JP4702504B2 - Simplified biological assessment of natural and artificial chemicals using DNA damage indicators - Google Patents

Simplified biological assessment of natural and artificial chemicals using DNA damage indicators Download PDF

Info

Publication number
JP4702504B2
JP4702504B2 JP2000086410A JP2000086410A JP4702504B2 JP 4702504 B2 JP4702504 B2 JP 4702504B2 JP 2000086410 A JP2000086410 A JP 2000086410A JP 2000086410 A JP2000086410 A JP 2000086410A JP 4702504 B2 JP4702504 B2 JP 4702504B2
Authority
JP
Japan
Prior art keywords
8ohdg
solution
natural
deoxyguanosine
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000086410A
Other languages
Japanese (ja)
Other versions
JP2001272388A (en
Inventor
厚司 高木
宣明 清水
政司 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAS Project Co Ltd
Original Assignee
TAS Project Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000086410A priority Critical patent/JP4702504B2/en
Application filed by TAS Project Co Ltd filed Critical TAS Project Co Ltd
Priority to KR1020077009228A priority patent/KR20070051370A/en
Priority to KR1020027012073A priority patent/KR20030007463A/en
Priority to CNB018065872A priority patent/CN1219890C/en
Priority to CNA2005100020275A priority patent/CN1629633A/en
Priority to CNB2005100020260A priority patent/CN1289070C/en
Priority to PCT/JP2001/002095 priority patent/WO2001069235A1/en
Priority to US10/203,553 priority patent/US20030186260A1/en
Priority to EP01912426A priority patent/EP1267162A4/en
Priority to KR1020077009229A priority patent/KR100763686B1/en
Priority to AU2001241169A priority patent/AU2001241169A1/en
Publication of JP2001272388A publication Critical patent/JP2001272388A/en
Priority to US11/311,360 priority patent/US7531312B2/en
Application granted granted Critical
Publication of JP4702504B2 publication Critical patent/JP4702504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はDNA損傷指標を利用する天然および人工化学物質の簡易生物学的評価法に関し、より詳しくはDNAの構成成分である2’−デオキシグアノシン(dG)が酸化型の8−ヒドロキシ−2’−デオキシグアノシン(8OHdG)に変化する反応、あるいは生体細胞由来産物中に含有する8OHdG/dG比について被検物質投与群と対照群とを比較することにより、医薬品や農薬等の天然および人工化学物質の有害性や有効性、あるいは各種機能性食品等の有害性や有効性を簡便に評価する方法に関するものである。
【0002】
【従来の技術】
各種の人工化学物質、例えば医薬品、農薬、洗剤、食品添加物、防腐剤、各種発癌物質、内分泌攪乱物質等の生物学的に許容される安全濃度は、
1)実験動物に投与したときの致死量
2)実験動物に投与したときの発癌や神経障害等の明らかな臓器障害を発生する量
3)生殖能力に影響を与える量
等を参考にし、これらの最低有効量に100倍から1000倍の安全率を乗じた濃度が参考とされてきた。
しかしながら、評価対象となる人工化学物質の種類が約10万種以上とあまりにも多いこと、生物毒性をマウスやラットを使用して定量化する場合、一世代の成立でも約2カ月、世代を超えた影響を評価する場合は少なくともその2倍以上の月日が必要となること、そして評価システムを維持するために膨大な費用を要すること、等の理由から、全ての物質の生物学的毒性を従来の方法で評価するには、時間的および費用的な規制から現段階では事実上不可能といえる。
また、現在市販されている多くの健康食品や機能性食品等の食品類は、天然素材をエキス化したもの、あるいは特定の物質を安全許容量の範囲内で添加したもの等が主流である。しかしながら、
1)天然素材の中にも有害成分が存在する可能性がある、
2)特にエキス化した場合、その生物毒性が増強される可能性がある、
3)各種成分が相乗的に作用して有毒となる可能性がある、
4)健康食品の有効性(実効性)に関する客観的な評価システムが確立されていない、
等の問題点がある。
上記人工化学物質や食品類は人間が日常、摂取もしくは投与または接触する可能性があり、それらの生物学的毒性や有効性、特に毒性を確認することは急務であるにもかかわらず、現況は上記のとおり、長期間および高い費用等を必要とする問題があった。そこで、人工化学物質の生物学的毒性または食品類の有害性・有効性を簡便かつ低コストで評価する方法の開発が望まれている。
【0003】
【発明が解決しようとする課題】
本発明はこの要望に応えるためになされたものであり、膨大な種類の天然物質や人工化学物質および食品類の生物学的有害性や有益性を合理的でかつ簡便に評価する方法の提供を課題とする。
【0004】
【課題を解決するための手段】
本発明者等は、鋭意研究の結果、被検物質である天然または人工化学物質や食品類を含有する溶液に2’−デオキシグアノシン(dG)を添加し、一定時間経過後の上記混合溶液中の酸化型8−ヒドロキシ−2’−デオキシグアノシン(8OHdG)の濃度を測定すれば、被検物質の酸化能または抗酸化能の有無およびその程度を知ることができ、それを指標として、被検物質の生物学的有害性や無毒性ないしは有益性を評価し得ることを見いだし、さらに検討を加え、本発明を完成させた。
すなわち、本発明は、特定の天然または人工化学物質を含む溶液中に既知量の2’−デオキシグアノシンを添加した後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記天然または人工化学物質の有害性または有益性の有無を評価することからなる、天然または人工化学物質の生物学的評価法に関するものである。
また、本発明は、特定の天然または人工化学物質を含む溶液中に既知量の2’−デオキシグアノシンを添加し、該溶液に紫外線照射および/または活性酸素種発生剤の添加を行った後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記天然または人工化学物質の、活性酸素に由来する遺伝子核酸の酸化損傷に対する相加、相乗または相殺効果の有無を指標とした、天然または人工化学物質の有害性または有益性を評価することからなる、天然または人工化学物質の生物学的評価法に関する。
さらに、本発明は、天然または人工化学物質からなる食品を含有する溶液中に既知量の2’−デオキシグアノシンを添加した後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記食品の有害性または有益性を評価することからなる、天然または人工化学物質からなる食品の生物学的評価法、および天然または人工化学物質からなる食品を含有する溶液中に既知量の2’−デオキシグアノシンを添加し、該溶液に紫外線照射および/または活性酸素種発生剤の添加を行った後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記食品の、活性酸素に由来する遺伝子核酸の酸化損傷に対する相加、相乗または相殺効果の有無を指標とした、天然または人工化学物質の有害性または有益性を評価することからなる、天然または人工化学物質からなる食品の生物学的評価法に関する。
本発明はまた、天然または人工化学物質からなる食品と遺伝子核酸の酸化損傷作用を有する物質とを含有する溶液中に既知量の2’−デオキシグアノシンを添加した後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記食品成分の遺伝子核酸の酸化損傷予防作用の有効性を評価することからなる、天然または人工化学物質からなる食品の生物学的評価法に関する。
本発明はさらに、特定しない化学物質を含む被検溶液中に既知量の2’−デオキシグアノシンを添加した後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記被検溶液の抗酸化能または酸化能を評価することからなる、被検溶液の生物学的評価法に関する。
さらに本発明は、特定の化学物質または食品を一定期間投与したヒトを含む動物、植物、細菌または真菌から採取した生体細胞由来産物(例えば血液,尿,その他の体液,組織破砕液,細胞破砕液等)中の8−ヒドロキシ−2’−デオキシグアノシンと2−デオキシグアノシンの含有比に応じて、上記化学物質または食品の有害性または有益性を評価することからなる、化学物質または食品の生物学的評価法に関する。
本発明において「有害性または有益性(の有無)を評価する」とは、被検物質が生物学的有害性(酸化的ストレスの付与,発癌性,催奇形性,生殖能への悪影響等)を有するか否か、または有害性もしくは有益性(有効性)を有するかの判断基準および上記有害性または有益性の程度を提示することを意味する。また、「抗酸化能または酸化能を評価する」とは、被検溶液が抗酸化能、換言すれば還元力を有するか否かの判断基準または被検溶液が酸化能(酸化力)を有するか否かの判断基準およびそれらの程度を提示することを意味する。
なお、上記被検溶液の生物学的評価法において、dGを添加し、上記溶液に紫外線照射および/または活性酸素種発生剤の添加を行った後に上記溶液中の8OHdGを定量することにより、上記被検溶液の活性酸素に由来する遺伝子核酸の酸化損傷に対する相加、相乗または相殺効果の有無を評価することもできる。
【0005】
本発明において使用する2’−デオキシグアノシンはDNAの構成成分であるデオキシプリンヌクレオシドの一種である。ほとんど全ての遺伝子情報はアデニン(A)とチミン(T)、グアニン(G)とシトシン(C)の塩基対により暗号化されているが、この遺伝子情報は、自然突然変異(紫外線照射やDNAの複製エラー等による)や人工産物による突然変異(各種の発癌物質,活性酸素等による)により一定頻度で損傷を受け、究極的には遺伝子情報の欠失、重複、逆位、挿入、転座、点変異等が起こり、細胞や個体の死滅を導いたり、逆に新たな生物種の誕生の引き金となっている。
活性酸素は体内に取り込まれた酸素から生成される以外に、生体に摂取された天然および人工化学物質がその材料や誘導因子となって生成され、生体成分であるタンパク質、脂質、遺伝子核酸等に酸化損傷を与えることが知られている。上記dGの場合、活性酸素種であるヒドロキシラジカル(・OH)等と結合すると、酸化型の8−ヒドロキシ−2’−デオキシグアノシン(8OHdG)が生じる。この8OHdGは本来のG−Cの塩基対をT−Aの塩基対に変換させてしまう。つまり、このG−CからT−Aへの変換は個々の細胞の遺伝子が一定の頻度で損傷していることを意味し、その頻度の多寡は、必然的にその個体の自己保存能力や種保存能力を評価する有力な指標となると考えられ、実際、8OHdGはDNAの代表的な酸化的損傷指標として、例えば発癌率や脳の変性疾患の発症と有意な相関があること(『実験医学』第13巻,第15号,第31−37頁,1995)や、細胞死(アポトーシス)と密接な関係があること(『最新医学』第51巻,第3号,第42−47頁,1996)等が報告されている。
本発明は8OHdGのDNA酸化的損傷指標としての使用をさらに進め、被検物質がdGを8OHdGに酸化する能力の有無およびその程度を測定することにより、該被検物質の有害性や安全性を評価するというものである。換言すれば、本発明は被検物質がdGを8OHdGに変換する能力を当該物質の有害性の有無等の判断基準としようというものであり、生体試料等の中に既に存在する8OHdGを癌や脳疾患の発症の危険性の尺度としていた従来のシステムとは技術的思想が基本的に相違する。本発明の生物学的評価法におけるdG→8OHdGの変化は、生命現象の設計図であるDNAの損傷の程度を反映しており、人間を含む生物の各個体の自己保存能や種保存能に対する影響を評価するための非常に合理的な客観指標といえる。
【0006】
本発明により生物学的評価を行う被検物質としては、天然および人工化学物質、例えば医薬品、農薬、洗剤、食品添加物、防腐剤、各種発癌物質、内分泌攪乱物質等の他、大気汚染物質や水質汚染物質等、および天然および人工化学物質を含む健康食品または機能性食品の食品類等を挙げることができる。該食品類には、一般食品類や健康食品類そのものの他、その一部の成分等が包含される。また、本発明の上記被検物質には、特定しない物質を含む水溶液(組成が不明の溶液であり、本明細書では被検溶液とも記載する)、例えば水道水、浄化水、天然水、河川水、海水、湖水等も含まれる。
本発明の方法は、被検物質である人工化学物質や食品類または水道水等の被検溶液等とdGとを一緒に一定時間放置後、生成される8OHdGを測定することにより通常行われるが、他に、活性酸素種発生剤を添加したり、紫外線を照射する等して、自然界や生体内で暴露する可能性のある酸化誘導因子をさらに負荷することにより、これらと被検物質との相互作用を評価することもできる。
このようにして本発明の方法は医薬品や農薬等の人工化学物質や天然物質または食品類の有害性または有益性を簡便かつ合理的に、しかも低コストで評価し得るものであるが、上記方法により大まかな許容量や有効量の目安がついた物質で、なおかつその重要性が高いものに対しては、さらに下記のような細胞培養評価法、生体内評価法でさらに厳密に評価することもでき、本発明はそれらの方法も提供する。
細胞培養評価法:被検物質を添加した培養液中の動物細胞(例えばマウスのリンパ球の細胞系であるB9細胞系)、植物細胞(例えばタバコBY−2細胞)、真菌(例えば酵母菌)に必要に応じて酸化剤の添加および/または紫外線の照射を行い、一定時間経過後、処理前後の培養細胞由来のDNAのdGおよび8OHdG濃度を測定する。下等な動植物細胞ほど、それ自身が一つの生命単位として多様な環境に適応する能力(人工化学物質の解毒や活性酸素消去機能等)を有しているが、生細胞を扱う有用性は、この生物が有している恒常性維持機能に被検物質がどの程度の影響を及ぼすかを評価できる点にある。この意味で、細胞評価法は最も手軽に使用し得るバイオマーカー(生物指標)といえる。培養細胞は世代交代が非常に早く、細胞***時に生じやすいDNA損傷の頻度を高感度に反映することができ、また、dGおよび8OHdGの定量も108 〜109 個程度の細胞数があれば、十分に測定可能であるので、通常の恒温槽により比較的多数の検体を扱うシステムを構築することができる。
生体内評価法:実験動物(例えばマウス)に被検物質を一定期間投与し、尿中および生殖器官(卵巣または精巣)中のdGおよび8OHdG濃度を測定する。従来、人工化学物質等の生物毒性は多様な側面(例えば寿命,体重変化,血液生化学データ,疾患の発症頻度等)から評価されてきたが、個々の指標を全て網羅して総合的に判断することは不可能に近かった。しかしながら、DNA損傷指標は生命活動の設計図の質を表すものであり、その生成量は全ての病態に共通するものと考えられる。その意味から、本発明におけるdGから8OHdGへの生成量の測定は、生命体(健康度)を推定することができる最も単純で、かつ合理的な総合指標といえる。生命活動の本質は自己保存と種の保存とに集約されるので、生殖毒性を評価する意義は大きく、本発明の方法によれば、雄と雌の生殖臓器である精巣と卵巣のみに標的を絞り、次世代の生命の設計図(DNA)がどの程度損傷しているかにより、被検物質の基本的な危険性を評価するものである。なお、生体内評価法は一連の評価法の中では、一番手間と時間を要するものであり、暴露する濃度が高い物質や低濃度でも有害性の高い物質等は、最終的にヒトに準ずる動物(哺乳類動物)での検証が必要とされてきたが、本発明では、DNA損傷能の一点に焦点を当てた評価法であることから、従来の方法に比べ時間や経費が格段に軽減される。
【0007】
本発明の方法における8OHdG濃度の測定は、例えば試料溶液中に含まれるdGと8OHdGとを高性能液体クロマトグラフィー(HPLC)により分離し、これと連結したUV検出器と電気化学的検出器により行うことができる。なお、この方法によれば、dGと8OHdGの濃度を同時に検出することが可能である。また、8OHdG濃度は、8OHdGに特異的に反応する抗体、好ましくはモノクローナル抗体等を使用して測定することもできる。
なお、被検物質として生体試料を使用する場合、dGから8OHdGへのような活性酸素による酸化が試料採取直後から始まり、評価結果に採取直後の状態が正確に反映されないことがある。このような場合、陽イオンキレート剤、抗酸化剤およびグリセリンを主成分とする抗酸化保存液に生体試料を浸漬することにより、試料採取後の酸化進行を防ぐことができる。陽イオンキレート剤は各種の生体反応や酵素反応を効率的に停止する作用を有し、例えばエチレンジアミン四酢酸ナトリウム等が使用される。抗酸化剤はヒドロキシラジカルの発生・遊離を予防するもので、例えばアジ化ナトリウム等が使用され、そしてグリセリンはヒドロキシル基による酸化防止効果の他、生体試料を−20℃〜4℃の条件(通常の生体試料が使用時まで保存される条件)で安定して保存する作用を有し、例えば20〜50%水溶液が使用される。
また、上記抗酸化保存液は、生体試料だけでなく、被検物質にdGを添加した後、一定時間放置してから添加することにより、8OHdG測定までの間の酸化を抑え、一定時間経過後の正確な(抗)酸化能を測定することができる。
また、生体試料を使用する場合、マイクロダイアリシス法(透析膜灌流法)により効率的に低分子のDNA構成成分(dGや8OHdG等)を回収した後、8OHdG等の測定を行うことが好ましい。具体的には20kD〜50kDの高分子量成分をカットオフし得る透析膜を用いて灌流を行う。生体試料が液性試料(血漿,尿,骨髄等)の場合、所望により添加される上記抗酸化保存液を含んだまま、上記のような膜を用いて透析を行い、透析後の混合液が8OHdG等の測定に供され、細胞成分を含む試料(全血,細胞浮遊液,組織等)の場合、これも上記抗酸化保存液を添加後、細胞破砕装置により組織や細胞を破砕し、細胞質や核内に存在する核酸成分を溶出させ、遠心分離により固形成分を分離した後、その上澄み液を上記のような透析膜を用いて透析し、その回収された透析液中のdGおよび8OHdGを測定する。
【0008】
【発明の実施の形態】
本発明の生物学的評価法は例えば以下のように行われる。まず、被検物質を多段階に稀釈した溶液または被検溶液中に既知濃度の2’−デオキシグアノシン(dG)を添加して、氷温から約50℃、好ましくは室温で一定時間放置後、8−ヒドロキシ−2’−デオキシグアノシン(8OHdG)の生成量を測定する(この値をAとする)。これとは別にdGの超純水溶液を上記と同様の条件で一定時間放置した後の8OHdGの量を測定する(この値をBとする)。Bに比べAが大きければ被検物質は酸化誘導能を有し、逆にBに比べAが小さければ被検物質は抗酸化能を有すると評価される。また、いずれの場合も、その差が大きい程、酸化誘導能または抗酸化能の程度が大きいと判断される。
活性酸素の発生は生命活動を行う上で避けられない現象である。しかしながら、その生理活性を消去するシステムが十分機能しない時は、DNAの酸化損傷が増加し、発癌や細胞活動性の低下(老化)、ひいては細胞死(アポトーシス)が誘導されることがわかっている。本発明により、被検物質が活性酸素の毒性をDNA核酸レベル、単一細胞レベル、一個体レベルで、どれだけ消去できるか(有効性を有するか)、またはどれだけ増加させるか(有毒であるか)を簡便に評価することができる。
また、各種健康食品や機能性食品等の食品類の有効性は別言すれば生体内で発生する活性酸素の毒性をどの程度効率的に消去できるかに依存するといえるので、本発明により、各種食品類の抗酸化能を、DNA酸化損傷を指標として客観化することができる。
紫外線は、核DNAに直接作用し、DNAの酸化損傷を引き起こす有力な因子で、地球上に棲息する生物はその影響から逃れることはできず、また、自然環境中に排出された合成物質または自然に存在する天然物質も紫外線照射によって、より活性化(ラジカル化)する可能性があり、これらの活性化された合成物質等を摂取するか、または該合成物質等と接触することにより生じる生物学的毒性も無視できない。本発明によれば、このような合成物質等の被検物質と紫外線との相加、相乗または相殺効果を簡便に評価することもできる。また、活性酸素種発生剤と被検物質との相加、相乗または相殺効果の簡便な評価法も本発明は提供する。さらに、本発明によれば、遺伝子酸化損傷作用を有することが確認されている物質と被検物質とを含む溶液に、既知量のdGを添加して、上記溶液中の8OHdGを定量し、その量に応じて上記被検物質の遺伝子損傷予防作用の有効性の有無を評価することもできる。ここで、遺伝子酸化損傷作用を有することが確認されている物質としては、日常生活で暴露する可能性の高いものを選択することによって、より現実に近い状態での被検物質の作用を評価することができる。特に、被検物質を食品類とすることにより、該食品類と遺伝子酸化損傷性物質との混在による影響を評価することができる。
本発明の生物学的評価法において、化学物質または食品を投与するか、または摂取もしくは接触させたヒトを含む動物、植物、細菌または真菌等から採取した生体細胞由来産物、例えば血液、尿、他の体液、組織破砕液または細胞破砕液等を被検対象として、該被検対象中の8OHdGとdGとの含有比(8OHdG/dG)を算出し、該含有比の大きさに応じて、上記化学物質または食品の有害性または有益性を評価することができる(上記化学物質または食品は上記含有比が高い程、有害性は高く、低い程、有益性が高い)。
【0009】
【実施例】
次に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
ペンタクロロフェノール(PCP,除草剤)、ビスフェノールA(BPA,樹脂原料)またはレスベラトロール(RVT,ポリフェノールの一種)の各種濃度溶液(0.0005ppm,0.005ppm,0.05ppm,0.5ppm,5ppm)を作成し、2枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、一方のプレートはそのまま室温で90分間放置し、他方のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )を90分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、HPLC[使用カラム:CA−5ODS(エイコム社製),移動相溶液:0.1Mリン酸緩衝液,3〜10%メタノール,SOS90〜100mg]により、dGと8OHdGとを分離し、該HPLCに連結したUV検出器と電気化学的検出器により、両ヌクレオシドを定量する。なお、比較のため、超純水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果は以下のとおりであった。測定は両ヌクレオシドに対して行ったが、下の表には8OHdGの濃度(ng/ml)のみを示す(以下の実施例でも同様)。

Figure 0004702504
PCPは現在でも国によって使用が許可されている農薬または皮の柔軟剤であり、5mg/kgが許容範囲であると報告されているが、上記の結果から5mg/kgに相当する5ppmで明らかに紫外線による酸化損傷作用が極端に上昇し、有害性が高まっていることがわかる。
BPAは代表的な内分泌攪乱物質(環境ホルモン)であるが、0.5ppm以上で明らかに紫外線による酸化損傷作用が上昇し、有害性が高まっている。参考のために実際に暴露される可能性のあるBPA濃度は以下のとおりである。
河川や湖沼中:多いところで0.001ppm程度
一般産業廃棄物処理場からの侵出水:最大20ppm程度
PC製食器(95℃で30分):0.005〜0.1ppm
飲料用缶のコーティング剤からの溶出:0.1ppm程度
歯科用セメント剤からの溶出:虫歯治療後の唾液中から1ppm程度
魚:0.02〜0.3ppm程度
なお、BPAに対する我が国における基準は溶出分で2.5ppm以下、材質分で500ppm以下であり、許容摂取量は各国共通で0.05mg/kg/日となっている。本発明の方法はこれらの基準を見直すための一助になり得る。
RVTは代表的なポリフェノールで赤ワイン中に2〜10ppm程度溶存しているといわれ、抗動脈硬化作用等が近年報告されているが、0.5ppm以上で明らかに紫外線による酸化損傷作用が上昇し、有害性が高まっている。このように、本発明の方法は従来有効であるといわれている物質の有効性(または有害性)を簡単に見直すこともできる。
上記の試験において1回の測定に必要なサンプル量は10〜100μlと少なく、サンプル注入後5〜10分以内に測定ピークが検出でき、15分/1サンプルのペースで連続測定が可能である。従って、上記システムを採用した場合、1台のHPLCを週120時間のペースで稼働した場合、480検体/1週、そして約2000検体/1カ月の測定が可能となる。これは、本発明によれば、これまで報告されたことのないハイペースで被検物質の毒性等を評価することができることを意味する。
また、上の例ではdGと8OHdGとを同時にUV検出器および電気化学的検出器により測定したが、8OHdGのみの測定を行ってもよい。その場合、モノクローナル抗体を用いた測定キット[例えば商品名8−OHdG Check(日本老化制御研究所製)]を使用することにより、短時間で多量のサンプル測定を高感度で行うことができる。
【0010】
実施例2
ビタミンC(VC)、ビタミンE(VE)、カテキン(Cate)またはタンニン酸(Tan)の所定濃度の溶液を作成し、2枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、一方のプレートはそのまま室温で90分間放置し、他方のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )を90分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では蒸留水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
上記の結果から以下の結論を導くことができる。
VCは強力な抗酸化物質であるといわれているが、水溶性のdGに対しては非常に強い酸化誘導物質として作用する。
VEは非常に安定した抗酸化物質である。
Cateは紫外線照射の有無に関係なく、非常に強力に8OHdGを誘導する。この酸化能が殺菌作用や抗ウイルス作用と関連しているものと考えられる。また、Cateが示すこの8OHdG誘導能を、殺菌・静菌効果や抗ウイルス効果等の指標(有効濃度指標)とし得る可能性が高い。
Tanは高い遺伝子損傷誘導作用を示す。
【0011】
実施例3
グリセロール(Gly)またはメタノール(Meth)の所定濃度の溶液を作成し、5枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、1枚のプレートはそのまま室温で90分間放置し、別の1枚を同様に室温で24時間放置し、そして残りの3枚のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )をそれぞれ60分間、90分間または120分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では超純水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
GlyおよびMethは共にヒドロキシラジカルによるDNA損傷の予防効果を有することが報告されているが、本実施例の結果からも、これらの抗酸化能が確認される。特に、Glyは室温放置時のみ抗酸化能が確認されたが、Methは室温放置時および紫外線照射時の両方で強力な抗酸化能が確認された。
【0012】
実施例4
グルコース(Glu)、ラフィノース(Raffi)またはショ糖(Suc)の所定濃度の溶液を作成し、4枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、1枚のプレートはそのまま室温で90分間放置し、そして残りの3枚のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )をそれぞれ60分間、90分間または120分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では超純水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
上記の結果から以下の結論を導くことができる。
抗酸化能の強さは、室温放置および紫外線照射のいずれの場合も、Glu>Raffi≒Sucと評価することができる。
正常の血糖値を約50〜100mg/dl(0.5〜1mg/ml)とすると、血液中に存在するGluは紫外線照射に対する非常に有効な抗酸化物質といえる。
Raffiは天然オリゴ糖の一種で清涼飲料、健康飲料、健康食品等多くの食品に添加されているが、抗酸化能はGlu程ではないものの、10μg/ml以上の濃度であれば有効である。
SucはRaffiと同程度の抗酸化能を示す。
【0013】
実施例5
いずれもプロタミン関連物質である1−アルギニン(Arg)、1−シトルリン(Cit)またはスペルミン(Spe)の所定濃度の溶液を作成し、2枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、一方のプレートはそのまま室温で90分間放置し、他方のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )を90分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では超純水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
プロタミンは遺伝子の立体構造を支持するタンパク質であり、代表的な塩基性アミノ酸であるアルギニン含量が極端に高い(20〜70%)。
Arg、CitおよびSpeのいずれも抗酸化能が認められ、CitおよびSpeは、高濃度(1mg/ml)の場合、その抗酸化能は特に高い。
データは示していないが、一般的に、酸性アミノ酸は酸化誘導、塩基性アミノ酸は酸化予防の傾向を有することが本発明の方法で確認されている。
【0014】
実施例6
尿酸の各種濃度の溶液(溶解液:蒸留水+0.025%FBS)を作成し、2枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、一方のプレートはそのまま室温で90分間放置し、他方のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )を90分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では上記溶解液のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
尿酸は生体内における代表的な抗酸化物質といわれているが、上記の結果から、生体内の実際の血漿濃度(40〜80μg/ml)では、強い酸化的環境でなければ、8OHdGの誘導は抑制されるものの、紫外線共存によるDNA酸化損傷の程度は高く、その毒性が増強される。
【0015】
実施例7
臭素酸カリウム(KBrO3 )の各種濃度の溶液を作成し、2枚の99ウエル・プラスチックプレートの各ウエルに180μlずつ注入し、次に200μg/mlのdG(超純水に溶解)20μlを各ウエルに添加し、そのまま室温で、一方のプレートを15分間放置し、他方のプレートを60分間放置する。放置終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では超純水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
臭素酸カリウムはパンの漂白剤や防腐剤として汎用されている食品添加物であるが、上の結果から、濃度に依存して8OHdGの誘導がみられる。15分放置と60分放置とに大差がないことから、臭素酸カリウムによる酸化反応は速やかに起こった後に、安定化するものと考えられる。従来の評価試験では安全であるとされている臭素酸カリウムも、本発明の方法では毒性があることが示唆される。このように、日常的に経口摂取している各種食品添加物の許容濃度を本発明の評価法に従って再検討することができる。
【0016】
実施例8
1mMエチレンジアミン四酢酸ナトリウム(EDTA)溶液、10%グリセロール(Gly)溶液、1%または2.5%メタノール(Meth)溶液、10%Glyと2.5%Methとの混合溶液または10%Glyと2.5%Methと1mM EDTAとの混合溶液を99ウエル・プラスチックプレートの各ウエルに170μlずつ注入し、次に400μg/mlのdG(超純水に溶解)10μlおよび50mg/mlの臭素酸カリウム(KBrO3 )溶液20μlを各ウエルに添加し、そのまま室温で30分間放置した後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。なお、比較のため、本例では超純水のみに同様の処理を施したものに対してもdGと8OHdGの測定を行った。結果を以下にまとめて示す。
Figure 0004702504
活性酸素発生剤として作用する臭素酸カリウムの存在下で、10%Glyと2.5%Methと1mM EDTAとの混合溶液が最も高い抗酸化能を示した。このことから、これら3種の成分からなる溶液が各種被検溶液や被検試料の抗酸化保存液として有効であることがわかる。
【0017】
実施例9
被検物質として超純水または所定濃度のビタミンC(VC)、ビタミンE(VE)もしくはグルコース(Glu)170μlを2枚の99ウエル・プラスチックプレートの各ウエルに添加し、添加液として超純水または所定濃度のビスフェノールA(BPA)20μlを各ウエルに注入し、次に400μg/mlのdG(超純水に溶解)10μlを各ウエルに添加し、一方のプレートはそのまま室温で90分間放置し、他方のプレートは紫外線照射箱中で紫外線(254nm,860μW/cm2 )を90分間照射する。放置または照射終了後、各ウエルの溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。結果を以下にまとめて示す。
Figure 0004702504
上記の結果から以下の結論を導くことができる。
BPA添加により、紫外線照射時の8OHdGが濃度依存的に増加する。
VEおよびGluは、BPA添加と紫外線照射とによる8OHdGの増加を有意に抑制する。
0.001%のVCは、単独では8OHdGを強力に誘導するが、BPAの共存により、その作用は打ち消される。しかしながら紫外線照射時、VCはBPAによる8OHdGの誘導を打ち消すことはない。
以上のように、BPAの遺伝子酸化能は共存する物質により、様々に影響を受ける。
従って、本測定法を利用することにより、遺伝子の酸化損傷を誘導する物質を同定できるだけでなく、その酸化毒性を打ち消すことのできる当該物質に特異的な抗酸化物質を同定し、さらにそれらの抗酸化能を定量的に評価することができる。
【0018】
実施例10
各種の飲料水を被検物質(被検溶液)としてその抗酸化能ないしは酸化能を測定した。
dGをその濃度が10μg/mlとなるように各種の飲料水に溶解した溶液200μlを2つの試験容器(溶液の表面積36mm2 )に注入し、一方の容器は室温で90分間放置し、他方の容器は紫外線照射箱中で紫外線(254nm,860μW/cm2 )を90分間照射する。放置または照射終了後、各容器の溶液を等量の20%グリセロール溶液と混和し、実施例1と同様にdGと8OHdGを定量する。
試験した飲料水は以下のとおりである。
超純水:比抵抗18メグオームの水(ミリポアシステム製),酸化還元電位は360mV。
水道水:福岡県春日市の一般水道水(1999年7月に採取),酸化還元電位は727mV。
処理水:上記水道水を市販の浄水器(活性炭、強磁石およびセラミック等に水を通過させることにより浄化する)により浄化した水,酸化還元電位は518mV。
天然水:大分県日田市から採取した地下水(酸性雨や肥料等の地表の汚染から隔絶された水,溶存する窒素酸化物濃度0.01ppm以下),酸化還元電位は280mV。
結果を以下にまとめて示す。
Figure 0004702504
上記の結果から以下の結論を導くことができる。
水道水が有する酸化力は殺菌・抗菌という観点から非常に合理的であると判断される。
浄水器で処理した水(処理水)は8OHdGの誘導を顕著に抑制し、紫外線照射時の8OHdGの誘導は室温放置に比べ、低値になっている。
天然水は、室温放置および紫外線照射共に8OHdGの誘導を有意に抑制している。
このように、本測定法によれば、水の還元性(抗酸化能)または酸化能を定量化することが可能である。この方法を利用して、飲用水と各種疾病との相関(重傷度,病気の経過,治療効果,予防効果等)を検討することができる他、未知の物質を含む水溶液の遺伝子損傷誘導作用を総合評価することができる。
【0019】
実施例11
健康な人から採取した随時尿を実施例8に示した3成分からなる抗酸化保存液と容量比1:1に混和し、速やかに冷凍(約−20℃)保存する。試験時に解凍した上記混和液を分子量50kDカットオフ機能を有する透析膜を使用するマイクロダイアリシスシステムにより灌流(1μl/分)し、これにより抽出された低分子のDNA関連成分(回収率は約30〜40%)を、実施例1と同様にdGおよび8OHdGを定量する。また、該定量と併せて本実施例では、同じ被検試料中に含まれる硝酸イオン(NO3 - )を高感度窒素酸化物検出器(ENO−10,エイコム社製)にて定量する。
結果を図1のグラフに示すが、該グラフにおけるX軸は検出されたNO3 - 濃度(μmol/L)とdG濃度(ng/ml)との比(NO3 - /dG)であり、Y軸は検出された8OHdG濃度(pg/ml)とdG濃度(ng/ml)の比(8OHdG/dG)の対数値である。なお、尿中のdG濃度が尿の濃縮率と相関するため、NO3 - および8OHdGの各濃度値をdGの濃度値で除すことにより、尿の濃縮率の違いに依存するデータの誤差を排除することができ、さらに、遺伝子の酸化損傷のリスク(Y軸)を酸化型(8OHdG)/還元型(dG)で表すことにより、より合理的な指標となっている。参考のため下の表11に上記と同様の測定システムで検出される生体試料中の概略の8OHdG濃度およびdG濃度を示す。
Figure 0004702504
図1に示す結果から、8OHdG/dGの対数値とNO3 - /dG比とが正の相関(p<0.05)を示すことが明らかである。これは、8OHdG/dGの対数値が生体で産生される代表的な酸化物である硝酸イオン濃度と正の相関関係にあることを意味し、8OHdG/dGの対数値が生体の酸化ストレスの指標となり得ることを示している。
また、データは示していないが、これまでの研究から、(1)進行癌の患者や先天性の遺伝子異常の患者では、8OHdG/dGの値が健常人でプロットされる近似線から上方に変位している(NO3 - /dG比で表される個体全体の酸化指標よりも、遺伝子の酸化損傷をより強く反映していると推測される8OHdG/dG比のほうが比較的高い値を示す)こと、(2)喫煙者では、8OHdG/dG比、NO3 - /dG比が共に高い値を示す傾向にあること、そして(3)同一人であっても、非日常的な状態(例えば二日酔い,かぜ,過剰な運動後等)の際は、8OHdG/dG比、NO3 - /dG比の値が右上がりに変位すること等がわかっている。
以上の結果から、以下の結論を導くことができる。
(1)8OHdG/dG値は有力な生体酸化の指標となり得る。
(2)被検者の日常生活(食事,運動,休養等)等により、8OHdG/dG値は変化し、心理社会的因子を包含する広い意味でのストレス指標になり得る。
(3)定期的に生体に摂取される天然および人工化学物質や食品類がこれらの指標に及ぼす影響を定量することにより、該天然および人工化学物質や食品類の有害性(発癌性,催奇形性,生殖毒性等)や有益性(生体酸化や遺伝子核酸酸化損傷が原因となる各種疾患の治療や予防効果,疲労回復効果,老化防止効果等)を合理的に評価できる。
【0020】
【発明の効果】
以上詳細に説明したように、本発明のDNA損傷指標を利用する天然および人工化学物質の簡易生物学的評価法は、天然もしくは人工化学物質または食品類等の被検物質の生物学的毒性、有益性または安全性等を試験管内で非常に簡便に、かつ安価に評価することができ、そして当該被検物質の重要度に応じて培養細胞、さらには実験動物等の生体内での評価を行うことができる。
主なものだけでも10万種以上あるといわれている人工化学物質の各々に対し、従来の本格的な動物実験や臨床実験を実施することは事実上不可能であるが、それらの個々の化学物質に対して具体的なDNA損傷指標を簡便に提示することができる本発明の上記方法は、大まかな安全基準濃度を設定したり、また、本格的な動物実験や臨床実験の必要性を検討する上での非常に有用な情報を提示することができる。このことから、本発明の上記生物学的評価法は、種々の天然または人工化学物質の生物学的毒性や食品類の有害性・有益性を簡便にスクリーニングするシステムをも提供するものである。
また、本発明の方法は、市販の、または開発中の健康食品や機能性食品の有益性や有害性を客観的に定量化することができる。従って、本発明に従って、開発中の食品類には必須である有益性や安全性の評価を確実かつ簡便に行うことができるだけでなく、現在市場で出回っている食品類の有益性や安全性を再確認することができる。
さらに、ある物質(被検物質)への紫外線照射の影響や、活性酸素種発生剤または遺伝子酸化損傷性物質との共存による該物質への影響も本発明によれば簡便に評価することができ、自然界における被検物質の毒性等をより正確に評価することが可能である。
また、本発明の方法によれば、未知の物質を含む水溶液を被検溶液とすることにより、該水溶液の遺伝子損傷誘導作用を総合評価することができ、組成が判明していない、水道水や天然水等に対する生物毒性指標を正確かつ簡易に得ることができる。
本発明によれば、化学物質または食品を投与したヒトを含む動物等から採取した尿や血液等の生体細胞由来産物中の8−ヒドロキシ−2’−デオキシグアノシンと2−デオキシグアノシンの含有比から、上記化学物質または食品の有害性または有益性を正確かつ簡易に評価することができる。
【図面の簡単な説明】
【図1】ヒト尿中のNO3 - /dGの濃度比と8OHdG/dGの濃度比との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a simple biological evaluation method for natural and artificial chemical substances using a DNA damage index, and more specifically, 8-hydroxy-2 'in which 2'-deoxyguanosine (dG), which is a component of DNA, is oxidized. -Natural and artificial chemicals such as pharmaceuticals and agricultural chemicals by comparing the test substance administration group and the control group with respect to the reaction changing to deoxyguanosine (8OHdG) or the 8OHdG / dG ratio contained in the biological cell-derived product It relates to a method for simply evaluating the toxicity and effectiveness of various functional foods and the like.
[0002]
[Prior art]
Biologically acceptable safe concentrations of various artificial chemicals such as pharmaceuticals, agricultural chemicals, detergents, food additives, preservatives, various carcinogens, endocrine disruptors,
1) Lethal dose when administered to experimental animals
2) Amount that causes obvious organ damage such as carcinogenesis or neuropathy when administered to experimental animals
3) Amount that affects fertility
The concentration obtained by multiplying the minimum effective amount by a safety factor of 100 to 1000 times has been referred to.
However, there are too many types of artificial chemical substances to be evaluated, such as about 100,000 or more, and when quantifying biological toxicity using mice and rats, even if one generation is established, it will exceed about two months. The biological toxicity of all substances should be assessed for the reasons that at least twice as long as it is necessary to evaluate the effects and the huge cost of maintaining the evaluation system. It can be said that evaluation by the conventional method is practically impossible at this stage due to time and cost restrictions.
In addition, many of the foods such as health foods and functional foods that are currently on the market are mainly extracted from natural materials or added with specific substances within a safe tolerance range. However,
1) There may be harmful components in natural materials.
2) Especially when extracted, its biotoxicity may be enhanced.
3) There is a possibility that various components act synergistically and become toxic.
4) No objective evaluation system has been established for the effectiveness (effectiveness) of health foods.
There are problems such as.
Although the above artificial chemicals and foods may be ingested or administered or contacted by humans on a daily basis, it is urgent to confirm their biological toxicity and effectiveness, especially toxicity. As described above, there is a problem that requires a long period of time and high costs. Therefore, development of a simple and low-cost method for evaluating the biological toxicity of artificial chemical substances or the toxicity and effectiveness of foods is desired.
[0003]
[Problems to be solved by the invention]
The present invention has been made to meet this need, and provides a method for rationally and simply evaluating the biological hazards and benefits of a vast variety of natural and artificial chemicals and foods. Let it be an issue.
[0004]
[Means for Solving the Problems]
As a result of diligent research, the present inventors added 2′-deoxyguanosine (dG) to a solution containing a natural or artificial chemical substance or food as a test substance, and in the mixed solution after a lapse of a certain time. By measuring the concentration of oxidized 8-hydroxy-2′-deoxyguanosine (8OHdG), it is possible to know the presence or absence and the degree of the oxidizing ability or antioxidant ability of the test substance, The present inventors have found that the biological toxicity and non-toxicity or benefit of a substance can be evaluated, and have further studied and completed the present invention.
That is, the present invention adds a known amount of 2′-deoxyguanosine to a solution containing a specific natural or artificial chemical substance, and then quantifies 8-hydroxy-2′-deoxyguanosine in the solution. The present invention relates to a biological evaluation method for natural or artificial chemical substances, comprising evaluating the presence or absence of harmfulness or benefit of the natural or artificial chemical substances according to the amount of -hydroxy-2'-deoxyguanosine.
In addition, the present invention adds a known amount of 2′-deoxyguanosine to a solution containing a specific natural or artificial chemical substance, and performs ultraviolet irradiation and / or addition of a reactive oxygen species generator to the solution. The amount of 8-hydroxy-2'-deoxyguanosine in the solution is quantified, and the oxidative damage of the gene nucleic acid derived from active oxygen of the natural or artificial chemical according to the amount of the 8-hydroxy-2'-deoxyguanosine The present invention relates to a biological evaluation method for natural or artificial chemical substances, which comprises evaluating the harmfulness or beneficialness of natural or artificial chemical substances using as an index the presence or absence of an additive, synergistic or countervailing effect.
Furthermore, the present invention quantifies 8-hydroxy-2'-deoxyguanosine in the solution after adding a known amount of 2'-deoxyguanosine to a solution containing a food comprising a natural or artificial chemical substance, A biological evaluation method for foods composed of natural or artificial chemical substances, comprising evaluating the harmfulness or benefit of the food according to the amount of the 8-hydroxy-2'-deoxyguanosine, and natural or artificial chemistry A known amount of 2′-deoxyguanosine is added to a solution containing a food product composed of the substance, and after irradiation with ultraviolet rays and / or an active oxygen species generator, 8-hydroxy- Quantification of 2′-deoxyguanosine, depending on the amount of 8-hydroxy-2′-deoxyguanosine, the oxidation loss of the gene nucleic acid derived from active oxygen in the food Additive, the presence of synergistic or offsetting effect as an indicator consists of evaluating the harmfulness or usefulness of natural or artificial chemicals, for biological evaluation of food consisting of natural or artificial chemicals on.
The present invention also includes adding a known amount of 2′-deoxyguanosine to a solution containing a food comprising a natural or artificial chemical substance and a substance having an oxidative damage action of a gene nucleic acid, and then adding 8-hydroxy in the solution. Natural or artificial chemistry comprising quantifying -2'-deoxyguanosine and evaluating the effectiveness of the action of preventing oxidative damage of the gene nucleic acid of the food component according to the amount of 8-hydroxy-2'-deoxyguanosine The present invention relates to a biological evaluation method for foods composed of substances.
The present invention further includes adding a known amount of 2′-deoxyguanosine to a test solution containing an unspecified chemical substance, and then quantifying 8-hydroxy-2′-deoxyguanosine in the solution, The present invention relates to a biological evaluation method for a test solution, comprising evaluating the antioxidant ability or the oxidation ability of the test solution according to the amount of -2'-deoxyguanosine.
Furthermore, the present invention relates to biological cell-derived products collected from animals, plants, bacteria or fungi including humans that have been administered a specific chemical substance or food for a certain period of time (for example, blood, urine, other body fluids, tissue disruptions, cell disruptions) Etc.) in accordance with the content ratio of 8-hydroxy-2′-deoxyguanosine and 2-deoxyguanosine, the biological or chemical biology of the chemical or food is evaluated. Related to dynamic evaluation methods.
In the present invention, “assessment of harm or benefit (presence / absence)” means that the test substance is biologically harmful (application of oxidative stress, carcinogenicity, teratogenicity, adverse effects on fertility, etc.) It is meant to present the criteria for determining whether or not there is a hazard or benefit (effectiveness) and the degree of the harm or benefit. “Evaluation of antioxidant capacity or oxidative capacity” means that the test solution has antioxidant capacity, in other words, a criterion for determining whether or not the test solution has reducing power or the test solution has oxidative capacity (oxidizing power). It means to present criteria for judging whether or not and their degree.
In the biological evaluation method of the test solution, dG is added, and after irradiating the solution with ultraviolet rays and / or adding an active oxygen species generator, the amount of 8OHdG in the solution is quantified. It is also possible to evaluate the presence or absence of an additive, synergistic, or offsetting effect on oxidative damage of gene nucleic acid derived from active oxygen in the test solution.
[0005]
2'-deoxyguanosine used in the present invention is a kind of deoxypurine nucleoside that is a component of DNA. Almost all gene information is encoded by base pairs of adenine (A) and thymine (T), guanine (G) and cytosine (C). Damaged due to replication errors, etc.) and mutations caused by artifacts (due to various carcinogens, active oxygen, etc.), which are damaged at a certain frequency. Ultimately, deletion, duplication, inversion, insertion, translocation, Point mutations occur, leading to the death of cells and individuals, and conversely triggering the birth of new species.
In addition to being generated from oxygen taken into the body, active oxygen is produced by natural and artificial chemicals taken into the living body as its materials and inducers, and is used as protein, lipid, gene nucleic acid, etc. It is known to cause oxidative damage. In the case of dG, when it is combined with a hydroxy radical (.OH) or the like which is an active oxygen species, oxidized 8-hydroxy-2'-deoxyguanosine (8OHdG) is generated. This 8OHdG converts the original GC base pair to the TA base pair. In other words, this conversion from GC to TA means that the genes of individual cells are damaged at a certain frequency, and the frequency is inevitably dependent on the self-preserving ability and species of the individual. 8OHdG is actually a representative oxidative damage index of DNA, for example, it has a significant correlation with the incidence of cancer and the development of degenerative diseases of the brain ("Experimental Medicine"). Vol. 13, No. 15, pp. 31-37, 1995) and cell death (apoptosis) and closely related ("Latest Medicine" Vol. 51, No. 3, pp. 42-47, 1996) ) Etc. have been reported.
The present invention further promotes the use of 8OHdG as a DNA oxidative damage indicator, and measures the presence and degree of the ability of the test substance to oxidize dG to 8OHdG, thereby reducing the toxicity and safety of the test substance. It is to evaluate. In other words, the present invention intends to use the ability of a test substance to convert dG to 8OHdG as a criterion for determining whether or not the substance is harmful. The technical idea is fundamentally different from the conventional system, which was a measure of the risk of developing brain disease. The change of dG → 8OHdG in the biological evaluation method of the present invention reflects the degree of DNA damage, which is a blueprint of a life phenomenon, and the self-preserving ability and species-preserving ability of each individual organism including human beings. It can be said that this is a very reasonable objective index for assessing the impact.
[0006]
Test substances for biological evaluation according to the present invention include natural and artificial chemical substances such as pharmaceuticals, agricultural chemicals, detergents, food additives, preservatives, various carcinogens, endocrine disrupting substances, etc., as well as air pollutants and Mention may be made of foods such as water pollutants and health foods or functional foods containing natural and artificial chemical substances. In addition to general foods and health foods themselves, the foods include some components thereof. In addition, the test substance of the present invention includes an aqueous solution containing a substance not specified (a solution whose composition is unknown and is also referred to as a test solution in this specification), such as tap water, purified water, natural water, rivers Water, seawater, lake water, etc. are also included.
The method of the present invention is usually performed by measuring 8OHdG produced after leaving dG together with a test solution such as an artificial chemical substance, food, or tap water as a test substance, and dG together. In addition, by adding an active oxygen species generator or irradiating with ultraviolet rays, further loading with an oxidation inducing factor that may be exposed in nature or in vivo, these and test substances Interactions can also be evaluated.
As described above, the method of the present invention can evaluate the harmfulness or benefit of artificial chemical substances such as pharmaceuticals and agricultural chemicals, natural substances, or foods easily and rationally at low cost. For substances that have rougher acceptable and effective levels, and that are highly important, further rigorous evaluation can be performed using the following cell culture evaluation methods and in vivo evaluation methods. The present invention also provides those methods.
Cell culture evaluation method: animal cells (for example, B9 cell line which is a cell line of mouse lymphocytes), plant cells (for example, tobacco BY-2 cells), fungi (for example, yeast) in a culture solution to which a test substance is added If necessary, an oxidizing agent is added and / or ultraviolet irradiation is performed, and after a certain period of time, the dG and 8OHdG concentrations of the DNA derived from cultured cells before and after the treatment are measured. Lower animal and plant cells have the ability to adapt to various environments as a single living unit (detoxification of artificial chemicals, active oxygen scavenging function, etc.). It is in the point which can evaluate how much a test substance influences the homeostasis maintenance function which this organism has. In this sense, the cell evaluation method can be said to be the most easily used biomarker (biological index). Cultured cells are very early in generation change, and can reflect the frequency of DNA damage that is likely to occur during cell division with high sensitivity, and the quantification of dG and 8OHdG is also 108-109Since a sufficient number of cells can be measured if there are about a few cells, it is possible to construct a system that handles a relatively large number of specimens with a normal thermostat.
In vivo evaluation method: A test substance is administered to an experimental animal (for example, mouse) for a certain period, and dG and 8OHdG concentrations in urine and reproductive organs (ovary or testis) are measured. Conventionally, biotoxicity of artificial chemicals has been evaluated from various aspects (for example, life span, weight change, blood biochemical data, disease frequency, etc.), but comprehensive judgment is made covering all individual indicators. It was almost impossible to do. However, the DNA damage index represents the quality of the blueprint for life activity, and the amount of the DNA damage index is considered to be common to all pathological conditions. In that sense, the measurement of the amount of production from dG to 8OHdG in the present invention can be said to be the simplest and most reasonable comprehensive index capable of estimating the life form (health level). Since the essence of life activity is concentrated in self-conservation and species conservation, the significance of evaluating reproductive toxicity is great, and according to the method of the present invention, only the testes and ovaries that are male and female reproductive organs are targeted. The basic danger of the test substance is evaluated based on how much the drawing (DNA) of the next generation life is damaged. In vivo evaluation methods are the most time-consuming and time-consuming of a series of evaluation methods. Substances that are exposed to high concentrations or substances that are highly harmful even at low concentrations are ultimately subject to human standards. Although verification in animals (mammalian animals) has been required, the present invention is an evaluation method focusing on one point of DNA damage ability, and thus time and cost are greatly reduced compared to conventional methods. The
[0007]
The measurement of the 8OHdG concentration in the method of the present invention is performed, for example, by separating dG and 8OHdG contained in the sample solution by high performance liquid chromatography (HPLC), and using a UV detector and an electrochemical detector connected thereto. be able to. According to this method, the concentrations of dG and 8OHdG can be detected simultaneously. The 8OHdG concentration can also be measured using an antibody that reacts specifically with 8OHdG, preferably a monoclonal antibody.
When a biological sample is used as the test substance, oxidation by active oxygen such as dG to 8OHdG starts immediately after sampling, and the state immediately after sampling may not be accurately reflected in the evaluation result. In such a case, the progress of oxidation after sampling can be prevented by immersing the biological sample in an antioxidant preservation solution mainly composed of a cationic chelating agent, an antioxidant and glycerin. The cation chelating agent has an effect of efficiently stopping various biological reactions and enzyme reactions, and for example, sodium ethylenediaminetetraacetate is used. Antioxidants prevent the generation and release of hydroxy radicals. For example, sodium azide is used, and glycerin has an antioxidant effect due to hydroxyl groups, as well as biological samples under conditions of −20 ° C. to 4 ° C. (usually For example, a 20 to 50% aqueous solution is used.
In addition, the above antioxidant preservation solution suppresses oxidation until 8OHdG measurement by adding dG after adding dG to a test substance and then allowing it to stand for a certain period of time. The exact (anti) oxidative ability of can be measured.
When a biological sample is used, it is preferable to measure 8OHdG or the like after efficiently collecting low-molecular-weight DNA constituent components (dG, 8OHdG, etc.) by microdialysis (dialysis membrane perfusion method). Specifically, perfusion is performed using a dialysis membrane that can cut off high molecular weight components of 20 kD to 50 kD. When the biological sample is a liquid sample (plasma, urine, bone marrow, etc.), dialysis is performed using the membrane as described above while containing the antioxidant storage solution added as desired. In the case of a sample (whole blood, cell suspension, tissue, etc.) that is subjected to measurement of 8OHdG and contains cellular components, this is also added with the above antioxidant preservation solution, and then the tissue and cells are disrupted with a cell disruption device, and the cytoplasm After elution of nucleic acid components present in the nucleus and separation of solid components by centrifugation, the supernatant is dialyzed using a dialysis membrane as described above, and dG and 8OHdG in the collected dialysate are removed. taking measurement.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The biological evaluation method of the present invention is performed, for example, as follows. First, a known concentration of 2′-deoxyguanosine (dG) is added to a solution obtained by diluting a test substance in multiple stages or a test solution, and left at a temperature of about 50 ° C., preferably room temperature, for a certain period of time. The amount of 8-hydroxy-2′-deoxyguanosine (8OHdG) produced is measured (this value is A). Separately, the amount of 8OHdG is measured after leaving an ultrapure aqueous solution of dG for a certain period of time under the same conditions as above (this value is designated as B). If A is larger than B, the test substance has an oxidation-inducing ability. Conversely, if A is smaller than B, the test substance is evaluated to have an antioxidant ability. In any case, the greater the difference, the greater the degree of oxidation-inducing ability or antioxidant ability.
The generation of active oxygen is an unavoidable phenomenon when performing life activities. However, it is known that when the system that eliminates the physiological activity does not function sufficiently, oxidative damage of DNA increases, leading to carcinogenesis, decreased cellular activity (aging), and cell death (apoptosis). . According to the present invention, how much the test substance can eliminate the toxicity of active oxygen at the DNA nucleic acid level, single cell level, single individual level (effectiveness) or how much (toxic) Can be easily evaluated.
In addition, the effectiveness of foods such as various health foods and functional foods depends on how efficiently the toxicity of active oxygen generated in the living body can be eliminated in other words. The antioxidant ability of foods can be made objective using DNA oxidative damage as an index.
Ultraviolet rays are a powerful factor that directly affects nuclear DNA and cause oxidative damage to the DNA. Living organisms living on the earth cannot escape from the effects, and they are not released from the natural environment. Natural substances present in the body may be more activated (radicalized) by irradiation with ultraviolet rays, and the biological products generated by ingesting or contacting these activated synthetic substances, etc. The toxic toxicity cannot be ignored. According to the present invention, it is possible to simply evaluate the additive, synergistic, or offsetting effect between a test substance such as a synthetic substance and ultraviolet rays. In addition, the present invention also provides a simple evaluation method of the additive, synergistic, or offsetting effect between the active oxygen species generator and the test substance. Furthermore, according to the present invention, a known amount of dG is added to a solution containing a substance that has been confirmed to have a gene oxidative damage action and a test substance, and 8OHdG in the solution is quantified, Depending on the amount, the presence or absence of the effectiveness of the above-mentioned test substance for the effect of preventing gene damage can also be evaluated. Here, as a substance that has been confirmed to have a gene oxidative damage action, the action of the test substance in a more realistic state is evaluated by selecting a substance that is likely to be exposed in daily life. be able to. In particular, when the test substance is a food, the influence of the mixture of the food and the gene oxidative damage substance can be evaluated.
In the biological evaluation method of the present invention, products derived from living cells collected from animals, plants, bacteria, fungi, etc. including humans that have been administered, ingested or contacted with chemical substances or foods, such as blood, urine, etc. Using the body fluid, tissue disruption fluid, cell disruption fluid, or the like as the test subject, the content ratio (8OHdG / dG) of 8OHdG and dG in the test subject is calculated, and depending on the magnitude of the content ratio, The harmfulness or benefit of a chemical substance or food can be evaluated (the higher the content ratio, the higher the harmfulness, and the lower the chemical or food, the higher the benefit).
[0009]
【Example】
EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.
Example 1
Various concentration solutions (0.0005ppm, 0.005ppm, 0.05ppm, 0.5ppm) of pentachlorophenol (PCP, herbicide), bisphenol A (BPA, resin raw material) or resveratrol (RVT, a kind of polyphenol) 5 ppm), inject 180 μl into each well of two 99-well plastic plates, then add 20 μl of 200 μg / ml dG (dissolved in ultrapure water) to each well, leaving one plate intact The plate is left for 90 minutes at room temperature, and the other plate is exposed to ultraviolet rays (254 nm, 860 μW / cm in an ultraviolet irradiation box).2) For 90 minutes. After standing or irradiation, the solution in each well was mixed with an equal amount of 20% glycerol solution, HPLC [column used: CA-5ODS (manufactured by Eicom), mobile phase solution: 0.1 M phosphate buffer, 3- 10% methanol, SOS 90-100 mg], dG and 8OHdG are separated, and both nucleosides are quantified by a UV detector and an electrochemical detector connected to the HPLC. For comparison, measurements of dG and 8OHdG were also performed on the same pure ultrapure water. The results were as follows. Measurements were made on both nucleosides, but the table below shows only the 8OHdG concentration (ng / ml) (same in the following examples).
Figure 0004702504
PCP is still a pesticide or skin softener that is still allowed by the country, and 5 mg / kg is reported to be acceptable, but the above results clearly show that it is 5 ppm corresponding to 5 mg / kg. It can be seen that the oxidative damage action by ultraviolet rays is extremely increased and the harmfulness is increasing.
BPA is a typical endocrine disrupting substance (environmental hormone), but at 0.5 ppm or more, the oxidative damage action due to ultraviolet rays is clearly increased, and the harmfulness is increasing. The BPA concentrations that may actually be exposed for reference are as follows:
In rivers and lakes: around 0.001 ppm
Leaching water from general industrial waste treatment plant: maximum 20ppm
PC tableware (30 minutes at 95 ° C.): 0.005 to 0.1 ppm
Elution from beverage can coatings: about 0.1 ppm
Elution from dental cement: About 1 ppm from saliva after dental caries treatment
Fish: About 0.02-0.3ppm
In Japan, the standards for BPA are 2.5 ppm or less for elution and 500 ppm or less for material, and the allowable intake is 0.05 mg / kg / day common to all countries. The method of the present invention can help to review these criteria.
RVT is a typical polyphenol and is said to be dissolved in red wine by about 2 to 10 ppm, and an anti-arteriosclerosis effect has been reported in recent years. Harmfulness is increasing. As described above, the effectiveness (or harmfulness) of a substance that has been said to be effective in the method of the present invention can be easily reviewed.
In the above test, the amount of sample required for one measurement is as small as 10 to 100 μl, a measurement peak can be detected within 5 to 10 minutes after sample injection, and continuous measurement is possible at a pace of 15 minutes / 1 sample. Therefore, when the above system is adopted, when one HPLC is operated at a pace of 120 hours per week, measurement of 480 samples / week and about 2000 samples / month can be performed. This means that according to the present invention, the toxicity and the like of a test substance can be evaluated at a high pace that has not been reported so far.
In the above example, dG and 8OHdG were measured simultaneously with a UV detector and an electrochemical detector. However, only 8OHdG may be measured. In that case, by using a measurement kit [for example, trade name 8-OHdG Check (manufactured by Japan Aging Control Laboratories)] using a monoclonal antibody, a large amount of samples can be measured with high sensitivity in a short time.
[0010]
Example 2
Prepare a solution of vitamin C (VC), vitamin E (VE), catechin (Cate) or tannic acid (Tan) at a predetermined concentration and inject 180 μl into each well of two 99-well plastic plates, then 20 μl of 200 μg / ml dG (dissolved in ultrapure water) is added to each well, one plate is allowed to stand at room temperature for 90 minutes, and the other plate is exposed to ultraviolet light (254 nm, 860 μW / cm in an ultraviolet irradiation box).2) For 90 minutes. After standing or irradiation, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. For comparison, in this example, measurements of dG and 8OHdG were also performed on the distilled water alone. The results are summarized below.
Figure 0004702504
The following conclusions can be drawn from the above results.
VC is said to be a powerful antioxidant, but acts as a very strong oxidation inducer for water-soluble dG.
VE is a very stable antioxidant.
Cate induces 8OHdG very strongly regardless of the presence or absence of ultraviolet irradiation. This oxidation ability is considered to be related to bactericidal action and antiviral action. Further, it is highly possible that the 8OHdG inducing ability indicated by Cate can be used as an index (effective concentration index) such as a bactericidal / bacteriostatic effect or an antiviral effect.
Tan exhibits a high gene damage-inducing action.
[0011]
Example 3
Prepare a solution of glycerol (Gly) or methanol (Meth) at a predetermined concentration and inject 180 μl into each well of five 99-well plastic plates, then 20 μl of 200 μg / ml dG (dissolved in ultrapure water) Is added to each well, one plate is allowed to stand at room temperature for 90 minutes, another one is similarly left to stand at room temperature for 24 hours, and the remaining three plates are exposed to ultraviolet light (254 nm in an ultraviolet irradiation box). , 860 μW / cm2) For 60 minutes, 90 minutes or 120 minutes, respectively. After standing or irradiation, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. For comparison, in this example, measurements of dG and 8OHdG were also performed on the ultrapure water that had been subjected to the same treatment. The results are summarized below.
Figure 0004702504
Both Gly and Meth have been reported to have an effect of preventing DNA damage caused by hydroxy radicals, but the antioxidant ability of these examples is also confirmed. In particular, Gly was confirmed to have an antioxidant ability only when left at room temperature, whereas Meth was confirmed to have a strong antioxidant ability both at room temperature and when irradiated with ultraviolet light.
[0012]
Example 4
Prepare a solution of glucose (Glu), raffinose (Raffi), or sucrose (Suc) at a predetermined concentration, inject 180 μl into each well of four 99-well plastic plates, and then add 200 μg / ml dG (super 20 μl (dissolved in pure water) is added to each well, one plate is allowed to stand at room temperature for 90 minutes, and the remaining three plates are exposed to ultraviolet light (254 nm, 860 μW / cm in an ultraviolet irradiation box).2) For 60 minutes, 90 minutes or 120 minutes, respectively. After standing or irradiation, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. For comparison, in this example, measurements of dG and 8OHdG were also performed on the ultrapure water that had been subjected to the same treatment. The results are summarized below.
Figure 0004702504
The following conclusions can be drawn from the above results.
The strength of the antioxidant capacity can be evaluated as Glu> Raffi≈Suc in both cases of standing at room temperature and ultraviolet irradiation.
If the normal blood glucose level is about 50 to 100 mg / dl (0.5 to 1 mg / ml), Glu present in the blood can be said to be a very effective antioxidant against ultraviolet irradiation.
Raffi is a kind of natural oligosaccharide and is added to many foods such as soft drinks, health drinks and health foods, but its antioxidant ability is not as high as Glu, but it is effective at a concentration of 10 μg / ml or more.
Suc exhibits the same level of antioxidant ability as Raffi.
[0013]
Example 5
In any case, a solution with a predetermined concentration of 1-arginine (Arg), 1-citrulline (Cit) or spermine (Spe), which is a protamine related substance, is prepared, and 180 μl is injected into each well of two 99-well plastic plates. Next, 20 μl of 200 μg / ml dG (dissolved in ultrapure water) is added to each well, one plate is allowed to stand at room temperature for 90 minutes, and the other plate is exposed to ultraviolet rays (254 nm, 860 μW / cm2) For 90 minutes. After standing or irradiation, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. For comparison, in this example, measurements of dG and 8OHdG were also performed on the ultrapure water that had been subjected to the same treatment. The results are summarized below.
Figure 0004702504
Protamine is a protein that supports the three-dimensional structure of a gene, and its arginine content, which is a typical basic amino acid, is extremely high (20 to 70%).
All of Arg, Cit and Spe have antioxidant ability, and Cit and Spe have particularly high antioxidant ability at high concentrations (1 mg / ml).
Although data are not shown, it has been confirmed by the method of the present invention that acidic amino acids generally have a tendency to induce oxidation and basic amino acids have a tendency to prevent oxidation.
[0014]
Example 6
Prepare solutions of various concentrations of uric acid (dissolved solution: distilled water + 0.025% FBS), inject 180 μl into each well of two 99-well plastic plates, then 200 μg / ml dG (ultra pure water) 20 μl is added to each well, one plate is allowed to stand at room temperature for 90 minutes, and the other plate is exposed to ultraviolet light (254 nm, 860 μW / cm in an ultraviolet irradiation box).2) For 90 minutes. After standing or irradiation, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. For comparison, in this example, dG and 8OHdG were also measured for the solution obtained by subjecting only the solution to the same treatment. The results are summarized below.
Figure 0004702504
Uric acid is said to be a typical antioxidant in vivo. However, from the above results, in the actual plasma concentration in the living body (40 to 80 μg / ml), the induction of 8OHdG is not strong oxidative environment. Although suppressed, the degree of DNA oxidative damage due to UV coexistence is high, and its toxicity is enhanced.
[0015]
Example 7
Potassium bromate (KBrOThree), Injecting 180 μl into each well of two 99-well plastic plates, and then adding 20 μl of 200 μg / ml dG (dissolved in ultrapure water) to each well At room temperature, one plate is left for 15 minutes and the other plate is left for 60 minutes. After standing, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. For comparison, in this example, measurements of dG and 8OHdG were also performed on the ultrapure water that had been subjected to the same treatment. The results are summarized below.
Figure 0004702504
Potassium bromate is a food additive widely used as a bread bleach or preservative. From the above results, induction of 8OHdG is observed depending on the concentration. Since there is no great difference between leaving for 15 minutes and leaving for 60 minutes, it is considered that the oxidation reaction with potassium bromate occurs quickly and then stabilizes. Potassium bromate, which is considered safe in conventional evaluation tests, is also suggested to be toxic in the method of the present invention. Thus, the allowable concentration of various food additives taken orally on a daily basis can be reviewed according to the evaluation method of the present invention.
[0016]
Example 8
1 mM sodium ethylenediaminetetraacetate (EDTA) solution, 10% glycerol (Gly) solution, 1% or 2.5% methanol (Meth) solution, 10% Gly and 2.5% Meth mixed solution or 10% Gly and 2 Inject a mixed solution of 5% Meth and 1 mM EDTA into each well of a 99-well plastic plate by 170 μl, then 10 μl of 400 μg / ml dG (dissolved in ultrapure water) and 50 mg / ml potassium bromate ( KBrOThree) Add 20 μl of the solution to each well and let stand at room temperature for 30 minutes, mix the solution in each well with an equal amount of 20% glycerol solution, and quantify dG and 8OHdG in the same manner as in Example 1. For comparison, in this example, measurements of dG and 8OHdG were also performed on the ultrapure water that had been subjected to the same treatment. The results are summarized below.
Figure 0004702504
In the presence of potassium bromate that acts as an active oxygen generator, a mixed solution of 10% Gly, 2.5% Meth, and 1 mM EDTA showed the highest antioxidant ability. From this, it can be seen that a solution composed of these three components is effective as an antioxidant preservation solution for various test solutions and test samples.
[0017]
Example 9
Ultrapure water as a test substance or 170 μl of vitamin C (VC), vitamin E (VE) or glucose (Glu) at a predetermined concentration is added to each well of two 99-well plastic plates, and ultrapure water is used as the additive. Alternatively, 20 μl of a predetermined concentration of bisphenol A (BPA) is injected into each well, then 10 μl of 400 μg / ml dG (dissolved in ultrapure water) is added to each well, and one plate is left at room temperature for 90 minutes. The other plate is ultraviolet (254 nm, 860 μW / cm) in an ultraviolet irradiation box.2) For 90 minutes. After standing or irradiation, the solution in each well is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1. The results are summarized below.
Figure 0004702504
The following conclusions can be drawn from the above results.
By adding BPA, 8OHdG during UV irradiation increases in a concentration-dependent manner.
VE and Glu significantly suppress the increase in 8OHdG due to BPA addition and ultraviolet irradiation.
0.001% VC alone induces 8OHdG strongly, but its action is counteracted by the coexistence of BPA. However, VC does not cancel the induction of 8OHdG by BPA during UV irradiation.
As described above, the gene oxidation ability of BPA is variously affected by the coexisting substances.
Therefore, by using this measurement method, it is possible not only to identify a substance that induces oxidative damage of a gene, but also to identify an antioxidant specific to the substance that can counteract its oxidative toxicity, The oxidation ability can be quantitatively evaluated.
[0018]
Example 10
The antioxidant ability or oxidation ability was measured using various drinking waters as test substances (test solutions).
200 μl of dG dissolved in various drinking water so that its concentration becomes 10 μg / ml was added to two test containers (surface area 36 mm of the solution).2And one container is allowed to stand at room temperature for 90 minutes, and the other container is irradiated with ultraviolet rays (254 nm, 860 μW / cm) in an ultraviolet irradiation box.2) For 90 minutes. After standing or irradiation, the solution in each container is mixed with an equal amount of 20% glycerol solution, and dG and 8OHdG are quantified in the same manner as in Example 1.
The drinking water tested is as follows.
Ultrapure water: water with a specific resistance of 18 megohm (Millipore System), oxidation-reduction potential of 360 mV.
Tap water: General tap water in Kasuga City, Fukuoka Prefecture (collected in July 1999), redox potential is 727 mV.
Treated water: Water purified by commercially available water purifier (purified by passing water through activated carbon, strong magnet, ceramic, etc.), redox potential is 518 mV.
Natural water: Groundwater collected from Hita City, Oita Prefecture (water isolated from surface contamination such as acid rain and fertilizer, dissolved nitrogen oxide concentration of 0.01 ppm or less), redox potential is 280 mV.
The results are summarized below.
Figure 0004702504
The following conclusions can be drawn from the above results.
The oxidizing power of tap water is judged to be very reasonable from the viewpoint of sterilization and antibacterial activity.
Water treated with a water purifier (treated water) remarkably suppresses the induction of 8OHdG, and the induction of 8OHdG at the time of ultraviolet irradiation is lower than that at room temperature.
Natural water significantly suppressed the induction of 8OHdG for both standing at room temperature and ultraviolet irradiation.
Thus, according to this measurement method, it is possible to quantify the reducing ability (antioxidant ability) or oxidizing ability of water. Using this method, the correlation between drinking water and various diseases (serious injury, course of illness, therapeutic effect, preventive effect, etc.) can be studied, as well as the effect of inducing genetic damage in aqueous solutions containing unknown substances. A comprehensive evaluation is possible.
[0019]
Example 11
As occasional urine collected from a healthy person is mixed with the three-component antioxidant preservation solution shown in Example 8 at a volume ratio of 1: 1, and immediately stored frozen (about -20 ° C). The mixed solution thawed at the time of the test was perfused (1 μl / min) by a microdialysis system using a dialysis membrane having a molecular weight 50 kD cut-off function, and a low-molecular-weight DNA-related component extracted thereby (recovery rate was about 30). ˜40%), quantitate dG and 8OHdG as in Example 1. In addition to the determination, in this example, nitrate ion (NO) contained in the same test sample is used.Three -) Is quantified with a highly sensitive nitrogen oxide detector (ENO-10, manufactured by Aicom).
The results are shown in the graph of FIG. 1, where the X axis is the detected NO.Three -Ratio of concentration (μmol / L) to dG concentration (ng / ml) (NOThree -/ DG), and the Y-axis is a logarithmic value of the ratio (8OHdG / dG) of the detected 8OHdG concentration (pg / ml) to the dG concentration (ng / ml). In addition, since the dG concentration in urine correlates with the concentration rate of urine, NOThree -By dividing each concentration value of 8OHdG and 8OHdG by the concentration value of dG, it is possible to eliminate data errors depending on the difference in urine concentration rate, and to oxidize the risk of gene oxidative damage (Y axis) By representing the type (8OHdG) / reduced type (dG), it is a more rational index. For reference, Table 8 below shows the approximate 8OHdG concentration and dG concentration in a biological sample detected by the same measurement system as described above.
Figure 0004702504
From the results shown in FIG. 1, the logarithmic value of 8OHdG / dG and NOThree -It is clear that the / dG ratio shows a positive correlation (p <0.05). This means that the logarithmic value of 8OHdG / dG is positively correlated with the nitrate ion concentration, which is a representative oxide produced in the living body, and the logarithmic value of 8OHdG / dG is an indicator of oxidative stress in the living body. It shows that it can be.
In addition, data are not shown, but from previous studies, (1) 8OHdG / dG values were shifted upward from the approximate line plotted for healthy individuals in patients with advanced cancer and patients with congenital genetic abnormalities. (NOThree -(8) The 8OHdG / dG ratio, which is presumed to reflect the oxidative damage of the gene more strongly than the oxidation index of the whole individual expressed by the / dG ratio, shows a relatively high value), (2) Smoker Then, 8OHdG / dG ratio, NOThree -The / dG ratio tends to be high, and (3) even if the same person is in an unusual situation (eg, hangover, cold, excessive exercise, etc.), the 8OHdG / dG ratio , NOThree -It is known that the value of the / dG ratio is displaced upward.
From the above results, the following conclusions can be drawn.
(1) The 8OHdG / dG value can be a powerful indicator of biooxidation.
(2) The 8OHdG / dG value changes depending on the daily life of the subject (meal, exercise, rest, etc.), and can be a stress index in a broad sense including psychosocial factors.
(3) By quantifying the effects of natural and artificial chemicals and foods that are regularly ingested by living organisms on these indicators, the harmfulness of these natural and artificial chemicals and foods (carcinogenicity, teratogenicity) Sex, reproductive toxicity, etc.) and benefits (treatment and prevention effects, fatigue recovery effects, anti-aging effects, etc. of various diseases caused by oxidative damage in the body or gene nucleic acids) can be rationally evaluated.
[0020]
【The invention's effect】
As described above in detail, the simple biological evaluation method for natural and artificial chemical substances using the DNA damage index of the present invention is the biological toxicity of a test substance such as natural or artificial chemical substances or foods, The usefulness or safety can be evaluated in a test tube very simply and inexpensively, and the in vivo evaluation of cultured cells, and even laboratory animals can be performed according to the importance of the test substance. It can be carried out.
Although it is virtually impossible to carry out conventional full-scale animal and clinical experiments on each of the artificial chemical substances that are said to have more than 100,000 types of main chemicals alone, their individual chemistry The above method of the present invention, which can easily present a specific DNA damage index for a substance, sets a rough safety standard concentration, and examines the necessity of full-scale animal experiments and clinical experiments. It is possible to present very useful information. Therefore, the biological evaluation method of the present invention also provides a system for simply screening the biological toxicity of various natural or artificial chemical substances and the harmfulness / benefits of foods.
Further, the method of the present invention can objectively quantify the benefits and harmfulness of commercially available or developing health foods and functional foods. Therefore, according to the present invention, not only can the usefulness and safety essential for foods under development be evaluated reliably and simply, but also the usefulness and safety of foods currently on the market can be evaluated. It can be reconfirmed.
Further, according to the present invention, the influence of ultraviolet irradiation on a certain substance (test substance) and the influence on the substance due to the coexistence with the reactive oxygen species generator or the gene oxidation damaging substance can be easily evaluated according to the present invention. In addition, it is possible to more accurately evaluate the toxicity of the test substance in nature.
In addition, according to the method of the present invention, an aqueous solution containing an unknown substance is used as a test solution, so that the genetic damage inducing action of the aqueous solution can be comprehensively evaluated. A biotoxicity index for natural water or the like can be obtained accurately and easily.
According to the present invention, from the content ratio of 8-hydroxy-2'-deoxyguanosine and 2-deoxyguanosine in biological cell-derived products such as urine and blood collected from animals including humans administered with chemical substances or foods. The harmfulness or benefit of the chemical substance or food can be accurately and easily evaluated.
[Brief description of the drawings]
FIG. 1 NO in human urineThree -It is a graph which shows the relationship between the density ratio of / dG and the density ratio of 8OHdG / dG.

Claims (2)

特定の天然または人工化学物質を含む溶液中に既知量の2’−デオキシグアノシンを添加し、該溶液に紫外線(254nm、860μW/cm )を90分間照射た後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記天然または人工化学物質の有害性を評価することからなる、天然または人工化学物質の生物学的評価法。Adding a known amount of 2'-deoxyguanosine into a solution containing a specific natural or artificial chemicals, ultraviolet solution (254nm, 860μW / cm 2) was irradiated for 90 min, the solution 8- Biology of natural or artificial chemical substances, comprising quantifying hydroxy-2'-deoxyguanosine and evaluating the harmfulness of the natural or artificial chemical substances according to the amount of 8-hydroxy-2'-deoxyguanosine Evaluation method. 天然または人工化学物質を含む食品を含有する溶液中に既知量の2’−デオキシグアノシンを添加し、該溶液に紫外線(254nm、860μW/cm )を90分間照射た後、上記溶液中の8−ヒドロキシ−2’−デオキシグアノシンを定量し、該8−ヒドロキシ−2’−デオキシグアノシンの量に応じて上記食品の有害性を評価することからなる、天然または人工化学物質からなる食品の生物学的評価法。Adding a known amount of 2'-deoxyguanosine in a solution containing a food product comprising a natural or artificial chemicals, after UV (254nm, 860μW / cm 2) was irradiated for 90 min to the solution, in the solution A food organism comprising a natural or artificial chemical substance, comprising quantifying 8-hydroxy-2'-deoxyguanosine and evaluating the toxicity of the food according to the amount of 8-hydroxy-2'-deoxyguanosine Evaluation method.
JP2000086410A 2000-03-16 2000-03-27 Simplified biological assessment of natural and artificial chemicals using DNA damage indicators Expired - Fee Related JP4702504B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2000086410A JP4702504B2 (en) 2000-03-27 2000-03-27 Simplified biological assessment of natural and artificial chemicals using DNA damage indicators
EP01912426A EP1267162A4 (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using dna injury index and apparatus therefor
CNB018065872A CN1219890C (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using DNA injury index and apparatus therefor
CNA2005100020275A CN1629633A (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using DNA injury index
CNB2005100020260A CN1289070C (en) 2000-03-16 2001-03-16 Anti-oxidation storage solution for organism simple
PCT/JP2001/002095 WO2001069235A1 (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using dna injury index and apparatus therefor
KR1020077009228A KR20070051370A (en) 2000-03-16 2001-03-16 Apparatus for measuring a dna oxidation injury index
KR1020027012073A KR20030007463A (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using DNA injury index and apparatus therefor
KR1020077009229A KR100763686B1 (en) 2000-03-16 2001-03-16 Antioxidative preservative solution for a biological sample
AU2001241169A AU2001241169A1 (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using dna injury index and apparatus therefor
US10/203,553 US20030186260A1 (en) 2000-03-16 2001-03-16 Simple method of biologically evaluating natural and artificial chemicals by using dna injury index and apparatus therefor
US11/311,360 US7531312B2 (en) 2000-03-16 2005-12-20 Simplified biological evaluation method of natural and artificial chemicals by using DNA injury index and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086410A JP4702504B2 (en) 2000-03-27 2000-03-27 Simplified biological assessment of natural and artificial chemicals using DNA damage indicators

Publications (2)

Publication Number Publication Date
JP2001272388A JP2001272388A (en) 2001-10-05
JP4702504B2 true JP4702504B2 (en) 2011-06-15

Family

ID=18602584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086410A Expired - Fee Related JP4702504B2 (en) 2000-03-16 2000-03-27 Simplified biological assessment of natural and artificial chemicals using DNA damage indicators

Country Status (1)

Country Link
JP (1) JP4702504B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997418B2 (en) * 2008-12-30 2016-09-28 株式会社テクノメデイカ Oxidative stress state system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027361A1 (en) * 1997-11-20 1999-06-03 Esa, Inc. Electrochemical analysis system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027361A1 (en) * 1997-11-20 1999-06-03 Esa, Inc. Electrochemical analysis system

Also Published As

Publication number Publication date
JP2001272388A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
Ghajari et al. The effect of endurance training along with cadmium consumption on Bcl-2 and bax gene expressions in heart tissue of rats
Castegnaro et al. Balkan endemic nephropathy: role of ochratoxins A through biomarkers
Sánchez-Lozada et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations
Lu et al. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium
Akinrotimi et al. Haematological Responses of Tilapia guineensis treated with industrial effluents
Chen et al. Selenium increases expression of HSP70 and antioxidant enzymes to lessen oxidative damage in Fincoal-type fluorosis
Wolrath et al. Trimethylamine and trimethylamine oxide levels in normal women and women with bacterial vaginosis reflect a local metabolism in vaginal secretion as compared to urine
US7531312B2 (en) Simplified biological evaluation method of natural and artificial chemicals by using DNA injury index and apparatus therefor
JP4702504B2 (en) Simplified biological assessment of natural and artificial chemicals using DNA damage indicators
Ferreira et al. Chloroquine and hydroxychloroquine in the environment and aquatic organisms: a review
Gulson et al. Longitudinal monitoring of selected elements in blood of healthy young children
Uche et al. Sickle cell anemia contributes to liver abnormality
Saran et al. A comparative patho-physiological study of diclofenac and meloxicam induced toxicity in Gallus domestics
Jain et al. Acute toxicity and biochemical studies of lead nitrate on the liver and kidney of fresh water fish Mystus cavasius
de Matos et al. Determination of 14 trace elements in blood, serum and urine after environmental disaster in the Doce River basin: Relationship between mining waste and metal concentration in the population
Johnstone et al. An in vitro oxidative stress test for determining pollutant tolerance in algae
Li et al. Riboflavin Attenuates Fluoride-Induced Testicular Injury via Interleukin 17A-Mediated Classical Pyroptosis
Tiwari et al. Metallothionein mRNA expression in freshwater teleost, Channa punctata (Bloch) under the influence of heavy metal, cadmium–a dose kinetic study
Mustafa et al. Antioxidant level in normal and dialyzed patients using FRAP method.
Strunecká et al. Paradoxes of fluoride toxicity
Reza et al. In vivo analysis of toxic effect of hydrose used in food preparations in Bangladesh
Broome et al. Mitochondria-targeted antioxidant supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men
Reddy et al. Biomarker responses in fish exposed to industrial effluent
Speare et al. Toxic effects of mebendazole at high dose on the haematology of red‐legged pademelons (Thylogale stigmatica)
Dilrukshi et al. Synergistic effect of fluoride and hardness: evaluation of nephrotoxicity on Wistar rats, using environmental water samples.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

R150 Certificate of patent or registration of utility model

Ref document number: 4702504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees