に70原子%以上であり、この場合、Coは0原子%であってもよいが、残留磁束密度の温度安定性を向上させるなどの点で1原子%以上、より好ましくは3原子%以上、特に5原子%以上含有してもよい。   Further, T is Fe and / or Co, preferably 60 atomic% or more, particularly 70 atomic% or more, and in this case, Co may be 0 atomic%, but the temperature stability of the residual magnetic flux density. 1 atom% or more, more preferably 3 atom% or more, and particularly 5 atom% or more may be contained.

Aは、上述した通り、B及び/又はCであるが、AはBを80原子%以上、特に85原子%以上含有していることが好ましい。Aの量dは3〜15原子%であるが、好ましくは4〜12原子%、より好ましくは5〜8原子%である。   As described above, A is B and / or C, but it is preferable that A contains B at 80 atomic% or more, particularly 85 atomic% or more. The amount d of A is 3 to 15 atomic%, preferably 4 to 12 atomic%, more preferably 5 to 8 atomic%.

F(フッ素)の含有量eは、0.01〜4原子%であるが、好ましくは0.02〜3.5原子%、特に0.05〜3.5原子%であり、フッ素含有量が少なすぎると、保磁力増大の効果が認められなくなり、多すぎると、粒界相が変質し、保磁力が減少する。   The content e of F (fluorine) is 0.01 to 4 atomic%, preferably 0.02 to 3.5 atomic%, particularly 0.05 to 3.5 atomic%, and the fluorine content is If the amount is too small, the effect of increasing the coercive force is not recognized. If the amount is too large, the grain boundary phase is altered and the coercive force is decreased.

O(酸素)の含有量fは0.04〜4原子%であるが、好ましくは0.04〜3.5原子%、特に0.04〜3原子%である。   The content f of O (oxygen) is 0.04 to 4 atomic%, preferably 0.04 to 3.5 atomic%, particularly 0.04 to 3 atomic%.

更に、他金属元素Mの含有量gは、上述した通り0.01〜11原子%であるが、好ましくは0.01〜8原子%、特に0.02〜5原子%であり、0.05原子%以上、特に0.1原子%以上含まれていてもよい。   Further, the content g of the other metal element M is 0.01 to 11 atomic% as described above, preferably 0.01 to 8 atomic%, particularly 0.02 to 5 atomic%, 0.05 It may be contained in atomic percent or more, particularly 0.1 atomic percent or more.

この場合、本発明の希土類永久磁石は、その焼結磁石体のF及びR2が、当該磁石体の中心より磁石体表面に向かって平均的にF及びR2の含有濃度が濃くなるように分布している。つまり、磁石体の表面部においてF及びR2の濃度が最も高く、中心に向かってその濃度が漸次低下していくものである。なお、該磁石体の中心部において、Fは存在しなくてもよく、結晶粒界部の磁石体表面から少なくとも20μmの深さまでの領域において、その結晶粒界部にR1及びR2の酸フッ化物、典型的には(R1 1-x2 x)OF[xは0〜1の数]が存在していればよい。また、該焼結磁石中のいわゆる(R1,R2214A正方晶からなる主相結晶粒の周りを取り囲む結晶粒界部において、結晶粒界に含まれるR2/(R1+R2)の濃度が主相結晶粒中のR2/(R1+R2)濃度より平均的に濃くなっているものである。 In this case, the rare earth permanent magnet of the present invention, as its F and R 2 of the sintered magnet body, on average concentration of the F and R 2 towards the magnet body surface from the center of the magnet body becomes darker Distributed. That is, the concentration of F and R 2 is highest at the surface portion of the magnet body, and the concentration gradually decreases toward the center. In the central part of the magnet body, F may not be present, and in the region from the surface of the magnetic body of the crystal grain boundary part to a depth of at least 20 μm, the acid of R 1 and R 2 is present at the crystal grain boundary part. Fluoride, typically (R 1 1−x R 2 x ) OF [x is a number from 0 to 1] may be present. Further, R 2 / (R 1 contained in the grain boundary in the grain boundary portion surrounding the main phase crystal grains made of so-called (R 1 , R 2 ) 2 T 14 A tetragonal crystal in the sintered magnet. + R 2 R 2 / concentration in the main phase crystal grains) (R 1 + R 2) in which it is averagely darker than the concentration.

更に、結晶粒界部に存在する酸フッ化物に含まれるNd及び/又はPrのR1+R2に対する原子分率が、該酸フッ化物及びR3の酸化物(R3はSc及びYを含む希土類元素から選ばれる1種あるいは2種以上)を除いた結晶粒界部におけるNd及び/又はPrのR1+R2に対する原子分率よりも高いことが好ましい。 Furthermore, Nd contained in the oxyfluoride is present in the crystal grain boundaries and / or Pr R 1 + R 2 against atomic fraction of oxide of the acid fluoride and R 3 (R 3 is inclusive of Sc and Y It is preferably higher than the atomic fraction of Nd and / or Pr with respect to R 1 + R 2 at the grain boundary excluding one or more selected from rare earth elements.

本発明の希土類永久磁石は、特にR−Fe−B系焼結磁石体表面にTb及び/又はDyのフッ化物含有粉末を供給し、熱処理することによって得ることができる。   The rare earth permanent magnet of the present invention can be obtained by supplying a Tb and / or Dy fluoride-containing powder to the surface of the R-Fe-B sintered magnet body and heat-treating it.

ここで、上記R−Fe−B系焼結磁石体は、常法に従い、母合金を粗粉砕、微粉砕、成形、焼結させることにより得ることができる。   Here, the R—Fe—B based sintered magnet body can be obtained by roughly pulverizing, finely pulverizing, forming and sintering the mother alloy according to a conventional method.

この場合、母合金は、R、T、A、Mを含有する。RはSc及びYを含む希土類元素から選ばれる1種又は2種以上で、具体的にはSc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはNd、Pr、Dyを主体とする。これらSc及びYを含む希土類元素は合金全体の10〜15原子%、特に12〜15原子%であることが好ましく、更に好ましくはR中にNdとPrあるいはそのいずれか1種を全Rに対して10原子%以上、特に50原子%以上含有することが好適である。TはFe及びCoから選ばれる1種又は2種で、Feは合金全体の50原子%以上、特に65原子%以上含有することが好ましい。AはB及びCから選ばれる1種又は2種で、Bは合金全体の2〜15原子%、特に3〜8原子%含有することが好ましい。MはAl、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上を0.01〜11原子%、特に0.1〜5原子%含有してもよい。残部はN、O等の不可避的な不純物である。   In this case, the master alloy contains R, T, A, and M. R is one or more selected from rare earth elements including Sc and Y, specifically, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu are mentioned, preferably Nd, Pr and Dy. These rare earth elements including Sc and Y are preferably 10 to 15 atomic%, particularly 12 to 15 atomic% of the whole alloy, and more preferably Nd and Pr or any one of them in R is based on the total R. It is preferable to contain 10 atomic% or more, especially 50 atomic% or more. T is one or two selected from Fe and Co, and Fe is preferably contained in an amount of 50 atomic% or more, particularly 65 atomic% or more of the whole alloy. A is one or two selected from B and C, and B is preferably contained in an amount of 2 to 15 atomic%, particularly 3 to 8 atomic% of the whole alloy. M is Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, You may contain 0.01-11 atomic%, especially 0.1-5 atomic% of 1 type, or 2 or more types chosen from W. The balance is inevitable impurities such as N and O.

母合金は原料金属あるいは合金を真空あるいは不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、あるいはストリップキャストにより鋳造することで得られる。また、本系合金の主相であるR2Fe14B化合物組成に近い合金と焼結温度で液相助剤となるRリッチな合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる2合金法も本発明には適用可能である。但し、主相組成に近い合金に対して、鋳造時の冷却速度や合金組成に依存してα−Feが残存しやすく、R2Fe14B化合物相の量を増やす目的で必要に応じて均質化処理を施す。その条件は真空あるいはAr雰囲気中にて700〜1,200℃で1時間以上熱処理する。液相助剤となるRリッチな合金については上記鋳造法のほかに、いわゆる液体急冷法やストリップキャスト法も適用できる。 The mother alloy can be obtained by melting a raw metal or alloy in a vacuum or an inert gas, preferably in an Ar atmosphere, and then casting it in a flat mold or a book mold, or by strip casting. Also, an alloy close to the R 2 Fe 14 B compound composition that is the main phase of this alloy and an R-rich alloy that becomes a liquid phase aid at the sintering temperature are separately prepared, and are weighed and mixed after coarse pulverization. A two alloy method is also applicable to the present invention. However, for alloys close to the main phase composition, α-Fe is likely to remain depending on the cooling rate during casting and the alloy composition, and it is homogeneous as necessary for the purpose of increasing the amount of R 2 Fe 14 B compound phase. The process is applied. The conditions are heat treatment at 700 to 1,200 ° C. for 1 hour or more in a vacuum or Ar atmosphere. In addition to the above casting method, a so-called liquid quenching method or strip casting method can be applied to the R-rich alloy serving as the liquid phase aid.

上記合金は、通常0.05〜3mm、特に0.05〜1.5mmに粗粉砕される。粗粉砕工程にはブラウンミルあるいは水素粉砕が用いられ、ストリップキャストにより作製された合金の場合は水素粉砕が好ましい。粗粉は、例えば高圧窒素を用いたジェットミルにより通常0.2〜30μm、特に0.5〜20μmに微粉砕される。この時、高圧窒素に微量の酸素を混合することで、焼結体の酸素量が制御される。インゴット作製時に混入する酸素と微粉から焼結体に到るまでに吸収した酸素とを合わせて、最終的な焼結体に含まれる酸素量は0.04〜4原子%、特に0.04〜3.5原子%であることが好ましい。   The alloy is generally coarsely pulverized to 0.05 to 3 mm, particularly 0.05 to 1.5 mm. Brown mill or hydrogen pulverization is used for the coarse pulverization process, and hydrogen pulverization is preferable in the case of an alloy produced by strip casting. The coarse powder is usually finely pulverized to 0.2 to 30 μm, particularly 0.5 to 20 μm, for example, by a jet mill using high-pressure nitrogen. At this time, the amount of oxygen in the sintered body is controlled by mixing a small amount of oxygen with high-pressure nitrogen. The oxygen amount contained in the final sintered body is 0.04 to 4 atomic%, particularly 0.04 to 4% by combining the oxygen mixed during the preparation of the ingot and the oxygen absorbed from the fine powder to the sintered body. It is preferably 3.5 atomic%.

微粉末は磁界中圧縮成形機で成形され、焼結炉に投入される。焼結は真空あるいは不活性ガス雰囲気中、通常900〜1,250℃、特に1,000〜1,100℃で行われる。得られた焼結磁石は、正方晶R2Fe14B化合物を主相として60〜99体積%、特に好ましくは80〜98体積%含有し、残部は0.5〜20体積%のRに富む相、0〜10体積%のBに富む相、0.1〜10体積%のRの酸化物及び不可避的不純物により生成した炭化物、窒化物、水酸化物のうち少なくとも1種あるいはこれらの混合物又は複合物からなる。 The fine powder is formed by a compression molding machine in a magnetic field and put into a sintering furnace. Sintering is usually performed at 900 to 1,250 ° C, particularly 1,000 to 1,100 ° C in a vacuum or an inert gas atmosphere. The obtained sintered magnet contains a tetragonal R 2 Fe 14 B compound as a main phase in an amount of 60 to 99% by volume, particularly preferably 80 to 98% by volume, and the remainder is rich in R of 0.5 to 20% by volume. At least one of a phase, 0 to 10% by volume of a B-rich phase, 0.1 to 10% by volume of an oxide of R and unavoidable impurities, nitride, hydroxide, or a mixture thereof; Composed of a composite.

得られた焼結磁石体(焼結ブロック)は所定形状に研削した後、Tb及び/又はDyのフッ化物を含む粉末を磁石体表面に存在させ、磁石と粉末は真空あるいはAr、He等の不活性ガス雰囲気中で焼結温度(Tsと称する)以下の温度、特に200〜(Ts−5)℃で、0.5〜100時間にて熱処理する。この処理によりTb及び/又はDyのフッ化物は磁石内に吸収され、焼結磁石体内に存在していた希土類元素の酸化物は、Fと反応して酸フッ化物へと化学変化する。この時、磁石体内に吸収されるF量は、用いる粉末の組成、粒度、処理時に磁石表面を囲む空間内に存在させる割合、磁石の比表面積、処理温度・時間によって変化するが、0.01〜4原子%、特に0.05〜3.5原子%であることが好ましい。また、この際、吸収されたTb及び/又はDy成分が粒界近傍に濃化する。 After the obtained sintered magnet body (sintered block) is ground into a predetermined shape, a powder containing fluoride of Tb and / or Dy is present on the surface of the magnet body, and the magnet and powder may be vacuum or Ar, He or the like. Heat treatment is performed in an inert gas atmosphere at a temperature equal to or lower than the sintering temperature (referred to as T s ), particularly 200 to (T s −5) ° C. for 0.5 to 100 hours. By this treatment, the fluoride of Tb and / or Dy is absorbed in the magnet, and the rare earth element oxide present in the sintered magnet reacts with F to chemically change to oxyfluoride. At this time, the amount of F absorbed in the magnet body varies depending on the composition of the powder used, the particle size, the ratio of the powder to be present in the space surrounding the magnet surface during processing, the specific surface area of the magnet, and the processing temperature / time. It is preferable that it is -4 atomic%, especially 0.05-3.5 atomic%. At this time, the absorbed Tb and / or Dy component is concentrated near the grain boundary.

なお、焼結磁石体表面に供給する粉末は、全量がTb及び/又はDyのフッ化物であり得るが、粉末中、Tb及び/又はDyのフッ化物が15質量%以上、特に30質量%以上含有されていれば、本発明の磁石を製造し得る。この場合、Tb及び/又はDyのフッ化物以外の粉末としては、他の希土類元素、例えばNd、Pr等のフッ化物をはじめ、Tb及びDyを含む希土類元素の酸化物、酸フッ化物、炭化物、水素化物、水酸化物、オキシカーバイド、窒化物等や、ホウ素、窒化ホウ素、シリコン、炭素などの微粉末やステアリン酸などの有機化合物などが挙げられる。   The powder supplied to the surface of the sintered magnet body may be a fluoride of Tb and / or Dy in total, but in the powder, the fluoride of Tb and / or Dy is 15% by mass or more, particularly 30% by mass or more. If it is contained, the magnet of the present invention can be produced. In this case, the powder other than the fluoride of Tb and / or Dy includes other rare earth elements, for example, fluorides such as Nd and Pr, oxides of rare earth elements including Tb and Dy, oxyfluorides, carbides, Examples thereof include hydrides, hydroxides, oxycarbides, nitrides, fine powders such as boron, boron nitride, silicon, and carbon, and organic compounds such as stearic acid.

また、焼結体表面における上記粉末の供給量は、焼結体の表面1cm2当たり0.1〜100mg、特に0.5〜50mg程度がよい。 The supply amount of the powder on the surface of the sintered body is preferably 0.1 to 100 mg, particularly about 0.5 to 50 mg per 1 cm 2 of the surface of the sintered body.

この磁石体に対して、更に時効処理を施すことが好ましい。   It is preferable to apply an aging treatment to the magnet body.

なお、磁石内に存在するR(Sc及びYを含む希土類元素)の酸フッ化物とは、好ましくはROFであるが、これ以外のROmn(m、nは任意の正数)や、金属元素によりRの一部を置換したあるいは安定化されたもの等、本発明の効果を達成することができるRと酸素とフッ素を含む酸フッ化物を指す。 The oxyfluoride of R (rare earth elements including Sc and Y) present in the magnet is preferably ROF, but other RO m F n (m and n are arbitrary positive numbers), This refers to an oxyfluoride containing R, oxygen, and fluorine that can achieve the effects of the present invention, such as a metal element partially substituted with R or stabilized.

以上のようにして得られたRの酸フッ化物を含む永久磁石材料は、高性能な永久磁石として用いることができる。   The permanent magnet material containing R oxyfluoride obtained as described above can be used as a high-performance permanent magnet.

以下、本発明の具体的態様について実施例及び比較例をもって詳述するが、本発明の内容はこれに限定されるものではない。   Hereinafter, although the specific aspect of this invention is explained in full detail with an Example and a comparative example, the content of this invention is not limited to this.

[実施例1、比較例1]
Ndが11.5原子%、Prが2.0原子%、Alが0.5原子%、Cuが0.3原子%、Bが5.8原子%、Feが残部からなる薄板状の合金を、純度99質量%以上のNd、Pr、Al、Fe、Cuメタルとフェロボロンを用いてAr雰囲気中で高周波溶解した後、銅製単ロールに注湯するストリップキャスト法により得た。この合金を室温にて0.11MPaの水素に曝して水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させ、冷却してから篩にかけ、50メッシュ以下の粗粉末とした。
[Example 1, Comparative Example 1]
A thin plate-like alloy in which Nd is 11.5 atomic%, Pr is 2.0 atomic%, Al is 0.5 atomic%, Cu is 0.3 atomic%, B is 5.8 atomic%, and Fe is the balance. It was obtained by a strip casting method in which Nd, Pr, Al, Fe, Cu metal having a purity of 99% by mass or more and ferroboron were melted at high frequency in an Ar atmosphere and poured into a single copper roll. This alloy was exposed to 0.11 MPa of hydrogen at room temperature to occlude hydrogen, then heated to 500 ° C. while evacuating to partially release hydrogen, cooled, sieved, and 50 mesh or less A coarse powder was obtained.

続いて、粗粉は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4.5μmに微粉砕された。得られた微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結して磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより4×4×厚み2mm寸法に全面研削加工された後、アルカリ溶液、純水、硝酸、純水の順で洗浄・乾燥された。 Subsequently, the coarse powder was finely pulverized to a mass median particle size of 4.5 μm by a jet mill using high-pressure nitrogen gas. The resulting fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into an Ar atmosphere sintering furnace and sintered at 1,060 ° C. for 2 hours to produce a magnet block. The magnet block was ground and ground to a size of 4 × 4 × thickness 2 mm with a diamond cutter, and then washed and dried in the order of alkaline solution, pure water, nitric acid, and pure water.

続いて、フッ化テルビウムを質量分率50%でエタノールと混合した混濁液に超音波を印加しながら磁石体を30秒間浸した。なお、フッ化テルビウム粉末の平均粒子径は5μmであった。引き上げた磁石は真空デシケータに置かれ、室温にてロータリーポンプによる排気雰囲気下で30分間乾燥させた。   Subsequently, the magnet body was immersed for 30 seconds while applying ultrasonic waves to a turbid liquid obtained by mixing terbium fluoride with ethanol at a mass fraction of 50%. The average particle size of the terbium fluoride powder was 5 μm. The pulled up magnet was placed in a vacuum desiccator and dried at room temperature for 30 minutes in an exhaust atmosphere by a rotary pump.

フッ化テルビウムにより覆われた磁石体に対し、Ar雰囲気中850℃で5時間という条件で熱処理を施し、更に500℃で1時間時効処理して急冷することで、本発明の磁石体を得た。これを磁石体M1と称する。比較のためにフッ化テルビウムを付着させずに熱処理を施した磁石体も作製した。これをP1と称する。   The magnet body covered with terbium fluoride was heat-treated in an Ar atmosphere at 850 ° C. for 5 hours, and further subjected to aging treatment at 500 ° C. for 1 hour to quench the magnet body, thereby obtaining the magnet body of the present invention. . This is referred to as a magnet body M1. For comparison, a magnet body which was heat-treated without attaching terbium fluoride was also produced. This is referred to as P1.

磁石体M1及びP1の磁気特性を表1に示した。また、磁石組成を表2に示した。フッ化テルビウムの熱処理を施していない磁石(P1)の保磁力に対して本発明による磁石は800kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。 Table 1 shows the magnetic properties of the magnet bodies M1 and P1. The magnet composition is shown in Table 2. The magnet according to the present invention has an increase in coercive force of 800 kAm −1 with respect to the coercive force of the magnet (P1) not subjected to heat treatment of terbium fluoride. The decrease in residual magnetic flux density was 5 mT.

EPMAによる磁石体M1、P1のTb組成像を図1に示す。磁石原料合金にはTbは含まれていないため、P1ではTbの存在を示す明るいコントラストは認められない(図1(a))。一方、本発明のフッ化テルビウムを用いて熱処理した磁石M1では結晶粒界にのみTbが濃化している(図1(b))。図2に、Tb吸収処理した磁石M1における平均Tb濃度と平均F濃度の深さ方向に対する変化をプロットした。粒界に濃化しているTbとFは、磁石体表面に近くなるほど、その濃度が増大しているのがわかる。図3には、図1と同一視野におけるNd(図3(a))、O(図3(b))、F(図3(c))の組成像を示した。吸収されたフッ素は、磁石内に既に存在していた酸化ネオジムと反応し、酸フッ化ネオジムが生成していることがわかる。以上のことから、Tbの粒界への濃化、酸フッ化物の分散、及びTbとFの濃度勾配を特徴とする磁石体において、少ないTb量で高い磁気特性を発現させることが可能となった。   The Tb composition images of the magnet bodies M1 and P1 by EPMA are shown in FIG. Since the magnet raw material alloy does not contain Tb, no bright contrast indicating the presence of Tb is observed in P1 (FIG. 1 (a)). On the other hand, in the magnet M1 heat-treated using the terbium fluoride of the present invention, Tb is concentrated only at the crystal grain boundary (FIG. 1 (b)). FIG. 2 plots the changes of the average Tb concentration and the average F concentration with respect to the depth direction in the magnet M1 subjected to the Tb absorption treatment. It can be seen that the concentrations of Tb and F concentrated at the grain boundaries increase as they approach the magnet body surface. FIG. 3 shows composition images of Nd (FIG. 3A), O (FIG. 3B), and F (FIG. 3C) in the same visual field as FIG. It can be seen that the absorbed fluorine reacts with neodymium oxide already present in the magnet to produce neodymium oxyfluoride. From the above, it is possible to develop high magnetic properties with a small amount of Tb in a magnet body characterized by concentration of Tb at grain boundaries, dispersion of oxyfluoride, and a concentration gradient of Tb and F. It was.

[実施例2、比較例2]
Ndが13.5原子%、Alが0.5原子%、Bが5.8原子%、Feが残部からなる薄板状の合金を、純度99質量%以上のNd、Al、Feメタルとフェロボロンを用いてAr雰囲気中で高周波溶解した後、銅製単ロールに注湯するストリップキャスト法により得た。この合金を室温にて0.11MPaの水素に曝して水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させ、冷却してから篩にかけ、50メッシュ以下の粗粉末とした。
[Example 2, Comparative Example 2]
A thin plate-like alloy consisting of 13.5 atomic% Nd, 0.5 atomic% Al, 5.8 atomic% B, and the balance of Fe is made of Nd, Al, Fe metal and ferroboron with a purity of 99% by mass or more. It was obtained by a strip casting method in which high-frequency dissolution was performed in an Ar atmosphere and then poured into a single copper roll. This alloy was exposed to 0.11 MPa of hydrogen at room temperature to occlude hydrogen, then heated to 500 ° C. while evacuating to partially release hydrogen, cooled, sieved, and 50 mesh or less A coarse powder was obtained.

これとは別に、Ndが20原子%、Tbが10原子%、Feが24原子%、Bが6原子%、Alが1原子%、Cuが2原子%、Coが残部からなるインゴットを、純度99質量%以上のNd、Tb、Fe、Co、Al、Cuメタルとフェロボロンを用いてAr雰囲気中で高周波溶解した後、平型に鋳造した。この合金は窒素雰囲気中、ジョークラッシャーとブラウンミルを用いて粉砕した後、篩にかけて、50メッシュ以下の粗粉末とした。   Separately from this, an ingot comprising 20 atomic% of Nd, 10 atomic% of Tb, 24 atomic% of Fe, 6 atomic% of B, 1 atomic% of Al, 2 atomic% of Cu, and the balance of Co After 99% by mass or more of Nd, Tb, Fe, Co, Al, Cu metal and ferroboron were melted at high frequency in an Ar atmosphere, they were cast into a flat mold. This alloy was pulverized using a jaw crusher and a brown mill in a nitrogen atmosphere, and then sieved to obtain a coarse powder of 50 mesh or less.

上記2種の粉末を、質量分率で90:10となるように混合し、高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径3.8μmの微粉末とした。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結して磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより4×4×厚み1mm寸法に全面研削加工された後、アルカリ溶液、純水、硝酸、純水の順で洗浄・乾燥された。 The above two kinds of powders were mixed so as to have a mass fraction of 90:10, and were made into a fine powder having a mass median particle diameter of 3.8 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into an Ar atmosphere sintering furnace and sintered at 1,060 ° C. for 2 hours to produce a magnet block. The magnet block was ground and ground to a size of 4 × 4 × thickness 1 mm with a diamond cutter, and then washed and dried in the order of alkaline solution, pure water, nitric acid, and pure water.

続いて、フッ化ディスプロシウムを質量分率50%でエタノールと混合した混濁液に超音波を印加しながら磁石体を30秒間浸した。なお、フッ化ディスプロシウム粉末の平均粒子径は10μmであった。引き上げた磁石は真空デシケータに置かれ、室温にてロータリーポンプによる排気雰囲気下で30分間乾燥させた。   Subsequently, the magnet body was immersed for 30 seconds while applying ultrasonic waves to a turbid liquid obtained by mixing dysprosium fluoride with ethanol at a mass fraction of 50%. The average particle size of the dysprosium fluoride powder was 10 μm. The pulled up magnet was placed in a vacuum desiccator and dried at room temperature for 30 minutes in an exhaust atmosphere by a rotary pump.

フッ化ディスプロシウムにより覆われた磁石体に対し、Ar雰囲気中800℃で10時間という条件で熱処理を施し、更に510℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M2と称する。比較のためにフッ化ディスプロシウムを付着させずに熱処理を施した磁石体も作製した。これをP2と称する。   The magnet body covered with dysprosium fluoride was heat-treated at 800 ° C. for 10 hours in an Ar atmosphere, and further subjected to aging treatment at 510 ° C. for 1 hour to quench the magnet body to obtain a magnet body. This is referred to as a magnet body M2. For comparison, a magnet body that was heat-treated without adhering dysprosium fluoride was also produced. This is referred to as P2.

磁石体M2、P2の磁気特性を表1に示した。また、磁石組成を表2に示した。フッ化ディスプロシウムの吸収処理を施していない磁石(P2)の保磁力に対して本発明による磁石は520kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。EPMAによるDy及びFの分布状態は実施例1におけるTb及びFの分布状態と同等であった。 Table 1 shows the magnetic properties of the magnet bodies M2 and P2. The magnet composition is shown in Table 2. The magnet according to the present invention has an increase in coercive force of 520 kAm −1 with respect to the coercive force of the magnet (P2) not subjected to dysprosium fluoride absorption treatment. The decrease in residual magnetic flux density was 5 mT. The distribution state of Dy and F by EPMA was equivalent to the distribution state of Tb and F in Example 1.

[実施例3、比較例3]
Ndが12.5原子%、Dyが1.5原子%、Alが0.5原子%、Bが5.8原子%、Feが残部からなる薄板状の合金を、純度99質量%以上のNd、Dy、Al、Feメタルとフェロボロンを用いてAr雰囲気中で高周波溶解した後、銅製単ロールに注湯するストリップキャスト法により得た。この合金に室温にて0.11MPaの水素に曝して水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させ、冷却してから篩にかけ、50メッシュ以下の粗粉末とした。
[Example 3, Comparative Example 3]
A thin plate-shaped alloy consisting of Nd of 12.5 atomic%, Dy of 1.5 atomic%, Al of 0.5 atomic%, B of 5.8 atomic%, and the balance of Fe is made into Nd having a purity of 99% by mass or more. , Dy, Al, Fe metal and ferroboron were used for high frequency melting in an Ar atmosphere, and then obtained by a strip casting method in which a copper single roll was poured. This alloy was exposed to 0.11 MPa of hydrogen at room temperature to absorb hydrogen, then heated to 500 ° C. while evacuating to partially release hydrogen, cooled, sieved, and 50 mesh or less A coarse powder was obtained.

続いて、粗粉は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4.0μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結して磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより10×10×厚み3mm寸法に全面研削加工された後、アルカリ溶液、純水、硝酸、純水の順で洗浄・乾燥された。 Subsequently, the coarse powder was finely pulverized to a mass median particle size of 4.0 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into an Ar atmosphere sintering furnace and sintered at 1,060 ° C. for 2 hours to produce a magnet block. The magnet block was ground and ground to a size of 10 × 10 × 3 mm in thickness with a diamond cutter, and then washed and dried in the order of alkaline solution, pure water, nitric acid, and pure water.

続いて、フッ化テルビウムを質量分率50%でエタノールと混合した混濁液に超音波を印加しながら磁石体を30秒間浸した。なお、フッ化テルビウム粉末の平均粒子径は5μmであった。引き上げた磁石は直ちに熱風により乾燥させた。   Subsequently, the magnet body was immersed for 30 seconds while applying ultrasonic waves to a turbid liquid obtained by mixing terbium fluoride with ethanol at a mass fraction of 50%. The average particle size of the terbium fluoride powder was 5 μm. The magnet pulled up was immediately dried with hot air.

フッ化テルビウムにより覆われた磁石体に対し、Ar雰囲気中800℃で10時間という条件で熱処理を施し、更に585℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M3と称する。比較のためにフッ化テルビウムを付着させずに熱処理を施した磁石体も作製した。これをP3と称する。   The magnet body covered with terbium fluoride was heat-treated at 800 ° C. for 10 hours in an Ar atmosphere, and further subjected to an aging treatment at 585 ° C. for 1 hour to rapidly cool the magnet body. This is referred to as a magnet body M3. For comparison, a magnet body which was heat-treated without attaching terbium fluoride was also produced. This is referred to as P3.

磁石体M3及びP3の磁気特性を表1に示した。また、磁石組成を表2に示した。フッ化テルビウムの熱処理を施していない磁石(P3)の保磁力に対して本発明による磁石は750kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。EPMAによるTb及びFの分布状態は実施例1におけるTb及びFの分布状態と同等であった。 Table 1 shows the magnetic properties of the magnet bodies M3 and P3. The magnet composition is shown in Table 2. The magnet according to the present invention has an increase in coercive force of 750 kAm −1 with respect to the coercive force of the magnet (P3) not subjected to heat treatment of terbium fluoride. The decrease in residual magnetic flux density was 5 mT. The distribution state of Tb and F by EPMA was equivalent to the distribution state of Tb and F in Example 1.

[実施例4〜8、比較例4〜8]
Ndが11.5原子%、Prが2.0原子%、Alが0.5原子%、Cuが0.3原子%、M’(Cr、V、Nb、Ga又はW)が0.5原子%、Bが5.8原子%、Feが残部からなる薄板状の合金を、純度99質量%以上のNd、Pr、Al、Fe、Cu、Cr、V、Nb、Ga、Wメタルとフェロボロンを用いてAr雰囲気中で高周波溶解した後、銅製単ロールに注湯するストリップキャスト法により得た。この合金に室温にて0.11MPaの水素に曝して水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させ、冷却してから篩にかけ、50メッシュ以下の粗粉末とした。
[Examples 4 to 8, Comparative Examples 4 to 8]
Nd is 11.5 atomic%, Pr is 2.0 atomic%, Al is 0.5 atomic%, Cu is 0.3 atomic%, and M ′ (Cr, V, Nb, Ga or W) is 0.5 atomic%. Nd, Pr, Al, Fe, Cu, Cr, V, Nb, Ga, W metal and ferroboron with a purity of 99 mass% or more It was obtained by a strip casting method in which high-frequency dissolution was performed in an Ar atmosphere and then poured into a single copper roll. This alloy was exposed to 0.11 MPa of hydrogen at room temperature to absorb hydrogen, then heated to 500 ° C. while evacuating to partially release hydrogen, cooled, sieved, and 50 mesh or less A coarse powder was obtained.

続いて、粗粉は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4.7μmに微粉砕された。得られた微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結して磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより5×5×厚み2.5mm寸法に全面研削加工された後、アルカリ溶液、純水、クエン酸、純水の順で洗浄・乾燥された。 Subsequently, the coarse powder was finely pulverized by a jet mill using high-pressure nitrogen gas to a mass median particle size of 4.7 μm. The resulting fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into an Ar atmosphere sintering furnace and sintered at 1,060 ° C. for 2 hours to produce a magnet block. The magnet block was ground and polished to a size of 5 × 5 × 2.5 mm with a diamond cutter, and then washed and dried in the order of alkaline solution, pure water, citric acid, and pure water.

続いて、フッ化ディスプロシウムと酸化ディスプロシウムを質量分率で50:50に混合した粉末を質量分率50%でエタノールと混合した混濁液に超音波を印加しながら磁石体を30秒間浸した。なお、フッ化ディスプロシウムと酸化ディスプロシウム粉末の平均粒子径はそれぞれ5μm、1μmであった。引き上げた磁石は真空デシケータに置かれ、室温にてロータリーポンプによる排気雰囲気下で30分間乾燥させた。   Subsequently, the magnet body was applied for 30 seconds while applying ultrasonic waves to a turbid liquid obtained by mixing dysprosium fluoride and dysprosium oxide in a mass fraction of 50:50 with ethanol at a mass fraction of 50%. Soaked. The average particle sizes of dysprosium fluoride and dysprosium oxide powder were 5 μm and 1 μm, respectively. The pulled up magnet was placed in a vacuum desiccator and dried at room temperature for 30 minutes in an exhaust atmosphere by a rotary pump.

フッ化ディスプロシウムと酸化ディスプロシウムの混合粉末により覆われた磁石体に対し、Ar雰囲気中800℃で8時間という条件で熱処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これらの磁石体を添加元素がM’=Cr、V、Nb、Ga、Wの順に磁石体M4〜8と称する。比較のためにフッ化ディスプロシウム及び酸化ディスプロシウムを付着させずに熱処理を施した磁石体も作製した。これらも同様にP4〜8と称する。   A magnet body covered with a mixed powder of dysprosium fluoride and dysprosium oxide is heat-treated in an Ar atmosphere at 800 ° C. for 8 hours, and further subjected to aging treatment at 500 ° C. for 1 hour for rapid cooling. Thus, a magnet body was obtained. These magnet bodies are referred to as magnet bodies M4 to M8 in the order of additive elements M '= Cr, V, Nb, Ga, W. For comparison, a magnet body that was heat-treated without attaching dysprosium fluoride and dysprosium oxide was also produced. These are also referred to as P4-8.

磁石体M4〜8及びP4〜8の磁気特性を表1に示した。また、磁石組成を表2に示した。フッ化ディスプロシウムの熱処理を施していない磁石(P4〜8)の保磁力に対して本発明による磁石(M4〜8)は400kAm-1以上の保磁力増大が認められる。また、残留磁束密度の低下は0〜5mTであった。EPMAによるDy及びFの分布状態は実施例1におけるTb及びFの分布状態と同等であった。 Table 1 shows the magnetic properties of the magnet bodies M4-8 and P4-8. The magnet composition is shown in Table 2. In the magnets (M4-8) according to the present invention, an increase in coercive force of 400 kAm −1 or more is recognized with respect to the coercivity of the magnets (P4-8) not subjected to the heat treatment of dysprosium fluoride. Moreover, the fall of the residual magnetic flux density was 0-5 mT. The distribution state of Dy and F by EPMA was equivalent to the distribution state of Tb and F in Example 1.

以上のことから、Tb及び/又はDyの粒界への濃化、酸フッ化物の分散、及びTbとFの濃度勾配を特徴とする磁石体において、少ないTb及び/又はDy量で高い磁気特性を発現させることが可能となった。   From the above, in a magnet body characterized by concentration of Tb and / or Dy at grain boundaries, dispersion of oxyfluoride, and concentration gradient of Tb and F, high magnetic properties with a small amount of Tb and / or Dy Can be expressed.

注1:式(1)中のMに相当する元素の合計量 Note 1: Total amount of elements corresponding to M in formula (1)

分析値は、希土類元素については、実施例、比較例と同等の試料を王水によって全量溶かし、ICP法により求めた。酸素については不活性ガス融解赤外吸収測定法で、フッ素については水蒸気蒸留−アルフッソン比色法で求めた。   Analytical values were determined by the ICP method for rare earth elements by dissolving all the same samples as in Examples and Comparative Examples with aqua regia. Oxygen was determined by an inert gas melting infrared absorption measurement method, and fluorine was determined by a steam distillation-Alfusson colorimetric method.

実施例1において作製された磁石体M1のTb組成像(a)及び研削加工と熱処理のみの磁石体P1のTb組成像(b)を示した図である。It is the figure which showed the Tb composition image (a) of the magnet body M1 produced in Example 1, and the Tb composition image (b) of the magnet body P1 only of grinding and heat treatment. 実施例1において作製された磁石体M1のTbの平均濃度(a)とFの平均濃度(b)を磁石表面からの深さに対しプロットした図である。It is the figure which plotted the average density | concentration (a) of Tb of the magnet body M1 produced in Example 1, and the average density | concentration (b) of F with respect to the depth from the magnet surface. 実施例1において作製された磁石体M1のNd組成像(a)、O組成像(b)、及びF組成像(c)を示した図である。It is the figure which showed the Nd composition image (a), O composition image (b), and F composition image (c) of the magnet body M1 produced in Example 1. FIG.

Claims (5)

NdとPrとを含む母合金から得られた焼結磁石の表面からTb及び/又はDyのフッ化物を吸収させるか、
NdとTbとを含む母合金から得られた焼結磁石の表面からDyのフッ化物を吸収させるか、又は
NdとDyとを含む母合金から得られた焼結磁石の表面にTbのフッ化物を吸収させることによって得られ、1 a2 bcdefg組成(R1はSc及びYを含み、Tb及びDyを除く希土類元素から選ばれる1種又は2種以上であるが、Ndを必須元素として含有する。2はTb及びDyから選ばれる1種又は2種、TはFe及びCoから選ばれる1種又は2種、AはB及びCから選ばれる1種又は2種、MはAl、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上、a〜gは合金の原子%で、10≦a+b≦15、0.01≦b≦8、3≦d≦15、0.01≦e≦4、0.04≦f≦4、0.01≦g≦11、残部がc)を有する焼結磁石体であって、その構成元素であるF及びR2が磁石体中心より磁石体表面に向かって平均的に含有濃度が濃くなるように分布し、かつ該焼結磁石体中の(R1,R2214A正方晶からなる主相結晶粒の周りを取り囲む結晶粒界部において、結晶粒界に含まれるR2/(R1+R2)の濃度が主相結晶粒中のR2/(R1+R2)濃度より平均的に濃く、更に結晶粒界部の磁石体表面より少なくとも20μmの深さ領域にまで、結晶粒界部に(R1,R2)の酸フッ化物が存在していることを特徴とする希土類永久磁石。
Absorbing Tb and / or Dy fluoride from the surface of a sintered magnet obtained from a master alloy containing Nd and Pr;
Dy fluoride is absorbed from the surface of a sintered magnet obtained from a master alloy containing Nd and Tb, or
It is obtained by absorbing Tb fluoride on the surface of a sintered magnet obtained from a master alloy containing Nd and Dy, and the composition R 1 a R 2 b T c Ad F e O f Mg composition (R 1 Includes Sc and Y, and is one or more selected from rare earth elements excluding Tb and Dy, but contains Nd as an essential element R 2 is one or two selected from Tb and Dy, T is one or two selected from Fe and Co, A is one or two selected from B and C, M is Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, One or more selected from Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, and W, a to g are atomic% of the alloy , 10 ≦ a + b ≦ 15 , 0.01 ≦ b ≦ 8, 3 ≦ d ≦ 15,0.01 ≦ e ≦ 4,0.04 ≦ f ≦ , 0.01 ≦ g ≦ 11, the balance being a sintered magnet body having a c), darker on average contain a concentration towards the F and R 2 is the magnet surface than the magnet body center its constituent elements R included in the crystal grain boundary at the grain boundary part surrounding the main phase crystal grains made of (R 1 , R 2 ) 2 T 14 A tetragonal crystal in the sintered magnet body. 2 / (R 1 + R 2 ) concentration in the main phase crystal grains of R 2 / (R 1 + R 2) on average darker than the concentration, further at least 20μm depth region than the magnet body surface of the crystal grain boundary portion Until now, a rare earth permanent magnet characterized in that (R 1 , R 2 ) oxyfluoride is present at the grain boundary.
結晶粒界部に存在する酸フッ化物に含まれるNd及び/又はPrのR1+R2に対する原子分率が、該酸フッ化物及びR3の酸化物(R3はSc及びYを含む希土類元素から選ばれる1種あるいは2種以上)を除いた結晶粒界部におけるNd及び/又はPrのR1+R2に対する原子分率よりも高いことを特徴とする請求項1記載の希土類永久磁石。 Rare earth elements including R 1 + R 2 against atomic fraction of Nd contained in the oxyfluoride is present in the crystal grain boundaries and / or Pr is, oxides of the acid fluoride and R 3 a (R 3 are Sc and Y 2. The rare earth permanent magnet according to claim 1, wherein Nd and / or Pr is higher than the atomic fraction of R 1 + R 2 in the grain boundary portion excluding one or more selected from the above. 1がNd及び/又はPrを10原子%以上含有することを特徴とする請求項1又は2記載の希土類永久磁石。 3. The rare earth permanent magnet according to claim 1, wherein R 1 contains Nd and / or Pr in an amount of 10 atomic% or more. TがFeを60原子%以上含有することを特徴とする請求項1乃至3のいずれか1項に記載の希土類永久磁石。   4. The rare earth permanent magnet according to claim 1, wherein T contains 60 atomic% or more of Fe. 5. AがBを80原子%以上含有することを特徴とする請求項1乃至4のいずれか1項に記載の希土類永久磁石。   The rare earth permanent magnet according to any one of claims 1 to 4, wherein A contains 80 atomic percent or more of B.
JP2006008121A 2005-03-23 2006-01-17 Rare earth permanent magnet Active JP4702546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008121A JP4702546B2 (en) 2005-03-23 2006-01-17 Rare earth permanent magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005084087 2005-03-23
JP2005084087 2005-03-23
JP2006008121A JP4702546B2 (en) 2005-03-23 2006-01-17 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2006303433A JP2006303433A (en) 2006-11-02
JP4702546B2 true JP4702546B2 (en) 2011-06-15

Family

ID=37471308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008121A Active JP4702546B2 (en) 2005-03-23 2006-01-17 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP4702546B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840606B2 (en) * 2006-11-17 2011-12-21 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP5275043B2 (en) * 2006-12-21 2013-08-28 株式会社アルバック Permanent magnet and method for manufacturing permanent magnet
DE112007003107T5 (en) * 2006-12-21 2009-10-29 ULVAC, Inc., Chigasaki Permanent magnet and method for its production
RU2427051C2 (en) 2006-12-21 2011-08-20 Улвак, Инк. Permanent magnet and method of making said magnet
DE112007003091T5 (en) * 2006-12-21 2009-11-05 ULVAC, Inc., Chigasaki Permanent magnet and method for its production
JP5093485B2 (en) * 2007-03-16 2012-12-12 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
CN101542654B (en) * 2007-03-30 2015-01-14 Tdk株式会社 Process for producing magnet
JP5209349B2 (en) * 2008-03-13 2013-06-12 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet
EP2273513B1 (en) * 2008-03-31 2019-10-16 Hitachi Metals, Ltd. R-t-b-type sintered magnet and method for production thereof
JP2010034365A (en) 2008-07-30 2010-02-12 Hitachi Ltd Rotating machine with sintered magnet, and method of manufacturing sintered magnet
JP4896104B2 (en) 2008-09-29 2012-03-14 株式会社日立製作所 Sintered magnet and rotating machine using the same
EP2444984B1 (en) 2009-06-18 2018-04-18 Toyota Jidosha Kabushiki Kaisha Method and apparatus for producing magnetic powder
WO2011108704A1 (en) * 2010-03-04 2011-09-09 Tdk株式会社 Sintered rare-earth magnet and motor
US9350203B2 (en) 2010-03-30 2016-05-24 Tdk Corporation Rare earth sintered magnet, method for producing the same, motor, and automobile
CN102822912B (en) 2010-03-30 2015-07-22 Tdk株式会社 Rare earth sintered magnet, method for producing same, motor and automobile
EP2555208B1 (en) 2010-03-30 2021-05-05 TDK Corporation Method for producing sintered magnet
JP5247754B2 (en) 2010-03-30 2013-07-24 株式会社日立製作所 Magnetic material and motor using the magnetic material
RU2476947C2 (en) * 2011-06-08 2013-02-27 Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт физики металлов Уральского отделения РАН (ИФМ УрО РАН) METHOD FOR OBTAINING HIGH-COERCIVITY MAGNETS FROM ALLOYS ON BASIS OF Nd-Fe-B
JP5948033B2 (en) * 2011-09-21 2016-07-06 株式会社日立製作所 Sintered magnet
CN108269666B (en) * 2013-03-18 2019-12-06 因太金属株式会社 RFeB-based magnet
JP6303356B2 (en) 2013-09-24 2018-04-04 大同特殊鋼株式会社 Method for producing RFeB magnet
JP6331317B2 (en) 2013-10-04 2018-05-30 大同特殊鋼株式会社 Coupled RFeB magnet and method for manufacturing the same
JP6464552B2 (en) 2013-10-04 2019-02-06 大同特殊鋼株式会社 RFeB magnet and method for producing the same
JP6003920B2 (en) * 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6506182B2 (en) 2014-02-14 2019-04-24 株式会社三徳 Rare earth-containing alloy flakes, method for producing the same and sintered magnet
JP6493138B2 (en) * 2015-10-07 2019-04-03 Tdk株式会社 R-T-B sintered magnet
CN107871602A (en) * 2016-09-26 2018-04-03 厦门钨业股份有限公司 The grain boundary decision method of R Fe B systems rare-earth sintered magnet a kind of, HRE diffusions source and preparation method thereof
JP7251917B2 (en) * 2016-12-06 2023-04-04 Tdk株式会社 RTB system permanent magnet
JP7251916B2 (en) * 2017-12-05 2023-04-04 Tdk株式会社 RTB system permanent magnet
CN112447350A (en) * 2019-08-29 2021-03-05 比亚迪股份有限公司 Rare earth permanent magnet and preparation method thereof
CN111415814A (en) * 2020-04-24 2020-07-14 有研稀土(荣成)有限公司 Method for preparing neodymium iron boron product by balloon packaging
CN111768965A (en) * 2020-05-06 2020-10-13 江西金力永磁科技股份有限公司 Preparation method of annular radiation oriented magnet
CN111653404B (en) 2020-05-27 2022-11-15 烟台正海磁性材料股份有限公司 Neodymium-iron-boron magnet and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255902A (en) * 1987-04-13 1988-10-24 Hitachi Metals Ltd R-b-fe sintered magnet and manufacture thereof
JPH06244011A (en) * 1992-12-26 1994-09-02 Sumitomo Special Metals Co Ltd Corrosion-resistant rare earth magnet and manufacture thereof
JP2001068317A (en) * 1999-08-31 2001-03-16 Shin Etsu Chem Co Ltd Nd-Fe-B SINTERED MAGNET AND ITS MANUFACTURING METHOD
WO2004114333A1 (en) * 2003-06-18 2004-12-29 Japan Science And Technology Agency Rare earth - iron - boron based magnet and method for production thereof
JP2006066870A (en) * 2004-07-28 2006-03-09 Hitachi Ltd Rare-earth magnet
JP2006238604A (en) * 2005-02-25 2006-09-07 Hitachi Ltd Permanent magnet rotating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI302712B (en) * 2004-12-16 2008-11-01 Japan Science & Tech Agency Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255902A (en) * 1987-04-13 1988-10-24 Hitachi Metals Ltd R-b-fe sintered magnet and manufacture thereof
JPH06244011A (en) * 1992-12-26 1994-09-02 Sumitomo Special Metals Co Ltd Corrosion-resistant rare earth magnet and manufacture thereof
JP2001068317A (en) * 1999-08-31 2001-03-16 Shin Etsu Chem Co Ltd Nd-Fe-B SINTERED MAGNET AND ITS MANUFACTURING METHOD
WO2004114333A1 (en) * 2003-06-18 2004-12-29 Japan Science And Technology Agency Rare earth - iron - boron based magnet and method for production thereof
JP2006066870A (en) * 2004-07-28 2006-03-09 Hitachi Ltd Rare-earth magnet
JP2006238604A (en) * 2005-02-25 2006-09-07 Hitachi Ltd Permanent magnet rotating machine

Also Published As

Publication number Publication date
JP2006303433A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4702546B2 (en) Rare earth permanent magnet
KR101030267B1 (en) Rare earth permanent magnet
TWI421885B (en) Manufacture method of rare earth metal permanent magnet material
TWI421886B (en) Manufacture method of rare earth metal permanent magnet material
JP4450239B2 (en) Rare earth permanent magnet material and manufacturing method thereof
KR101084340B1 (en) Functionally graded rare earth permanent magnet
JP4840606B2 (en) Rare earth permanent magnet manufacturing method
JP4702549B2 (en) Rare earth permanent magnet
KR101855530B1 (en) Rare earth permanent magnet and their preparation
RU2417138C2 (en) Method of producing rare-earth permanent magnet material
KR101062229B1 (en) Rare Earth Permanent Magnets
JP4702547B2 (en) Functionally graded rare earth permanent magnet
JP4702548B2 (en) Functionally graded rare earth permanent magnet
CN113571279A (en) Magnet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

R150 Certificate of patent or registration of utility model

Ref document number: 4702546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150