JP4701396B2 - Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device - Google Patents

Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device Download PDF

Info

Publication number
JP4701396B2
JP4701396B2 JP2006024605A JP2006024605A JP4701396B2 JP 4701396 B2 JP4701396 B2 JP 4701396B2 JP 2006024605 A JP2006024605 A JP 2006024605A JP 2006024605 A JP2006024605 A JP 2006024605A JP 4701396 B2 JP4701396 B2 JP 4701396B2
Authority
JP
Japan
Prior art keywords
crack
ultrasonic
distance
oscillator
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006024605A
Other languages
Japanese (ja)
Other versions
JP2007205848A (en
Inventor
英彦 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Priority to JP2006024605A priority Critical patent/JP4701396B2/en
Publication of JP2007205848A publication Critical patent/JP2007205848A/en
Application granted granted Critical
Publication of JP4701396B2 publication Critical patent/JP4701396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明は、超音波を利用してコンクリート構造物のひび割れ深さを探査する探査方法及びそのひび割れ深さを探査する探査装置に関し、特にその超音波の発振子と受振子の望ましい設置位置を定める仕方に係わるものであり、また、コンクリート構造物のひび割れ深さの探査方法及び探査装置において、使用する超音波の伝播速度を補正係数により補正し精度の高いひび割れ深さを探査する仕方に係わるものである。   The present invention relates to an exploration method for exploring the crack depth of a concrete structure using ultrasonic waves, and an exploration device for exploring the crack depth, and in particular, determines a desired installation position of the ultrasonic oscillator and the transducer. In addition, in the method and apparatus for exploring crack depth of concrete structures, the method for exploring high-accuracy crack depth by correcting the propagation speed of ultrasonic waves to be used with a correction coefficient. It is.

超音波を利用してコンクリート構造物のひび割れ深さを探査する一般的な方法としては、代表的なものとして次の方法がある。   Typical methods for exploring the crack depth of concrete structures using ultrasonic waves are as follows.

(1) T−T
−T法は、図6に示すように、まず(コンクリート構造物の)試験体でひび割れのない健全部表面に一振動子縦波の超音波発振子と受振子を間隔2aで配置し、基準となる超音波の伝播時間tを表面法により求める。次に、超音波の発振子と受振子を試験体でひび割れが(ひび割れからそれぞれ等距離に発振子と受振子を配置するように)中央になるように間隔2aで配置し、超音波の伝播時間tを求め、式(1)からひび割れ深さを推定する方法である。なお、発振子又は受振子との距離というときは、詳しくは発振子の端子又は受振子の端子との距離を意味している。以下同じである。
(1) T c -T o Method T c -T o method, as shown in FIG. 6, (the concrete structure) ultrasonic oscillation one vibrator longitudinal wave sound unit surface without cracks in test bodies place the child and受振Ko at intervals 2a, the ultrasonic wave propagation time t o of the reference determined by the surface normal. Next, the ultrasonic oscillator and the transducer are placed at a distance of 2a so that the crack is centered on the specimen (so that the oscillator and the transducer are arranged at equal distances from the crack, respectively), and the ultrasonic wave is propagated. This is a method for obtaining the time t c and estimating the crack depth from the equation (1). Note that the distance from the oscillator or the receiver means the distance from the terminal of the oscillator or the terminal of the receiver in detail. The same applies hereinafter.

Figure 0004701396
d:ひび割れの深さ(mm)、
a:発・受振子からひび割れまでの距離(mm)、
:健全部での超音波伝播時間(μs)、
:ひび割れを挟んで測定した超音波の伝播時間
(探傷部での超音波伝播時間)(μs)
Figure 0004701396
d: Depth of crack (mm),
a: Distance (mm) from the generator / pendulum to the crack,
t o : ultrasonic wave propagation time (μs) in a healthy part,
t c : Ultrasonic propagation time measured with cracks in between
(Ultrasonic propagation time at flaw detection part) (μs)

(2) デルタ方式
デルタ方式は、図7に示すように、まず試験体でひび割れのない健全部表面に一振動子縦波の超音波発振子と受振子を間隔(T+R)で配置し、基準となる超音波の発・受振子間の伝播速度Vを表面法により求める。次に超音波の発振子と受振子を試験体でひび割れを挟んで不等距離T,Rに配置して超音波の伝播時間tを測定し、式(2)からひび割れ深さを推定する方法である。
(2) Delta method As shown in Fig. 7, in the delta method, first, a single oscillator longitudinal wave ultrasonic wave oscillator and a wave receiving element are arranged at intervals (T + R) on the surface of a healthy part that is not cracked. determined by the surface normal propagation velocity V o between ultrasound emitting-受振Ko to be. Next, the ultrasonic oscillator and the transducer are placed at unequal distances T and R with the test sample sandwiched between cracks, the ultrasonic propagation time t c is measured, and the crack depth is estimated from equation (2). Is the method.

Figure 0004701396
d:ひび割れの深さ(mm)、
T:発振子からひび割れまでの距離(mm)、
R:受振子からひび割れまでの距離(mm)、
:健全部における発・受振子間の表面法による超音波の伝播速度
(健全部での超音波伝播速度)(km/s)、
:ひび割れを挟んで測定した超音波の伝播時間
(探傷部での超音波伝播時間)(μs)
Figure 0004701396
d: Depth of crack (mm),
T: distance from the oscillator to the crack (mm),
R: distance (mm) from the pendulum to the crack,
V o : Propagation speed of ultrasonic waves by the surface method between the oscillator and the transducer in the healthy part
(Ultrasonic propagation speed in healthy part) (km / s),
t c : Ultrasonic propagation time measured with cracks in between
(Ultrasonic propagation time at flaw detection part) (μs)

(3) 近距離迂回波方式
近距離迂回波方式は、図8に示すように、超音波の発振子と受振子をひび割れを挟んで近接して配置し、発・受振子間の超音波の伝播時間tを測定して、式(3)からひび割れ深さを推定する方法である。
(3) Short-range detour wave method As shown in FIG. 8, the short-distance detour wave method is a method in which an ultrasonic oscillator and a receiver are placed close to each other with a crack between them. In this method, the propagation time t c is measured and the crack depth is estimated from the equation (3).

d=V・t/2 ----(3)
d:ひび割れの深さ(mm)、
:測定物(探傷部)の音波の伝播速度(km/s)、
:探傷部での超音波伝播時間(μs)
d = V 0 · t c / 2 ---- (3)
d: Depth of crack (mm),
V 0 : Propagation speed of sound wave (km / s) of measurement object (flaw detection part),
t c : Ultrasonic propagation time at the flaw detection part (μs)

なお、超音波を利用してコンクリート構造物のひび割れ深さを計測する技術文献としては、特許文献1がある。   In addition, there exists patent document 1 as technical literature which measures the crack depth of a concrete structure using an ultrasonic wave.

特開平8−178903号公報JP-A-8-178903

コンクリート構造物に発生したひび割れの深さを超音波法で探査する方法では、超音波の発振子と受振子の設置位置により探査精度が著しく異なることが分かっている。しかし、発・受振子(発・受振子端子)設置位置を一意的に定める方法が無いために、使用者は個別の経験に基づいて発・受振子設置位置を決めており、探査精度が落ちる原因にもなっていた。
この発明は、上記のような問題点を解消するためになされたもので、探査精度が向上する超音波発・受振子の望ましい設置位置を定め得る超音波法によるコンクリート構造物の
ひび割れ深さ探査方法及びそのひび割れ深さ探査装置を提供しようとするものである。
また、ひび割れ深さの探査方法及び探査装置において、超音波発・受振子の望ましい設置位置を定め、使用する超音波の伝播速度を補正係数により補正し、精度の高いひび割れ深さを探査しようとするものである。
It has been found that, in the method of exploring the depth of cracks generated in a concrete structure by the ultrasonic method, the exploration accuracy differs significantly depending on the installation position of the ultrasonic oscillator and the receiver. However, since there is no way to uniquely determine the location of the generator / receiver (source / receiver terminal), the user decides the location of the transmitter / receiver on the basis of his / her individual experience, and the search accuracy drops. It was also the cause.
The present invention has been made to solve the above-described problems, and is used to search for crack depth in a concrete structure by an ultrasonic method capable of determining a desirable installation position of an ultrasonic generator / vibrator that improves search accuracy. The present invention seeks to provide a method and crack depth probing device thereof.
In addition, in the crack depth exploration method and exploration device, it is recommended to determine the desired installation position of the ultrasonic generator and transducer, and to correct the propagation speed of the ultrasonic wave to be used with the correction coefficient, so as to search for a highly accurate crack depth. To do.

この発明に係わる超音波法によるコンクリート構造物のひび割れ深さ探査方法は、超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離T、受振子からひび割れまでの距離Rで、コンクリート構造物の表面部に設置して、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定し、コンクリート構造物のひび割れ深さを推定する超音波法によるコンクリート構造物のひび割れ深さ探査方法において、探傷部について、TとRのいずれかがコンクリート部材の厚さより小さい範囲で、第1組(T,R),第2組(T,R),第3組(T,R),---と互いに距離を代えて複数回設置して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する工程、健全部について、発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離T+Rで、第1組(T+R),第2組(T+R),3組(T+R),---と互いに距離を代えて複数回設置して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する工程、次式に第1組(T,R,tc1,to1),第2組(T,R,tc2,to2),第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A,A,A,---を求める工程、

Figure 0004701396
及び、A,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いて、ひび割れ深さを推定する工程を施すものである。 The method of investigating the crack depth of a concrete structure by the ultrasonic method according to the present invention is the distance T n from the oscillator to the crack on the straight line with the ultrasonic oscillator and the receiver placed between the cracks of the concrete structure. at a distance R n from受振Ko to cracking, and placed on the surface of the concrete structure, to measure the ultrasonic wave propagation time in the concrete structure between oscillator and受振Ko, crack depth of the concrete structure In the method for exploring crack depth of a concrete structure by the ultrasonic method for estimating the first set (T 1 , R 1 ) of the flaw detection portion within a range where either T n or R n is smaller than the thickness of the concrete member , The second set (T 2 , R 2 ), the third set (T 3 , R 3 ), and --- are installed a plurality of times at different distances, and the ultrasonic wave propagation time at the flaw detection part for each set t c1 , t Steps c2 , t c3 , --- For the sound part, the first set (T n + R n between the oscillator and the oscillator on the surface of the concrete structure with the oscillator and the oscillator on the surface of the concrete structure (T 1 + R 1 ), 2nd set (T 2 + R 2 ), 3 set (T 3 + R 3 ), ---- and installed multiple times with different distances, ultrasonic propagation in healthy part for each set The process of measuring the time t o1 , t o2 , t o3 , ---, and the following equation, the first set (T 1 , R 1 , t c1 , t o1 ), the second set (T 2 , R 2 , t c2 , T o2 ), the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively, to obtain A 1 , A 2 , A 3 , ---
Figure 0004701396
And the value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (the distance T from the oscillator to the crack T, from the receiver) using the distance to the crack R, ultrasonic wave propagation time t c at the inspection unit, the ultrasonic wave propagation time t o) at the healthy part, it performs a process of estimating the crack depth.

また、この発明に係わる超音波法によるコンクリート構造物のひび割れ深さ探査方法は、A,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いて、次式でひび割れ深さdを推定する工程

Figure 0004701396
を施すものである。 In addition, the crack depth exploration method for a concrete structure by the ultrasonic method according to the present invention is a set (T n , R n , t cn ) having the minimum value among A 1 , A 2 , A 3 , ----. using a distance T from the value (oscillator t on) to crack distance R from受振Ko to cracking, ultrasonic wave propagation time t c at the inspection unit, the ultrasonic wave propagation time t o) in healthy section The process of estimating the crack depth d using the following formula
Figure 0004701396
Is to be applied.

また、この発明に係わる超音波法によるコンクリート構造物のひび割れ深さ探査装置は、超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離T、受振子からひび割れまでの距離Rで、コンクリート構造物の表面部に設置したものに対して、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定し、コンクリート構造物のひび割れ深さを推定する超音波法によるコンクリート構造物のひび割れ深さ探査装置において、探傷部について、TとRのいずれかがコンクリート部材の厚さより小さい範囲で、第1組(T,R),第2組(T,R),第3組(T,R),---と互いに距離を代えて複数回設置したものに対して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する手段、健全部について、発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離T+Rで、第1組(T+R),第2組(T+R),第3組(T+R),---と互いに距離を代えて複数回設置したものに対して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する手段、次式に第1組(T,R,tc1,to1),第2組(T,R,tc2,to2),第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A,A,A,---を求める手段、

Figure 0004701396
及び、A,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いて、ひび割れ深さを推定する手段を備えたものである。 Further, the crack depth exploration device for a concrete structure by the ultrasonic method according to the present invention is a distance between the oscillator and the crack on the straight line with the ultrasonic oscillator and the receiver sandwiched between the cracks of the concrete structure. T n, the distance R n from受振Ko to cracking, relative to those placed on the surface of the concrete structure, to measure the ultrasonic wave propagation time in the concrete structure between oscillator and受振Ko, concrete structures in crack depth locator of the concrete structure by ultrasonic method to estimate the crack depth of the object, the inspection unit, in a range smaller than the thickness of any of the T n and R n concrete member, a first pair (T 1 , R 1 ), 2nd set (T 2 , R 2 ), 3rd set (T 3 , R 3 ), and --- flaw Ultrasonic wave propagation time t c1, t c2 at, t c3, means for measuring ---, the healthy part, an oscillator and受振Ko the surface portion of the concrete structure, the distance T between the oscillator and受振Ko n + R n , the first set (T 1 + R 1 ), the second set (T 2 + R 2 ), the third set (T 3 + R 3 ), ---- and installed multiple times at different distances from each other On the other hand, means for measuring the ultrasonic propagation times t o1 , t o2 , t o3 , --- in the healthy part for each group, the first set (T 1 , R 1 , t c1 , t o1) ), The second group (T 2 , R 2 , t c2 , t o2 ), the third group (T 3 , R 3 , t c3 , t o3 ), and --- are substituted, respectively, and A 1 , A 2 , A 3 , ---
Figure 0004701396
And the value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (the distance T from the oscillator to the crack T, from the receiver) using the distance to the crack R, ultrasonic wave propagation time t c at the inspection unit, the ultrasonic wave propagation time t o) at the healthy section, those having a means for estimating the crack depth.

この発明の超音波法によるコンクリート構造物のひび割れ深さ探査方法及びそのひび割れ深さ探査装置によれば、探査精度が向上する超音波発・受振子の望ましい設置位置を定め得るので、ひび割れ深さの探査精度が向上する。
また、超音波発・受振子の望ましい設置位置を定め、使用する超音波の伝播速度を補正係数により補正するようにしたので、ひび割れ深さを精度良く探査できる。
According to the cracking depth exploration method and crack depth exploration device for a concrete structure by the ultrasonic method of the present invention, it is possible to determine the desired installation position of the ultrasonic generator / receiver that improves the exploration accuracy. The accuracy of exploration is improved.
In addition, since the desired installation position of the ultrasonic generator / receiver is determined and the propagation speed of the ultrasonic wave to be used is corrected by the correction coefficient, the crack depth can be searched with high accuracy.

−T法、デルタ方式、近距離迂回波方式の間の特異な点は、発・受振子の設置方法である。デルタ方式は、発・受振子をひび割れを挟んで不等距離に設置してもひび割れ深さを推定することができ、等距離で発・受振子を設置するT−T法と近距離迂回波方式を原理的に包括することができる。そこで、デルタ方式を対象に超音波発・受振子の最適設置位置を定める方法を含めた超音波法によるコンクリート構造物のひび割れ深さ探査方法の検討を行う。 T c -T o method, the delta method, the unique point between the short-distance detour wave method, a method of installing the originating-受振Ko. Delta scheme can also estimate the crack depth by installing non equidistant across the crack origination-受振Ko, T c -T o Method and near to install the originating-受振Ko equidistantly The detour wave method can be included in principle. Therefore, we investigate the crack depth exploration method of concrete structure by ultrasonic method including the method to determine the optimum installation position of ultrasonic generator / receiver for delta method.

次にデルタ方式によるひび割れ深さ推定精度について述べる。
デルタ方式によるひび割れ深さの推定精度を実験的に検証するために、人工のひび割れを有する4種類のコンクリート供試体を作製した。各供試体におけるひび割れ深さは、それぞれ100mm、180mm、200mm、350mmである。
Next, the accuracy of crack depth estimation by the delta method is described.
In order to experimentally verify the accuracy of crack depth estimation by the delta method, four types of concrete specimens with artificial cracks were prepared. The crack depth in each specimen is 100 mm, 180 mm, 200 mm, and 350 mm, respectively.

図1はデルタ方式によるひび割れ深さの推定結果を示す図である。図1は横軸にひび割れを挟んだ発・受振子間距離を表し、縦軸に推定したひび割れ深さを表す。太い横線は供試体のひび割れの真値を示し、図1(a),(b),(c),(d)はひび割れ深さの真値が100mm,180mm,200mm,350mmの供試体をそれぞれ示す。図1に示すように、デルタ方式によるひび割れ深さの推定結果は、発・受振子の設置位置により大きく異なる。このことからも分かるように、ひび割れ深さの推定精度を向上させるためには、発・受振子の最適設置位置を明らかにしておかなければならない。   FIG. 1 is a diagram showing an estimation result of crack depth by the delta method. In FIG. 1, the horizontal axis represents the distance between the oscillator and the transducer with a crack interposed therebetween, and the vertical axis represents the estimated crack depth. Thick horizontal lines indicate the true value of the cracks in the specimen, and FIGS. 1 (a), (b), (c), and (d) show specimens with true crack depths of 100 mm, 180 mm, 200 mm, and 350 mm, respectively. Show. As shown in FIG. 1, the estimation result of the crack depth by the delta method varies greatly depending on the installation position of the emitting and receiving elements. As can be seen from this, in order to improve the estimation accuracy of the crack depth, it is necessary to clarify the optimal installation position of the generator / receiver.

また、図2に示すように、健全部と探傷部の超音波の伝播速度は異なる。図2は各ひび割れ深さ(100mm、180mm、200mm、350mm)における健全部と探傷部の超音波の伝播速度を示す図である。Vは健全部での伝播速度(km/s)、Vは探傷部での伝播速度(km/s)である。VとVは異なっている。Vを横軸に、Vを縦軸にして実測値をプロットすると、図2の下図となる。V/V=kを超音波の伝播速度の補正係数とすると、実測ではk=0.605〜0.860となるが、コンクリートの配合条件等を踏まえると増減するので、k=0.6〜0.9を採用するのが望ましい。 Further, as shown in FIG. 2, the ultrasonic wave propagation speeds of the sound part and the flaw detection part are different. FIG. 2 is a diagram showing the propagation speed of ultrasonic waves in the sound part and the flaw detection part at each crack depth (100 mm, 180 mm, 200 mm, 350 mm). V 0 is the propagation speed (km / s) at the healthy part, and V c is the propagation speed (km / s) at the flaw detection part. V 0 and V c are different. When the measured values are plotted with V 0 on the horizontal axis and V c on the vertical axis, the lower diagram of FIG. 2 is obtained. Assuming that V c / V 0 = k is a correction factor for the ultrasonic wave propagation velocity, k = 0.605 to 0.860 in the actual measurement, but increases and decreases based on the mixing conditions of the concrete, so k = 0. It is desirable to employ 6 to 0.9.

発・受振子の設置位置T,Rとひび割れ深さdの距離関係を、式(4)から求める回析角度で表し、回析角度とひび割れ深さの推定精度の関係を検討する。
図7を参照して、
θ=arctan(T/d)+arctan(R/d) -----(4)
T:発振子からひび割れまでの距離(mm)、
R:受振子からひび割れまでの距離(mm)、
d:ひび割れの深さ(mm)、
θ:超音波の回析角度(°)で、発振子とひび割れ先端とを結ぶ直線と、
受振子とひび割れ先端とを結ぶ直線とのなす角度を表す。
The distance relationship between the installation positions T and R of the oscillator and the transducer and the crack depth d is expressed by the diffraction angle obtained from the equation (4), and the relationship between the diffraction angle and the estimation accuracy of the crack depth is examined.
Referring to FIG.
θ = arctan (T / d) + arctan (R / d) ----- (4)
T: distance from the oscillator to the crack (mm),
R: distance (mm) from the pendulum to the crack,
d: Depth of crack (mm),
θ: ultrasonic diffraction angle (°), a straight line connecting the oscillator and the crack tip,
It represents the angle between the geophone and the straight line connecting the crack tip.

図3は、超音波の回析角度θとひび割れ深さdの推定精度の関係を示す図である。図3には、横軸に回析角度θ(°)、縦軸に図2に示したVcとVoの比(Vc/Vo)を用いてVoを補正(Vc=Vo×Vc/Vo)し、補正した伝播速度を用いて推定したひび割れ深さと真値の比を示している。図3からは、各ひび割れ深さ(100mm、180mm、200mm、350mm)において、回析角度90°が最もひび割れ深さの推定値と真値の比が1に近いことが分かる。つまり、超音波法でひび割れ深さの推定を行う場合は、超音波がひび割れを直角回析する位置に発・受振子を設置すべきであることがわかる。   FIG. 3 is a diagram showing the relationship between the ultrasonic diffraction angle θ and the estimation accuracy of the crack depth d. In FIG. 3, Vo is corrected using the diffraction angle θ (°) on the horizontal axis and the ratio (Vc / Vo) of Vc and Vo shown in FIG. 2 on the vertical axis (Vc = Vo × Vc / Vo). The ratio of crack depth to true value estimated using the corrected propagation velocity is shown. From FIG. 3, it can be seen that at each crack depth (100 mm, 180 mm, 200 mm, 350 mm), the diffraction angle of 90 ° is the closest to the ratio between the estimated value of the crack depth and the true value. In other words, it is understood that when the crack depth is estimated by the ultrasonic method, the oscillator / receiver should be installed at a position where the ultrasonic wave diffracts the crack at right angles.

説明を補足する。これまでの研究では、健全部での超音波の伝播速度Voと探傷部での超音波の伝播速度Vcは同じになることを前提にひび割れ深さ推定式(2)が構築されていたが、今回の研究によりコンクリートの場合は両者が一致しないことが分かった。しかし、ひび割れ深さ推定式(2)では、真の超音波の伝播速度が必要になるので、VcとVoの比を補正係数k=(Vc/Vo)で表し、Voを補正係数kで補正することで、ひび割れ深さ推定式(2)に代入する伝播距離を得るようにした。従って、結論は、次のようになる。
Vc(補正後における超音波の伝播速度、ひび割れ深さ推定式に代入する健全部での超音波の伝播速度)=k(補正係数)×Vo(測定される健全部での超音波の伝播速度)
このように健全部での超音波の伝播速度Voを補正することで、デルタ方式のひび割れ深さ推定式(2)がそのまま使用することができる。
Supplement the explanation. In the previous research, the crack depth estimation formula (2) was constructed on the assumption that the ultrasonic propagation velocity Vo at the healthy portion and the ultrasonic propagation velocity Vc at the flaw detection portion are the same. This study shows that the two do not match in the case of concrete. However, in the crack depth estimation formula (2), since the propagation speed of the true ultrasonic wave is required, the ratio of Vc and Vo is expressed by a correction coefficient k = (Vc / Vo), and Vo is corrected by the correction coefficient k. By doing so, the propagation distance substituted for the crack depth estimation formula (2) was obtained. Therefore, the conclusion is as follows.
Vc (correction speed of ultrasonic wave after correction, propagation speed of ultrasonic wave in sound part substituted for crack depth estimation formula) = k (correction coefficient) × Vo (acoustic wave speed of sound part in sound part to be measured) )
Thus, by correcting the ultrasonic wave propagation velocity Vo in the sound part, the delta crack depth estimation formula (2) can be used as it is.

実施の形態1.
超音波発・受振子の最適設置位置
発・受振子の最適設置位置を決定する方法について検討する。
超音波がひび割れを直角回析する位置に発・受振子を設置するということは、発・受振子の設置位置とひび割れ深さの間にピタゴラスの定理が成立することになる。図7を参照する。
Embodiment 1 FIG.
Optimum installation position of ultrasonic generator / receiver The method of determining the optimal installation position of the generator / receiver is examined.
The installation of the generator / receiver at a position where the ultrasonic wave diffracts the crack at right angles means that the Pythagorean theorem is established between the position of the generator / receiver and the crack depth. Please refer to FIG.

Figure 0004701396
Figure 0004701396

Figure 0004701396
Figure 0004701396

Figure 0004701396
Figure 0004701396

式(11)は、超音波の回析角度が90°になるための発・受振子の設置位置と健全部及び探傷部での伝播時間の関係式である。したがって、デルタ方式における発・受振子の最適設置位置を決定する条件式は、式(12)で表されることになる。   Formula (11) is a relational expression between the installation position of the generator / receiver and the propagation time at the sound part and the flaw detection part for the ultrasonic diffraction angle to be 90 °. Therefore, the conditional expression for determining the optimum installation position of the transmitting / receiving element in the delta method is expressed by Expression (12).

Figure 0004701396
Figure 0004701396

Figure 0004701396
Figure 0004701396

図4は超音波法によるコンクリート構造物のひび割れ深さ探査を示すフロー図である。超音波発・受振子の最適設置位置は、次のようにして決定する。TとRを任意に変えて発振子と受振子を設置し、各位置における探傷部での超音波伝播時間tcnを測定する。発振子と受振子間の距離をT+Rに設置し、各位置における健全部での超音波伝播時間tcnを測定する。その測定結果を条件式(12)に代入し、条件式(12)が最小値となる位置のTとRを探索する。 FIG. 4 is a flowchart showing the crack depth exploration of a concrete structure by the ultrasonic method. The optimum installation position of the ultrasonic generator / receiver is determined as follows. T n and R n optionally varied by installing a resonator and受振Ko, measuring ultrasonic wave propagation time t cn in flaw detection portion in each position. The distance between the oscillator and the transducer is set to T n + R n , and the ultrasonic propagation time t cn in the healthy part at each position is measured. The measurement result is substituted into the conditional expression (12), and T and R at a position where the conditional expression (12) becomes the minimum value are searched.

次に、図4のフロー図を用いて、具体的に、デルタ方式について、コンクリート構造物のひび割れ深さを推定する探査方法を説明する。
第1工程:
試験体であるコンクリート構造物のひび割れを有する探傷部に対して、
超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離T、受振子からひび割れまでの距離Rで、コンクリート構造物の表面部に設置し、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定する。即ち、探傷部について、TとRのいずれかがコンクリート部材の厚さより小さい範囲で、第1組(T,R),第2組(T,R),第3組(T,R),---と互いに距離を代えて複数回設置して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する。なお、コンクリート部材の厚さが不明のときは、予想値としてもよい。
Next, an exploration method for estimating the crack depth of a concrete structure in the delta method will be specifically described with reference to the flowchart of FIG.
First step:
For the flaw detection part with cracks in the concrete structure that is the specimen,
The ultrasonic oscillator and受振Ko, in a straight line across the cracking of the concrete structure, the distance T n from oscillator to cracking, at a distance R n from受振Ko to cracks on the surface portion of the concrete structure Install and measure the propagation time of ultrasonic waves in the concrete structure between the oscillator and the receiver. That is, for flaw detection unit, in a range smaller than the thickness of one concrete member T n and R n, the first set (T 1, R 1), second pair (T 2, R 2), third set ( T 3, R 3), installed multiple times by changing the distance from each other and ---, ultrasonic wave propagation time in the flaw detection of each set t c1, t c2, t c3 , to measure ---. In addition, when the thickness of a concrete member is unknown, it is good also as an expected value.

第2工程:
同じ試験体であるコンクリート構造物でひび割れのない健全部に対して、
発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離T+Rで、第1組(T+R),第2組(T+R),3組(T+R),---と互いに距離を代えて複数回設置して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する。このとき、探傷部の各組と健全部の各組はそれぞれ互いに、発振子と受振子間の距離T+Rは同じであり、探傷部の各組と健全部の各組はそれぞれ互いに、発振子と受振子間の距離が同じになる位置に、発振子と受振子が設置される。
Second step:
For a sound part without cracks in a concrete structure that is the same specimen,
The first set (T 1 + R 1 ), the second set (T 2 + R 2 ), the second set (T 2 + R 2 ) and the third set with the distance T n + R n between the oscillator and the receiver on the surface of the concrete structure. (T 3 + R 3 ), ---- are installed several times at different distances, and the ultrasonic propagation times t o1 , t o2 , t o3 , --- in the healthy part for each set are measured. At this time, each set of the flaw detection part and each set of the healthy part are the same, and the distance T n + R n between the oscillator and the transducer is the same, and each set of the flaw detection part and each set of the healthy part are The oscillator and the receiver are installed at a position where the distance between the oscillator and the receiver is the same.

第3工程:
式(15)に第1組(T,R,tc1,to1),第2組(T,R,tc2,to2),
第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A,A,A,---を求める。

Figure 0004701396
Third step:
Formula (15) includes a first set (T 1 , R 1 , t c1 , t o1 ), a second set (T 2 , R 2 , t c2 , t o2 ),
Substituting the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively, finds A 1 , A 2 , A 3 , ----.
Figure 0004701396

第4工程:
,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いる。これにより、発振子と受振子の最適設置位置T,Rが決定される。
Fourth step:
A 1, A 2, A 3 , the minimum value becomes the set within the --- (T n, R n, t cn, t on) the distance from the value of (oscillator to crack T, from受振Ko to cracking Distance R, ultrasonic propagation time t c at the flaw detection part, and ultrasonic propagation time t o at the healthy part. Thereby, the optimal installation positions T and R of the oscillator and the receiver are determined.

第5工程:
,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いて、式(16)(17)(18)でひび割れ深さdを推定する。

Figure 0004701396
5th step:
A 1, A 2, A 3 , the minimum value becomes the set within the --- (T n, R n, t cn, t on) the distance from the value of (oscillator to crack T, from受振Ko to cracking The crack depth d is estimated by equations (16), (17), and (18) using the distance R, the ultrasonic propagation time t c at the flaw detection part, and the ultrasonic propagation time t o at the healthy part.
Figure 0004701396

なお、A,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いることにより、(19)式によりkを選定することができる。

Figure 0004701396
It should be noted that the value (the distance T from the oscillator to the crack T, the distance from the oscillator to the crack) and the value of the set (T n , R n , t cn , t on ) that is the minimum value among A 1 , A 2 , A 3 , ---- By using the distance R to the crack R, the ultrasonic wave propagation time t c at the flaw detection part, and the ultrasonic wave propagation time t o at the sound part, k can be selected from the equation (19).
Figure 0004701396

図5は図4のフロー図に従って、実際的にひび割れ深さを推定したときの各数値を示す図である。試験体となるコンクリート構造物は、ひび割れの真値180mm、厚さ380mm×横900mm×縦100mm、補正係数k=0.85を使用した。
探傷部に対して、発振子からひび割れまでの距離T、受振子からひび割れまでの距離Rで、探傷部での超音波伝播時間tcnを各組についてそれぞれ測定した。健全部に対して、発振子と受振子間の距離T+Rで、健全部での超音波伝播時間tonを各組についてそれぞれ測定した。
測定回数は25回であり、つまり、25組について測定し、それぞれについて、式(15)のAを求めたところ、Aが最小となったのは、第9回目つまり第9組についてであったので、そのときの値(発振子からひび割れまでの距離T=150mm,受振子からひび割れまでの距離R=250mm,探傷部での超音波伝播時間t=149.1μs,健全部での超音波伝播時間t=90.2μs)を用いる。
FIG. 5 is a diagram showing each numerical value when the crack depth is actually estimated according to the flowchart of FIG. The concrete structure used as the test body had a crack with a true value of 180 mm, a thickness of 380 mm × a width of 900 mm × a length of 100 mm, and a correction coefficient k = 0.85.
The ultrasonic propagation time t cn at the flaw detection part was measured for each group at the distance T n from the oscillator to the crack and the distance R n from the transducer to the crack with respect to the flaw detection part. Against healthy portion, the distance T n + R n between oscillator and受振Ko, the ultrasonic wave propagation time t on in healthy portions were measured for each set.
The number of measurements was 25 times, that is, measured for 25 pairs, each, was determined to A n of the formula (15), the A n becomes minimum, in the 9th clogging ninth set Therefore, the value at that time (distance T from the oscillator to crack T = 150 mm, distance R from the transducer to crack R = 250 mm, ultrasonic wave propagation time t c = 149.1 μs, and sound at the healthy part Ultrasonic propagation time t o = 90.2 μs) is used.

そして、式(16)(17)により、健全部での超音波伝播速度V=4.435(km/s)を求め、k=0.85を用いて、補正した伝播速度V=3.769(km/s)を求める。その後、式(18)により、ひび割れ深さの推定値d=194mmを得た。真値180mmに対して近接した値を得ることができた。なお、通常のデルタ法によるひび割れ深さ推定値はd=260mmであった。 Then, the ultrasonic wave propagation velocity V 0 = 4.435 (km / s) in the healthy part is obtained by the equations (16) and (17), and the propagation velocity V c = 3 corrected using k = 0.85. .769 (km / s) is obtained. Thereafter, an estimated value d = 194 mm of the crack depth was obtained from the equation (18). A value close to the true value of 180 mm could be obtained. The estimated crack depth by the normal delta method was d = 260 mm.

このように、上述した超音波法によるコンクリート構造物のひび割れ深さ探査方法によれば、探査精度が向上する超音波発・受振子の最適設置位置を定め得るので、ひび割れ深さの探査精度が向上する。また、超音波発・受振子の最適設置位置を定め、使用する超音波の伝播速度を補正係数により補正するようにしたので、ひび割れ深さを精度良く探査できる。   As described above, according to the cracking depth exploration method of the concrete structure by the ultrasonic method described above, the optimum installation position of the ultrasonic generator / receiver can be determined so that the exploration accuracy is improved. improves. In addition, since the optimum installation position of the ultrasonic wave generator / receiver is determined and the propagation speed of the ultrasonic wave to be used is corrected by the correction coefficient, the crack depth can be searched with high accuracy.

上述では、デルタ方式について説明したが、T―T法の場合も、作業方法は、デルタ方式と同じである。違いは、発振子からひび割れまでの距離Tと、受振子からひび割れまでの距離Rとが異なるのがデルタ方式(T≠R)で、同じになるのが、T―T法(T=R)という点である。そのため、両者の主な違いは、発振子と受振子の設置位置である。 The above has been described-delta, in the case of T c -T o method, the working method is the same as the delta type. The difference is that the distance T n from the resonator to the crack and the distance R n from the resonator to the crack are the same in the delta method (T n ≠ R n ), and are the same as T c −T o. The point is the modulus (T n = R n ). Therefore, the main difference between the two is the installation position of the oscillator and the receiver.

図4を参照して、T―T法について、コンクリート構造物のひび割れ深さを推定する探査方法を説明する。なお、デルタ方式で説明した部分は一部省略している。
第1工程:
試験体であるコンクリート構造物のひび割れを有する探傷部に対して、
超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離Tと受振子からひび割れまでの距離Rが実質的に等距離で、コンクリート構造物の表面部に設置し、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定する。
探傷部について、T=Rがコンクリート部材の厚さより小さい範囲で、第1組(T,R),第2組(T,R),第3組(T,R),---と互いに距離を代えて複数回設置して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する。
Referring to FIG. 4, the T c -T o method, illustrating a search method for estimating the crack depth of the concrete structure. Note that some of the parts described in the delta method are omitted.
First step:
For the flaw detection part with cracks in the concrete structure that is the specimen,
The ultrasonic oscillator and受振Ko, in a straight line across the cracking of the concrete structure, the distance R n from the oscillator from the distance T n and受振Ko to crack until cracks substantially equidistant, concrete Installed on the surface of the structure and measures the propagation time of ultrasonic waves in the concrete structure between the oscillator and the receiver.
As for the flaw detection part, the first group (T 1 , R 1 ), the second group (T 2 , R 2 ), the third group (T 3 , R 3 ) within a range where T n = R n is smaller than the thickness of the concrete member. ), --- and set a plurality of times at different distances from each other, and measure ultrasonic propagation times t c1 , t c2 , t c3 , --- in the flaw detection part for each set.

第2工程:
同じ試験体であるコンクリート構造物でひび割れのない健全部に対して、
発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離T+Rで、第1組(T+R),第2組(T+R),第3組(T+R),---と互いに距離を代えて複数回設置して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する。
Second step:
For a sound part without cracks in a concrete structure that is the same specimen,
The first and second sets (T 1 + R 1 ), second set (T 2 + R 2 ), third set with the distance T n + R n between the oscillator and the receiver on the surface of the concrete structure. The set (T 3 + R 3 ), --- is installed multiple times at different distances, and the ultrasonic propagation times t o1 , t o2 , t o3 , --- in the healthy part for each set are measured. .

第3工程:
式(20)に第1組(T,R,tc1,to1),第2組(T,R,tc2,to2),
第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A,A,A,---を求める。

Figure 0004701396
Third step:
The first set (T 1 , R 1 , t c1 , t o1 ), the second set (T 2 , R 2 , t c2 , t o2 ),
Substituting the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively, finds A 1 , A 2 , A 3 , ----.
Figure 0004701396

第4工程:
,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T又は受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いる。これにより、発振子と受振子の最適設置位置T,Rが決定される。
Fourth step:
The value (T n , R n , t cn , t on ) of the pair (T n , R n , t cn , t on ) that is the minimum value among A 1 , A 2 , A 3 , ---- From the resonator to the crack or from the transducer to the crack Distance R, ultrasonic propagation time t c at the flaw detection part, and ultrasonic propagation time t o at the healthy part. Thereby, the optimal installation positions T and R of the oscillator and the receiver are determined.

第5工程:
,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T又は受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いて、式(21)でひび割れ深さdを推定する。

Figure 0004701396
5th step:
The value (T n , R n , t cn , t on ) of the pair (T n , R n , t cn , t on ) that is the minimum value among A 1 , A 2 , A 3 , ---- From the resonator to the crack or from the transducer to the crack The crack depth d is estimated by the equation (21) using the distance R, the ultrasonic propagation time t c at the flaw detection part, and the ultrasonic propagation time t o at the healthy part.
Figure 0004701396

このようにして、T―T法の場合も、探査精度が向上する超音波発・受振子の最適設置位置を定め得るので、ひび割れ深さの探査精度が向上する。 In this way, in the case of T c -T o method, since it can determine the optimal installation position of the ultrasonic onset-受振Ko be improved exploration accuracy is improved probing accuracy of crack depth.

この発明に係わる超音波法によるコンクリート構造物のひび割れ深さ探査装置は、
探傷部について、TとRのいずれかがコンクリート部材の厚さより小さい範囲で、第1組(T,R),第2組(T,R),第3組(T,R),---と互いに距離を代えて複数回設置したものに対して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する手段(第1測定器)、
健全部について、発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離T+Rで、第1組(T+R),第2組(T+R),第3組(T+R),---と互いに距離を代えて複数回設置したものに対して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する手段(第2測定器、なお、第2測定器は第1測定器で実施できる。)、
The crack depth exploration device for concrete structures by the ultrasonic method according to the present invention is
As for the flaw detection part, the first group (T 1 , R 1 ), the second group (T 2 , R 2 ), the third group (T 3 ), as long as either T n or R n is smaller than the thickness of the concrete member. , R 3 ), ---, and ultrasonic wave propagation times t c1 , t c2 , t c3 , --- in the flaw detection part for each set are measured for a plurality of sets installed at different distances. Means (first measuring device),
With respect to the healthy portion, the first set (T 1 + R 1 ) and the second set (T 2 + R 2 ) are arranged on the surface portion of the concrete structure with the oscillator and the receiver at a distance T n + R n between the oscillator and the receiver. ), The third set (T 3 + R 3 ), ---, and the ultrasonic wave propagation times t o1 , t o2 , t o3 in the sound part of each set for a plurality of sets installed at different distances. , --- means for measuring (second measuring device, wherein the second measuring device can be implemented by the first measuring device),

次式に第1組(T,R,tc1,to1),第2組(T,R,tc2,to2),
第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A,A,A,---を求める手段(計算機)、

Figure 0004701396
In the following equation, the first set (T 1 , R 1 , t c1 , t o1 ), the second set (T 2 , R 2 , t c2 , t o2 ),
Means (computer) for substituting the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively, to obtain A 1 , A 2 , A 3 , ---
Figure 0004701396

及び、A,A,A,---の内で最小値となる組(T,R,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間t,健全部での超音波伝播時間t)を用いて、次式でひび割れ深さdを推定する手段(計算機)

Figure 0004701396
を備えて実現するとよい。 And the value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (the distance T from the oscillator to the crack T, from the receiver) Using the distance R to the crack, the ultrasonic propagation time t c at the flaw detection part, and the ultrasonic propagation time t o at the sound part, a means for estimating the crack depth d by the following equation (computer)
Figure 0004701396
It is good to realize with.

デルタ方式によるひび割れ深さの推定結果を示す図である。It is a figure which shows the estimation result of the crack depth by a delta system. 各ひび割れ深さにおける健全部と探傷部の超音波の伝播速度を示す図である。It is a figure which shows the propagation speed of the ultrasonic wave of the healthy part and flaw detection part in each crack depth. 超音波の回析角度とひび割れ深さの推定精度の関係を示す図である。It is a figure which shows the relationship between the diffraction angle of an ultrasonic wave, and the estimation precision of a crack depth. この発明の実施の形態1における超音波法によるコンクリート構造物のひび割れ深さ探査を示すフロー図である。It is a flowchart which shows the crack depth search of the concrete structure by the ultrasonic method in Embodiment 1 of this invention. 図4のフロー図に従って、実際的にひび割れ深さを推定したときの各数値を示す図である。It is a figure which shows each numerical value when the crack depth is actually estimated according to the flowchart of FIG. Tc−To法の一般的ひび割れ深さ推定方法を説明する図である。It is a figure explaining the general crack depth estimation method of Tc-To method. デルタ方式の一般的ひび割れ深さ推定方法を説明する図である。It is a figure explaining the general crack depth estimation method of a delta system. 近距離迂回波方式の一般的ひび割れ深さ推定方法を説明する図である。It is a figure explaining the general crack depth estimation method of a short distance detour wave system.

Claims (10)

超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離Tn、受振子からひび割れまでの距離Rnで、コンクリート構造物の表面部に設置して、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定し、コンクリート構造物のひび割れ深さを推定する超音波法によるコンクリート構造物のひび割れ深さ探査方法において、
探傷部について、TnとRnのいずれかがコンクリート部材の厚さより小さい範囲で、第1組(T1,R1),第2組(T2,R2),第3組(T3,R3),---と互いに距離を代えて複数回設置して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する工程、
健全部について、発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離Tn+Rnで、第1組(T1+R1),第2組(T2+R2),3組(T3+R3),---と互いに距離を代えて複数回設置して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する工程、
次式に第1組(T1,R1,tc1,to1),第2組(T2,R2,tc2,to2),
第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A1,A2,A3,---を求める工程、
Figure 0004701396
及び、
1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、ひび割れ深さを推定する工程
を施す超音波法によるコンクリート構造物のひび割れ深さ探査方法。
The ultrasonic oscillator and受振Ko, in a straight line across the cracking of the concrete structure, the distance T n from oscillator to cracking, at a distance R n from受振Ko to cracks on the surface portion of the concrete structure In the method of exploring the crack depth of concrete structures by ultrasonic method to measure the propagation time of ultrasonic waves in the concrete structure between the oscillator and the vibrator and estimate the crack depth of the concrete structure,
For the flaw detection portion, the first set (T 1 , R 1 ), the second set (T 2 , R 2 ), the third set (T 3 ), as long as either T n or R n is smaller than the thickness of the concrete member. , R 3 ), --- and a plurality of times with different distances, and measuring ultrasonic propagation times t c1 , t c2 , t c3 , --- at the flaw detection part for each set,
With respect to the sound part, the first set (T 1 + R 1 ) and the second set (T 2 + R 2 ) with the distance T n + R n between the oscillator and the receiver on the surface of the concrete structure with the oscillator and the receiver ), 3 sets (T 3 + R 3 ), --- and installed several times at different distances, the ultrasonic propagation times t o1 , t o2 , t o3 , --- Measuring process,
In the following equation, the first set (T 1 , R 1 , t c1 , t o1 ), the second set (T 2 , R 2 , t c2 , t o2 ),
Substituting the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively, to obtain A 1 , A 2 , A 3 , ---
Figure 0004701396
as well as,
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from oscillator to crack, from receiver to crack The crack depth of a concrete structure by the ultrasonic method, which performs the process of estimating the crack depth using the distance R, the ultrasonic propagation time t c at the flaw detection part, and the ultrasonic propagation time t o at the healthy part Exploration method.
1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、次式でひび割れ深さdを推定する工程
Figure 0004701396
を施す請求項1記載の超音波法によるコンクリート構造物のひび割れ深さ探査方法。
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from oscillator to crack, from receiver to crack The crack depth d is estimated by the following equation using the distance R, the ultrasonic wave propagation time t c at the flaw detection part, and the ultrasonic wave propagation time t o at the healthy part.
Figure 0004701396
The method for exploring crack depth of a concrete structure by an ultrasonic method according to claim 1.
補正係数kは、k=0.6〜0.9である請求項1又は請求項2記載の超音波法によるコンクリート構造物のひび割れ深さ探査方法。   The crack depth exploration method for a concrete structure by the ultrasonic method according to claim 1 or 2, wherein the correction coefficient k is k = 0.6 to 0.9. 1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、
次式によりkを選定する請求項1又は請求項2記載の超音波法によるコンクリート構造物のひび割れ深さ探査方法。
Figure 0004701396
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from oscillator to crack, from receiver to crack Using the distance R, the ultrasonic propagation time t c at the flaw detection part, and the ultrasonic propagation time t o at the healthy part,
The crack depth exploration method of a concrete structure by the ultrasonic method according to claim 1 or 2, wherein k is selected by the following equation.
Figure 0004701396
発振子からひび割れまでの距離Tnと受振子からひび割れまでの距離Rnは、実質的に
n=Rn
となるように、発振子と受振子を設置する請求項1〜請求項4のいずれか1項に記載の超音波法によるコンクリート構造物のひび割れ深さ探査方法。
The distance T n from the resonator to the crack and the distance R n from the transducer to the crack are substantially
T n = R n
The crack depth exploration method for a concrete structure by an ultrasonic method according to any one of claims 1 to 4, wherein an oscillator and a geophone are installed so that
超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離Tnと受振子からひび割れまでの距離Rnが実質的に等距離で、コンクリート構造物の表面部に設置して、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定し、コンクリート構造物のひび割れ深さを推定する超音波法によるコンクリート構造物のひび割れ深さ探査方法において、
探傷部について、Tn=Rnがコンクリート部材の厚さより小さい範囲で、第1組(T1,R1),第2組(T2,R2),第3組(T3,R3),---と互いに距離を代えて複数回設置して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する工程、
健全部について、発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離Tn+Rnで、第1組(T1+R1),第2組(T2+R2),第3組(T3+R3),---と互いに距離を代えて複数回設置して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する工程、
次式に第1組(T1,R1,tc1,to1),第2組(T2,R2,tc2,to2),
第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A1,A2,A3,---を求める工程、
Figure 0004701396
及び、
1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T又は受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、ひび割れ深さを推定する工程
を施す超音波法によるコンクリート構造物のひび割れ深さ探査方法。
The ultrasonic oscillator and the transducer are placed on a straight line across the crack of the concrete structure, and the distance T n from the oscillator to the crack and the distance R n from the transducer to the crack are substantially equal. Installed on the surface of the structure, measures the propagation time of ultrasonic waves in the concrete structure between the oscillator and the geophone, and estimates the crack depth of the concrete structure. In the exploration method,
As for the flaw detection part, the first group (T 1 , R 1 ), the second group (T 2 , R 2 ), the third group (T 3 , R 3 ) within a range where T n = R n is smaller than the thickness of the concrete member. ), --- and a plurality of times at different distances, and measuring ultrasonic propagation times t c1 , t c2 , t c3 , ---
With respect to the sound part, the first set (T 1 + R 1 ) and the second set (T 2 + R 2 ) with the distance T n + R n between the oscillator and the receiver on the surface of the concrete structure with the oscillator and the receiver ), The third set (T 3 + R 3 ), ---- and installed several times at different distances, the ultrasonic propagation times t o1 , t o2 , t o3 ,- -Measuring step,
In the following equation, the first set (T 1 , R 1 , t c1 , t o1 ), the second set (T 2 , R 2 , t c2 , t o2 ),
Substituting the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively, to obtain A 1 , A 2 , A 3 , ---
Figure 0004701396
as well as,
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from the oscillator to the crack or from the resonator to the crack) The crack depth of a concrete structure by the ultrasonic method, which performs the process of estimating the crack depth using the distance R, the ultrasonic propagation time t c at the flaw detection part, and the ultrasonic propagation time t o at the healthy part Exploration method.
1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T又は受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、次式でひび割れ深さdを推定する工程
Figure 0004701396
を施す請求項6記載の超音波法によるコンクリート構造物のひび割れ深さ探査方法。
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from the oscillator to the crack or from the resonator to the crack) The crack depth d is estimated by the following equation using the distance R, the ultrasonic wave propagation time t c at the flaw detection part, and the ultrasonic wave propagation time t o at the healthy part.
Figure 0004701396
The method for exploring crack depth of a concrete structure by an ultrasonic method according to claim 6.
超音波の発振子と受振子を、コンクリート構造物のひび割れを挟んで直線上に、発振子からひび割れまでの距離Tn、受振子からひび割れまでの距離Rnで、コンクリート構造物の表面部に設置したものに対して、発振子と受振子間のコンクリート構造物における超音波の伝播時間を測定し、コンクリート構造物のひび割れ深さを推定する超音波法によるコンクリート構造物のひび割れ深さ探査装置において、
探傷部について、TnとRnのいずれかがコンクリート部材の厚さより小さい範囲で、第1組(T1,R1),第2組(T2,R2),第3組(T3,R3),---と互いに距離を代えて複数回設置したものに対して、各組毎の探傷部での超音波伝播時間tc1,tc2,tc3,---を測定する手段、
健全部について、発振子と受振子をコンクリート構造物の表面部に、発振子と受振子間の距離Tn+Rnで、第1組(T1+R1),第2組(T2+R2),第3組(T3+R3),---と互いに距離を代えて複数回設置したものに対して、各組毎の健全部での超音波伝播時間to1,to2,to3,---を測定する手段、
次式に第1組(T1,R1,tc1,to1),第2組(T2,R2,tc2,to2),
第3組(T3,R3,tc3,to3),---をそれぞれ代入して、A1,A2,A3,---を求める手段、
Figure 0004701396
及び、
1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、ひび割れ深さを推定する手段
を備えた超音波法によるコンクリート構造物のひび割れ深さ探査装置。
The ultrasonic oscillator and受振Ko, in a straight line across the cracking of the concrete structure, the distance T n from oscillator to cracking, at a distance R n from受振Ko to cracks on the surface portion of the concrete structure A crack depth exploration device for concrete structures by the ultrasonic method that measures the propagation time of ultrasonic waves in the concrete structure between the oscillator and the receiver and estimates the crack depth of the concrete structure. In
For the flaw detection portion, the first set (T 1 , R 1 ), the second set (T 2 , R 2 ), the third set (T 3 ), as long as either T n or R n is smaller than the thickness of the concrete member. , R 3 ), ---- The ultrasonic propagation times t c1 , t c2 , t c3 , --- in the flaw detection part for each set are measured for a plurality of sets installed at different distances. means,
With respect to the sound part, the first set (T 1 + R 1 ) and the second set (T 2 + R 2 ) with the distance T n + R n between the oscillator and the receiver on the surface of the concrete structure with the oscillator and the receiver ), The third set (T 3 + R 3 ), --- and the ultrasonic wave propagation times t o1 , t o2 , t o3 in the healthy part of each set for a plurality of sets installed at different distances. , --- means to measure,
In the following equation, the first set (T 1 , R 1 , t c1 , t o1 ), the second set (T 2 , R 2 , t c2 , t o2 ),
Means for obtaining A 1 , A 2 , A 3 , --- by substituting the third set (T 3 , R 3 , t c3 , t o3 ), ---, respectively;
Figure 0004701396
as well as,
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from oscillator to crack, from receiver to crack The crack depth of a concrete structure by an ultrasonic method equipped with means for estimating the crack depth using the distance R, the ultrasonic wave propagation time t c at the flaw detection part, and the ultrasonic wave propagation time t o at the healthy part Exploration device.
1,A2,A3,---の内で最小値となる組(Tn,Rn,tcn,ton)の値(発振子からひび割れまでの距離T,受振子からひび割れまでの距離R,探傷部での超音波伝播時間tc,健全部での超音波伝播時間to)を用いて、次式でひび割れ深さdを推定する手段
Figure 0004701396
を備えた請求項8記載の超音波法によるコンクリート構造物のひび割れ深さ探査装置。
The value (T n , R n , t cn , t on ) of the minimum value among A 1 , A 2 , A 3 , ---- (distance T from oscillator to crack, from receiver to crack The distance R, the ultrasonic wave propagation time t c at the flaw detection part, and the ultrasonic wave propagation time t o at the healthy part are used to estimate the crack depth d using the following equation:
Figure 0004701396
A crack depth exploration device for a concrete structure by an ultrasonic method according to claim 8.
補正係数kは、k=0.6〜0.9である請求項8又は請求項9記載の超音波法によるコンクリート構造物のひび割れ深さ探査装置。   10. The crack depth exploration device for a concrete structure by an ultrasonic method according to claim 8 or 9, wherein the correction coefficient k is k = 0.6 to 0.9.
JP2006024605A 2006-02-01 2006-02-01 Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device Active JP4701396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024605A JP4701396B2 (en) 2006-02-01 2006-02-01 Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024605A JP4701396B2 (en) 2006-02-01 2006-02-01 Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device

Publications (2)

Publication Number Publication Date
JP2007205848A JP2007205848A (en) 2007-08-16
JP4701396B2 true JP4701396B2 (en) 2011-06-15

Family

ID=38485448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024605A Active JP4701396B2 (en) 2006-02-01 2006-02-01 Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device

Country Status (1)

Country Link
JP (1) JP4701396B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270659A (en) * 2009-05-21 2010-12-02 Tokyo Yogyo Co Ltd Exhaust emission control device
JP5404218B2 (en) * 2009-07-03 2014-01-29 株式会社奥村組 Method and apparatus for measuring crack condition of concrete structure
CN111579646B (en) * 2020-05-29 2021-07-06 中国地质大学(北京) In-situ nondestructive testing method for stone cultural relic fracture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150188A (en) * 1978-05-17 1979-11-26 Hitachi Ltd Cracking inspecting apparatus by ultrasonic waves
JPS58131560A (en) * 1982-02-01 1983-08-05 Nippon Steel Corp Method and apparatus for ultrasonic flaw detection
JPS63304159A (en) * 1987-06-05 1988-12-12 Koden Electronics Co Ltd Method for measuring depth of crack
JPH0854378A (en) * 1994-08-16 1996-02-27 Shimizu Corp Method for evaluating surface crack of concrete
JPH08178903A (en) * 1994-10-28 1996-07-12 Fujikura Ltd Method and apparatus for measuring crack depth of reinforced concrete structure
JPH08220078A (en) * 1995-02-13 1996-08-30 Mitsubishi Heavy Ind Ltd Defect depth measuring instrument
JP2003106830A (en) * 2001-09-28 2003-04-09 Univ Tokyo Method for measuring length in elastic material
JP2005098842A (en) * 2003-09-25 2005-04-14 Univ Nihon Method for measuring pouring depth of repairing material to crack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431048A (en) * 1987-07-28 1989-02-01 Hitachi Construction Machinery Method for measuring surface opening crack depth of concrete by ultrasonic wave

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150188A (en) * 1978-05-17 1979-11-26 Hitachi Ltd Cracking inspecting apparatus by ultrasonic waves
JPS58131560A (en) * 1982-02-01 1983-08-05 Nippon Steel Corp Method and apparatus for ultrasonic flaw detection
JPS63304159A (en) * 1987-06-05 1988-12-12 Koden Electronics Co Ltd Method for measuring depth of crack
JPH0854378A (en) * 1994-08-16 1996-02-27 Shimizu Corp Method for evaluating surface crack of concrete
JPH08178903A (en) * 1994-10-28 1996-07-12 Fujikura Ltd Method and apparatus for measuring crack depth of reinforced concrete structure
JPH08220078A (en) * 1995-02-13 1996-08-30 Mitsubishi Heavy Ind Ltd Defect depth measuring instrument
JP2003106830A (en) * 2001-09-28 2003-04-09 Univ Tokyo Method for measuring length in elastic material
JP2005098842A (en) * 2003-09-25 2005-04-14 Univ Nihon Method for measuring pouring depth of repairing material to crack

Also Published As

Publication number Publication date
JP2007205848A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
CN104502633B (en) A kind of flow field data correcting method for acoustic Doppler fluid velocity profile instrument
US6360609B1 (en) Method and system for interpreting and utilizing multimode dispersive acoustic guided waves
WO2010021794A1 (en) Method for performing ultrasonic testing
CN108571317B (en) Logging-while-drilling well diameter measuring system
CN108872386B (en) Correction method for concrete strength ultrasonic angle measurement method detection
KR102184988B1 (en) Measuring Apparatus and Measuring Method of Embedment Depth of Embedded Anchor Using Ultrasonic Wave
CN104776819A (en) Ultrasonic thickness measuring method
JP4701396B2 (en) Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device
RU2604562C2 (en) Method of resilient properties ultrasonic measurement
CN109521092A (en) A kind of non-contact measurement apparatus and its method of surface wave and the Lamb wave velocity of sound
CN106383173B (en) Cement acoustic impedance calculation method and device
KR100345351B1 (en) A Method of Determining Angle and Length of Inclined Surface Opening Cracks in Concrete
Mandal et al. A new monocable circumferential acoustic scanner tool (CAST-M) for cased-hole and openhole applications
JP2008076352A (en) Underground position detecting method
CN104790939A (en) Method and device for obtaining cementation rate
CN111102946B (en) Tunnel deformation monitoring method based on ultrasonic waves
JP6989925B2 (en) Stress measurement method for concrete structures and stress measurement system for concrete structures
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
CN112147230A (en) Method for detecting quality of concrete joint surface by using sound wave attenuation coefficient
JPH0854378A (en) Method for evaluating surface crack of concrete
JP6478637B2 (en) Ultrasonic probe
CN112179991B (en) Method for obtaining opposite sound velocity through ultrasonic transducer non-opposite arrangement
US11754530B2 (en) Structure evaluation method and structure evaluation system
CN1869679B (en) Technology for reducing elastic wave signal testing error using two-direction vibrations
RU2221234C2 (en) Ultrasonic method determining density of liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208