JP4701623B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP4701623B2
JP4701623B2 JP2004107612A JP2004107612A JP4701623B2 JP 4701623 B2 JP4701623 B2 JP 4701623B2 JP 2004107612 A JP2004107612 A JP 2004107612A JP 2004107612 A JP2004107612 A JP 2004107612A JP 4701623 B2 JP4701623 B2 JP 4701623B2
Authority
JP
Japan
Prior art keywords
battery
diameter
flange portion
terminal
grommet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004107612A
Other languages
Japanese (ja)
Other versions
JP2005294046A5 (en
JP2005294046A (en
Inventor
一弥 岡部
充浩 児玉
俊樹 田中
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2004107612A priority Critical patent/JP4701623B2/en
Publication of JP2005294046A publication Critical patent/JP2005294046A/en
Publication of JP2005294046A5 publication Critical patent/JP2005294046A5/ja
Application granted granted Critical
Publication of JP4701623B2 publication Critical patent/JP4701623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、1時間未満という極めて短時間で充電可能であって、かつ安全に急速充電を行うことができる密閉形蓄電池に関するものである。   The present invention relates to a sealed storage battery that can be charged in an extremely short time of less than one hour and that can be rapidly charged safely.

ニッケル水素蓄電池やニッケルカドミウム蓄電池などの密閉形アルカリ蓄電池は、充放電サイクル性能、耐過充電性能、耐過放電性能に優れ、単位体積当たりのエネルギー密度が高いところから携帯機器用電源などサイクルサービスに適した電源として重用されている。
近年、これらサイクルサービス用電源である蓄電池に対して、1時間未満という従来の充電では行われていない短時間で充電を完了させたいとの要求が高まっている。しかしながら、従来の密閉形のニッケル水素蓄電池やニッケルカドミウム蓄電池を従来のように単なる定電流充電や定電圧充電によって1時間を切るようなレートの急速充電を行うとすると、充電時に正極から発生する酸素ガスによって蓄電池の内圧が上昇し、かつ、蓄電池の温度が上昇するために、充電中に破裂の虞が生じたり、蓄電池の性能が劣化する虞があるために充電が困難であった。
Sealed alkaline storage batteries such as nickel metal hydride storage batteries and nickel cadmium storage batteries have excellent charge / discharge cycle performance, overcharge resistance performance, and overdischarge resistance performance, and are suitable for cycle services such as power supplies for portable devices due to their high energy density per unit volume. It is heavily used as a suitable power source.
In recent years, there has been a growing demand for these storage batteries, which are power sources for cycle services, to complete charging in a short time that is not performed in conventional charging of less than one hour. However, if the conventional sealed nickel-metal hydride storage battery or nickel cadmium storage battery is charged rapidly at a rate of less than 1 hour by simple constant current charging or constant voltage charging as in the past, oxygen generated from the positive electrode during charging Since the internal pressure of the storage battery is increased by the gas and the temperature of the storage battery is increased, there is a risk of explosion during charging or the performance of the storage battery may be deteriorated, so that charging is difficult.

これらの課題を解決するために、近年、密閉形アルカリ蓄電池の充電制御方式の一つとして、蓄電池に、電池内部の圧力変動に応じて電池の極板と外部端子を結ぶ回路のオン・オフを切り替えるスイッチを内蔵させる方式が提案されている。該スイッチを内蔵することと、従来の密閉形蓄電池に採用されている圧力開放弁を併用することによって、充電時に蓄電池内部の圧力が上昇するのを極力抑え、充放電を繰り返すことによって蓄電池の性能が劣化するのを防ぐと共に万一蓄電池内部の圧力が異常に上昇したときに蓄電池内部に蓄積したガスを放出する方式が提案されている。(例えば、特許文献1参照)   In order to solve these problems, as one of charge control methods for sealed alkaline storage batteries in recent years, the storage battery is turned on / off by a circuit that connects the battery electrode plate and external terminals in accordance with the pressure fluctuation inside the battery. A method of incorporating a switch for switching has been proposed. The built-in switch and the combined use of the pressure release valve used in the conventional sealed storage battery suppress the rise of the internal pressure of the storage battery as much as possible during charging, and the performance of the storage battery by repeating charging and discharging. There has been proposed a method for preventing gas from deteriorating and releasing the gas accumulated in the storage battery when the internal pressure of the storage battery rises abnormally. (For example, see Patent Document 1)

米国特許明細書US2002/0119364 (Fig2A、Fig2B) 特許文献1には図2に示す前記スイッチ内蔵式の密閉形蓄電池が開示されている。図2は、前記スイッチの構造示す密閉形蓄電池21の要部断面図である。該蓄電池21は、金属製電槽30の開放端が、熱可塑性樹脂の成型体からなるグロメット26と、該グロメットの中央部に設けた透孔に挿通させた接続端子23で封止することによって気密に密閉されている。金属製電槽内に収納された捲回式電極群を構成する正極32とキャップ状の正極端子29はの間には、正極リード片33、接続端子23、該接続端子23に接合したフランジ24、金属製封口板25からなる回路が形成され、常時は接続端子23が弾性体28によって図の下方に押圧され、フランジ24(スイッチ22の第1端子)と封口板25(スイッチ22の第2端子)が当接してスイッチ22がオンの状態にある。充電時に蓄電池の内部空間にガス蓄積して内圧が上昇するとグロメット26の中央部が上方に撓み、スイッチの第2端子であるフランジ24が上方に移動してスイッチの第1端子である封口板25から離れるためにスイッチ22がオフの状態に切り替わる。US Patent Specification US2002 / 0119364 (FIG. 2A, FIG. 2B) Patent Document 1 discloses the above-mentioned switch-embedded sealed storage battery shown in FIG. FIG. 2 is a cross-sectional view of an essential part of the sealed storage battery 21 showing the structure of the switch. The storage battery 21 is sealed by sealing the open end of the metal battery case 30 with a grommet 26 made of a thermoplastic resin molded body and a connection terminal 23 inserted through a through hole provided in the center of the grommet. It is hermetically sealed. Between the positive electrode 32 and the cap-shaped positive terminal 29 constituting the wound electrode group housed in the metal battery case, there are a positive lead piece 33, a connection terminal 23, and a flange 24 joined to the connection terminal 23. A circuit composed of the metal sealing plate 25 is formed, and the connection terminal 23 is normally pressed downward in the figure by the elastic body 28, and the flange 24 (first terminal of the switch 22) and the sealing plate 25 (second switch 22). Terminal) abuts and the switch 22 is in an ON state. When the internal pressure rises due to gas accumulation in the internal space of the storage battery during charging, the central portion of the grommet 26 bends upward, and the flange 24, which is the second terminal of the switch, moves upward, and the sealing plate 25, which is the first terminal of the switch. In order to leave the switch, the switch 22 is switched off.

また、該文献に記載されているFig2A、Fig2Bによれば、接続端子23に小径の透孔31を設け、常時は弾性体28で該透孔を封止し、蓄電池内の圧力が前記スイッチの動作圧力を超えてさらに上昇したときに、該透孔31を通してガスを外部に排出する安全弁の構造が示されている。しかし、蓄電池内の圧力が上昇した状態では接続端子23が上方に移動し弾性体28の変形が大きくなって接続端子を押圧する力が強くなっているために、前記接続端子に設けた小径31の透孔が開口し難く、安全弁の動作圧力が安定しないという欠点があった。   In addition, according to FIG. 2A and FIG. 2B described in this document, a small-diameter through hole 31 is provided in the connection terminal 23, and the through hole is normally sealed with an elastic body 28. The structure of a safety valve that discharges gas to the outside through the through-hole 31 when the operating pressure is further increased is shown. However, in the state where the pressure in the storage battery is increased, the connection terminal 23 moves upward, the deformation of the elastic body 28 increases, and the force pressing the connection terminal increases, so that the small diameter 31 provided on the connection terminal is increased. However, there is a drawback that the operating pressure of the safety valve is not stable.

本発明は、安全弁の動作圧力が安定した急速充電可能な密閉型蓄電池を提供しようとすつものである。 The present invention is intended to provide a fast-chargeable sealed storage battery in which the operating pressure of the safety valve is stable.

前記課題を解決するために、本発明に係る密閉形電池は、密閉形蓄電池内部のガス圧が上昇したときに、電極と外部端子を結ぶ回路をオフにするスイッチと、蓄電池内部の圧力が異常に上昇したときに蓄電池内部に蓄積したガスを開放するための安全弁を備えた密閉形蓄電池であって、電槽の開放端を気密に密閉するグロメットに配置した透孔を挿通する接続端子に設けられた第1端子と、蓄電池内部に固定された第2端子とを備え、前記グロメットの撓み変形に伴う前記第1の端子の移動によって前記第1の端子と前記第2端子とが当接・離脱することによって、前記スイッチが前記電極と前記外部端子を結ぶ回路のオン・オフの切り替えを行うとともに、前記安全弁が、前記グロメットに破断を生ぜしめることによって、ガスを排出すること、および、前記接続端子に円形の内側フランジ部を設け、前記グロメットの外側にあって前記電槽の開放端に固定された封口板を備え、前記封口板に前記内側フランジ部と同心円をなす円形の透孔を設け、該透孔の直径をamm、前記内側フランジ部の直径をb mmとしたときに、1≦a−b≦3の関係が成り立つことを特徴とする。 In order to solve the above problems, a sealed battery according to the present invention includes a switch for turning off a circuit connecting an electrode and an external terminal when the gas pressure inside the sealed battery increases, and the pressure inside the battery is abnormal. Is a sealed storage battery equipped with a safety valve for releasing the gas accumulated in the storage battery when the battery is lifted, and provided at a connection terminal through which a through hole arranged in a grommet that hermetically seals the open end of the battery case The first terminal and the second terminal fixed inside the storage battery, and the first terminal and the second terminal are brought into contact with each other by the movement of the first terminal accompanying the bending deformation of the grommet. By disconnecting, the switch turns on and off the circuit connecting the electrode and the external terminal, and the safety valve discharges gas by causing the grommet to break. And a circular inner flange portion on the connection terminal, a sealing plate fixed to the open end of the battery case on the outer side of the grommet, and concentric with the inner flange portion on the sealing plate When a circular through hole is provided, the diameter of the through hole is amm, and the diameter of the inner flange portion is b mm, the relationship 1 ≦ ab ≦ 3 is satisfied.

本発明に係る密閉形蓄電池は、前記接続端子に円形の内側フランジ部を設け、前記グロメットの外側にあって前記電槽の開放端に固定された封口板を備え、前記封口板に前記内側フランジ部と同心円をなす円形の透孔を設け、前記グロメットに前記内側フランジ部と同心円をなす外周及び内周を有するリング状の溝を設け、該透孔の直径をamm、前記内側フランジ部の直径をb mm、前記溝の前記外周の直径をc mm、前記内周の直径をdmmとしたときに、a≦cであって、かつ、d≦b<aの関係が成り立つことが好ましい。 Hermetically sealed battery according to the present invention is provided with a inner flange portion of the circular before Symbol connecting terminals, comprising the battery container sealing plate which is fixed to an open end which are in the outside of the grommet, the inner to the sealing plate A circular through hole concentric with the flange portion is provided, and a ring-shaped groove having an outer periphery and an inner periphery concentric with the inner flange portion is provided in the grommet, the diameter of the through hole being a mm , the inner flange portion When the diameter of the groove is b mm , the diameter of the outer periphery of the groove is c mm , and the diameter of the inner periphery is d mm , a ≦ c and d ≦ b <a may be satisfied. preferable.

本発明によれば、前記安全弁の動作圧力が安定した急速充電可能な密閉形蓄電池を提供することができる。 By the present invention lever, the operating pressure of the safety valve can provide a stable rapidly rechargeable hermetically sealed battery was.

図1は、本発明の1実施形態に係る密閉形蓄電池1の要部断面図である。正極板、負極板およびセパレータの積層体を捲回してなる捲回式電極群が金属製電槽13内に収納されている。該金属製電槽13の開放端は、該開放端部に装着した熱可塑性樹脂の成形体であるグロメット9、該クロメットの中央部に設けた透孔に嵌着した円柱状の接続端子5によって気密に封止されている。キャップ状正極端子2と正極板3は、常時は、正極リ−ド片4、接続端子5、該接続端子5の側面に接合された板状部(外側フランジ部)6、封口板8からなる回路によって結ばれており、電気的に導通状態にある。   FIG. 1 is a cross-sectional view of a main part of a sealed storage battery 1 according to an embodiment of the present invention. A wound electrode group formed by winding a laminate of a positive electrode plate, a negative electrode plate and a separator is housed in the metal battery case 13. The open end of the metallic battery case 13 is formed by a grommet 9 which is a molded body of a thermoplastic resin attached to the open end, and a columnar connection terminal 5 fitted in a through hole provided in the center of the chromet. It is hermetically sealed. The cap-like positive electrode terminal 2 and the positive electrode plate 3 are normally composed of a positive electrode lead piece 4, a connection terminal 5, a plate-like part (outer flange part) 6 bonded to the side surface of the connection terminal 5, and a sealing plate 8. They are connected by a circuit and are in an electrically conductive state.

充電中に蓄電池内部の圧力が上昇した場合、前記グロメット9の水平壁10が図の上方に向かって撓み、スイッチの第1端子である接続端子5の外側フランジ部6が上方に移動し、スイッチの第2端子である封口板8から離脱する(スイッチがオンからオフに切り替わる)ために正極板3と正極端子2を結ぶ回路が遮断される。
本発明者らは、電池内部のガス圧が上昇したときに電池内部に蓄積したガスを開放するための安全弁と、電池内部のガス圧が上昇したときに電極と外部端子を結ぶ回路をオンからオフに切り替えるスイッチを備えた密閉形蓄電池であって、
前記スイッチの動作圧力をX(MPa)とし、前記安全弁の動作圧力をY(MPa)としたときに、XおよびY−Xを特定の値に設定することによって充電受入率を低下させることなく、急速充電が可能であることを見いだした。
また、Yを特定の値とすることによって、電池を破裂させることなく急速充電を行うことができることを見いだした。
When the internal pressure of the storage battery rises during charging, the horizontal wall 10 of the grommet 9 bends upward in the figure, the outer flange portion 6 of the connection terminal 5 that is the first terminal of the switch moves upward, and the switch The circuit connecting the positive electrode plate 3 and the positive electrode terminal 2 is cut off because it is separated from the sealing plate 8 which is the second terminal (the switch is switched from on to off).
The present inventors turn on a safety valve for releasing the gas accumulated inside the battery when the gas pressure inside the battery rises, and a circuit connecting the electrode and the external terminal when the gas pressure inside the battery rises. A sealed battery with a switch to turn off,
When the operating pressure of the switch is X (MPa) and the operating pressure of the safety valve is Y (MPa), the charge acceptance rate is not lowered by setting X and YX to specific values, We found that fast charging is possible.
It was also found that rapid charging can be performed without rupturing the battery by setting Y to a specific value.

具体的には、蓄電池内部の圧力上昇時に極板と外部端子を結ぶ回路を遮断するスイッチ
の動作圧力Xを、X≧1.5MPaとすると、急速充電を行ったときに高い充電受入率が
得られる。充電受入率を高めるためにはX≧1.8MPaとすることがさらに好ましい。
Specifically, when the operating pressure X of the switch that cuts off the circuit connecting the electrode plate and the external terminal when the pressure inside the storage battery rises is X ≧ 1.5 MPa , a high charge acceptance rate is obtained when rapid charging is performed. can get. In order to increase the charge acceptance rate, it is more preferable that X ≧ 1.8 MPa .

電池内部のガス圧力上昇時に電極と外部端子を結ぶ回路を遮断する為に作動する電池の
スイッチ装置は、リレーと同様な原理から制作されており、数万回〜数百万回の作動に耐
えうるものの、万が一、故障をした場合、電池が破裂に至るなどの問題が発生する虞れが
ある。このため、万が一の故障を想定して電池の内圧を解放するための安全弁を備えるこ
とは、安全性確保のために欠かせない。
円筒形の密閉形蓄電池の場合、蓄電池内部の圧力が、3.5MPaを超えると電池の封
口カシメ部が内部圧力に耐えきれずに破損してしまう虞があることが分かった。従って安
全弁の動作圧力Yを3.5MPa以下に設定することが望ましい。
円筒形密閉形蓄電池において、この電池の内圧を解放するための安全弁を3.5MP
a≧Yとすることによって、電池の破裂を確実に防ぐ事ができる。
Battery switch devices that operate to shut off the circuit that connects the electrode and external terminals when the gas pressure inside the battery rises are manufactured based on the same principle as relays, and can withstand operation of tens of thousands to millions of times. However, in the unlikely event of a failure, there is a risk that problems such as battery explosion may occur. For this reason, it is indispensable for ensuring safety to provide a safety valve for releasing the internal pressure of the battery in case of a failure.
In the case of a cylindrical sealed storage battery, it has been found that if the internal pressure of the storage battery exceeds 3.5 MPa, the sealing caulking portion of the battery cannot withstand the internal pressure and may be damaged. Therefore, it is desirable to set the operating pressure Y of the safety valve to 3.5 MPa or less.
In a cylindrical sealed storage battery, a safety valve for releasing the internal pressure of this battery is installed at 3.5MP.
By setting a ≧ Y, it is possible to reliably prevent the battery from bursting.

また、Y−X≧0.3MPaとしたときに優れた寿命特性を示した。優れた寿命特性を
得るためにはX≦3.0MPaとすることが好ましく、X≦2.8MPaとすることがさ
らに好ましい。
Moreover, when it was set as Y-X> = 0.3MPa , the outstanding lifetime characteristic was shown. In order to obtain excellent life characteristics, X ≦ 3.0 MPa is preferable, and X ≦ 2.8 MPa is more preferable.

本発明電池の安全弁の機構は、蓄電池内部の圧力が前記Yを超えたときに、前記グロメット9の水平壁10に破断を生ぜしめることによって前記水平壁に生じた破断箇所を通して蓄電池内部に蓄積したガスを放出するものである。内部に蓄積されたガスは、水平壁の破断箇所およびキャップ状端子2に設けた透孔14を経由して外部に放出される。
本発明に係る密閉形蓄電池のようにグロメット9の撓み変形に応じてオン・オフの切り替えを行うスイッチを備え、また、グロメット9の水平壁10に破断させてガスを放出する安全弁を備える蓄電池においては、前記グロメット9が蓄電池内部の圧力の上昇に応じて敏感に撓み、所定の圧力で破断し、且つ、繰り返し撓み変形しても塑性変形し難い材料からなることが好ましい。具体的にはポリプロピレン(PP)やポリエチレン(PE)が好適であり、なかでも、ポリプロピレンがクリープ変形が小さいので好ましい材料である。また、グロメット9が容易に撓み変形し、かつ、3.5MPa以下の所定の圧力で破断を生じさせるにはグロメットの9の水平壁10の厚さを特定の範囲に設定することが好ましい。具体的には、グロメット9の水平壁10の厚さを0.3〜1.0mmとするのが好ましく、0.3〜0.6mmとするのがさらに好ましい。また、グロメット9の水平壁10の直径eを出きるだけ大きくすることにより、該水平壁10がより敏感に撓み易くなるが、1.5MPa以上の所定の圧力でスイッチをオフに切り替えるには、前記水平壁10の直径eと電槽の内径の比(e/電槽の内径)を0.5以上にすることが好ましく、0.6以上にすることがさらに好ましい。このことによって動作圧力の安定したスイッチを備える密閉形蓄電池とすることができるので好ましい。
When the pressure inside the storage battery exceeds Y, the safety valve mechanism of the battery of the present invention causes the horizontal wall 10 of the grommet 9 to rupture and accumulates in the storage battery through the ruptured portion generated in the horizontal wall. It emits gas. The gas accumulated inside is discharged to the outside through the broken portion of the horizontal wall and the through hole 14 provided in the cap-shaped terminal 2.
In a storage battery comprising a switch that switches on and off according to the bending deformation of the grommet 9 as in the sealed storage battery according to the present invention, and a safety valve that breaks the horizontal wall 10 of the grommet 9 to release gas. The grommet 9 is preferably made of a material that flexes sensitively as the internal pressure of the storage battery increases, breaks at a predetermined pressure, and hardly undergoes plastic deformation even when repeatedly deformed. Specifically, polypropylene (PP) and polyethylene (PE) are preferred, and polypropylene is a preferred material because of its small creep deformation. Moreover, it is preferable to set the thickness of the horizontal wall 10 of the grommet 9 within a specific range in order to cause the grommet 9 to be easily bent and deformed and to be broken at a predetermined pressure of 3.5 MPa or less. Specifically, the thickness of the horizontal wall 10 of the grommet 9 is preferably 0.3 to 1.0 mm, and more preferably 0.3 to 0.6 mm. In addition, by increasing the diameter e of the horizontal wall 10 of the grommet 9 as much as possible, the horizontal wall 10 is more susceptible to bending, but in order to switch the switch off at a predetermined pressure of 1.5 MPa or more, The ratio of the diameter e of the horizontal wall 10 to the inner diameter of the battery case (e / inner diameter of the battery case) is preferably 0.5 or more, and more preferably 0.6 or more. This is preferable because a sealed storage battery including a switch having a stable operating pressure can be obtained.

また、前記本発明に係る密閉形蓄電池の安全弁の機構においては、前記封口板8の中央部に円形の透孔を設け、前記接続端子5の下端部(電池にとって内側端部)に円形の内側フランジ部7を設け、前記封口板8の透孔の外周と内側フランジ部7の外周が電池を真上(正極端子側)から見たときに同心円になるように配置し、封口板8の透孔の直径をamm、内側フランジ部7の直径をbmmとしたときに、a−bを1〜3mmに設定することによって、安全弁の動作圧力の安定した安全弁を備える密閉形蓄電池が得られるので好ましい。   In the safety valve mechanism of the sealed storage battery according to the present invention, a circular through hole is provided in the central portion of the sealing plate 8, and a circular inner side is provided at the lower end portion (inner end portion for the battery) of the connection terminal 5. A flange portion 7 is provided, and the outer periphery of the through hole of the sealing plate 8 and the outer periphery of the inner flange portion 7 are arranged so as to be concentric when the battery is viewed from directly above (positive electrode terminal side). When the diameter of the hole is amm and the diameter of the inner flange portion 7 is bmm, by setting ab to 1 to 3 mm, a sealed storage battery having a safety valve with a stable operating pressure of the safety valve can be obtained, which is preferable. .

この作用の機構については必ずしも完全に解明されてはいないが、蓄電池内部の圧力が上昇して、グロメット9の水平壁10が上方に向かって撓んだときに封口板8に設けた透孔のエッジと内側フランジブ7のエッジとで水平壁が挟まれた状態となり、水平壁10が押し切られるので、単に水平壁10が伸びて破断するのに比べて破断が生じるときの圧力が安定したものと考えられる。   Although the mechanism of this action has not been completely elucidated, when the pressure inside the storage battery rises and the horizontal wall 10 of the grommet 9 bends upward, the through holes provided in the sealing plate 8 Since the horizontal wall is sandwiched between the edge and the edge of the inner flange 7 and the horizontal wall 10 is pushed out, the pressure when the breakage occurs is stable compared to the horizontal wall 10 simply extending and breaking. Conceivable.

さらに、前記グロメット9の水平壁10に、前記封口板8の透孔および内側フランジ部7と同心円状のリング状の溝11を設け、且つ、該溝11の外径をcmm、内径をdmmとしたときに、a≦cであって、かつ、d≦b<aとすると、安全弁の動作圧力がさらに安定するので好ましい。この作用機構については必ずしも完全に解明されてはいないが、水平壁10のうち溝11を設けた部分は肉厚が小さいので、撓み変形が生じ易く該肉薄部分に前記封口板8に設けた透孔のエッジと内側フランジブ7のエッジがより強く肉薄部を圧接するためと考えられる。なお、溝11の深さは特に限定されるものではないが溝11の深さと水平壁の肉厚の比(溝11の深さ/水平壁の肉厚)を0.2〜0.8に設定することが好ましく、0.5〜0.8に設定するのがさらに好ましい。該比が0.2未満では溝を設けた効果が得られず、0.8を超えると該溝を設けた部分の強度が低くなって、蓄電池をシールする工程で破断を生じる虞がある。また、該溝11のの断面形状は特に限定されるものではなく、図1に示したように長方形の他断面形状が半円状、U字状などの溝も有効である。さらに、溝11は、図1のように水平壁10の内面の他に外面に設けても同様の効果が得られる。 Further, a ring-shaped groove 11 concentric with the through hole of the sealing plate 8 and the inner flange portion 7 is provided in the horizontal wall 10 of the grommet 9, and the outer diameter of the groove 11 is c mm and the inner diameter is dmm. When a ≦ c and d ≦ b <a, the operating pressure of the safety valve is more stable, which is preferable. Although the mechanism of this operation is not completely elucidated, the portion of the horizontal wall 10 where the groove 11 is provided is small in thickness, so that it is likely to bend and deform, and the transparent plate provided on the sealing plate 8 is provided in the thin portion. The reason is that the edge of the hole and the edge of the inner flange 7 are more strongly pressed against the thin portion. The depth of the groove 11 is not particularly limited, but the ratio of the depth of the groove 11 to the thickness of the horizontal wall (depth of the groove 11 / thickness of the horizontal wall) is set to 0.2 to 0.8. It is preferable to set, and it is more preferable to set to 0.5-0.8. If the ratio is less than 0.2, the effect of providing the groove cannot be obtained, and if it exceeds 0.8, the strength of the portion provided with the groove is lowered, and there is a possibility that breakage may occur in the process of sealing the storage battery. Further, the cross-sectional shape of the groove 11 is not particularly limited, and as shown in FIG. 1, a groove in which the other cross-sectional shape of the rectangle is semicircular or U-shaped is also effective. Further, the same effect can be obtained by providing the groove 11 on the outer surface in addition to the inner surface of the horizontal wall 10 as shown in FIG.

詳細な説明は省くが、本発明の好ましい実施形態によれば、1ItAを超える充電で200%以上(充電電気量/蓄電池の定格容量の比が200%以上である)の充電を実施するような、通常想定していない充電を行った場合でも、通常の電池は内部圧力の上昇により開弁して大きく寿命が低下してしまうのに対して、本発明電池では内部圧力の上昇に伴い電流遮断するスイッチが作動して寿命の低下を防止できることが分かった。 Although a detailed description is omitted, according to a preferred embodiment of the present invention , charging of 200% or more (ratio of charged electricity / rated capacity of storage battery is 200% or more) by charging exceeding 1 ItA is performed. Even when charging that is not normally assumed, a normal battery opens due to an increase in internal pressure and the service life is greatly reduced, whereas in the battery of the present invention, current interruption occurs as the internal pressure increases. It turns out that the switch which operates can prevent the fall of a lifetime.

上述のような構成にすれば、安全弁が簡単な構成となり安価で、充電器の故障時も極めて安全な電池と、充電制御装置の必要のない充電器で充電できる電池が得られる。   With the above-described configuration, a safety valve is simple and inexpensive, and a battery that is extremely safe even when a charger fails and a battery that can be charged by a charger that does not require a charging control device are obtained.

本発明が適用し得る密閉形蓄電池は特に限定されるものではないが、他の蓄電池と比較して耐過充電性、高率充放電特性の良いニッケル水素電池やニッケルカドミウム電池などのアルカリ蓄電池に適用することによって大きな効果が得られる。従って、以下アルカリ蓄電池のうちのニッケル水素蓄電池を例に採って詳細な説明をする。
ニッケル水素蓄電池においては、正極活物質として、水酸化ニッケルに水酸化亜鉛、水酸化コバルトを混合したものが用いられるが、これらを共沈法によって均一に分散せしめて得た水酸化ニッケル複合水酸化物の使用が好ましい。
水酸化ニッケル複合酸化物以外の添加物には、導電性改質剤として水酸化コバルト、酸化コバルト等を用いるが、前期水酸化ニッケル複合酸化物に水酸化コバルトを被覆したものや、これらの水酸化ニッケル複合酸化物の一部を酸素または含酸素気体、または、K228、次亜塩素酸などの薬剤を用いて酸化したものを用いることができる。
さらに、添加剤としては酸素過電圧を向上させる物質としてY、Yb等の希土類元素の酸化物や水酸化物を用いることができる。
Although the sealed storage battery to which the present invention can be applied is not particularly limited, it is suitable for alkaline storage batteries such as nickel hydride batteries and nickel cadmium batteries, which have better overcharge resistance and high rate charge / discharge characteristics than other storage batteries. A great effect can be obtained by applying. Therefore, the nickel hydride storage battery of the alkaline storage batteries will be described in detail below as an example.
In nickel metal hydride storage batteries, a mixture of nickel hydroxide, zinc hydroxide, and cobalt hydroxide is used as the positive electrode active material. The nickel hydroxide composite hydroxide obtained by uniformly dispersing these by coprecipitation method. The use of products is preferred.
For additives other than nickel hydroxide composite oxide, cobalt hydroxide, cobalt oxide or the like is used as a conductive modifier. A part of the nickel oxide composite oxide that has been oxidized using oxygen or oxygen-containing gas, or a chemical such as K 2 S 2 O 8 or hypochlorous acid can be used.
Further, as an additive, an oxide or hydroxide of rare earth elements such as Y and Yb can be used as a substance for improving oxygen overvoltage.

負極活物質としては、ニッケル水素電池の場合、
主構成要素である水素吸蔵合金は、水素吸蔵が可能な、一般にAB系、またはAB系と呼ばれる合金であれば、その組成には特別の制限はない。
特に好ましくは、AB型の合金のMmNi(Mmは希土類元素の混合物)のNiの一部をCo、Mn、Al、Cu等で置換した合金が、優れた充放電サイクル寿命特性と高い放電容量を持つので好ましい。
防蝕添加剤として、イットリウム、イッテルビウム、エルビウムの他に、ガドリニウム、セリウムの酸化物や水酸化物を添加したり、予め水素吸蔵合金にこれらの元素を金属として含有させてもよい。
As a negative electrode active material, in the case of a nickel metal hydride battery,
The composition of the hydrogen storage alloy as the main component is not particularly limited as long as it is an alloy generally called AB 2 or AB 5 capable of storing hydrogen.
Particularly preferably, an alloy in which a part of Ni of MmNi 5 (Mm is a mixture of rare earth elements) of an AB 5 type alloy is substituted with Co, Mn, Al, Cu, etc. has excellent charge / discharge cycle life characteristics and high discharge. It is preferable because it has a capacity.
In addition to yttrium, ytterbium and erbium, gadolinium and cerium oxides and hydroxides may be added as anticorrosive additives, or these elements may be preliminarily contained in the hydrogen storage alloy as metals.

正極活物質の粉体及び負極材料の粉体は、平均粒子サイズ50μm以下であることが望ましい。
特に、負極活物質である水素吸蔵合金の粉体は、密閉型ニッケル水素電池の高出力特性を向上する目的で粒径は40μm以下の小さいもの方が良いが、高いサイクル寿命を得るためには粒径が20μmを下回らないことが望ましい。
本発明による水素吸蔵合金内部にNi含有比率の大きい層を合金の表層と内部に50nm以上400nm以下で配置した場合、大きい粒径でも優れた高率放電性能が得られるため、平均粒径としては30μmから50μmがより好ましい。
It is desirable that the positive electrode active material powder and the negative electrode material powder have an average particle size of 50 μm or less.
In particular, the powder of the hydrogen storage alloy, which is the negative electrode active material, should have a small particle size of 40 μm or less for the purpose of improving the high output characteristics of the sealed nickel-metal hydride battery. It is desirable that the particle size not be less than 20 μm.
When a layer having a large Ni content is arranged in the surface layer and inside of the alloy in the hydrogen storage alloy according to the present invention at 50 nm or more and 400 nm or less, an excellent high rate discharge performance can be obtained even with a large particle size. 30 μm to 50 μm is more preferable.

粉体を所定の形状で得るためには各種の粉砕機や分級機が用いられる。
例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミル等が用いられる。粉砕時には水、あるいはアルカリ金属水酸化物の水溶液を用いて湿式粉砕を用いることもできる。
分級方法としては、特に限定はなく、篩や風力分級機などが使用でき、また、乾式、湿式ともに必要に応じて用いられる。
Various pulverizers and classifiers are used to obtain the powder in a predetermined shape.
For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, or the like is used. At the time of pulverization, wet pulverization may be used using water or an aqueous solution of an alkali metal hydroxide.
The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used. Both dry and wet methods are used as necessary.

以上、正極及び負極の主要構成成分である正極活物質および負極活物質について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   As described above, the positive electrode active material and the negative electrode active material which are main components of the positive electrode and the negative electrode have been described in detail. In addition to the main component, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, A filler etc. may be contained as another structural component.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されない。 通常、鱗状黒鉛,鱗片状黒鉛,土状黒鉛等の天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、気相成長炭素、金属(銅,ニッケル,金等)粉、金属繊維等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect battery performance. Usually, natural graphite such as scaly graphite, scaly graphite, earthy graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, vapor grown carbon, metal (copper, nickel, gold, etc.) Conductive materials such as powder and metal fibers can be included as one kind or a mixture thereof.

これらの導電剤の中では、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。
導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜10重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。
これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。
そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で使用することが可能である。
Among these conductive agents, acetylene black is desirable from the viewpoints of electron conductivity and coatability.
The addition amount of the conductive agent is preferably 0.1% by weight to 10% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced.
These mixing methods are physical mixing, and the ideal is uniform mixing.
Therefore, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, or a planetary ball mill can be used in a dry or wet manner.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン,ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。
結着剤の添加量は、正極または負極の総重量に対して0.1〜3重量%が好ましい。
As the binder, thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR) are usually used. ), Polymers having rubber elasticity such as fluoro rubber can be used as one kind or a mixture of two or more kinds.
The addition amount of the binder is preferably 0.1 to 3% by weight with respect to the total weight of the positive electrode or the negative electrode.

前記増粘剤としては、通常、カルボキシメチルセルロース、メチルセルロース等の多糖類等を1種または2種以上の混合物として用いることができる。
増粘剤の添加量は、正極または負極の総重量に対して0.1〜3重量%が好ましい。
As said thickener, polysaccharides, such as carboxymethylcellulose and methylcellulose, can be normally used as 1 type, or 2 or more types of mixtures.
The addition amount of the thickener is preferably 0.1 to 3% by weight with respect to the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば特に制限はない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、炭素等が用いられる。
フィラーの添加量は、正極または負極の総重量に対して添加量は5重量%以下が好ましい。
The filler is not particularly limited as long as it does not adversely affect battery performance. Usually, olefinic polymers such as polypropylene and polyethylene, carbon and the like are used.
The addition amount of the filler is preferably 5% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極および負極は、それぞれ前記活物質、導電剤および結着剤を水やアルコール、トルエン等の有機溶媒に混合させた後、得られた混合物を下記に詳述する集電体の上に塗布し、乾燥することによって、好適に作製される。
前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚みおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。
The positive electrode and the negative electrode were mixed with the active material, the conductive agent and the binder in an organic solvent such as water, alcohol and toluene, respectively, and then the obtained mixture was applied on the current collector described in detail below. It is preferably produced by drying.
About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. Is not to be done.

ニッケル水素電池の正極用集電体としては、構成された電池に悪影響を及ぼさない電子伝導体であれば特に選ぶところはない。
例えば、ニッケルやニッケルメッキを行った鋼板を好適に用いることができ、発泡体、繊維群の形成体、凸凹加工を施した3次元基材の他に、パンチング鋼板等の2次元基材が用いられる。
厚さの限定は特にないが、5〜700μmのものが用いられる。これら集電体の中で、正極としては、アルカリに対する耐食性と耐酸化性に優れているNiを、集電性に優れた構造である多孔体構造の発泡体としたものを使用することが好ましい。
また、
As the current collector for the positive electrode of the nickel metal hydride battery, there is no particular choice as long as it is an electronic conductor that does not adversely affect the constructed battery.
For example, nickel or a nickel-plated steel plate can be suitably used, and a two-dimensional base material such as a punched steel plate can be used in addition to a foam, a formed group of fibers, and a three-dimensional base material subjected to uneven processing. It is done.
The thickness is not particularly limited, but a thickness of 5 to 700 μm is used. Among these current collectors, it is preferable to use, as the positive electrode, a porous structure foam made of Ni, which has excellent corrosion resistance and oxidation resistance against alkali, and has a structure excellent in current collection. .
Also,

また、負極用集電体としては、安価で、且つ電導性に優れる鉄または鋼の箔ないし板をパンチング加工し、耐還元性向上のためにNiメッキを施した、多孔板を使用することが好ましい。
鋼板のパンチングの孔径は1.7mm以下、開口率40%以上であることが好ましく、これにより少量の結着剤でも負極活物質と集電体との密着性は優れたものとなる。
焼成炭素繊維、導電性高分子の他に、接着性、導電性および耐酸化性向上の目的で集電体のニッケルの表面をNi粉末やカーボンや白金等を付着させて処理したものを用いることができる。
これらの材料については表面を酸化処理することも可能である。
Moreover, as the current collector for the negative electrode, it is possible to use a porous plate obtained by punching an iron or steel foil or plate that is inexpensive and excellent in electrical conductivity and plated with Ni for improving reduction resistance. preferable.
The punching hole diameter of the steel sheet is preferably 1.7 mm or less and the opening ratio is 40% or more, and thereby the adhesion between the negative electrode active material and the current collector is excellent even with a small amount of binder.
In addition to the calcined carbon fiber and conductive polymer, the nickel surface of the current collector should be treated with Ni powder, carbon, platinum, etc. attached for the purpose of improving adhesion, conductivity and oxidation resistance. Can do.
The surface of these materials can be oxidized.

ニッケル水素電池のセパレータとしては、既知の優れた高率放電特性を示す多孔膜や不織布等を、単独あるいは併用することができる。
セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂や、ナイロンを挙げることができる。
セパレータの空孔率は強度、ガス透過性の観点から80体積%以下が好ましい。
また、充放電特性の観点から空孔率は20体積%以上が好ましい。セパレータは親水化処理を施す事が好ましい。
例えば、ポリエチレンなどのポリオレフィン系樹脂繊維の表面に親水基のグラフト重合処理、スルフォン化処理、コロナ処理、PVA処理を施したり、これらの処理を既に施された繊維を混合したシートを用いても良い。
As a separator for a nickel metal hydride battery, a known porous film or nonwoven fabric exhibiting excellent high rate discharge characteristics can be used alone or in combination.
Examples of the material constituting the separator include polyolefin resins typified by polyethylene and polypropylene, and nylon.
The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength and gas permeability.
Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics. The separator is preferably subjected to a hydrophilic treatment.
For example, a hydrophilic group graft polymerization treatment, sulfonation treatment, corona treatment, PVA treatment may be applied to the surface of a polyolefin resin fiber such as polyethylene, or a sheet obtained by mixing fibers that have already undergone these treatments may be used. .

ニッケル水素電池の電解液としては、一般にアルカリ電池等への使用が提案されているものが使用可能である。
水を溶媒とし、溶質としてはカリウム、ナトリウム、リチウムの水酸化物の単独またはそれら2種以上の混合物を溶解したもの等を挙げることができるがこれらに限定されるものではない。
合金への防食剤や、正極での過電圧向上のためや、負極の耐食性の向上や、自己放電向上の為の電解液への添加剤として、イットリウム、イッテルビウム、エルビウム、カルシウム、硫黄、亜鉛等の化合物を単独またはそれら2種以上混合して添加することができる。
As the electrolyte solution for the nickel-metal hydride battery, those generally proposed for use in alkaline batteries and the like can be used.
Water may be used as a solvent, and the solute may be, but not limited to, potassium, sodium, lithium hydroxide dissolved in a mixture of two or more thereof.
Anticorrosives for alloys, overvoltages at the positive electrode, corrosion resistance of the negative electrode, and additives to the electrolyte for improving self-discharge, such as yttrium, ytterbium, erbium, calcium, sulfur, zinc, etc. The compounds can be added alone or in admixture of two or more.

電解液中の電解質塩の濃度としては、高い電池特性を有する電池を確実に得るためには、水酸化カリウムを5〜7mol/l、水酸化リチウムを0.5〜0.8mol/l含む水溶液が好ましい。   The concentration of the electrolyte salt in the electrolyte solution is an aqueous solution containing 5 to 7 mol / l potassium hydroxide and 0.5 to 0.8 mol / l lithium hydroxide in order to reliably obtain a battery having high battery characteristics. Is preferred.

本発明に係る密閉型ニッケル水素蓄電池は、
電解液を、例えば、セパレータと正極と負極とを積層する前または積層した後に注液し、最終的に、外装材で封止することによって好適に作製される。
また、正極と負極とが密閉形ニッケル水素蓄電池用セパレータを介して積層された発電要素を巻回してなる密閉型ニッケル水素蓄電池においては、電解質は、前記巻回の前後に発電要素に注液されるのが好ましい。
注液法としては、常圧で注液することも可能であるが、真空含浸方法や加圧含浸方法や遠心含浸法も使用可能である。
The sealed nickel-metal hydride storage battery according to the present invention is
For example, the electrolytic solution is preferably prepared by pouring before or after laminating the separator, the positive electrode, and the negative electrode, and finally sealing with an exterior material.
In a sealed nickel-metal hydride storage battery in which a power generation element in which a positive electrode and a negative electrode are stacked via a separator for a sealed nickel-metal hydride battery is wound, the electrolyte is injected into the power generation element before and after the winding. It is preferable.
As the injection method, it is possible to inject at normal pressure, but a vacuum impregnation method, a pressure impregnation method, and a centrifugal impregnation method can also be used.

密閉形ニッケル水素蓄電池の外装体の材料としては、ニッケルメッキした鉄やステンレススチール、ポリオレフィン系樹脂等またはこれらの複合体が挙げられる。   Examples of the material of the outer package of the sealed nickel-metal hydride battery include nickel-plated iron, stainless steel, polyolefin resin, and the like, or a composite thereof.

密閉形ニッケル水素蓄電池の構成、形状については特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン電池やボタン電池、角形電池、扁平形電池、さらに、ロール状の正極、負極およびセパレータを有する円筒形電池等が一例として挙げられる。   The configuration and shape of the sealed nickel-metal hydride storage battery are not particularly limited, and a coin battery or button battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, a square battery, a flat battery, and a roll-shaped battery Examples include a cylindrical battery having a positive electrode, a negative electrode, and a separator.

前記グロメット9の透孔に挿通させた接続端子5の側面と透孔の壁面を気密に当接させるには、グロメット9の透孔の壁面を圧縮するように接続端子に当接させることが好ましく、そのために、透孔の壁の外側に金属製のリングをはめ、該金属製リングによって透孔の壁を締め付ける方法が適用できる。また、接続端子5の側面に石油ピッチやポリオレフィンの樹脂をコートすると機密性が更に向上するうえに電解液の這い上がりを抑制する効果があるところから好ましい。   In order to make the side surface of the connection terminal 5 inserted through the through hole of the grommet 9 and the wall surface of the through hole airtightly contact, it is preferable to contact the connection terminal so as to compress the wall surface of the through hole of the grommet 9. Therefore, a method in which a metal ring is fitted to the outside of the through hole wall and the through hole wall is fastened by the metal ring can be applied. Also, it is preferable to coat the side face of the connection terminal 5 with petroleum pitch or polyolefin resin since the confidentiality is further improved and the electrolyte is prevented from creeping up.

円柱状の接続端子5の材質としては、
耐食性があり、通電路として機能すれば何でも良く、鉄にニッケルメッキしたものや、ニッケルが、アルカリ金属の溶液に対する耐食性に優れ、電池内部の圧力上昇時にグロメット9の水平壁を破断する十分な強度を有することから好ましい。
As a material of the cylindrical connection terminal 5,
Anything is acceptable as long as it has corrosion resistance and can function as a current path. Nickel-plated iron or nickel has excellent corrosion resistance against alkali metal solutions, and has sufficient strength to break the horizontal wall of the grommet 9 when the pressure inside the battery rises. Is preferable.

リング状の封口板8としては、
強度と耐食性の観点からニッケルまたはニッケルメッキを施した鉄が好ましく、ニッケルメッキの厚みを5μm以上とすることが好ましい。
As the ring-shaped sealing plate 8,
From the viewpoint of strength and corrosion resistance, nickel or iron with nickel plating is preferable, and the thickness of nickel plating is preferably 5 μm or more.

弾性体12は、蓄電池内部の圧力上昇によって電気回路を遮断するスイッチの動作圧力を規定する機能を有するものであって、その材質としては、
金属バネ、弾性ゴムなどが好適に用いることができる。
また、その構造としては、
金属バネとしては、コイルスプリング、板バネが好適に用いることができ、弾性ゴムとしては、作動圧の安定する円柱形状やレンズ型が好ましい。
The elastic body 12 has a function of defining an operating pressure of a switch that cuts off an electric circuit due to an increase in pressure inside the storage battery.
A metal spring, elastic rubber, or the like can be preferably used.
In addition, as its structure,
As the metal spring, a coil spring or a leaf spring can be suitably used, and as the elastic rubber, a cylindrical shape or a lens type with stable operating pressure is preferable.

以下に、ニッケル水素蓄電池を例に採った実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の記載により限定されるものではなく、試験方法や構成する電池の正極活物質、負極材料、正極、負極 、電解質、セパレータ並びに電池形状等は任意である。
(実施例1)
Hereinafter, the present invention will be described in more detail on the basis of an example taking a nickel-metal hydride storage battery as an example, but the present invention is not limited by the following description, the test method and the positive electrode active material of the battery to be configured, The negative electrode material, the positive electrode, the negative electrode, the electrolyte, the separator, the battery shape, and the like are arbitrary.
Example 1

(密閉形ニッケル水素蓄電池の作製)
図1に示したスイッチと安全弁を備えたAAサイズの密閉形ニッケル水素蓄電池を作製した。
(スイッチおよび安全弁の構成)
前記図1に示したグロメット9は、ポリプロピレン製の成形体とした。該グロメットの水平壁10の肉厚を0.5mm、直径eを10mmとした。該直径eの大きさは円筒形金属製電槽の内径14mmを1とすると0.71に相当し、グロメットの蓄電池の内部圧力を受け止める部分が十分に大きい面積を有するようにした。グロメット9の中央部に設けた透孔に直径1.8mm、ニッケル製の円柱状接続端子5を挿通させ、該接続端子5の側面を透孔の壁面と気密に当接させた。なお、接続端子5の一旦に直径bが3.5mmの内側フランジ部7を形成し、外径7.5mm、厚さ0.4mmのニッケル製ドーナツ状板を接続端子5の側面に接合させて外側フランジ部6を形成した。中央部分に直径aが5.5mmの透孔を設けた厚さ0.4mmのニッケル製板を封口板8とした。また、接続端子5とキャップ状正極端子2の間に合成ゴム製の弾性体12を配置した。蓄電池内部の圧力が異常に上昇したときには前記水平壁10に破断箇所が生成し、蓄電池内部に蓄積したガスが該破断箇所および透孔14を通って外部に放出される。
(Production of sealed nickel-metal hydride storage battery)
An AA size sealed nickel-metal hydride storage battery equipped with the switch and safety valve shown in FIG. 1 was produced.
(Configuration of switch and safety valve)
The grommet 9 shown in FIG. 1 was a polypropylene molded body. The wall thickness of the horizontal wall 10 of the grommet was 0.5 mm, and the diameter e was 10 mm. The size of the diameter e corresponds to 0.71 when the inner diameter of the cylindrical metal battery case is 1, and the portion for receiving the internal pressure of the grommet storage battery has a sufficiently large area. A cylindrical connection terminal 5 made of nickel having a diameter of 1.8 mm was inserted into a through hole provided in the central portion of the grommet 9, and the side surface of the connection terminal 5 was brought into airtight contact with the wall surface of the through hole. The inner flange 7 having a diameter b of 3.5 mm is formed once at the connection terminal 5, and a nickel donut plate having an outer diameter of 7.5 mm and a thickness of 0.4 mm is joined to the side surface of the connection terminal 5. An outer flange portion 6 was formed. A sealing plate 8 was a nickel plate having a thickness of 0.4 mm in which a through hole having a diameter a of 5.5 mm was provided in the central portion. Further, an elastic body 12 made of synthetic rubber was disposed between the connection terminal 5 and the cap-like positive electrode terminal 2. When the pressure inside the storage battery rises abnormally, a breakage point is generated in the horizontal wall 10, and the gas accumulated inside the storage battery is released to the outside through the breakage point and the through hole 14.

外側フランジ部6は、正極に接続された接続端子5と封口板8とを接続又は遮断するリレースイッチとして働く。
該実施例では、前記のように、封口板8の透孔の直径aを、内側フランジ部6の直径bより2mm大きくなるように形成した。
The outer flange portion 6 functions as a relay switch that connects or disconnects the connection terminal 5 connected to the positive electrode and the sealing plate 8.
In this embodiment, as described above, the diameter a of the through hole of the sealing plate 8 was formed to be 2 mm larger than the diameter b of the inner flange portion 6.

(水酸化ニッケル粒子の合成)
硫酸ニッケルと硫酸亜鉛および硫酸コバルトを、それぞれの金属の水酸化物が後記の質量比となるように溶解した水溶液に、硫酸アンモニウムと苛性ソーダ水溶液を添加してアンミン錯体を生成させた。反応系を激しく撹拌しながら更に苛性ソーダを滴下し、反応系のpHを12±0.2に制御して芯層母材となる球状高密度水酸化ニッケル粒子を、水酸化物の質量比がニッケル:亜鉛:コバルト=93:5:2となるように合成した。
前記高密度水酸化ニッケル粒子を、苛性ソーダでpH12±0.2に制御したアルカリ性水溶液に投入した。該溶液を撹拌しながら、所定濃度の硫酸コバルト、アンモニアを含む水溶液を滴下した。 この間、苛性ソーダ水溶液を適宜滴下して反応浴のpHを12.0±0.2の範囲に維持した。約1時間pHを前記の範囲に保持し、水酸化ニッケル粒子表面にCoを含む水酸化物から成る表面層を形成させた。該水酸化物の表面層の比率は芯層母粒子(以下単に芯層と記述する)に対して7wt%であった。次いで、前記表面層を有する水酸化ニッケル粒子50gを、温度110℃の30wt%の苛性ソーダ水溶液に投入し、充分に攪拌した。
続いて表面層に含まれるコバルトの水酸化物の当量に対して過剰のKを添加し、粒子表面から酸素ガスが発生するのを確認した。活物質粒子をろ過し、水洗、乾燥した。
(Synthesis of nickel hydroxide particles)
An ammonium complex and an aqueous caustic soda solution were added to an aqueous solution in which nickel sulfate, zinc sulfate, and cobalt sulfate were dissolved so that each metal hydroxide had a mass ratio described later, thereby forming an ammine complex. While vigorously stirring the reaction system, caustic soda is further added dropwise, the pH of the reaction system is controlled to 12 ± 0.2, and spherical high density nickel hydroxide particles serving as the core layer base material are mixed with a mass ratio of hydroxide of nickel. : Zinc: Cobalt = 93: 5: 2.
The high-density nickel hydroxide particles were put into an alkaline aqueous solution controlled to pH 12 ± 0.2 with caustic soda. While stirring the solution, an aqueous solution containing cobalt sulfate and ammonia at predetermined concentrations was added dropwise. During this time, an aqueous caustic soda solution was appropriately added dropwise to maintain the pH of the reaction bath in the range of 12.0 ± 0.2. The pH was kept in the above range for about 1 hour, and a surface layer made of a hydroxide containing Co was formed on the surface of the nickel hydroxide particles. The ratio of the surface layer of the hydroxide was 7 wt% with respect to the core layer mother particles (hereinafter simply referred to as the core layer). Next, 50 g of nickel hydroxide particles having the surface layer were put into a 30 wt% aqueous sodium hydroxide solution at a temperature of 110 ° C., and sufficiently stirred.
Subsequently, excess K 2 S 2 O 8 was added to the equivalent of cobalt hydroxide contained in the surface layer, and it was confirmed that oxygen gas was generated from the particle surface. The active material particles were filtered, washed with water and dried.

(正極板の作製)
前記活物質粒子にカルボキシメチルセルローズ(CMC)水溶液を添加して前記活物質粒子:CMC溶質=99.5:0.5のペースト状とし、該ペーストを450g/m2のニッケル多孔体(住友電工社製、商品名ニッケルセルメット#8)に充填した。
その後80℃で乾燥した後、所定の厚みにプレスし、表面にポリテトラフロロエチレンコーティングを行い幅34mm(内、無塗工部1mm)長さ260mmの容量2000mAhのニッケル正極板とした。
(Preparation of positive electrode plate)
A carboxymethyl cellulose (CMC) aqueous solution is added to the active material particles to form a paste of the active material particles: CMC solute = 99.5: 0.5, and the paste is a 450 g / m 2 nickel porous body (Sumitomo Electric Industries, Ltd.). The product name, nickel cermet # 8) was filled.
Then, after drying at 80 ° C., it was pressed to a predetermined thickness, and the surface was coated with polytetrafluoroethylene to obtain a nickel positive electrode plate having a capacity of 2000 mAh and a width of 34 mm (inside, uncoated part 1 mm) and a length of 260 mm.

(負極板の作製)
粒径35μmのAB形希土類系のMmNi3.6Co0.6Al0.3Mn0.35の組成を有する水素吸蔵合金とスチレンブタジエン共重合体エマルジョンとを乾量基準の質量比で99.35:0.65の割合で混合し、水で分散してペースト状にし、ブレードコーターを用いて、鉄にニッケルメッキを施したパンチング鋼板に塗布した後、80℃で乾燥し、所定の厚みにプレスして幅34mm(内、無塗工部1mm)長さ260mmの容量3200mAhの水素吸蔵合金負極板とした。
(Preparation of negative electrode plate)
A AB 5 type rare earth-based MmNi 3.6 Co 0.6 Al 0.3 Mn 0.35 composition having a particle size of 35 μm and a styrene-butadiene copolymer emulsion in a mass ratio of 99 on a dry basis is 99. .35: 0.65 mixed, dispersed in water to form a paste, applied to a punched steel sheet with nickel plated on iron using a blade coater, dried at 80 ° C., and given thickness To a hydrogen storage alloy negative electrode plate having a width of 34 mm (inside, uncoated portion 1 mm) and a length of 260 mm and a capacity of 3200 mAh.

前記の水素吸蔵合金負極板と、スルフォン化処理を施した厚み120μmのポリプロピレンの不織布状セパレータと、前記ニッケル極板とを組み合わせてロール状に巻回し、6.8mol/lの水酸化カリウムと0.8mol/lの水酸化リチウムを溶解したアルカリ電解液を注液し、本発明電池の安全弁を具備するAA形の密閉型ニッケル水素蓄電池を作製した。
この電池を40℃12時間の保管処理の後、0.02ItAにて600mAh充電し、さらに0.1ItAで12時間充電した。さらに0.2ItAで1Vまで放電した後、0.1ItAで12時間充電、0.2ItAで1Vまで放電する操作を4回繰り返し、初期容量とした。このようにして得られた電池を実施例1とする。
The hydrogen storage alloy negative electrode plate, a sulfonated polypropylene nonwoven fabric separator having a thickness of 120 μm, and the nickel electrode plate were combined and wound into a roll, and 6.8 mol / l potassium hydroxide and 0 An alkaline electrolyte in which 8 mol / l lithium hydroxide was dissolved was injected to prepare an AA-type sealed nickel-metal hydride storage battery having a safety valve for the battery of the present invention.
This battery was stored at 40 ° C. for 12 hours, charged with 0.02 ItA for 600 mAh, and further charged with 0.1 ItA for 12 hours. Further, after discharging to 0.2V at 1 It, charging to 0.1 ItA for 12 hours and discharging to 0.2 V at 0.2 ItA were repeated 4 times to obtain an initial capacity. The battery thus obtained is referred to as Example 1.

(スイッチの動作圧力、安全弁の動作圧力の測定)
前記密閉形電池の電槽底部に穴を開け、内圧を測定するための気体の圧力を測定できるセンサーとアルゴンガスを圧入するための加圧治具を取り付け、クロロプレン製Oリングによって気密を維持するようにした後、エポキシ樹脂で取り付け部位周囲を固めてを用いて完全に気密を維持できるようにした。
この圧力センサーと加圧治具を取り付けた本発明電池1を用いて、アルゴンガスを、電池に対し41.8立方センチメートル/分(cc/min)の速度でアルゴンガスを注入して、通電経路が遮断される 圧力を測定したところ、1.5MPaであった。
また、引き続きアルゴンガスを圧入する加圧力を大きくして、電池の内圧を解放するための安全弁が作動する圧力を測定したところ、3.4MPaであった。
(Measurement of switch operating pressure and safety valve operating pressure)
A hole is made in the bottom of the battery case of the sealed battery, a sensor capable of measuring the pressure of the gas for measuring the internal pressure, and a pressurizing jig for injecting argon gas are attached, and airtightness is maintained by a chloroprene O-ring. After that, the periphery of the attachment site was hardened with an epoxy resin so that it could be kept completely airtight.
Using the battery 1 of the present invention to which the pressure sensor and the pressurizing jig are attached, argon gas is injected into the battery at a rate of 41.8 cubic centimeters / minute (cc / min), and the energization path is When the pressure to be cut off was measured, it was 1.5 MPa.
Further, the pressure at which the safety valve for releasing the internal pressure of the battery was activated was measured by continuously increasing the pressurizing pressure for injecting argon gas, and it was 3.4 MPa.

(充電受入率の評価)
実施例1に係る電池を周囲温度20℃において1.62Vの定電圧を印加して15分間充電した後1時間放置し、0.2ItAで1Vまで放電した。該放電で得られた放電容量を前記初期容量で割った値を充電受入率とした。
(Evaluation of charge acceptance rate)
The battery according to Example 1 was charged with a constant voltage of 1.62 V at an ambient temperature of 20 ° C., charged for 15 minutes, then left for 1 hour, and discharged to 1 V at 0.2 ItA. A value obtained by dividing the discharge capacity obtained by the discharge by the initial capacity was defined as a charge acceptance rate.

(充放電サイクル試験)
実施例電池1を周囲温度20℃において1.62Vの定電圧を印加して15分間充電した後1時間放置し、1ItAで1Vまで放電した。該充放電操作を繰り返し実施し、放電容量が該サイクル試験における1サイクル目の放電容量の60%にまで低下したサイクル数をもってその電池のサイクル寿命とした。該電池を実施例1とする。
(Charge / discharge cycle test)
Example Battery 1 was charged at a constant voltage of 1.62 V at an ambient temperature of 20 ° C. and charged for 15 minutes, then left for 1 hour and discharged to 1 V at 1 ItA. The charge / discharge operation was repeated, and the cycle number of the battery was defined as the cycle number at which the discharge capacity was reduced to 60% of the discharge capacity at the first cycle in the cycle test. This battery is referred to as Example 1.

(実施例2)
弾性体12として、1.8MPaの電池内圧力により、充電電流を遮断、接続することが可能なスイッチ機構として働くような、応力を有する弾性体を用いたこと以外は実施例1と同じ構成とした。該電池を実施例2とする。
(実施例3)
弾性体12として、2.2MPaの電池内圧力により、充電電流を遮断、接続することが可能なスイッチ機構として働くような、応力を有する弾性体を用いたこと以外は実施例1と同じ構成とした。該電池を実施例3とする。
(実施例4)
弾性体12として、2.8MPaの電池内圧力により、充電電流を遮断、接続することが可能なスイッチ機構として働くような、応力を有する弾性体を用いたこと以外は実施例1と同じ構成とした。該電池を実施例4とする。
(実施例5)
弾性体12として、3.0MPaの電池内圧力により、充電電流を遮断、接続することが可能なスイッチ機構として働くような、応力を有する弾性体を用いたこと以外は実施例1と同じ構成とした。該電池を実施例5とする。
(Example 2)
The elastic body 12 has the same configuration as that of Example 1 except that an elastic body having a stress that works as a switch mechanism capable of interrupting and connecting a charging current with a pressure in the battery of 1.8 MPa is used. did. This battery is referred to as Example 2.
(Example 3)
The elastic body 12 has the same configuration as that of the first embodiment except that an elastic body having a stress that works as a switch mechanism capable of interrupting and connecting a charging current with a pressure in the battery of 2.2 MPa is used. did. This battery is referred to as Example 3.
Example 4
The elastic body 12 has the same configuration as that of the first embodiment except that an elastic body having a stress that works as a switch mechanism capable of interrupting and connecting a charging current with a battery internal pressure of 2.8 MPa is used. did. This battery is referred to as Example 4.
(Example 5)
The elastic body 12 has the same configuration as that of Example 1 except that an elastic body having a stress that works as a switch mechanism capable of interrupting and connecting a charging current with a battery internal pressure of 3.0 MPa is used. did. This battery is referred to as Example 5.

参考例5
弾性体12として、1.4MPaの電池内圧力により、充電電流を遮断、接続すること
が可能なスイッチ機構として働くような、応力を有する弾性体を用いたこと以外は、実施
例1と同じ構成とした。該電池を参考例5とする。
( Reference Example 5 )
The same configuration as that of Example 1 except that an elastic body having a stress that works as a switch mechanism capable of interrupting and connecting a charging current with a pressure in the battery of 1.4 MPa is used as the elastic body 12. It was. This battery is referred to Reference Example 5 .

実施例1〜実施例5、参考例5に係る密閉形蓄電池を各々10ケづつ作製し、充電受入
率およびサイクル性能を評価した。表1に充電受入率およびサイクル寿命の10ヶの平均
値を示す。
表1によれば、参考例5に比べて実施例1〜実施例5の充電受入率が高い値を示してい
る。参考例5の場合は、スイッチの動作圧力Xを低く設定したために、充電中スイッチが
オフにある時間が長く、充電受入率が低くなったものと考えられる。実施例の中でも、X
を1.8MPa以上とした実施例2〜実施例5において充電受入率が80%を超えている
ので好ましい。また、スイッチの動作圧力Xを高くするに従いサイクル寿命が低下する傾
向にあることがわかる。スイッチの動作圧力を高く設定すると、充電時に蓄電池の温度上
昇幅が大きくなるために蓄電池の性能低下が速まったものと考えられる。スイッチの動作
圧力Xが3.0MPaをこえると、サイクル寿命が低下する虞がある。同動作圧力が3.
0MPa以下では500サイクル近いサイクル寿命が得られ、さらに2.8MPa以下で
は500サイクルを超えるサイクル寿命が得られるので好ましい。以上のことから、スイ
ッチの動作圧力Xを1.5Mpa以上、3.0MPa以下、さらには1.8MPa以上、
2.8MPa以下に設定することが好ましい。
Ten sealed batteries according to Examples 1 to 5 and Reference Example 5 were produced, and the charge acceptance rate and cycle performance were evaluated. Table 1 shows 10 average values of the charge acceptance rate and the cycle life.
According to Table 1, compared with the reference example 5 , the charge acceptance rate of Example 1- Example 5 has shown the high value. In the case of the reference example 5 , since the operating pressure X of the switch is set low, it is considered that the charging switch is off for a long time and the charge acceptance rate is low. Among the examples, X
In Examples 2 to 5 in which the pressure is 1.8 MPa or more, the charge acceptance rate exceeds 80%, which is preferable. It can also be seen that the cycle life tends to decrease as the operating pressure X of the switch increases. If the operating pressure of the switch is set high, it is considered that the performance deterioration of the storage battery is accelerated because the temperature rise of the storage battery becomes large during charging. If the operating pressure X of the switch exceeds 3.0 MPa, the cycle life may be reduced. The operating pressure is 3.
A cycle life of nearly 500 cycles can be obtained at 0 MPa or less, and a cycle life exceeding 500 cycles can be obtained at 2.8 MPa or less. From the above, the operating pressure X of the switch is 1.5 MPa or more, 3.0 MPa or less, further 1.8 MPa or more,
It is preferable to set it to 2.8 MPa or less.

(実施例6)
前記実施例3において、グロメット9の水平壁10に、深さ0.3mmの長方形の断面形状を有するリング状の溝11を形成したこと以外は実施例3と同じ構成とした。なお溝の外径cを6.5mm、内径dを3.0mmとした。該電池を実施例6とする。なお、該実施例6の安全弁の動作圧力は2.5Mpa(Y−X=0.3Mpa)であった。
(実施例7)
前記実施例3において、グロメット9の水平壁10に、深さ0.25mmの長方形の断面形状を有するリング状の溝11を形成したこと以外は実施例3と同じ構成とした。なお溝の外径cを6.5mm、内径dを3.0mmとした。該電池を実施例7とする。なお、該実施例7の安全弁の動作圧力は2.8Mpa(Y−X=0.6Mpa)であった。
(Example 6)
In Example 3, the same structure as Example 3 was adopted except that a ring-shaped groove 11 having a rectangular cross-sectional shape with a depth of 0.3 mm was formed on the horizontal wall 10 of the grommet 9. The outer diameter c of the groove was 6.5 mm, and the inner diameter d was 3.0 mm. This battery is referred to as Example 6. The operating pressure of the safety valve of Example 6 was 2.5 Mpa (Y-X = 0.3 Mpa).
(Example 7)
In Example 3, the same configuration as that of Example 3 was adopted except that a ring-shaped groove 11 having a rectangular cross-sectional shape having a depth of 0.25 mm was formed on the horizontal wall 10 of the grommet 9. The outer diameter c of the groove was 6.5 mm, and the inner diameter d was 3.0 mm. This battery is referred to as Example 7. The operating pressure of the safety valve of Example 7 was 2.8 Mpa (Y-X = 0.6 Mpa).

参考例6
前記実施例3において、グロメット9の水平壁10に、深さ0.35mmの長方形の断
面形状を有するリング状の溝11を形成したこと以外は実施例3と同じ構成とした。なお
、溝の外径cを6.5mm、内径dを3.0mmとした。該電池を参考例6とする。該参考例6の安全弁の動作圧力は2.4MPa(Y−X=0.2MPa)であった。
( Reference Example 6 )
In Example 3, the same configuration as that of Example 3 was adopted except that a ring-shaped groove 11 having a rectangular cross-sectional shape with a depth of 0.35 mm was formed on the horizontal wall 10 of the grommet 9. The outer diameter c of the groove was 6.5 mm, and the inner diameter d was 3.0 mm. This battery is referred to Reference Example 6 . The operating pressure of the safety valve of Reference Example 6 was 2.4 MPa (Y-X = 0.2 MPa ).

実施例6、実施例7、参考例6に係る蓄電池を各々10ケづつ作製しサイクル性能を評
価した。表2に該評価の試験結果を10ヶの平均値で示す。
表2に示すように、参考例6の場合は実施例に比べてサイクル性能が極端に劣る結果と
なった。また、詳細は省くが、サイクル寿命のバラツキも大であった。参考例6の場合は
、サイクル回数が浅い時点で充電中に安全弁が開弁してしまうものが散見された。このこ
とは、安全弁の動作圧力Yとスイッチの動作圧力Xが接近しているため、充電中に蓄電池
の内部圧力が上昇したときに安全弁が開弁したものと考えられる。これに対して実施例3
では10ケ中1ヶのみ470サイクル目で安全弁が開弁し残りの9ヶは全て500サイク
ル経過時点でもで開弁しなかった。また、実施例7、実施例3は全ての電池において50
0サイクル経過時点で安全弁が開弁しなかった。このことから、安全弁の動作圧力Yとス
イッチの動作圧力Xの差を0.3MPa以上に設定するのが良く、0.6MPa以上に設
定するのが好ましい。
Ten storage batteries according to Example 6, Example 7, and Reference Example 6 were produced, and the cycle performance was evaluated. Table 2 shows the test results of the evaluation as an average value of 10 pieces.
As shown in Table 2, in the case of Reference Example 6 , the cycle performance was extremely inferior to that of the Example. Further, although details are omitted, the variation in cycle life was also large. In the case of Reference Example 6 , there were some cases where the safety valve opened during charging when the number of cycles was shallow. This is probably because the operating pressure Y of the safety valve and the operating pressure X of the switch are close to each other, so that the safety valve opens when the internal pressure of the storage battery increases during charging. In contrast, Example 3
Then, only one of the 10 valves opened the safety valve at the 470th cycle, and the remaining nine did not open even after the 500th cycle. Moreover, Example 7 and Example 3 are 50 in all batteries.
The safety valve did not open when 0 cycle passed. Therefore, the difference between the operating pressure Y of the safety valve and the operating pressure X of the switch is preferably set to 0.3 MPa or more, and preferably set to 0.6 MPa or more.

(実施例8)
封口板8の透孔の直径aを6.5mm、接続端子5の内側フランジ部7の直径bを、5.5mm(a−b=1mm)とした。それ以外は実施例7と同じとした。該実施例電池を実施例電池8とする。
(実施例9)
封口板8の透孔の直径aを6.5mm、接続端子5の内側フランジ部7の直径bを、3.5mm(a−b=3mm)とした。それ以外は実施例7と同じとした。該実施例電池を実施例電池9とする。
(Example 8)
The diameter a of the through hole of the sealing plate 8 was 6.5 mm, and the diameter b of the inner flange portion 7 of the connection terminal 5 was 5.5 mm (ab = 1 mm). Otherwise, it was the same as Example 7. The example battery is referred to as Example battery 8.
Example 9
The diameter a of the through hole of the sealing plate 8 was 6.5 mm, and the diameter b of the inner flange portion 7 of the connection terminal 5 was 3.5 mm (ab = 3 mm). Otherwise, it was the same as Example 7. The example battery is referred to as Example battery 9.

(参考例1)
封口板8の透孔の直径aを6.5mm、接続端子5の内側フランジ部7の直径bを、5.9mm(a−b=0.6mm)とした。それ以外は実施例7と同じとした。該実施例電池を参考例電池1とする。
(参考例2)
封口板8の透孔の直径aを6.5mm、接続端子5の内側フランジ部7の直径bを、3.0mm(a−b=3.5mm)とした。それ以外は実施例7と同じとした。該実施例電池を参考例電池2とする。
(Reference Example 1)
The diameter a of the through hole of the sealing plate 8 was 6.5 mm, and the diameter b of the inner flange portion 7 of the connection terminal 5 was 5.9 mm (ab = 0.6 mm). Otherwise, it was the same as Example 7. This example battery is referred to as Reference Example Battery 1.
(Reference Example 2)
The diameter a of the through hole of the sealing plate 8 was 6.5 mm, and the diameter b of the inner flange portion 7 of the connection terminal 5 was 3.0 mm (ab = 3.5 mm). Otherwise, it was the same as Example 7. This example battery is referred to as Reference Example Battery 2.

実施例電池7、実施例電池8、実施例電池9、参考例電池1、参考例電池2を各々20ヶづつ作製し、安全弁の動作圧力を測定した。該側定結果(平均値、最大値、最小値)を表3に示す。
表3に示すように、封口板8の透孔の直径a(mm)と、内側フランジ部7の直径b(mm)の差(a−b)を1〜3mmとした実施例においては安全弁の動作圧力のバラツキが小さいく、a−bが1mm未満または3mmを超える比較例においては安全弁の動作圧力の平均値が大きくなる傾向にあり、且つ、そのバラツキが大きいことが分かる。このことは、a−bが1mm未満では、封口板隙間が少なすぎて水平壁が変形しにくく、封口板8の透孔のエッジと内側フランジ部7のエッジの間でグロメットの水平壁10を押し切るためには大きな力を必要とするためと考えられる。
また、a−bが3mmを超えたときも、安全弁の動作圧力が高く、かつ、バラツキが大きくなる。これは、封口板8の透孔のエッジと内側フランジ部7のエッジの間間の間隔が大きすぎるため、上昇した蓄電池内部の圧力によって水平壁が変形して斜めになるために、封口板8の透孔のエッジと内側フランジ部7のエッジの間でグロメットの水平壁10を押し切り難くなったためと考えられる。このことから、1mm≦a−b≦3mmとすることが好ましい。
Example battery 7, Example battery 8, Example battery 9, Reference example battery 1 and Reference example battery 2 were produced 20 each, and the operating pressure of the safety valve was measured. The determined results (average value, maximum value, minimum value) are shown in Table 3.
As shown in Table 3, in the embodiment in which the difference (ab) between the diameter a (mm) of the through hole of the sealing plate 8 and the diameter b (mm) of the inner flange portion 7 is 1 to 3 mm, It can be seen that the operating pressure variation is small, the average value of the operating pressure of the safety valve tends to be large, and the variation is large in the comparative example in which ab is less than 1 mm or more than 3 mm. This is because when the ab is less than 1 mm, the gap between the sealing plates is too small to deform the horizontal wall, and the grommet horizontal wall 10 is formed between the edge of the through hole of the sealing plate 8 and the edge of the inner flange portion 7. This is thought to be because it requires a great deal of force to push through.
Moreover, when ab exceeds 3 mm, the operating pressure of the safety valve is high and the variation becomes large. This is because the gap between the edge of the through hole of the sealing plate 8 and the edge of the inner flange portion 7 is too large, and the horizontal wall is deformed and becomes slanted by the increased pressure inside the storage battery. This is probably because it is difficult to push the horizontal wall 10 of the grommet between the edge of the through hole and the edge of the inner flange portion 7. Therefore, it is preferable that 1 mm ≦ ab ≦ 3 mm.

(参考例3)
前記実施例7において溝の外径cを5.0mm、内径dを3.0mmとした以外は実施例7と同じ構成とした。該実施例を参考例3とする。
(参考例4)
前記実施例7において溝の外径cを6.5mm、内径dを3.7mmとした以外は実施例7と同じ構成とした。該実施例を参考例4とする。
(Reference Example 3)
Example 7 was the same as Example 7 except that the outer diameter c of the groove was 5.0 mm and the inner diameter d was 3.0 mm. This example will be referred to as Reference Example 3.
(Reference Example 4)
Example 7 was the same as Example 7 except that the outer diameter c of the groove was 6.5 mm and the inner diameter d was 3.7 mm. This example will be referred to as Reference Example 4.

参考例3、参考例4を各々20ヶづつ作製し、安全弁の動作圧力を測定した。実施例7の結果と合わせて表4に該側定結果(平均値、最大値、最小値)を示す。
表4に示すように、参考例3および参考例4の安全弁動作圧力の平均値は実施例7に比べて高く、且つ、バラツキが大きい。実施例7の場合は、a≦c、d≦b<aの関係を満たすことによって、封口板8の透孔のエッジ部、内側フランジ部7のエッジの両方が溝11と重なる位置にあるのに対して、参考例3の場合は、a>cであるので、封口板8の透孔のエッジが溝11と重なっていない。また、参考例4においては、d>bであるので内側フランジ部7のエッジが溝11と重なる位置から外れている。実施例7の場合は両方のエッジが溝11を設けることによって形成された水平壁の肉薄部に当接しているので、該肉薄部が容易に押し切られるの比べて、参考例の場合は一方のエッジが肉薄部からはずれているので実施例7に比べて押し切り難くなったものと考えられる。このことから、a≦c、d≦b<aの関係を満たすことが好ましいことが分かる。
20 each of Reference Example 3 and Reference Example 4 were prepared, and the operating pressure of the safety valve was measured. The determined results (average value, maximum value, minimum value) are shown in Table 4 together with the results of Example 7.
As shown in Table 4, the average value of the safety valve operating pressure in Reference Example 3 and Reference Example 4 is higher than that in Example 7, and the variation is large. In the case of Example 7, by satisfying the relationship of a ≦ c and d ≦ b <a, both the edge portion of the through hole of the sealing plate 8 and the edge of the inner flange portion 7 are in a position overlapping with the groove 11. On the other hand, in Reference Example 3, since a> c, the edge of the through hole of the sealing plate 8 does not overlap the groove 11. In Reference Example 4, since d> b, the edge of the inner flange portion 7 is out of the position where it overlaps the groove 11. In the case of Example 7, both edges are in contact with the thin part of the horizontal wall formed by providing the groove 11, so that the thin part is easily pushed out. It is considered that the edge is off from the thin portion, so that it is difficult to push it out compared to Example 7. From this, it can be seen that it is preferable to satisfy the relationship of a ≦ c and d ≦ b <a.

本発明の請求項1〜4に記載の密閉型電池の安全弁を備えた蓋構造では、充電効率特性及び安全性の優れた密閉型電池が得られる。特に、ニッケル水素電池の場合には、充電制御装置を有さない安価な充電器を使用することができる。
また、本発明の請求項4に記載の密閉型電池の安全弁を備えた蓋構造では、安全弁の動作圧力のバラツキを少なくすることが可能になり、産業上の利用可能性は極めて大きい。
In the lid structure including the sealed battery safety valve according to claims 1 to 4 of the present invention, a sealed battery having excellent charging efficiency characteristics and safety can be obtained. In particular, in the case of a nickel metal hydride battery, an inexpensive charger that does not have a charge control device can be used.
Moreover, in the lid structure provided with the safety valve for the sealed battery according to claim 4 of the present invention, it is possible to reduce the variation in the operating pressure of the safety valve, and the industrial applicability is extremely large.

本発明の一実施例を示す密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the sealed storage battery which shows one Example of this invention. 従来のスイッチ内蔵式密閉形蓄電池の要部断面図である。It is principal part sectional drawing of the conventional switch built-in type sealed storage battery.

符号の説明Explanation of symbols

2 正極端子
5 接続端子
6 外側フランジ部
7 内側フランジ部
8 封口板
9 グロメット
10 水平壁
11 溝





2 Positive terminal 5 Connection terminal 6 Outer flange portion 7 Inner flange portion 8 Sealing plate 9 Grommet 10 Horizontal wall 11 Groove





Claims (2)

密閉形蓄電池内部のガス圧が上昇したときに、電極と外部端子を結ぶ回路をオフにするスイッチと、蓄電池内部の圧力が異常に上昇したときに蓄電池内部に蓄積したガスを開放するための安全弁を備えた密閉形蓄電池であって、電槽の開放端を気密に密閉するグロメットに配置した透孔を挿通する接続端子に設けられた第1端子と、蓄電池内部に固定された第2端子とを備え、前記グロメットの撓み変形に伴う前記第1の端子の移動によって前記第1の端子と前記第2端子とが当接・離脱することによって、前記スイッチが前記電極と前記外部端子を結ぶ回路のオン・オフの切り替えを行うとともに、前記安全弁が、前記グロメットに破断を生ぜしめることによって、ガスを排出すること、および、前記接続端子に円形の内側フランジ部を設け、前記グロメットの外側にあって前記電槽の開放端に固定された封口板を備え、前記封口板に前記内側フランジ部と同心円をなす円形の透孔を設け、該透孔の直径をamm、前記内側フランジ部の直径をb mmとしたときに、1≦a−b≦3の関係が成り立つことを特徴とする密閉形蓄電池。 A switch that turns off the circuit that connects the electrode and external terminal when the gas pressure inside the sealed battery rises, and a safety valve that releases the gas accumulated inside the battery when the pressure inside the battery rises abnormally And a first terminal provided in a connection terminal that is inserted through a through hole disposed in a grommet that hermetically seals the open end of the battery case, and a second terminal that is fixed inside the storage battery. And the switch connects the electrode and the external terminal when the first terminal and the second terminal are brought into contact with and separated from each other by the movement of the first terminal accompanying the bending deformation of the grommet. performs switching between on and off, the safety valve, by causing a break in said grommet, to discharge the gas, and, set the inner flange portion of the circular to the connection terminals , Provided with a sealing plate outside the grommet and fixed to the open end of the battery case, the sealing plate is provided with a circular through hole concentric with the inner flange portion, the diameter of the through hole is amm, A sealed storage battery characterized in that a relationship of 1 ≦ ab ≦ 3 is established when the diameter of the inner flange portion is b mm . 前記接続端子に円形の内側フランジ部を設け、前記グロメットの外側にあって前記電槽の開放端に固定された封口板を備え、前記封口板に前記内側フランジ部と同心円をなす円形の透孔を設け、前記グロメットに前記内側フランジ部と同心円をなす外周及び内周を有するリング状の溝を設け、該透孔の直径をamm、前記内側フランジ部の直径をb mm、前記溝の前記外周の直径をc mm、前記内周の直径をd mmとしたときに、a≦cであって、かつ、d≦b<aの関係が成り立つことを特徴とする請求項1記載の密閉形電池。 A circular through hole that is provided with a circular inner flange portion on the connection terminal, includes a sealing plate that is outside the grommet and is fixed to the open end of the battery case, and that is concentric with the inner flange portion on the sealing plate. A ring-shaped groove having an outer periphery and an inner periphery that are concentric with the inner flange portion, and the diameter of the through hole is a mm , the diameter of the inner flange portion is b mm , and the groove 2. The hermetically sealed type according to claim 1 , wherein when the outer diameter is c mm and the inner diameter is d mm , a ≦ c and d ≦ b <a. battery.
JP2004107612A 2004-03-31 2004-03-31 Sealed battery Expired - Lifetime JP4701623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107612A JP4701623B2 (en) 2004-03-31 2004-03-31 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107612A JP4701623B2 (en) 2004-03-31 2004-03-31 Sealed battery

Publications (3)

Publication Number Publication Date
JP2005294046A JP2005294046A (en) 2005-10-20
JP2005294046A5 JP2005294046A5 (en) 2007-04-26
JP4701623B2 true JP4701623B2 (en) 2011-06-15

Family

ID=35326745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107612A Expired - Lifetime JP4701623B2 (en) 2004-03-31 2004-03-31 Sealed battery

Country Status (1)

Country Link
JP (1) JP4701623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242569B (en) * 2020-10-20 2022-12-27 四川长虹电源有限责任公司 Cadmium-nickel accumulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026615A (en) * 1990-08-06 1991-06-25 Eveready Battery Company, Inc. Electrochemical cell with disconnect switch device
JPH0883600A (en) * 1994-09-13 1996-03-26 Nikkiso Co Ltd Safety device for secondary battery and nonaqueous electrolyte secondary battery having safety device
JPH08293293A (en) * 1995-04-20 1996-11-05 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JP2002521805A (en) * 1998-07-29 2002-07-16 デュラセル インコーポレイテッド End cap assembly for alkaline cell
US20020119364A1 (en) * 2000-10-20 2002-08-29 Bushong William H. Method and apparatus for regulating charging of electrochemical cells
JP2002543565A (en) * 1999-04-27 2002-12-17 エヴァレディー バッテリー カンパニー インコーポレイテッド Electrochemical cell with low profile seal assembly with anti-release vent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026615A (en) * 1990-08-06 1991-06-25 Eveready Battery Company, Inc. Electrochemical cell with disconnect switch device
JPH0883600A (en) * 1994-09-13 1996-03-26 Nikkiso Co Ltd Safety device for secondary battery and nonaqueous electrolyte secondary battery having safety device
JPH08293293A (en) * 1995-04-20 1996-11-05 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JP2002521805A (en) * 1998-07-29 2002-07-16 デュラセル インコーポレイテッド End cap assembly for alkaline cell
JP2002543565A (en) * 1999-04-27 2002-12-17 エヴァレディー バッテリー カンパニー インコーポレイテッド Electrochemical cell with low profile seal assembly with anti-release vent
US20020119364A1 (en) * 2000-10-20 2002-08-29 Bushong William H. Method and apparatus for regulating charging of electrochemical cells
JP2004517440A (en) * 2000-10-20 2004-06-10 レイオバック コーポレイション Method and apparatus for regulating charging of an electrochemical cell

Also Published As

Publication number Publication date
JP2005294046A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US8048566B2 (en) Nickel hydroxide electrode for rechargeable batteries
US7867655B2 (en) Nickel metal-hydride battery
JP5119578B2 (en) Nickel metal hydride battery and manufacturing method thereof
US8951666B2 (en) Nickel hydrogen rechargeable battery with rare earth-Mg-Ni based hydrogen storage
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
CN107615527B (en) Hydrogen storage alloy, negative electrode using the same, and nickel-hydrogen secondary battery using the negative electrode
US20050019657A1 (en) Nickel-hydrogen cell
KR102576419B1 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
JP6057369B2 (en) Nickel metal hydride secondary battery
JP4701623B2 (en) Sealed battery
JP6153156B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP6120362B2 (en) Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode
JP5061582B2 (en) battery
KR102111288B1 (en) Positive electrode and alkaline secondary battery including the same
JP6948586B2 (en) Power storage element
JP6955686B2 (en) Power storage element
WO2007122939A1 (en) Alkaline cell
JP2003317796A (en) Storage battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
CN115411234A (en) Negative electrode for alkaline storage battery and alkaline storage battery using the same
JP2005166324A (en) Sealed storage battery
JP2004281195A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this
JPH03295177A (en) Sealed alkaline storage battery
JPH09102315A (en) Alkaline secondary battery
JP2005019360A (en) Sealed nickel hydride storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150