JP4701255B2 - Industrial furnace - Google Patents

Industrial furnace Download PDF

Info

Publication number
JP4701255B2
JP4701255B2 JP2008029376A JP2008029376A JP4701255B2 JP 4701255 B2 JP4701255 B2 JP 4701255B2 JP 2008029376 A JP2008029376 A JP 2008029376A JP 2008029376 A JP2008029376 A JP 2008029376A JP 4701255 B2 JP4701255 B2 JP 4701255B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
combustion chamber
air supply
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008029376A
Other languages
Japanese (ja)
Other versions
JP2009186148A (en
Inventor
正明 木倉
Original Assignee
北陸テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陸テクノ株式会社 filed Critical 北陸テクノ株式会社
Priority to JP2008029376A priority Critical patent/JP4701255B2/en
Publication of JP2009186148A publication Critical patent/JP2009186148A/en
Application granted granted Critical
Publication of JP4701255B2 publication Critical patent/JP4701255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

本発明は、炉の廃熱を利用して燃焼空気を予熱する工業炉に関する。   The present invention relates to an industrial furnace that preheats combustion air using waste heat of the furnace.

従来、工業炉において、炉から排出される排気ガスと、炉に供給される燃焼空気とで、熱交換を行い、排気ガスの有する熱で燃焼空気を予熱することで、高効率化および省エネルギ化を図ったものが知られている。ここで、熱交換に用いられる熱交換器には種々のものがあるが、セラミックなどからなる蓄熱型熱交換器は、高温領域における耐久性が高く、工業炉の廃熱回収に適している。例として、文献1には、複数の蓄熱型熱交換器を備え、給気と排気の流路を順次切り替えて、各熱交換器において蓄熱と予熱を交互に行う廃熱利用装置が提案されている。
特開2003−56840号公報
Conventionally, in an industrial furnace, heat exchange is performed between the exhaust gas discharged from the furnace and the combustion air supplied to the furnace, and the combustion air is preheated with the heat of the exhaust gas, thereby improving efficiency and saving energy. The thing which aimed at conversion is known. Here, although there are various types of heat exchangers used for heat exchange, a heat storage type heat exchanger made of ceramic or the like has high durability in a high temperature region and is suitable for waste heat recovery of an industrial furnace. As an example, Document 1 proposes a waste heat utilization device that includes a plurality of heat storage type heat exchangers, sequentially switches between supply air and exhaust air flow paths, and alternately stores heat and preheats in each heat exchanger. Yes.
JP 2003-56840 A

ところで、文献1の発明は、炉から排出される排気ガスの有する熱を有効に利用しようとするものであるが、一方で、炉から直接放熱される熱も存在する。通常、炉の周囲には断熱材を設けて放熱を抑えているが、放熱を完全になくすことはできず、結果として放熱される熱のエネルギは無駄になっている。そこで、この熱も回収することができれば、さらなる高効率化および省エネルギ化を実現できると考えられる。   By the way, although invention of the literature 1 tries to utilize the heat | fever which the exhaust gas discharged | emitted from a furnace has effectively, on the other hand, the heat directly radiated from a furnace also exists. Normally, a heat insulating material is provided around the furnace to suppress heat dissipation, but the heat dissipation cannot be completely eliminated, and as a result, the heat energy dissipated is wasted. Therefore, if this heat can also be recovered, it is considered that further higher efficiency and energy saving can be realized.

本発明は、上記事情を鑑みたものであり、炉から排出される排気ガスの有する熱のみならず、炉から直接放熱される熱をも回収し、燃焼空気の予熱に利用する工業炉を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an industrial furnace that collects not only the heat of exhaust gas discharged from the furnace but also the heat directly radiated from the furnace and uses it for preheating combustion air. The purpose is to do.

本発明のうち請求項1の発明は、燃焼室と、該燃焼室を加熱するバーナと、該バーナに燃焼空気を供給する給気系と、前記燃焼室から排気ガスを排出する排気系と、を備え、前記給気系および前記排気系の途中に、複数個の蓄熱体が並列に挿入され、各蓄熱体の一端が、前記給気系の上流側配管および前記排気系の下流側配管に、それぞれ第一流路切替手段を介して接続され、各蓄熱体の他端が、前記給気系の下流側配管および前記燃焼室の連絡孔に、それぞれ第二流路切替手段を介して接続され、前記の各蓄熱体が、前記燃焼室と、開放空間を介さず密接していることを特徴とする。   The invention of claim 1 of the present invention comprises a combustion chamber, a burner for heating the combustion chamber, an air supply system for supplying combustion air to the burner, an exhaust system for exhausting exhaust gas from the combustion chamber, A plurality of heat storage bodies are inserted in parallel in the middle of the air supply system and the exhaust system, and one end of each heat storage body is connected to an upstream pipe of the air supply system and a downstream pipe of the exhaust system The other end of each heat storage body is connected to the downstream piping of the air supply system and the communication hole of the combustion chamber via the second flow path switching means, respectively. Each of the heat storage bodies is in close contact with the combustion chamber without an open space.

本発明は、広く工業炉全般に適用されるものであり、炉の種類は問わず、るつぼ炉、溶融炉、加熱炉、焼却炉など、どのような炉であってもよい。燃焼室およびバーナの構造や規模は炉の種類によって異なりうるが、基本的には燃焼室にバーナが取り付けられており、バーナによって燃焼室内を加熱するものである。バーナにより燃焼させる際には、空気を供給する必要があり、バーナには給気系の配管が接続される。また、燃焼室からは、排気ガスを排出する必要がある。ここで、通常供給される燃焼空気は室温であり、排出される排気ガスは数百度から千数百度となる。このままでは、冷たい燃焼空気を供給することで炉内の温度が下がって燃焼効率が低下し、また排気ガスの持つ熱エネルギはすべて無駄になってしまうため、燃焼空気と排気ガスとで熱交換を行う。そこで、給気系および排気系の配管の途中に、複数個の蓄熱体が並列に挿入される。並列とはすなわち、配管が蓄熱体の個数分だけ枝分かれし、それぞれの配管に蓄熱体が設けられることをいう。蓄熱体としては、閉じた空間内に、アルミナなどのセラミックのパイプやボールを詰めたものが好適である。この蓄熱体に、給気系および排気系の配管がそれぞれ流路切替手段を介して接続される。ただし、排気系の上流側については、燃焼室と蓄熱体とを直結する連絡孔を設けることで、熱エネルギの損失をできるだけ少なくすることが望ましい。また、流路切替手段は、必ずしもいずれか一つの流路を選択するものではなく、複数の流路を同時に開いたり閉じたりすることもできるものとする。これらの流路切替手段により適宜流路を切り替えることにより、各蓄熱体に、排気ガスと燃焼空気とを交互に流通させる。高温の排気ガスが流通している間は、その熱エネルギが蓄熱体に蓄えられ、室温の燃焼空気が流通している間は、蓄えられた熱エネルギにより燃焼空気を予熱するのである。なお、各蓄熱体において、蓄熱と予熱の切り替えの周期をずらすことにより、常にいずれかの蓄熱体で予熱を行う状態にすることが望ましい。そして、これらの蓄熱体はすべて、燃焼室と開放空間を介さず密接している。これはすなわち、燃焼室から放熱される熱が直接蓄熱体に伝熱される状態であることを示す。   The present invention is widely applied to industrial furnaces in general, and any furnace such as a crucible furnace, a melting furnace, a heating furnace, or an incinerator may be used regardless of the type of furnace. The structure and scale of the combustion chamber and burner may vary depending on the type of furnace, but basically a burner is attached to the combustion chamber and the combustion chamber is heated by the burner. When burning by a burner, it is necessary to supply air, and a piping of an air supply system is connected to the burner. Further, it is necessary to exhaust the exhaust gas from the combustion chamber. Here, the combustion air that is normally supplied is at room temperature, and the exhaust gas that is exhausted is several hundred to several hundreds of degrees. In this state, supplying cold combustion air lowers the temperature in the furnace and lowers the combustion efficiency, and all the heat energy of the exhaust gas is wasted. Therefore, heat exchange between the combustion air and the exhaust gas is performed. Do. Therefore, a plurality of heat storage bodies are inserted in parallel in the middle of the supply system and exhaust system piping. That is, the pipes are branched by the number of the heat accumulators, and the heat accumulators are provided in the respective pipes. As the heat storage body, a closed space filled with ceramic pipes or balls such as alumina is suitable. An air supply system and an exhaust system pipe are connected to the heat storage body through flow path switching means. However, on the upstream side of the exhaust system, it is desirable to reduce the loss of heat energy as much as possible by providing a communication hole that directly connects the combustion chamber and the heat storage body. Further, the channel switching means does not necessarily select any one channel, and can open and close a plurality of channels simultaneously. By switching the flow paths as appropriate by these flow path switching means, the exhaust gas and the combustion air are alternately circulated in each heat storage body. The thermal energy is stored in the heat accumulator while the high-temperature exhaust gas is circulating, and the combustion air is preheated by the stored thermal energy while the combustion air at room temperature is circulating. In addition, in each heat storage body, it is desirable to always be in the state which preheats in any heat storage body by shifting the period of switching of heat storage and preheating. All of these heat accumulators are in close contact with each other without passing through the combustion chamber and the open space. This indicates that the heat radiated from the combustion chamber is directly transferred to the heat storage body.

また、本発明のうち請求項2の発明は、前記給気系に、前記蓄熱体、前記第一流路切替手段および前記第二流路切替手段をバイパスするバイパス配管が設けられており、該バイパス配管には流路を開閉するバイパス弁が設けられていることを特徴とする。According to a second aspect of the present invention, the air supply system is provided with a bypass pipe that bypasses the heat storage body, the first flow path switching means, and the second flow path switching means. The piping is provided with a bypass valve for opening and closing the flow path.

さらに、本発明のうち請求項の発明は、前記給気系の第一流路切替手段より上流側および前記排気系の第一流路切替手段より下流側に、熱交換器が挿入されることを特徴とする。ここで熱交換器とは、蓄熱体と異なり高温側と低温側の流路が分かれているもので、壁や配管を隔てて高温側から低温側へ間接的に伝熱するものとする。このように熱交換器を挿入することで、給気される燃焼空気は、まず熱交換器で予熱され、その後さらに蓄熱体で予熱される。逆に、排出される排気ガスは、まず蓄熱体で熱回収され、その後さらに熱交換器で熱回収される。 Further , the invention of claim 3 of the present invention is that a heat exchanger is inserted upstream of the first flow path switching means of the air supply system and downstream of the first flow path switching means of the exhaust system. Features. Here, the heat exchanger differs from the heat storage body in that the flow path on the high-temperature side and the low-temperature side are separated, and heat is indirectly transferred from the high-temperature side to the low-temperature side through a wall or a pipe. By inserting the heat exchanger in this way, the combustion air to be supplied is first preheated by the heat exchanger and then further preheated by the heat accumulator. On the contrary, the exhaust gas discharged is first recovered by the heat accumulator and then further recovered by the heat exchanger.

本発明のうち請求項1の発明によれば、蓄熱体により排気ガスの有する熱エネルギを回収して燃焼空気を予熱し、さらに、蓄熱体を燃焼室に密接させることで、燃焼室から直接放熱される熱をも回収し、燃焼空気の予熱に利用することができるため、従来の炉に増して高効率化および省エネルギ化を実現することができる。なお、一般に蓄熱体は高温領域における耐久性が高いため、千度を超える高温の排気ガスを生じる工業炉にも対応することができる。   According to the first aspect of the present invention, the heat energy of the exhaust gas is recovered by the heat accumulator to preheat the combustion air, and further, the heat accumulator is brought into close contact with the combustion chamber, so that heat is radiated directly from the combustion chamber. Since the generated heat can also be recovered and used for preheating the combustion air, higher efficiency and energy saving can be realized compared to the conventional furnace. In general, since the heat storage body has high durability in a high temperature region, it can be applied to an industrial furnace that generates high-temperature exhaust gas exceeding 1000 degrees.

本発明のうち請求項2の発明によれば、流路切替手段により各蓄熱体の蓄熱と予熱を切り替えている間にバイパス弁を開とすることで、切替時にバーナに燃焼空気が供給されなくなることを防ぐことができる。According to the second aspect of the present invention, the combustion valve is not supplied to the burner at the time of switching by opening the bypass valve while switching the heat storage and preheating of each heat storage body by the flow path switching means. Can be prevented.

本発明のうち請求項の発明によれば、蓄熱体で回収しきれなかった排気ガスの熱エネルギを熱交換器により回収することで、さらに高効率化および省エネルギ化を図ることができる。一般に、間接型の熱交換器は蓄熱体に比べて熱伝達の効率がよいため、温度が低い熱源(すなわち、一度熱交換を行ったあとの排気ガス)からでも効率よく熱回収することができる。 According to the invention of claim 3 of the present invention, the heat energy of the exhaust gas that could not be recovered by the heat storage body is recovered by the heat exchanger, so that higher efficiency and energy saving can be achieved. Generally, an indirect heat exchanger has a higher heat transfer efficiency than a heat storage body, so that heat can be efficiently recovered even from a low-temperature heat source (that is, exhaust gas after heat exchange is performed once). .

本発明の工業炉の具体的な構成について、各図面に基づいて説明する。図1は、本発明の工業炉の実施例を示す系統図である。本実施例は、円筒形状の燃焼室1を有し、燃焼室1には加熱するためのバーナ2が設けられ、さらに燃焼室1の周囲には、二個の蓄熱体3a、3bが、燃焼室1と開放空間を介さずに密接して設けられている。そして、蓄熱体3a、3bには、給気系および排気系の配管が接続されている。より詳しくは、蓄熱体3a、3bの一端には、給気系上流側配管11および排気系下流側配管22が、第一流路切替手段4a、4bを介して接続されており、他端には、給気系下流側配管12および燃焼室1の連絡孔21a、21bが第二流路切替手段5a、5bを介して接続されている。ここで、第一流路切替手段4a、4bは、それぞれ給気系上流側配管11に設けられる給気入口弁41a、41bおよび排気系下流側配管22に設けられる排気出口弁42a、42bからなる。同じく、第二流路切替手段5a、5bは、それぞれ給気系下流側配管12に設けられる給気出口弁51a、51bおよび燃焼室1の連絡孔21a、21bに設けられる排気入口弁52a、52bからなる。これらの弁のうち、給気入口弁41a、41b、排気出口弁42a、42bおよび給気出口弁51a、51bは、配管の途中に設けられるものであり、一般的なボール弁やバタフライ弁が用いられる。一方、排気入口弁52a、52bは、配管に設けられるものではなく、また、高温にさらされることから、ピストンを連絡孔21a、21bに抜き差しする形式のものとする。また、給気系の第一流路切替手段4a、4bより上流側および排気系の第一流路切替手段4a、4bより下流側には、熱交換器6が挿入される。熱交換器6は、燃焼空気と排気ガスとが隔離壁を隔てて対向して流れるものである。そして、給気系上流側配管11の末端には、燃焼空気供給弁72を介してブロワ71が設けられ、排気系下流側配管22の末端には排気口23が設けられる。また、バーナ2には、燃焼ガスを供給するための燃焼ガス供給配管61が接続される。燃焼ガス供給配管61の末端には、燃焼ガス供給弁74を介して燃焼ガス元栓73が設けられる。なお、燃焼空気供給弁72と燃焼ガス供給弁74とは、連動装置75によって連動して開閉し、燃焼空気と燃焼ガスが必ず同時に供給される。さらに、給気系の第二流路切替手段5a、5bの下流側には、バッファタンク31が設けられる。そして、給気系のブロワ71の直後にはバイパス配管32が接続され、熱交換器6および蓄熱体3a、3bをバイパスし、バイパス弁33を介してバッファタンク31と接続されている。   The specific structure of the industrial furnace of this invention is demonstrated based on each drawing. FIG. 1 is a system diagram showing an embodiment of the industrial furnace of the present invention. The present embodiment has a cylindrical combustion chamber 1, which is provided with a burner 2 for heating, and around the combustion chamber 1, two heat accumulators 3 a and 3 b are combusted. The chamber 1 and the open space are not in close contact with each other. And the heat storage body 3a, 3b is connected with piping of an air supply system and an exhaust system. More specifically, the air supply system upstream side pipe 11 and the exhaust system downstream side pipe 22 are connected to one end of the heat storage bodies 3a, 3b via the first flow path switching means 4a, 4b, and the other end is connected to the other end. The air supply system downstream pipe 12 and the communication holes 21a, 21b of the combustion chamber 1 are connected via the second flow path switching means 5a, 5b. Here, the first flow path switching means 4a and 4b include air supply inlet valves 41a and 41b provided in the air supply system upstream pipe 11 and exhaust outlet valves 42a and 42b provided in the exhaust system downstream pipe 22, respectively. Similarly, the second flow path switching means 5a and 5b are respectively provided with air supply outlet valves 51a and 51b provided in the air supply system downstream pipe 12 and exhaust inlet valves 52a and 52b provided in the communication holes 21a and 21b of the combustion chamber 1. Consists of. Among these valves, the air supply inlet valves 41a and 41b, the exhaust outlet valves 42a and 42b, and the air supply outlet valves 51a and 51b are provided in the middle of the piping, and general ball valves and butterfly valves are used. It is done. On the other hand, the exhaust inlet valves 52a and 52b are not provided in the pipes, and are exposed to high temperatures, so that the pistons are inserted into and removed from the communication holes 21a and 21b. A heat exchanger 6 is inserted upstream of the first flow path switching means 4a and 4b in the supply system and downstream of the first flow path switching means 4a and 4b in the exhaust system. In the heat exchanger 6, combustion air and exhaust gas flow opposite to each other with an isolation wall therebetween. A blower 71 is provided at the end of the air supply system upstream side pipe 11 via a combustion air supply valve 72, and an exhaust port 23 is provided at the end of the exhaust system downstream side pipe 22. The burner 2 is connected to a combustion gas supply pipe 61 for supplying combustion gas. A combustion gas main plug 73 is provided at the end of the combustion gas supply pipe 61 via a combustion gas supply valve 74. Note that the combustion air supply valve 72 and the combustion gas supply valve 74 are opened and closed in conjunction with each other by the interlocking device 75, so that combustion air and combustion gas are always supplied simultaneously. Furthermore, a buffer tank 31 is provided on the downstream side of the second flow path switching means 5a, 5b of the air supply system. A bypass pipe 32 is connected immediately after the air supply blower 71, bypasses the heat exchanger 6 and the heat storage bodies 3 a and 3 b, and is connected to the buffer tank 31 via the bypass valve 33.

次に、本実施例の炉を実際に用いる際の、燃焼空気および排気ガスの流れを図1に基づいて説明する。なお、図1は燃焼中のある時点における弁状態を示している。ブロワ71から供給される燃焼空気は、まず熱交換器6に流入し、高温の排気ガスと熱交換して予熱される。続いて、燃焼空気は給気入口弁41aを通って蓄熱体3aに流入し、さらに予熱される。そして燃焼空気は給気出口弁51aを通り、バッファタンク31に流入し、バーナ2に供給される。一方、排気ガスは、燃焼室1の連絡孔21bから蓄熱体3bに流入し、蓄熱体3bに蓄熱する。続いて、排気ガスは排気出口弁42bを通り、熱交換器6に流入し、室温の燃焼空気を予熱する。そして、排気ガスは排気口23から排出される。   Next, the flow of combustion air and exhaust gas when the furnace of the present embodiment is actually used will be described with reference to FIG. FIG. 1 shows the valve state at a certain point during combustion. The combustion air supplied from the blower 71 first flows into the heat exchanger 6 and is preheated by exchanging heat with the hot exhaust gas. Subsequently, the combustion air flows into the heat storage body 3a through the supply air inlet valve 41a, and is further preheated. The combustion air passes through the supply air outlet valve 51a, flows into the buffer tank 31, and is supplied to the burner 2. On the other hand, the exhaust gas flows into the heat storage body 3b from the communication hole 21b of the combustion chamber 1 and stores heat in the heat storage body 3b. Subsequently, the exhaust gas passes through the exhaust outlet valve 42b and flows into the heat exchanger 6 to preheat the room temperature combustion air. Then, the exhaust gas is discharged from the exhaust port 23.

続いて、流路切替手段の動作について説明する。図2は、各弁の動作を示すタイミングチャートであり、点火時を0秒として、横軸に時間をとり、各弁の開閉状況を表す。まず、0〜T秒の間は、図1に示す弁状態となっており、この間の燃焼空気および排気ガスの流れは、上述のとおりである。点火からT秒が経過すると、給気と排気の流路を入れ替えるが、この際、排気ガスが流入していた蓄熱体3bについては、内部の排気ガスを除去してから燃焼空気を流入させる必要がある。燃焼空気に排気ガスが混入すると、酸素濃度が低下して、失火や不完全燃焼の原因となるからである。そこで、点火からT秒後、まず蓄熱体3aへの燃焼空気の供給をおよび蓄熱体3bへの排気ガスの供給を止め(給気入口弁41aおよび排気入口弁52bを閉)、蓄熱体3aへ排気ガスを、蓄熱体3bへ燃焼空気を供給する(給気入口弁41bおよび排気入口弁52aを開)。ここで、燃焼空気は蓄熱体3bからバーナ2へは供給せず(給気出口弁51bを閉のまま)、そのまま排気系へ排出することで(排気出口弁42bを開のまま)、蓄熱体3b内の排気ガスをパージする。この状態をt秒間維持した後、蓄熱体3bからバーナ2への燃焼空気の供給を開始する(給気出口弁51bを開、排気出口弁42bを閉)。ただし、このようにすると排気ガスをパージするt秒間の間はバーナ2へ燃焼空気が供給されなくなってしまう。そこで、その間だけバイパス弁33を開とし、ブロワ71から直接燃焼空気を供給する。これを蓄熱体3aおよび3bで交互に繰り返すことで、常に燃焼空気を予熱することができる。なお、弁の切り替えにより生じる圧力変動はバッファタンク31により吸収され、バーナ2へは安定的に燃焼空気が供給される。また、実際の弁の開閉には数秒程度の応答時間を要するため、それを見込んで弁の開閉時間(T、t)を設定することが望ましい。 Subsequently, the operation of the flow path switching means will be described. FIG. 2 is a timing chart showing the operation of each valve, and represents the open / close state of each valve with the horizontal axis taking time when ignition is 0 second. First, the valve state shown in FIG. 1 is maintained for 0 to T s seconds, and the flow of combustion air and exhaust gas during this period is as described above. When T s seconds have elapsed since the ignition, the flow paths of the supply air and the exhaust gas are switched. At this time, for the heat accumulator 3b into which the exhaust gas has flowed, the combustion air is flowed after removing the exhaust gas inside. There is a need. This is because if the exhaust gas is mixed into the combustion air, the oxygen concentration decreases, causing misfire or incomplete combustion. Therefore, after T s seconds from ignition, first, supply of combustion air to the heat storage body 3a and supply of exhaust gas to the heat storage body 3b are stopped (the air supply inlet valve 41a and the exhaust inlet valve 52b are closed), and the heat storage body 3a Exhaust gas and combustion air are supplied to the heat accumulator 3b (the intake air inlet valve 41b and the exhaust inlet valve 52a are opened). Here, the combustion air is not supplied from the heat accumulator 3b to the burner 2 (while the air supply outlet valve 51b is closed), but is discharged as it is to the exhaust system (while the exhaust outlet valve 42b is opened), so that the heat accumulator The exhaust gas in 3b is purged. After this state was maintained for t p seconds, from the regenerator 3b starts supplying combustion air to the burner 2 (the air supply outlet valve 51b opens, the exhaust outlet valve 42b closed). However, t p seconds period of purging the exhaust gases so doing would combustion air to the burner 2 is not supplied. Therefore, the bypass valve 33 is opened only during that time, and combustion air is supplied directly from the blower 71. By repeating this alternately with the heat accumulators 3a and 3b, the combustion air can always be preheated. The pressure fluctuation caused by the switching of the valve is absorbed by the buffer tank 31, and the combustion air is stably supplied to the burner 2. Also, it takes a response time of about several seconds to open and close the actual valve, in anticipation of its valve closing time (T s, t p) it is desirable to set the.

図3は、本実施例の炉の中心軸断面図である。ただし、給気系や排気系の各配管は省略している。本実施例はるつぼ炉であり、円筒形状の燃焼室1を備え、その内部にるつぼ101が設置される。燃焼室1の下部にはバーナ2が備えられ、るつぼ101の設置部分およびバーナ2の周囲には耐火レンガ102が設けられる。るつぼ101の上端にはシール110が設けられ、るつぼ101の内側と外側とを隔離している。そして、燃焼室1の上部周囲には、セラミックファイバーのブランケット103を介して蓄熱体3a、3bが設けられる。ここで蓄熱体3a、3bは、閉鎖された空間にアルミナ製の筒型(たとえば、長さ100mm、外径30mm、内径20mmのもの)の蓄熱材を多数詰めたものである。そして、ブランケット103には連絡孔21a、21bが設けられ、燃焼室1と蓄熱体3a、3bとが連絡されている(排気入口弁については省略)。蓄熱体3a、3bおよび燃焼室1の周囲は断熱レンガ104で覆われ、その周囲には断熱ボード105、超断熱材106が設けられ、さらにその表面に外装材107が設けられた構造となっている。また、熱交換器6は、炉の下部周囲に設けられる。このように構成することで、燃焼室1から蓄熱体3a、3bへ排気ガスが流通する際の熱エネルギの損失が最小限に抑えられ、さらに燃焼室1から蓄熱体3a、3bに直接熱が伝達され、その熱を燃焼空気の予熱に用いることができるため、熱エネルギを無駄にすることなく、効率が向上する。また、燃焼室1内において、高温のガスは上方へ移動することから、本実施例のように蓄熱体3a、3bを炉の上方に配置することで、より効率的に燃焼室1から蓄熱体3a、3bへ伝熱させることができる。熱交換器6については、炉から直接伝熱されるものではないが、本実施例のように炉の周囲に配置することで、省スペース化を図ることができる。なお、炉の具体的な大きさはとくに限定されないが、本実施例においては直径1.1m〜1.4m程度を想定している。炉をこのように形成し、たとえばT=60秒、t=1秒として稼動することで、室温(20度)の燃焼空気を、熱交換器において200度程度に予熱し、さらに蓄熱体において500度程度まで予熱するものである。 FIG. 3 is a cross-sectional view of the central axis of the furnace of the present embodiment. However, each piping of the air supply system and the exhaust system is omitted. The present embodiment is a crucible furnace, which includes a cylindrical combustion chamber 1 in which a crucible 101 is installed. A burner 2 is provided at the lower part of the combustion chamber 1, and a refractory brick 102 is provided around the installation part of the crucible 101 and around the burner 2. A seal 110 is provided at the upper end of the crucible 101 to separate the inside and the outside of the crucible 101. Then, around the upper part of the combustion chamber 1, heat storage bodies 3 a and 3 b are provided via a ceramic fiber blanket 103. Here, the heat storage bodies 3a and 3b are made by packing a large number of heat storage materials of a cylindrical shape made of alumina (for example, having a length of 100 mm, an outer diameter of 30 mm, and an inner diameter of 20 mm) in a closed space. The blanket 103 is provided with communication holes 21a and 21b, and the combustion chamber 1 and the heat accumulators 3a and 3b are in communication (the exhaust inlet valve is omitted). The heat accumulators 3a and 3b and the combustion chamber 1 are covered with a heat insulating brick 104, a heat insulating board 105 and a super heat insulating material 106 are provided around the heat storage bricks 104, and an exterior material 107 is provided on the surface. Yes. The heat exchanger 6 is provided around the lower part of the furnace. With this configuration, the loss of heat energy when exhaust gas flows from the combustion chamber 1 to the heat storage bodies 3a and 3b is minimized, and heat is directly transmitted from the combustion chamber 1 to the heat storage bodies 3a and 3b. Since the heat is transmitted and can be used to preheat the combustion air, efficiency is improved without wasting heat energy. Further, since the high-temperature gas moves upward in the combustion chamber 1, the heat storage bodies 3 a and 3 b are arranged above the furnace as in this embodiment, so that the heat storage body can be more efficiently transferred from the combustion chamber 1. Heat can be transferred to 3a and 3b. The heat exchanger 6 is not directly transferred from the furnace, but can be saved in space by being arranged around the furnace as in this embodiment. In addition, although the specific magnitude | size of a furnace is not specifically limited, In a present Example, the diameter of 1.1m-about 1.4m is assumed. By forming the furnace in this way and operating for example at T s = 60 seconds and t p = 1 second, the room temperature (20 degrees) combustion air is preheated to about 200 degrees in the heat exchanger, and further the heat storage body Is preheated to about 500 degrees.

本発明の工業炉は、上記の実施例に限定されるものではない。炉の種類は、るつぼ炉以外にも、溶融炉、加熱炉、焼却炉など、どのような炉であってもよい。また、蓄熱体についても、内部に充填される蓄熱材の素材や形状などは、自由に選択することができ、また蓄熱体が三個以上設けられるものであってもよい。蓄熱体の個数が増えると、流路の切り替えが複雑になり制御性やメンテナンス性の面で不利になるが、パージ中であっても少なくとも一つの蓄熱体で常に予熱できるので、より安定して高温の燃焼空気をバーナに供給できる。   The industrial furnace of this invention is not limited to said Example. The type of furnace may be any furnace other than a crucible furnace, such as a melting furnace, a heating furnace, or an incinerator. Moreover, also about a heat storage body, the raw material of the heat storage material with which an inside is filled, a shape, etc. can be selected freely, and three or more heat storage bodies may be provided. As the number of heat storage elements increases, switching of the flow path becomes complicated and disadvantageous in terms of controllability and maintainability, but it is more stable because at least one heat storage element can always be preheated even during purging. Hot combustion air can be supplied to the burner.

本発明の工業炉の系統図。The system diagram of the industrial furnace of this invention. 流路切替手段の動作を示すタイミングチャート。The timing chart which shows operation | movement of a flow-path switching means. 炉の断面図。Cross section of the furnace.

1 燃焼室
2 バーナ
3a、3b 蓄熱体
4a、4b 第一流路切替手段
5a、5b 第二流路切替手段
6 熱交換器
11 給気系上流側配管
12 給気系下流側配管
21a、21b 連絡孔
22 排気系下流側配管
32 バイパス配管
33 バイパス弁
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Burner 3a, 3b Thermal storage body 4a, 4b 1st flow-path switching means 5a, 5b 2nd flow-path switching means 6 Heat exchanger 11 Supply system upstream side piping 12 Supply system downstream side piping 21a, 21b Communication hole 22 Exhaust system downstream piping
32 Bypass piping
33 Bypass valve

Claims (3)

燃焼室(1)と、該燃焼室(1)を加熱するバーナ(2)と、該バーナ(2)に燃焼空気を供給する給気系と、前記燃焼室(1)から排気ガスを排出する排気系と、を備え、
前記給気系および前記排気系の途中に、複数個の蓄熱体(3a、3b)が並列に挿入され、
各蓄熱体(3a、3b)の一端が、前記給気系の上流側配管(11)および前記排気系の下流側配管(22)に、それぞれ第一流路切替手段(4a、4b)を介して接続され、各蓄熱体(3a、3b)の他端が、前記給気系の下流側配管(12)および前記燃焼室(1)の連絡孔(21a、21b)に、それぞれ第二流路切替手段(5a、5b)を介して接続され、
前記の各蓄熱体(3a、3b)が、前記燃焼室(1)と、開放空間を介さず密接していることを特徴とする工業炉。
A combustion chamber (1), a burner (2) for heating the combustion chamber (1), an air supply system for supplying combustion air to the burner (2), and exhaust gas is discharged from the combustion chamber (1). An exhaust system,
In the middle of the air supply system and the exhaust system, a plurality of heat storage bodies (3a, 3b) are inserted in parallel,
One end of each heat storage body (3a, 3b) is connected to the upstream pipe (11) of the air supply system and the downstream pipe (22) of the exhaust system via first flow path switching means (4a, 4b), respectively. The other end of each of the heat storage bodies (3a, 3b) is connected to the downstream pipe (12) of the air supply system and the communication hole (21a, 21b) of the combustion chamber (1), respectively. Connected via means (5a, 5b),
Each industrial heat storage body (3a, 3b) is in close contact with the combustion chamber (1) without an open space.
前記給気系に、前記蓄熱体(3a,3b)、前記第一流路切替手段(4a、4b)および前記第二流路切替手段(5a、5b)をバイパスするバイパス配管(32)が設けられており、該バイパス配管(32)には流路を開閉するバイパス弁(33)が設けられていることを特徴とする請求項1記載の工業炉。A bypass pipe (32) that bypasses the heat storage body (3a, 3b), the first flow path switching means (4a, 4b) and the second flow path switching means (5a, 5b) is provided in the air supply system. The industrial furnace according to claim 1, wherein the bypass pipe (32) is provided with a bypass valve (33) for opening and closing the flow path. 前記給気系の第一流路切替手段(4a、4b)より上流側および前記排気系の第一流路切替手段(4a、4b)より下流側に、熱交換器(6)が挿入されることを特徴とする請求項1又は2記載の工業炉。
The heat exchanger (6) is inserted upstream from the first flow path switching means (4a, 4b) of the air supply system and downstream from the first flow path switching means (4a, 4b) of the exhaust system. The industrial furnace according to claim 1 or 2, characterized in that
JP2008029376A 2008-02-08 2008-02-08 Industrial furnace Expired - Fee Related JP4701255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029376A JP4701255B2 (en) 2008-02-08 2008-02-08 Industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029376A JP4701255B2 (en) 2008-02-08 2008-02-08 Industrial furnace

Publications (2)

Publication Number Publication Date
JP2009186148A JP2009186148A (en) 2009-08-20
JP4701255B2 true JP4701255B2 (en) 2011-06-15

Family

ID=41069567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029376A Expired - Fee Related JP4701255B2 (en) 2008-02-08 2008-02-08 Industrial furnace

Country Status (1)

Country Link
JP (1) JP4701255B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121329A (en) * 2003-10-20 2005-05-12 Chugai Ro Co Ltd Single end type heat accumulation radiant tube burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121329A (en) * 2003-10-20 2005-05-12 Chugai Ro Co Ltd Single end type heat accumulation radiant tube burner

Also Published As

Publication number Publication date
JP2009186148A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US8475161B2 (en) Regenerator burner
KR102357468B1 (en) Recuperator burner with auxiliary heat exchanger
RU2010139010A (en) METHOD FOR FIRING CERAMIC PRODUCTS AND FURNACE FOR CARRYING OUT THE METHOD
JP5787539B2 (en) Burner device and industrial furnace provided with the same
EP3559582B1 (en) Heat exchanger and heat exchange method using same
JP4701255B2 (en) Industrial furnace
JP6400559B2 (en) Regenerative combustion furnace
JP5398686B2 (en) heating furnace
WO2004045012A3 (en) Fuel cell system
CN115615212A (en) Be applied to heat radiation heating device of kiln
JP4938630B2 (en) Thermal storage combustion device
JP4229502B2 (en) Thermal storage radiant tube burner
WO1997024554A1 (en) Gas flow circulation type tubular heating equipment
JP2012122706A (en) Single end type radiant tube burner
TWI640737B (en) Structure of regenerative combustion furnace body
CN107504674B (en) Double-cavity furnace
JP4445222B2 (en) Reactor combustion control method and reactor
JP2996618B2 (en) Thermal storage combustion burner
JP4148492B2 (en) Boiler with heat storage
US20230324125A1 (en) Heat exchanger and use thereof
CN101526264B (en) Energy-saving high-efficiency environment-friendly boiler
JP2001065822A (en) Regenerative burner apparatus equipped with preheating mechanism for fuel gas
JP2004131773A (en) Method for setting duplicate structural furnace body in hot air stove
JP2004138322A (en) Hot air generator
JP2725893B2 (en) Hot gas generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

LAPS Cancellation because of no payment of annual fees