JP4699824B2 - Equipment for removing heavy metals in hydrochloric acid - Google Patents

Equipment for removing heavy metals in hydrochloric acid Download PDF

Info

Publication number
JP4699824B2
JP4699824B2 JP2005200797A JP2005200797A JP4699824B2 JP 4699824 B2 JP4699824 B2 JP 4699824B2 JP 2005200797 A JP2005200797 A JP 2005200797A JP 2005200797 A JP2005200797 A JP 2005200797A JP 4699824 B2 JP4699824 B2 JP 4699824B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
exchange resin
ion exchange
heavy metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005200797A
Other languages
Japanese (ja)
Other versions
JP2007015900A (en
Inventor
靖子 矢古宇
裕 村上
慶太 由良
展久 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005200797A priority Critical patent/JP4699824B2/en
Publication of JP2007015900A publication Critical patent/JP2007015900A/en
Application granted granted Critical
Publication of JP4699824B2 publication Critical patent/JP4699824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、強塩基性陰イオン交換樹脂を用いて重金属含有塩酸中の重金属を除去するに際し、重金属が形成する陰イオン性金属塩素錯体の吸着量を従来に比べて増加させることができ、また、陰イオン性金属塩素錯体を吸着した強塩基性陰イオン交換樹脂を再生させる再生液の量を従来に比べて低減させることができるようにした、塩酸中重金属除去装置に関するものである。 The present invention can increase the adsorption amount of an anionic metal chlorine complex formed by heavy metals when removing heavy metals in hydrochloric acid containing heavy metals using a strongly basic anion exchange resin, The present invention relates to an apparatus for removing heavy metals in hydrochloric acid, which is capable of reducing the amount of regenerating solution for regenerating a strongly basic anion exchange resin adsorbed with an anionic metal chlorine complex as compared with the prior art.

プラスチック廃棄物の量は、近年ますます増加しており、特に、塩化ビニルなどの塩素含有廃プラスチックを、環境を害することなく効率的に再資源化し、再利用する技術の開発が強く要望されている。このような技術の一つとして、製鉄所において、塩素含有廃プラスチックを脱塩素設備により加熱・溶融して塩素を取り除き、脱塩素処理されたプラスチックを造粒して高炉還元剤として再利用することが行われている。   The amount of plastic waste has been increasing in recent years, and in particular, there is a strong demand for the development of technologies that efficiently recycle and reuse chlorine-containing waste plastics such as vinyl chloride without harming the environment. Yes. As one of such technologies, the chlorine-containing waste plastic is heated and melted by a dechlorination facility to remove chlorine, and the dechlorinated plastic is granulated and reused as a blast furnace reducing agent. Has been done.

そして、前記脱塩素設備(脱塩素工程)から発生した塩素ガスを含む排ガスは、1200℃の高温で完全燃焼された後、ダイオキシンの再合成を防ぐため90℃まで急冷され、吸収除害塔で濃度18%程度の塩酸として回収されている。この回収塩酸には鉄、鉛、亜鉛、クロムなどの重金属が含まれている。   The exhaust gas containing chlorine gas generated from the dechlorination facility (dechlorination step) is completely burned at a high temperature of 1200 ° C., and then rapidly cooled to 90 ° C. to prevent re-synthesis of dioxins. It is recovered as hydrochloric acid with a concentration of about 18%. This recovered hydrochloric acid contains heavy metals such as iron, lead, zinc, and chromium.

ところで、イオン交換樹脂の用途のひとつとして金属の分離・回収がある。このイオン交換においては、溶液中の陽イオンは陽イオン交換樹脂に吸着され、陰イオンは陰イオン交換樹脂に吸着される。ただし、金属陽イオンは溶液中で陰イオン性金属錯体を形成するものがあり、この場合、陰イオン交換樹脂で陰イオン性金属錯体を吸着することにより溶液中の金属を除去することが可能である(例えば、特許文献1参照)。   By the way, one of the uses of the ion exchange resin is separation and recovery of metals. In this ion exchange, the cation in the solution is adsorbed on the cation exchange resin, and the anion is adsorbed on the anion exchange resin. However, some metal cations form an anionic metal complex in solution. In this case, it is possible to remove the metal in the solution by adsorbing the anionic metal complex with an anion exchange resin. Yes (see, for example, Patent Document 1).

また、溶液中の陰イオン性金属錯体を除去する技術として、強酸中に含まれる陰イオン性金属錯体を強塩基性陰イオン交換樹脂を用いて除去する技術があり、塩酸中に含まれる鉄分を除去する場合に適用されている(例えば、特許文献2参照)。
特公昭54−12245号公報(第1〜3頁) 特開昭58−70879号公報(第1〜4頁) 特開2004−174415号公報(第2頁) 特開2003−265902号公報(第2頁)
In addition, as a technique for removing an anionic metal complex in a solution, there is a technique for removing an anionic metal complex contained in a strong acid by using a strongly basic anion exchange resin, and iron contained in hydrochloric acid is removed. It is applied when removing (see, for example, Patent Document 2).
Japanese Patent Publication No.54-12245 (pages 1 to 3) JP 58-70879 (pages 1 to 4) JP 2004-174415 A (2nd page) JP 2003-265902 A (2nd page)

前述したように、溶液中の陰イオン性金属錯体を除去する方法として、強塩基性陰イオン交換樹脂に陰イオン性金属錯体を吸着させる方法が知られており、塩酸中に含まれる重金属である鉄の陰イオン性金属塩素錯体を強塩基性陰イオン交換樹脂に吸着させて除去する方法が知られていた。   As described above, as a method of removing an anionic metal complex in a solution, a method of adsorbing an anionic metal complex on a strongly basic anion exchange resin is known, and is a heavy metal contained in hydrochloric acid. There has been known a method for removing an anionic metal chloride complex of iron by adsorbing it on a strongly basic anion exchange resin.

ところが、強塩基性陰イオン交換樹脂では、これに吸着させた重金属の陰イオン性金属錯体(例えば、陰イオン性金属塩素錯体)を再生液(例えば、低濃度の塩酸)により強塩基性陰イオン交換樹脂から脱着させようとした場合、効率的に脱着を行うこと(例えば、高濃度かつ高純度の塩化鉄溶液を高い回収率で得ること)が困難であった。   However, in a strongly basic anion exchange resin, an anionic metal complex (for example, an anionic metal chlorine complex) adsorbed on the heavy metal is adsorbed to a strong base anion by a regenerating solution (for example, low-concentration hydrochloric acid). When trying to desorb from an exchange resin, it was difficult to perform desorption efficiently (for example, to obtain a high concentration and high purity iron chloride solution with a high recovery rate).

例えば、濃度18%塩酸中の鉄(この塩酸中の鉄濃度:1000mg/L)を、空間速度SV=2h−1で常温(室温:20℃)にて強塩基性陰イオン交換樹脂により吸着させると、約4時間で破過(鉄が流出)し、陰イオン性鉄塩素錯体[FeClを吸着したこの強塩基性陰イオン交換樹脂の再生では再生液として0.5規定塩酸を通液すると、再生終了まで約4時間であった。吸着、再生の時間がほぼ同じ、つまり、被吸着液に対してほぼ同じ液量の再生液が必要ということになる。再生液は廃液処理が必要で、費用が発生することになる。この点からも、強塩基性陰イオン交換樹脂を用いて効率的に陰イオン性鉄塩素錯体[FeClを吸着でき、また、効率的に強塩基性陰イオン交換樹脂から前記[FeClを脱着できることが必要となっている。 For example, iron in 18% hydrochloric acid (iron concentration in this hydrochloric acid: 1000 mg / L) is adsorbed by a strongly basic anion exchange resin at room temperature (room temperature: 20 ° C.) at a space velocity of SV = 2h −1 . And broke through (iron flowed out) in about 4 hours, and adsorbed the anionic iron-chlorine complex [FeCl 4 ] . In the regeneration of this strongly basic anion exchange resin, when 0.5 N hydrochloric acid was passed as a regeneration solution, it took about 4 hours to complete the regeneration. The time for adsorption and regeneration is almost the same, that is, the regenerated liquid having substantially the same amount of the liquid to be adsorbed is required. The reclaimed liquid requires waste liquid treatment, which is expensive. In this respect, efficient anionic iron chloride complex using a strongly basic anion exchange resin [FeCl 4] - can adsorb, also said from efficiently strongly basic anion exchange resin [FeCl 4 It is necessary to be able to desorb .

なお、塩酸中の金属を吸着したイオン交換樹脂の再生には、基本的には水の通水のみでの再生が可能である。鉄の場合、吸着した陰イオン性金属塩素錯体である[FeClを加水分解して、塩化第二鉄FeClの形で脱着させる。しかし、その過程において、鉄錯陰イオン[FeClと水の水酸基OHが反応して水酸化鉄Fe(OH)を生成し、脱着されずに強塩基性陰イオン交換樹脂中に残存することが考えられる。そのため、安定的に高品質の処理液を得るためには、陰イオン性金属塩素錯体を脱着し、不溶物を生成しない程度の低濃度塩酸(0.2〜1規定の塩酸)を使用する必要がある。 It should be noted that the regeneration of the ion exchange resin that has adsorbed the metal in hydrochloric acid can be basically performed only by passing water. In the case of iron, the adsorbed anionic metal chlorine complex [FeCl 4 ] is hydrolyzed and desorbed in the form of ferric chloride FeCl 3 . However, in the process, the iron complex anion [FeCl 4 ] reacts with the hydroxyl group OH − of water to produce iron hydroxide Fe (OH 3 ), which is not desorbed in the strongly basic anion exchange resin. It is thought that it remains. Therefore, in order to stably obtain a high-quality treatment solution, it is necessary to use low-concentration hydrochloric acid (0.2 to 1 N hydrochloric acid) that does not desorb an anionic metal chlorine complex and generate insoluble matter. There is.

本発明の課題は、強塩基性陰イオン交換樹脂を用いて重金属含有塩酸中の重金属を除去するに際し、重金属が形成する陰イオン性金属塩素錯体の吸着量を従来に比べて増加させることができ、また、陰イオン性金属塩素錯体を吸着した強塩基性陰イオン交換樹脂を再生させる再生液の量を従来に比べて低減させることができる塩酸中重金属除去装置を提供することにある。 An object of the present invention is to increase the adsorption amount of an anionic metal chlorine complex formed by heavy metals when removing heavy metals in hydrochloric acid containing heavy metals using a strongly basic anion exchange resin. Another object of the present invention is to provide an apparatus for removing heavy metals in hydrochloric acid, which can reduce the amount of regenerating solution for regenerating a strongly basic anion exchange resin adsorbed with an anionic metal chlorine complex as compared with the prior art.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、強塩基性陰イオン交換樹脂が充填されるイオン交換樹脂塔と、重金属含有塩酸を貯留する回収塩酸タンクと、低濃度塩酸からなる再生液を貯留する再生液タンクと、前記回収塩酸タンクから送出され、前記イオン交換樹脂塔へ供給される重金属含有塩酸を常温より高い所定の温度に加温する加温手段とを備えていることを特徴とする塩酸中重金属除去装置である。 The invention of claim 1 includes an ion exchange resin tower filled with a strongly basic anion exchange resin, a recovered hydrochloric acid tank for storing heavy metal-containing hydrochloric acid, a regenerated liquid tank for storing a regenerated liquid composed of low-concentration hydrochloric acid, A heavy metal removal device in hydrochloric acid, comprising a heating means for heating the heavy metal-containing hydrochloric acid sent from the recovered hydrochloric acid tank and supplied to the ion exchange resin tower to a predetermined temperature higher than normal temperature. is there.

請求項2の発明は、請求項1記載の塩酸中重金属除去装置において、さらに、前記再生液タンクから送出され、前記イオン交換樹脂塔へ供給される再生液を前記所定の温度より低い温度に冷却する冷却手段を備えていることを特徴とする塩酸中重金属除去装置である。 According to a second aspect of the present invention, in the apparatus for removing heavy metal in hydrochloric acid according to the first aspect , the regenerated liquid sent from the regenerated liquid tank and supplied to the ion exchange resin tower is cooled to a temperature lower than the predetermined temperature. And a cooling means for removing heavy metal in hydrochloric acid.

請求項3の発明は、請求項1又は2記載の塩酸中重金属除去装置において、前記所定の温度は、25〜80℃であることを特徴とするものである。 According to a third aspect of the present invention, in the heavy metal removal apparatus for hydrochloric acid according to the first or second aspect, the predetermined temperature is 25 to 80 ° C.

請求項4の発明は、請求項1、2又は3記載の重金属除去装置において、前記重金属含有塩酸は、塩素含有廃プラスチックの脱塩素工程からの排ガスから回収した回収塩酸であることを特徴とするものである。 The invention according to claim 4 is the heavy metal removal apparatus according to claim 1, 2, or 3, wherein the heavy metal-containing hydrochloric acid is recovered hydrochloric acid recovered from the exhaust gas from the chlorine-containing waste plastic dechlorination step. Is .

本発明の塩酸中重金属除去装置によれば、強塩基性陰イオン交換樹脂を用いて重金属含有塩酸中の重金属を除去するに際し、常温より高い所定の温度に加温した重金属含有塩酸を強塩基性陰イオン交換樹脂に接触させるようにしたので、重金属が形成する陰イオン性金属塩素錯体の吸着量を前記加温しない場合に比べて増加させることができ、塩酸中の重金属を効果的に除去することができる。また、前記重金属の陰イオン性金属塩素錯体を吸着した強塩基性陰イオン交換樹脂に、前記加温された重金属含有塩酸より低い温度に液温が設定された低濃度塩酸を再生液として接触させるようにしたので、前記低い温度にしない場合に比べて再生液の量を低減させることができる。 According to the apparatus for removing heavy metals in hydrochloric acid of the present invention, when removing heavy metals in heavy metal-containing hydrochloric acid using a strongly basic anion exchange resin, the heavy metal-containing hydrochloric acid heated to a predetermined temperature higher than room temperature is strongly basic. Since it is brought into contact with the anion exchange resin, the adsorption amount of the anionic metal chlorine complex formed by the heavy metal can be increased as compared with the case where the heating is not performed, and the heavy metal in hydrochloric acid is effectively removed. be able to. In addition, the strongly basic anion exchange resin adsorbing the heavy metal anionic metal chlorine complex is contacted with a low concentration hydrochloric acid whose liquid temperature is set lower than the heated heavy metal-containing hydrochloric acid as a regenerating liquid. Since it did in this way, the quantity of a regenerated liquid can be reduced compared with the case where it does not make the said low temperature.

以下、本発明について説明する。従来より、次のことが知られている。すなわち、塩酸中の重金属イオン(陽イオン)は、陰イオン性金属塩素錯体を形成するものが多く、鉄もその一つである。強塩基性陰イオン交換樹脂を用いた場合、陰イオンを吸着するため、強塩基性陰イオン交換樹脂は、塩酸中に形成された陰イオン性金属塩素錯体を吸着する。また、陰イオン性金属塩素錯体が吸着されている強塩基性陰イオン交換樹脂を再生する場合、再生液として水を流すことで樹脂雰囲気の塩素濃度が低くなり、陰イオン性金属塩素錯体がClイオンとの結合が解かれて重金属イオン(陽イオン)に戻り、強塩基性陰イオン交換樹脂から脱着される。 The present invention will be described below. Conventionally, the following is known. That is, many heavy metal ions (cations) in hydrochloric acid form an anionic metal chlorine complex, and iron is one of them. When a strongly basic anion exchange resin is used, an anion is adsorbed, so that the strongly basic anion exchange resin adsorbs an anionic metal chlorine complex formed in hydrochloric acid. In addition, when regenerating a strongly basic anion exchange resin on which an anionic metal chlorine complex has been adsorbed, the chlorine concentration in the resin atmosphere is lowered by flowing water as a regenerating solution, and the anionic metal chlorine complex becomes Cl. - be solved binding to the ion returns to the heavy metal ion (cation), it is desorbed from the strongly basic anion exchange resin.

これに対して、発明者らの実験によると、鉄を含有する塩酸の液温が高いほど、強塩基性陰イオン交換樹脂による陰イオン性鉄塩素錯体[FeClの吸着量が増加し、例えば液温50℃では20℃の場合の約2倍の吸着量が得られた。この場合、吸着量が多いということは、液温50℃では20℃のときに比べて鉄含有塩酸中の陰イオン性鉄塩素錯体[FeClの量が多いと考えられる。また、再生液(低濃度塩酸)の液温が低いほど、再生液の量を低減でき、例えば液温10℃の低温での再生液では、その液量が50℃の場合の約2/3ですむという結果が得られた。 On the other hand, according to experiments by the inventors, the higher the liquid temperature of hydrochloric acid containing iron, the higher the amount of anionic iron-chlorine complex [FeCl 4 ] adsorbed by the strongly basic anion exchange resin. For example, at a liquid temperature of 50 ° C., an adsorption amount approximately twice that at 20 ° C. was obtained. In this case, the fact that the adsorption amount is large is considered that the amount of the anionic iron-chlorine complex [FeCl 4 ] − in the iron-containing hydrochloric acid is larger at the liquid temperature of 50 ° C. than at 20 ° C. Further, the lower the temperature of the regeneration solution (low concentration hydrochloric acid), the smaller the amount of the regeneration solution. For example, in the case of a regeneration solution at a low temperature of 10 ° C., about 2/3 of the amount of the regeneration solution is 50 ° C. The result that it was not necessary was obtained.

また、塩酸中では、陰イオン性金属塩素錯体を形成する重金属イオンであっても、重金属イオンの全量が陰イオン性金属塩素錯体を形成するわけではない。例えば、塩酸濃度が高い方が、低いときよりも陰イオン性金属塩素錯体の濃度が大きくなる(図5参照)。塩酸濃度が低いときには、陰イオン性金属塩素錯体を形成せずに重金属イオンとして存在している方が多い。   In hydrochloric acid, even if heavy metal ions form an anionic metal chlorine complex, the total amount of heavy metal ions does not form an anionic metal chlorine complex. For example, the concentration of the anionic metal chlorine complex is higher when the hydrochloric acid concentration is higher than when it is lower (see FIG. 5). When the hydrochloric acid concentration is low, it is often present as a heavy metal ion without forming an anionic metal chlorine complex.

この点や、前記の実験結果から、陰イオン性金属塩素錯体を形成する重金属を含有する塩酸において、その液温によっても、重金属イオンと陰イオン性金属塩素錯体の存在比が変わることが考えられる(図5参照)。   From this point and the above experimental results, it is considered that the abundance ratio of heavy metal ions and anionic metal chlorine complexes changes depending on the liquid temperature in hydrochloric acid containing heavy metals that form anionic metal chlorine complexes. (See FIG. 5).

よって、本発明において重金属が形成する陰イオン性金属塩素錯体の吸着量を従来に比べて増加させることができ、また、陰イオン性金属塩素錯体を吸着した強塩基性陰イオン交換樹脂の再生液の量を従来に比べて低減させることができるという技術的理由については、つぎのように推定される。すなわち、重金属を含有する塩酸の液温が高いほど、塩酸中の陰イオン性金属塩素錯体の濃度が高くなり、強塩基性陰イオン交換樹脂による陰イオン性金属塩素錯体の吸着量が増加するものと考えられる。また、再生液の液温が低いほど、陰イオン性金属塩素錯体の濃度が低くなり、強塩基性陰イオン交換樹脂に吸着されている陰イオン性金属塩素錯体がより多く重金属イオン(陽イオン)に戻るため、脱着されやすくなるものと考えられる。   Therefore, the adsorption amount of the anionic metal chlorine complex formed by the heavy metal in the present invention can be increased as compared with the conventional one, and the regenerated solution of the strongly basic anion exchange resin adsorbing the anionic metal chlorine complex The technical reason that the amount of can be reduced as compared with the prior art is estimated as follows. That is, the higher the liquid temperature of hydrochloric acid containing heavy metal, the higher the concentration of anionic metal chlorine complex in hydrochloric acid, and the more the amount of anionic metal chlorine complex adsorbed by the strongly basic anion exchange resin increases. it is conceivable that. In addition, the lower the temperature of the regenerated solution, the lower the concentration of the anionic metal chlorine complex, and the more the anionic metal chlorine complex adsorbed on the strongly basic anion exchange resin, the heavy metal ion (cation). It is considered that it is easy to be detached.

本発明においては、強塩基性陰イオン交換樹脂に接触させる重金属含有塩酸の液温は、常温より高い25〜80℃の温度範囲がよい。この範囲を低い温度では強塩基性陰イオン交換樹脂による陰イオン性金属塩素錯体の高い吸着量を得ることができず、一方、この範囲の上限を超えると強塩基性陰イオン交換樹脂の耐用温度に近くなり、また、加温に要するコストの点からも好ましくない。重金属を含有する塩酸の液温は、より好ましくは30〜70℃の範囲がよい。   In the present invention, the temperature of the heavy metal-containing hydrochloric acid brought into contact with the strongly basic anion exchange resin is preferably in the temperature range of 25 to 80 ° C., which is higher than normal temperature. If the temperature is lower than this range, a high adsorption amount of the anionic metal chloride complex by the strong base anion exchange resin cannot be obtained. On the other hand, if the upper limit of this range is exceeded, the service temperature of the strong base anion exchange resin It is also not preferable from the viewpoint of the cost required for heating. The liquid temperature of hydrochloric acid containing heavy metals is more preferably in the range of 30 to 70 ° C.

また、本発明においては、陰イオン性金属塩素錯体を吸着した強塩基性陰イオン交換樹脂に、再生液として接触させる低濃度塩酸(0.2〜1規定の塩酸)の液温は、吸着の際に加温された重金属含有塩酸の液温より低い温度に設定することがよい。前記低い温度にしないと、再生液低減効果が得られないためである。再生液低減効果を確実に得、かつ、冷却に要するコストを考慮すると、再生液としての低濃度塩酸の液温は、5〜20℃の範囲がよい。   In the present invention, the liquid temperature of low-concentration hydrochloric acid (0.2 to 1 N hydrochloric acid) brought into contact with a strongly basic anion exchange resin adsorbed with an anionic metal chlorine complex as a regenerating solution is It is preferable to set the temperature lower than the liquid temperature of the heavy metal-containing hydrochloric acid heated at the time. This is because the regeneration liquid reducing effect cannot be obtained unless the temperature is lowered. If the regenerative liquid reduction effect is obtained reliably and the cost required for cooling is taken into consideration, the liquid temperature of the low-concentration hydrochloric acid as the regenerative liquid is preferably in the range of 5 to 20 ° C.

さらに、重金属含有塩酸中の重金属を除去するに際し、前記重金属含有塩酸を強塩基性陰イオン交換樹脂に接触させて、前記強塩基性陰イオン交換樹脂に前記重金属による陰イオン性金属塩素錯体を吸着させる吸着工程と、前記陰イオン性金属塩素錯体を吸着した強塩基性陰イオン交換樹脂に低濃度塩酸を再生液として接触させて、該強塩基性陰イオン交換樹脂を再生させる再生工程とを備えるものにおいて、前記吸着工程における吸着温度が前記再生工程における再生温度よりも高くなるようにすることで、使用する再生液量を少なく抑えることができる。この吸着温度と再生温度との差が10℃以上、より好ましくは30℃以上とすることで、使用する強塩基性陰イオン交換樹脂量、再生液量が少なくてすみ、さらに低コストにて重金属が除去できる。 Furthermore, when removing heavy metals from the heavy metal-containing hydrochloric acid, the heavy metal-containing hydrochloric acid is brought into contact with a strongly basic anion exchange resin to adsorb the anionic metal chlorine complex by the heavy metal to the strongly basic anion exchange resin. And a regeneration step of bringing the strong base anion exchange resin adsorbing the anionic metal chlorine complex into contact with low-concentration hydrochloric acid as a regeneration solution to regenerate the strong base anion exchange resin. In the present invention , the amount of the regenerating liquid to be used can be reduced by making the adsorption temperature in the adsorption step higher than the regeneration temperature in the regeneration step. By setting the difference between the adsorption temperature and the regeneration temperature to 10 ° C. or more, more preferably 30 ° C. or more, the amount of strongly basic anion exchange resin and the amount of the regeneration solution used can be reduced, and heavy metals can be produced at low cost. Can be removed.

鉄を含有する濃度18%塩酸からなる試験溶液をつくり、この試験溶液中の鉄を強塩基性陰イオン交換樹脂に吸着させる場合の試験溶液の液温の影響を確認するため、カラムへの通液式でなく容器内でのバッチ式の吸着試験を実施した。試験溶液は、濃度18%塩酸にFe(Fe3+として、FeCl・6HO)を所定濃度溶解させたものを用い、溶液温度は20℃、50℃とした。予めコンディショニングした三菱化学製の強塩基性陰イオン交換樹脂(商品名:SA10A)を10mL分取し、100mLの前記試験溶液に投入した。強塩基性陰イオン交換樹脂に試験溶液を十分に接触させるため、スターラーで撹拌した。所定時間後に溶液中の鉄残留濃度を測定し、強塩基性陰イオン交換樹脂への鉄吸着量を算出した。試験条件を表1に示す。 In order to confirm the influence of the test solution liquid temperature when making a test solution consisting of 18% hydrochloric acid containing iron and adsorbing iron in the test solution to a strongly basic anion exchange resin, the test solution was passed through a column. A batch type adsorption test was conducted in a container instead of a liquid type. As a test solution, a solution obtained by dissolving Fe (Fe 3+ , FeCl 3 .6H 2 O) at a predetermined concentration in 18% concentration hydrochloric acid was used, and the solution temperature was 20 ° C. and 50 ° C. 10 mL of a strongly basic anion exchange resin (trade name: SA10A) manufactured by Mitsubishi Chemical, which was conditioned in advance, was collected and added to 100 mL of the test solution. In order to bring the test solution into sufficient contact with the strongly basic anion exchange resin, it was stirred with a stirrer. After a predetermined time, the residual iron concentration in the solution was measured, and the amount of iron adsorbed on the strongly basic anion exchange resin was calculated. Table 1 shows the test conditions.

Figure 0004699824
Figure 0004699824

試験結果を図1に示す。図1は鉄含有塩酸溶液(試験溶液)の液温が20℃と50℃の場合の吸着等温線の例を示すグラフである。図1では、試験溶液中の鉄残留濃度と強塩基性陰イオン交換樹脂への鉄吸着量を両対数グラフにプロットしてある。   The test results are shown in FIG. FIG. 1 is a graph showing an example of an adsorption isotherm when the liquid temperature of an iron-containing hydrochloric acid solution (test solution) is 20 ° C. and 50 ° C. In FIG. 1, the residual iron concentration in the test solution and the amount of iron adsorbed on the strongly basic anion exchange resin are plotted in a log-log graph.

図1から分かるように、濃度18%塩酸に溶解させた鉄の量がいずれのものにおいても、試験溶液の液温50℃での鉄吸着量は20℃(比較例)での鉄吸着量の約2倍であるという結果が得られた。   As can be seen from FIG. 1, regardless of the amount of iron dissolved in 18% hydrochloric acid, the amount of iron adsorbed at the test solution temperature of 50 ° C. is the iron adsorbed amount at 20 ° C. The result was about twice.

次に、カラムへの通液式での温度影響を確認するため、カラムへの通液式での吸着・再生試験を実施した。まず、温度を10℃、20℃、30℃、40℃、50℃に設定した場合の各温度における恒温器内において、10mLの強塩基性陰イオン交換樹脂(商品名:SA10A)を充填したカラムに、鉄を濃度1000mg/L含有する濃度18%塩酸(試験溶液)をSV=4h−1で通液し、吸着挙動を調べた。 Next, in order to confirm the temperature effect of the liquid flow type to the column, a liquid flow type adsorption / regeneration test was conducted. First, a column packed with 10 mL of strongly basic anion exchange resin (trade name: SA10A) in a thermostat at each temperature when the temperature is set to 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C. Then, 18% hydrochloric acid (test solution) containing iron at a concentration of 1000 mg / L was passed through at SV = 4h −1 to examine the adsorption behavior.

カラムへの通液式での吸着試験の結果を表2と図2に示す。表2及び図2において、温度が10℃と20℃のものは比較例を示し、温度が30℃、40℃及び50℃のものは本発明例を示す。表2は、各温度の試験溶液における破過までの時間と鉄吸着量を示す。図2は、鉄含有塩酸溶液の液温を変化させた場合の鉄吸着挙動の温度依存性の例を示すグラフである。図2では、横軸は通液させた量の試験溶液に含まれる鉄の量とし、縦軸は鉄が吸着されずに破過開始以後にカラムから流出する鉄の濃度としてある。   Table 2 and FIG. 2 show the results of the adsorption test using the liquid flow through the column. In Table 2 and FIG. 2, those with temperatures of 10 ° C. and 20 ° C. show comparative examples, and those with temperatures of 30 ° C., 40 ° C. and 50 ° C. show examples of the present invention. Table 2 shows the time until breakthrough and the iron adsorption amount in the test solution at each temperature. FIG. 2 is a graph showing an example of the temperature dependence of the iron adsorption behavior when the liquid temperature of the iron-containing hydrochloric acid solution is changed. In FIG. 2, the horizontal axis represents the amount of iron contained in the test solution that has been passed through, and the vertical axis represents the concentration of iron that is not adsorbed and flows out of the column after breakthrough starts.

Figure 0004699824
Figure 0004699824

表2と図2から分かるように、試験溶液の液温を高くするに伴い、破過開始(カラムから鉄が流出しはじめること)までのFe吸着量が増加し、液温50℃では20℃の場合の約8.6倍の吸着量が得られた。   As can be seen from Table 2 and FIG. 2, as the liquid temperature of the test solution is increased, the amount of Fe adsorption until breakthrough starts (iron begins to flow out of the column) increases. The amount of adsorption was about 8.6 times that in the case of.

そして、50℃で吸着させたカラム(強塩基性陰イオン交換樹脂のFe吸着量:650mg/10mL−樹脂)について、液温が10℃(本発明例)と50℃(比較例)にそれぞれ設定された0.5規定の塩酸で再生し、鉄の脱離挙動を調べた。結果を表3と図3に示す。図3は再生液の液温が10℃と50℃の場合の再生挙動の温度依存性の例を示すグラフである。図3における縦軸は脱着されて検出される鉄濃度に対応する数値である。   And about the column (Fe adsorption amount of strongly basic anion exchange resin: 650 mg / 10mL-resin) adsorbed at 50 degreeC, liquid temperature is set to 10 degreeC (invention example) and 50 degreeC (comparative example), respectively. It was regenerated with 0.5 N hydrochloric acid, and the iron desorption behavior was examined. The results are shown in Table 3 and FIG. FIG. 3 is a graph showing an example of the temperature dependence of the regeneration behavior when the temperature of the regeneration solution is 10 ° C. and 50 ° C. The vertical axis in FIG. 3 is a numerical value corresponding to the iron concentration detected by desorption.

Figure 0004699824
Figure 0004699824

表3と図3から分かるように、液温10℃の低温の再生液によると、その通液量を50℃の場合の約2/3に減らすことができるという結果が得られた。   As can be seen from Table 3 and FIG. 3, according to the low temperature regenerated liquid having a liquid temperature of 10 ° C., the flow rate could be reduced to about 2/3 of the case of 50 ° C.

図4は本発明による塩酸中重金属除去装置の一例を示す構成説明図である。 FIG. 4 is a structural explanatory view showing an example of an apparatus for removing heavy metals in hydrochloric acid according to the present invention .

図4において、1は重金属含有塩酸を貯留する回収塩酸タンク、2は加温用熱交換器、3は強塩基性陰イオン交換樹脂が充填された第1イオン交換樹脂塔、4は同じく強塩基性陰イオン交換樹脂が充填された第2イオン交換樹脂塔、5は同じく強塩基性陰イオン交換樹脂が充填された第3イオン交換樹脂塔である。   In FIG. 4, 1 is a recovered hydrochloric acid tank for storing heavy metal-containing hydrochloric acid, 2 is a heat exchanger for heating, 3 is a first ion exchange resin tower packed with a strongly basic anion exchange resin, and 4 is a strong base. The second ion exchange resin tower 5 filled with the basic anion exchange resin is a third ion exchange resin tower filled with the strongly basic anion exchange resin.

前記回収塩酸タンク1から加温用熱交換器2にポンプP1を有するラインL1が連絡し、加温用熱交換器2には加温重金属含有塩酸供給ラインL2が連絡している。この加温重金属含有塩酸供給ラインL2と第1イオン交換樹脂塔3の頂部とが開閉弁V1を有するラインL3によって連絡されている。また、第1イオン交換樹脂塔3の底部から第2イオン交換樹脂塔4の頂部に開閉弁V4を有する直列接続用のラインL4が連絡する一方、加温重金属含有塩酸供給ラインL2とこの第2イオン交換樹脂塔4の頂部とが開閉弁V2を有する樹脂塔切替え用のラインL5によって連絡されている。   A line L1 having a pump P1 communicates with the heating heat exchanger 2 from the recovered hydrochloric acid tank 1, and a heating heavy metal-containing hydrochloric acid supply line L2 communicates with the heating heat exchanger 2. The heated heavy metal-containing hydrochloric acid supply line L2 and the top of the first ion exchange resin tower 3 are connected by a line L3 having an on-off valve V1. A series connection line L4 having an on-off valve V4 communicates from the bottom of the first ion exchange resin tower 3 to the top of the second ion exchange resin tower 4, while the heated heavy metal-containing hydrochloric acid supply line L2 and the second The top of the ion exchange resin tower 4 is connected by a resin tower switching line L5 having an on-off valve V2.

また、第2イオン交換樹脂塔4の底部から第3イオン交換樹脂塔5の頂部に開閉弁V5を有する直列接続用のラインL6が連絡する一方、加温重金属含有塩酸供給ラインL2とこの第3イオン交換樹脂塔5の頂部とが開閉弁V3を有する樹脂塔切替え用のラインL7によって連絡されている。さらに、この第3イオン交換樹脂塔5の底部から第1イオン交換樹脂塔3の頂部に開閉弁V6を有する直列接続用のラインL8が連絡している。   A series connection line L6 having an on-off valve V5 communicates from the bottom of the second ion exchange resin tower 4 to the top of the third ion exchange resin tower 5, while the heated heavy metal-containing hydrochloric acid supply line L2 and the third The top of the ion exchange resin tower 5 is connected to a resin tower switching line L7 having an on-off valve V3. Further, a series connection line L8 having an on-off valve V6 communicates from the bottom of the third ion exchange resin tower 5 to the top of the first ion exchange resin tower 3.

また、第1イオン交換樹脂塔3の底部から開閉弁V7を有する精製塩酸導出用のラインL10が、図示しない精製塩酸タンクを有する精製塩酸導出ラインL9に連絡している。同様に、第2イオン交換樹脂塔4の底部から開閉弁V8を有するラインL11が精製塩酸導出ラインL9に連絡し、第3イオン交換樹脂塔5の底部から開閉弁V9を有するラインL12が精製塩酸導出ラインL9に連絡している。   A purified hydrochloric acid derivation line L10 having an on-off valve V7 communicates with a purified hydrochloric acid derivation line L9 having a purified hydrochloric acid tank (not shown) from the bottom of the first ion exchange resin tower 3. Similarly, a line L11 having an opening / closing valve V8 communicates with the purified hydrochloric acid lead-out line L9 from the bottom of the second ion exchange resin tower 4, and a line L12 having an opening / closing valve V9 from the bottom of the third ion exchange resin tower 5 is purified hydrochloric acid. It is in contact with the derivation line L9.

ここで、前記した加温用熱交換器2は、回収塩酸タンク1からポンプP1によって送出されて、イオン交換樹脂塔3,4,5へ供給される重金属含有塩酸を常温より高い所定の温度(25〜80℃)に加温する加温手段を構成している。   Here, the heating heat exchanger 2 described above sends the heavy metal-containing hydrochloric acid fed from the recovered hydrochloric acid tank 1 by the pump P1 and supplied to the ion exchange resin towers 3, 4 and 5 to a predetermined temperature higher than room temperature ( The heating means which heats to 25-80 degreeC is comprised.

さらに、図4において、6は低濃度塩酸からなる再生液を貯留する再生液タンク、7は冷却用熱交換器である。再生液タンク6から冷却用熱交換器7にポンプP2を有するラインL13が連絡している。冷却用熱交換器7には、冷却再生液供給ラインL14が連絡している。この冷却再生液供給ラインL14と第1イオン交換樹脂塔3の底部とが開閉弁V10を有するラインL15によって連絡されている。同様に、冷却再生液供給ラインL14と第2イオン交換樹脂塔4の底部とが開閉弁V11を有するラインL16によって連絡されるとともに、冷却再生液供給ラインL14と第3イオン交換樹脂塔5の底部とが開閉弁V12を有するラインL17によって連絡されている。   Furthermore, in FIG. 4, 6 is a regenerated liquid tank for storing a regenerated liquid composed of low-concentration hydrochloric acid, and 7 is a cooling heat exchanger. A line L13 having a pump P2 communicates from the regenerated liquid tank 6 to the cooling heat exchanger 7. A cooling regenerated liquid supply line L14 communicates with the cooling heat exchanger 7. The cooling regenerated liquid supply line L14 and the bottom of the first ion exchange resin tower 3 are connected by a line L15 having an on-off valve V10. Similarly, the cooling regenerated liquid supply line L14 and the bottom of the second ion exchange resin tower 4 are connected by a line L16 having an on-off valve V11, and the cooling regenerated liquid supply line L14 and the bottom of the third ion exchange resin tower 5 are connected. Are connected by a line L17 having an on-off valve V12.

また、第1イオン交換樹脂塔3の頂部から開閉弁V13を有する再生廃液導出用のラインL19が、図示しない再生廃液タンクを有する再生廃液導出ラインL18に連絡している。同様に、第2イオン交換樹脂塔4の頂部から開閉弁V14を有するラインL20が再生廃液導出ラインL18に連絡し、第3イオン交換樹脂塔5の頂部から開閉弁V15を有するラインL21が再生廃液導出ラインL18に連絡している。   Further, a regeneration waste liquid derivation line L19 having an on-off valve V13 communicates with a regeneration waste liquid derivation line L18 having a regeneration waste liquid tank (not shown) from the top of the first ion exchange resin tower 3. Similarly, a line L20 having an opening / closing valve V14 communicates from the top of the second ion exchange resin tower 4 to a regeneration waste liquid derivation line L18, and a line L21 having an opening / closing valve V15 from the top of the third ion exchange resin tower 5 is a regeneration waste liquid. It is in contact with the derivation line L18.

ここで、前記した冷却用熱交換器7は、再生液タンク6からポンプP2によって送出されて、イオン交換樹脂塔3,4,5へ供給される再生液を吸着の際に加温された重金属含有塩酸の液温より低い温度(5〜20℃)に冷却する冷却手段を構成している。   Here, the cooling heat exchanger 7 described above is a heavy metal heated during adsorption by the regenerative liquid sent from the regenerative liquid tank 6 by the pump P2 and supplied to the ion exchange resin towers 3, 4 and 5. The cooling means which cools to the temperature (5-20 degreeC) lower than the liquid temperature of the containing hydrochloric acid is comprised.

このように構成される重金属含有塩酸中の重金属除去装置において、その運転動作を説明する。まず、第1運転工程として、直列接続された状態の第1イオン交換樹脂塔3と第2イオン交換樹脂塔4とに鉄を含有する塩酸を通液して、鉄の吸着除去を行うとともに、この間に、第3イオン交換樹脂塔5に低濃度塩酸からなる再生液を通液して、第3イオン交換樹脂塔5の再生を行う。   The operation of the heavy metal removing device in the heavy metal-containing hydrochloric acid configured as described above will be described. First, as the first operation process, hydrochloric acid containing iron is passed through the first ion exchange resin tower 3 and the second ion exchange resin tower 4 that are connected in series, and the iron is adsorbed and removed. During this time, the regeneration solution made of low-concentration hydrochloric acid is passed through the third ion exchange resin tower 5 to regenerate the third ion exchange resin tower 5.

すなわち、第1運転工程では、各開閉弁を開閉操作することにより、加温用熱交換器2からの加温された液温が例えば50℃の鉄含有塩酸は、加温重金属含有塩酸供給ラインL2→ラインL3(開閉弁V1)→第1イオン交換樹脂塔3→ラインL4(開閉弁V4)→第2イオン交換樹脂塔4→ラインL11(開閉弁V8)→精製塩酸導出ラインL9と順次流れる。これにより、鉄が吸着除去された精製塩酸が取り出される。   That is, in the first operation step, by opening / closing each on-off valve, the iron-containing hydrochloric acid having a temperature of, for example, 50 ° C. heated from the heating heat exchanger 2 is heated to a heated heavy metal-containing hydrochloric acid supply line. L2 → line L3 (open / close valve V1) → first ion exchange resin tower 3 → line L4 (open / close valve V4) → second ion exchange resin tower 4 → line L11 (open / close valve V8) → purified hydrochloric acid derivation line L9 . Thereby, the purified hydrochloric acid from which the iron is adsorbed and removed is taken out.

一方、鉄の吸着除去処理と並行して、冷却用熱交換器7からの冷却された液温が例えば10℃の低温の再生液は、冷却再生液供給ラインL14→ラインL17(開閉弁V12)→第3イオン交換樹脂塔5→ラインL21(開閉弁V15)→再生廃液導出ラインL18と順次流れる。これにより、それまでの吸着処理によってイオン交換樹脂塔の頂部から底部までの全体にわたって完全破過状態となっていた第3イオン交換樹脂塔5の再生が、直列接続されたイオン交換樹脂塔3,4による吸着除去処理と並行して行われる。   On the other hand, in parallel with the iron adsorption removal process, the regenerated liquid having a low temperature of, for example, 10 ° C. cooled from the cooling heat exchanger 7 is cooled regenerated liquid supply line L14 → line L17 (open / close valve V12). → 3rd ion exchange resin tower 5 → line L21 (open / close valve V15) → recycled waste liquid lead-out line L18 sequentially flows. Thereby, regeneration of the 3rd ion exchange resin tower 5 which was in the complete breakthrough state over the whole from the top part to the bottom part of the ion exchange resin tower by the adsorption treatment until then, the ion exchange resin tower 3 connected in series 4 is performed in parallel with the adsorption removal processing by 4.

次に、第2運転工程では、第1運転工程時には下流側であった第2イオン交換樹脂塔4が上流側に位置し、再生処理された第3イオン交換樹脂塔5が下流側に位置するように、これらのイオン交換樹脂塔4,5を直列接続した状態で吸着処理を行う。すなわち、第2の運転工程では、加温用熱交換器2からの加温された鉄含有塩酸は、加温重金属含有塩酸供給ラインL2→ラインL5(開閉弁V2)→第2イオン交換樹脂塔4→ラインL6(開閉弁V5)→第3イオン交換樹脂塔5→ラインL12(開閉弁V9)→精製塩酸導出ラインL9と順次流れる。これにより、鉄が吸着除去された精製塩酸が取り出される。   Next, in the second operation step, the second ion exchange resin tower 4 that was downstream in the first operation step is located on the upstream side, and the regenerated third ion exchange resin tower 5 is located on the downstream side. As described above, the adsorption treatment is performed in a state where these ion exchange resin towers 4 and 5 are connected in series. That is, in the second operation step, the heated iron-containing hydrochloric acid from the heating heat exchanger 2 is supplied as a heated heavy metal-containing hydrochloric acid supply line L2 → line L5 (open / close valve V2) → second ion exchange resin tower. 4 → line L6 (open / close valve V5) → third ion exchange resin tower 5 → line L12 (open / close valve V9) → purified hydrochloric acid lead-out line L9. Thereby, the purified hydrochloric acid from which the iron is adsorbed and removed is taken out.

一方、鉄の吸着除去処理と並行して、冷却用熱交換器7からの冷却された低温の再生液は、冷却再生液供給ラインL14→ラインL15(開閉弁V10)→第1イオン交換樹脂塔3→ラインL19(開閉弁V13)→再生廃液導出ラインL18と順次流れる。これにより、それまでの吸着処理によってイオン交換樹脂塔の頂部から底部までの全体にわたって完全破過状態となっていた第1イオン交換樹脂塔3の再生が、直列接続されたイオン交換樹脂塔4,5による吸着除去処理と並行して行われる。   On the other hand, in parallel with the iron adsorption removal process, the cooled low-temperature regenerated liquid from the cooling heat exchanger 7 is cooled regenerated liquid supply line L14 → line L15 (open / close valve V10) → first ion exchange resin tower. 3 → line L19 (open / close valve V13) → recycled waste liquid derivation line L18. Thereby, regeneration of the 1st ion exchange resin tower 3 which was in the complete breakthrough state over the whole from the top part to the bottom part of the ion exchange resin tower by the adsorption treatment until then, the ion exchange resin tower 4 connected in series 5 is performed in parallel with the adsorption removal processing by 5.

次に、第3運転工程では、第2運転工程時には下流側であった第3イオン交換樹脂塔5が上流側に位置し、再生処理された第1イオン交換樹脂塔3が下流側に位置するように、これらのイオン交換樹脂塔5,3を直列接続した状態で吸着処理を行う。すなわち、第3の運転工程では、加温用熱交換器2からの加温された鉄含有塩酸は、加温重金属含有塩酸供給ラインL2→ラインL7(開閉弁V3)→第3イオン交換樹脂塔5→ラインL8(開閉弁V6)→第1イオン交換樹脂塔3→ラインL10(開閉弁V7)→精製塩酸導出ラインL9と順次流れる。これにより、鉄が吸着除去された精製塩酸が取り出される。   Next, in the third operation step, the third ion exchange resin tower 5 that was downstream in the second operation step is located on the upstream side, and the regenerated first ion exchange resin tower 3 is located on the downstream side. As described above, the adsorption treatment is performed in a state where these ion exchange resin towers 5 and 3 are connected in series. That is, in the third operation step, the heated iron-containing hydrochloric acid from the heating heat exchanger 2 is supplied as a heated heavy metal-containing hydrochloric acid supply line L2 → line L7 (open / close valve V3) → third ion exchange resin tower. 5 → line L8 (open / close valve V6) → first ion exchange resin tower 3 → line L10 (open / close valve V7) → purified hydrochloric acid lead-out line L9. Thereby, the purified hydrochloric acid from which the iron is adsorbed and removed is taken out.

一方、鉄の吸着除去処理と並行して、冷却用熱交換器7からの冷却された低温の再生液は、冷却再生液供給ラインL14→ラインL16(開閉弁V11)→第2イオン交換樹脂塔4→ラインL20(開閉弁V14)→再生廃液導出ラインL18と順次流れる。これにより、それまでの吸着処理によってイオン交換樹脂塔の頂部から底部までの全体にわたって完全破過状態となっていた第2イオン交換樹脂塔4の再生が、直列接続されたイオン交換樹脂塔5,3による吸着除去処理と並行して行われる。   On the other hand, in parallel with the iron adsorption removal process, the cooled low-temperature regenerated liquid from the cooling heat exchanger 7 is cooled regenerated liquid supply line L14 → line L16 (open / close valve V11) → second ion exchange resin tower. 4 → line L20 (open / close valve V14) → recycled waste liquid derivation line L18. Thereby, regeneration of the 2nd ion exchange resin tower 4 which was in the complete breakthrough state over the whole from the top part to the bottom part of the ion exchange resin tower by the adsorption treatment until then, the ion exchange resin tower 5 connected in series 3 is performed in parallel with the adsorption removal processing by 3.

この第3運転工程の後、前記第1運転工程へ戻り、これらの一連の運転工程が順次繰り返されるようになっている。このように、複数のイオン交換樹脂塔を直列に接続して吸着処理を行うとともに、これに並行して、それまで上流側であって完全に飽和したイオン交換樹脂塔を再生し、次の吸着処理においてこの再生済みのイオン交換樹脂塔を下流側に接続するという手順での連続運転により、複数のイオン交換樹脂塔内のイオン吸着樹脂を効率良く吸着に利用することができ、効果的な操業ができる。   After the third operation step, the process returns to the first operation step, and a series of these operation steps are sequentially repeated. In this way, a plurality of ion exchange resin towers are connected in series to perform adsorption treatment, and at the same time, the ion exchange resin towers that have been upstream and completely saturated are regenerated, and the next adsorption is performed. Through continuous operation in the process of connecting the regenerated ion exchange resin tower to the downstream side in the treatment, the ion adsorption resin in the plurality of ion exchange resin towers can be efficiently used for adsorption, and effective operation is achieved. Can do.

鉄含有塩酸溶液の液温が20℃と50℃の場合の吸着等温線の例を示すグラフである。It is a graph which shows the example of the adsorption isotherm in case the liquid temperature of an iron containing hydrochloric acid solution is 20 ° C and 50 ° C. 鉄含有塩酸溶液の液温を変化させた場合の鉄吸着挙動の温度依存性の例を示すグラフである。It is a graph which shows the example of the temperature dependence of the iron adsorption | suction behavior at the time of changing the liquid temperature of an iron containing hydrochloric acid solution. 再生液の液温が10℃と50℃の場合の再生挙動の温度依存性の例を示すグラフである。It is a graph which shows the example of the temperature dependence of the reproduction | regeneration behavior in case the liquid temperature of a reproduction | regeneration liquid is 10 degreeC and 50 degreeC. 本発明による塩酸中重金属除去装置の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the heavy metal removal apparatus in hydrochloric acid by this invention . 本発明を説明するための図である。It is a figure for demonstrating this invention.

1…回収塩酸タンク
2…加温用熱交換器
3…第1イオン交換樹脂塔
4…第2イオン交換樹脂塔
5…第3イオン交換樹脂塔
6…再生液タンク
7…冷却用熱交換器
DESCRIPTION OF SYMBOLS 1 ... Recovery hydrochloric acid tank 2 ... Heat exchanger for heating 3 ... 1st ion exchange resin tower 4 ... 2nd ion exchange resin tower 5 ... 3rd ion exchange resin tower 6 ... Regenerated liquid tank 7 ... Heat exchanger for cooling

Claims (4)

強塩基性陰イオン交換樹脂が充填されるイオン交換樹脂塔と、重金属含有塩酸を貯留する回収塩酸タンクと、低濃度塩酸からなる再生液を貯留する再生液タンクと、前記回収塩酸タンクから送出され、前記イオン交換樹脂塔へ供給される重金属含有塩酸を常温より高い所定の温度に加温する加温手段とを備えていることを特徴とする塩酸中重金属除去装置An ion exchange resin tower filled with a strongly basic anion exchange resin, a recovered hydrochloric acid tank for storing heavy metal-containing hydrochloric acid, a regenerated liquid tank for storing a regenerated liquid consisting of low-concentration hydrochloric acid, and the recovered hydrochloric acid tank. , hydrochloric acid in the heavy metal removal apparatus characterized by comprising a heating means for heating the heavy metal-containing hydrochloric acid to be supplied to the higher than normal temperature the predetermined temperature to the ion exchange resin column. 請求項記載の塩酸中重金属除去装置において、さらに、前記再生液タンクから送出され、前記イオン交換樹脂塔へ供給される再生液を前記所定の温度より低い温度に冷却する冷却手段を備えていることを特徴とする塩酸中重金属除去装置2. The apparatus for removing heavy metal in hydrochloric acid according to claim 1 , further comprising cooling means for cooling the regenerated liquid sent from the regenerated liquid tank and supplied to the ion exchange resin tower to a temperature lower than the predetermined temperature. An apparatus for removing heavy metals in hydrochloric acid . 前記所定の温度は、25〜80℃であることを特徴とする請求項1又は2記載の塩酸中重金属除去装置。The apparatus for removing heavy metals in hydrochloric acid according to claim 1 or 2, wherein the predetermined temperature is 25 to 80 ° C. 前記重金属含有塩酸は、塩素含有廃プラスチックの脱塩素工程からの排ガスから回収した回収塩酸であることを特徴とする請求項1、2又は3記載の塩酸中重金属除去装置。4. The apparatus for removing heavy metal in hydrochloric acid according to claim 1, wherein the heavy metal-containing hydrochloric acid is recovered hydrochloric acid recovered from exhaust gas from a chlorine-containing waste plastic dechlorination step.
JP2005200797A 2005-07-08 2005-07-08 Equipment for removing heavy metals in hydrochloric acid Expired - Fee Related JP4699824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200797A JP4699824B2 (en) 2005-07-08 2005-07-08 Equipment for removing heavy metals in hydrochloric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200797A JP4699824B2 (en) 2005-07-08 2005-07-08 Equipment for removing heavy metals in hydrochloric acid

Publications (2)

Publication Number Publication Date
JP2007015900A JP2007015900A (en) 2007-01-25
JP4699824B2 true JP4699824B2 (en) 2011-06-15

Family

ID=37753387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200797A Expired - Fee Related JP4699824B2 (en) 2005-07-08 2005-07-08 Equipment for removing heavy metals in hydrochloric acid

Country Status (1)

Country Link
JP (1) JP4699824B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446349B2 (en) * 2009-03-17 2014-03-19 ダイキン工業株式会社 Method for producing hydrogen iodide and method for producing iodine
JP5311227B2 (en) * 2009-08-05 2013-10-09 野村マイクロ・サイエンス株式会社 Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
JP2011218311A (en) * 2010-04-12 2011-11-04 Toshiba Corp Water supply device for ion exchange apparatus and steam turbine plant with the same, and method for supplying water of ion exchange apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412245B2 (en) * 1975-10-01 1979-05-22
JPH0141395B2 (en) * 1981-10-21 1989-09-05 Perumeretsuku Denkyoku Kk
JP2002316803A (en) * 2001-04-16 2002-10-31 Nkk Corp Method and facility for recovering hydrochloric acid from evolved gas of dechlorination treatment of chlorine-containing resin
JP2002361245A (en) * 2001-06-08 2002-12-17 Japan Organo Co Ltd Method and device for regenerating ion exchange resin in condensate demineralizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412245B2 (en) * 1975-10-01 1979-05-22
JPH0141395B2 (en) * 1981-10-21 1989-09-05 Perumeretsuku Denkyoku Kk
JP2002316803A (en) * 2001-04-16 2002-10-31 Nkk Corp Method and facility for recovering hydrochloric acid from evolved gas of dechlorination treatment of chlorine-containing resin
JP2002361245A (en) * 2001-06-08 2002-12-17 Japan Organo Co Ltd Method and device for regenerating ion exchange resin in condensate demineralizer

Also Published As

Publication number Publication date
JP2007015900A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP7031263B2 (en) Lithium recovery method
JP5282027B2 (en) A combined process using ion exchange resins in the selective recovery of cobalt and nickel from leaching wastewater
JPH03151051A (en) Method for regeneration of acidic cation exchange resin for use in reactivation of waste alkanol amine
CN113293293B (en) Method for recovering nickel and cobalt from laterite-nickel ore by resin adsorption method
JP2019044246A (en) Recovery method of lithium
JP6728905B2 (en) Purification method of cobalt chloride aqueous solution
JP4699824B2 (en) Equipment for removing heavy metals in hydrochloric acid
JP2012149285A (en) Rhenium recovery method and system from waste acid
JP5498167B2 (en) Process for recovering nickel and cobalt from laterite ores using ion exchange resins
JP7102743B2 (en) Lithium recovery method
JP6433395B2 (en) Copper sulfide ore leaching method
US7314954B1 (en) System and method for recovering PTA mother liquid and purifying and regenerating of catalyst
JP2015203134A (en) Purification method of cobalt chloride aqueous solution
Wang et al. Enhanced vanadium adsorption performance on aminophosphonic chelating resin with oxalic acid regeneration
RU2602213C2 (en) Direct purification of a nickel laterite leaching effluent
JP3913939B2 (en) Boron recovery method
CN107459164A (en) The recovery method of catalyst in a kind of CWO waste water
KR20170074127A (en) Producing method of cobalt and nickel sulfide using wastewater of ion exchange scrubber
KR101389484B1 (en) Method for removing of copper-ion from solutions containing low concentration copper
JP5539823B2 (en) Electrolyte purification method
JPS6316341B2 (en)
CN111704189A (en) Method for removing polycarboxyl heavy metal complex in water
JPS61111917A (en) Recovery of gallium
JP2021070859A (en) Metal recovery method and metal recovery device
JP2016221438A (en) Method and apparatus for recovering heavy metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

LAPS Cancellation because of no payment of annual fees